IPD/JICA Task Force on Industrial Policy and Transformation Amman, Jordan, June 5-6, 2014

COMPLEXITY AND INDUSTRIAL POLICY

Luciano Pietronero

Measuring the Intangible Growth Potential of Countries

Collaborators: M. Cristelli^{1,2}, A. Gabrielli^{1,2}, A. Tacchella^{1,2}, A. Zaccaria^{1,2}

[1] Institute for Complex Sistems, CNR, Rome, Italy;
[2] "Sapienza" University of Rome, Italy
[3] London Institute for Mathematical Sciences, UK; [4] IMT, Lucca Web Page: http://pil.phys.uniroma1

COMTRADE database: Which country <u>exports</u> which product

- <u>Bipartite Network</u>: New algorithm to extract information for
- Fitness of Countries
- Complexity of Products

NB: this is not an analysis of the export volumes. The information is derived from the nature of products

Countries Products 9504 Germany China 9108 Italy 9616 7107 Japan USA 3705 France 8109 UnitedKingdom a 8805 3707 Austria Spain 3703 2913 Belgium

SPECIALIZATION VS. DIVERSIFICATION DATA DRIVEN APPROACH:

Evidence for leading role of diversification with respect to competitive advantage (specialization)

- Globalization
 Evolvability
- Ecosystems
 Adaptation

From Qualitative to Quantitative

- Math. Problem: minimal elements to have a triangilar matrix Complex Hierarchical structure, nestdness etc.
- For sectors and companies the situation evolves towards specialization

MEASURING INTANGIBLE PROPERTIES

New metrics for Fitness of countries and Complexity of products

 F_c : diversification weighted by complexity

 Q_p : Extremal non-linear complexity of products. A <u>single low fitness producer</u> implies low complexity

The Economic Dynamical Ecosystem:

Data driven approach from micro to macro

• Countries: diversified in products

Countries and Products: Google like approach – Big Data Countries: Fitness index Products: Complexity index Dynamics: Monetary vs Intangible metrics – Hidden potential

- Subsystems: Regions, Districts, Cities (London, Shanghai)
- Industrial sectors: Various levels of grouping Evolution of their Complexity Policy making: virtual experiments, what if? Criteria for optimization
- Companies: specialized in products
 But diversified in terms of Technologies in their control (ie patents)

The Unified Metric System for Economics A basic step for a systematic scientific approach

PROJECT PROPOSAL: LP + INET + World Bank + ???

THE FUNDAMENTAL ECONOMIC DATABASE

- Who produces what: The complete economic production for all
- Countries, Regions, Cities etc.
- Using coherent and comparable variables and including services, finance etc.
- Data are basically available, the problem is to embedd them in a coherent and systematic framework.
- Great value with limited effort. Even if beginning will be difficult it points to the direction to go

S. Inoua, On the Complexity Approach to Economic Development, 2013 http://vixra.org/pdf/1301.0182v1.pdf

How the model works:

1. Probability of having a product with *combinatorial complexity C (number of capabilities)* is

$$p(C) \sim \pi^C$$

<u>Meaning of π </u>: how effective is a country in making more products by combining capabilities

$$d = \sum_{C=1}^{K} p(C) \binom{K}{C} \sim (1+\pi)^{K}$$

2. The diversification d of a country which has K capabilities (K represents the complexity of that country) is

NB: no loss of generality assuming minimum number of capabilities =1

<u>1° Prediction</u>: let's test, as proxy for *K*, *log(Fitness)* and the *Economic Complexity Index* (ECI, C. Hidalgo et al. PNAS, 2009)

log(DIVERSIFICATION) vs log(FITNESS)

Log(Fitness) is good proxy for the *complexity K* of countries R²≈0.92-0.94 in the period 1995-2010

ECI is not a good proxy for *complexity K*, R²≈0.52-0.65 in the period 1995-2010

MICRO ORIGIN OF POVERTY TRAP?

