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A B S T R A C T   

Decadal predictions present an emerging opportunity for various socio-economic sectors affected by climate 
variability. However, the development of associated climate services is still in an incipient stage. This study 
focuses on developing a prototype climate service for an end-user in the hydropower sector. The service aimed at 
predicting precipitation in three drainage basins (Guadalquivir, Ebro and Po) for the next ten years, and was 
developed in close collaboration with the user. In this paper we do not provide the real-time forecasts, but we 
focus on describing and evaluating the methods and the models used. Using a European multi-model ensemble, 
the predictive skill for precipitation is found to vary with the calendar season, the forecast range and the drainage 
basin considered, though it is generally low for the purposes of supporting such a climate service. To overcome 
this deficiency, a hybrid approach was developed making combined use of the good skill in predicting the North 
Atlantic Oscillation (NAO) and the observed dominant influence of the latter on the decadal variability of pre-
cipitation in the areas of interest. Implementing this hybrid approach, which combines predictive information 
from the dynamical models with statistical information from observations, brings significant skill improvements 
in all basins during the extended cold season (November-March) for the first 10 forecast years. The hybrid model 
outperforms the direct multi-model ensemble output, exhibiting statistically significant skill for all basins. Our 
results suggest that utilising large-scale predictors can significantly improve regional predictions, and provide 
usable information for the hydropower sector.   

Practical Implications 

Climate services have been rightly receiving increasing attention in 
recent years, since skilful climate forecasts are important for govern-
ments and businesses in various socio-economic sectors. Forecasts on 
different temporal horizons can be useful for assisting planning and 
decision-making in the energy sector. While sub-seasonal to seasonal 
forecasts (from weeks to a season ahead) can, for example, help in 
planning maintenance operations, identifying risks and preventing 
damages and power outages and/or anticipating energy prices, multi- 
year to decadal forecasts can be useful in assessing the available 
future resources and changes to the energy mix, integrating new infra-
structure and storage capacity and in planning future investments and 
selecting new sites. 

Decadal predictions have evolved rapidly in the last 15 years, and are 

now capable of skillfully predicting various aspects of the climate sys-
tem. In addition, decadal predictions are now produced operationally by 
several institutions around the world, contributing to multi-model pre-
dictions of the next few years, updated annually and issued by the Lead 
Centre for Annual to Decadal Climate Predictions, established by the 
World Meteorological Organization (WMO) (Hermanson et al., 2022). 
Despite recent advances, and while information from sub-seasonal to 
seasonal forecasts and climate projections have been progressively 
incorporated into decision-making worldwide, the potential of climate 
services based on decadal predictions has not been adequately explored. 
On these grounds, the EU Copernicus Climate Change Service (C3S) 
aimed at revealing the potential benefits of decadal predictions for 
different industries, and to develop real-time prototype decadal pre-
diction products. Under the C3S_34c project, four European institutions, 
each developed a prototype decadal climate service for four different 

* Corresponding author. 
E-mail address: eirini.tsartsali@cmcc.it (E.E. Tsartsali).  

Contents lists available at ScienceDirect 

Climate Services 

journal homepage: www.elsevier.com/locate/cliser 

https://doi.org/10.1016/j.cliser.2023.100422    

mailto:eirini.tsartsali@cmcc.it
www.sciencedirect.com/science/journal/24058807
https://www.elsevier.com/locate/cliser
https://doi.org/10.1016/j.cliser.2023.100422
https://doi.org/10.1016/j.cliser.2023.100422
https://doi.org/10.1016/j.cliser.2023.100422
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cliser.