No longer exponential relationship btw *diversification* and *complexity* (i.e. *Log(Fitness)*)

2010: Major changes are taking place

ECONOMIC DYNAMICS IS HETEROGENEOUS

COARSE GRAINED DYNAMICS: PREDICTABILITY DEPENDS ON THE ZONE

Hetreogeneous Weather Forecasting:

RED: High predictability

BLUE: Low predictability

Country positions are referring to 2010 — Red lines are averages of country trajectories Income is measured by Gross Domestic Product *per capita*, PPP (current international \$)

Predictability – Forecasting (Beyond Regressions)

Heterogeneous Growth Dynamics: Selective Predictability

Overview of scienfic predictions:

- If one KNOWS the equation of motion:
 - Linear dynamics: full predictability. Sun raises tomorrow at 06:22 Halley comet will come back in 121y, 237days, 13h, 45 min, 12 sec
 - Nonlinear chaotic dynamics: Lyapunov exponents
 Weather forecasts, limit of 3 7 days
 BUT: don't buy a calendar for more than 5 million years
- If one DOES NOT KNOW the equation of motion: Method of Analogous: dynamical system approach; effective dimension of phase space. New in economics; concretely data-driven
- Method of Regressions: cause-effect relation; homogeneity of response etc. Not suitable for heterogeneous dynamics

Borrowing concepts from dynamical systems

olGDP_

Laminar regime

Low effective dimension ($d_e \approx 2$)

Fitness is the relevant and driving variable for the economic dynamics in this regime

Chaotic regime

Chaotic dynamic $\Omega R = d_e \gg 2$

Dynamics is ruled by several other exogenous factors competing with Fitness

SELECTIVE PREDICTABILITY

Method of Analogs: forecasting the future by the knowledge of the past

the Selective Predictability Scheme

FITNESS vs. GDP_{pc}

- Products appear clustered in Quality Space
- The revanche of specialization Industrial sectors and individual companies tend to be reasonably specialized

Product Complexity

0L

The Building Blocks of Economic Complexity

C. Hidalgo (MIT), R. Hausmann (Harvard)

The Complex Taxonomy of Products

- Definition of products in terms of the needed capabilities
- Hierarchical, tree-like structure
- Directed vs undirected edges (time evolution)
- Possibility to understand and forecast development

SWEDEN: PORTION OF THE PRODUCT SPACE

Example: SK 81 detailed products

Diffusion of South Korea 1963-2000

Example: Diffusion of SK 1963-2000

Example: Diffusion of SK 1963-2000

Example: Diffusion of SK 1963-2000

Example: Diffusion of SK 1963-2000

Example: Diffusion of SK 1963-2000

New Fundamental Economic Theory - New information - Finance

OPTIMAL PORTFOLIO FOR GROWTH: GDP, STOCK INDEX, DEBT ...

A fundamentally based Index: COMPLEXITY INDEX

(NB: Non market Cap)

Composition of the Index	31-12-09 to 31-12-10
Country	Percentage
India	15.63
Vietnam	13.34
China	12.29
Bangledesh	11.73
Pakistan	11.03
Indonesia	10.27
Philippines	10.11
Thailand	7.93
Ukraine	7.67

OPTIMAL PORTFOLIO FOR GROWTH: GDP, STOCK INDEX, DEBT ...

A fundamentally based Index: COMPLEXITY INDEX

(NB: Non market Cap)

Comparison with NYSE and SP500

time

SWEDEN: PORTION OF THE PRODUCT SPACE

New directions 2014

- Extended database from 1963: 60 years instead of 15.
- Analysis of Dynamics and predictability test much improved
- How to get out of the poverty trap
- Evolution of Products Complexity
- Economic Cycles etc
- Systematic construction of the Product Space
- Analysis of Sectors. Focus on countries with an appreciable hidden potential, look at emerging sectors (before RCA) and look at their position in Product Space
- Invasion of the Product Space in succesful cases of industrialization

ECONOMIC DYNAMICS IS HETEROGENEOUS

Poverty Trap 1 1963 - 2000

Comparing Fitness and GDP per capita permits to obtain more

South Korea Evolution

Some examples of different regimes...

1963 - 2000

China Evolution

Some examples of different regimes...

1963 - 2000

MICRO ORIGIN OF POVERTY TRAP?

No longer exponential relationship btw *diversification* and *complexity* (i.e. *Log(Fitness)*) 2010

South Korea Evolution 2

Time evolution of South Korea in the diversification-fitness diagram

Mcp Triangularity

Binary matrix of exports Triangular shape

The Building Blocks of Economic Complexity

C. Hidalgo (MIT), R. Hausmann (Harvard)

Introducing: A Probabilistic Model

2)

3)

The probability of a capability to be needed by a certain product follows a Power Law (some capabilities are necessary for many products)

The number of capabilities needed to build a product is drawn by a uniform distribution.

Network Interpretation

- At each time step a new capability is introduced
- 2. The new capability defines a new product
- 3. A directed link is inserted from new product and

Main results

Poverty Trap

COUNTRY

AT EACH TIME STEP WE ADD RANDOM CAPABILITIES PROPORTIONALLY TO REACHED DIVERSIFICATION AND COMPUTE THE NEW DIVERSIFICATION

Superexponential growth

These concepts are general exist in ecology too

Countries Products

Economics

Plants Pollinators

J. Bascompte et al. PNAS (2003)

1. Nestedness

2. Poverty Traps

ECONOMIC COMPLEXITY MODEL

Economics

Great divergence sudden increase in income

but also in

PRODUCTS' DIVERSITY

Ecology

Cambrian Explosion "sudden" increase in

BIODIVERSITY

Results: Poverty Traps

Growth Decomposition

Is Growth of Countries an Endogeneous or Exogeneous Process?

$Y = AK^{\alpha}L^{1-\alpha}$

Solow (1956): Exogenous, Technology Rodeinstein-Roden (1943): Endogeneous, Input Murphy, Shleifer, Vichny (1989), Krugman (1993): The Big Push (Short Period of Endogeneous Growth)

USA vs Japan Catching up

 Real GDP in Japan (DISCONTINUED)/Civilian Labor Force: All Persons in Japan©

 Real GDP in the United States (DISCONTINUED)/Civilian Labor Force: All Persons in the United States©

Shaded areas indicate US recessions - 2014 research.stlouisfed.org

Endogeneous Growth (1963-2000)

Endogeneous Growth (1963-2000)

NATIONAL STRATEGY FOR SWEDEN FROM WEALTH TO WELL-BEING

Boston Consulting Group Report on the competitiveness of Sweden (public document) October 2013

BCG THE BOSTON CONSULTING GROUP

Ongoing and planned projects

- Refinement of <u>database</u> with respect to anomalous products (product network) and anomalous Countries, i.e. Ethiopia optic fibers. Check product complexity by eliminating one country at a time.
- <u>Analysis of Sectors</u>. Focus on countries with an appreciable hidden potential and look at emerging sectors (before RCA) and look at their position in Product Space
- <u>Analysis of companies</u>, often few products, technologies? Patent data (?) and Technology data For sectors and companies specialization becomes the leading property. Bloomberg data on companies revenues assigned to individual sectors (products)
- Analysis of Sweden, NL and UK for government agencies, role of services and finance
- Analysis of Eurozone countries and the effect of the Euro in the past 15 years
- Analysis of Italy: Competitivity of small vs large industries (ISTAT)
- Geographic and demographic elements
- Generalization of Algorithm also including Weights
- Role of Import data in various roles
- <u>Predictabily: New Concepts beyond regressions. Heterogeneous dynamics</u> Similarity to weather predictions and dynamical systems
- Countries <u>Spectroscopy. More than just Fitness</u>. Detailed analysis of sector dynamics
- Dynamics in the Space of Products. Industrial planning for a country
- Theory for the emergence of the triangular matrix (diversification) For companies specialization seems to be important, Size effect? Combinatorial models. ABM models, other?
- Expansion of the Product Space. Development of new Technologies
- Relation to Keynes multiplicator and Minsky theory
- Application of Bipartite ideas to Industrial districts and cities.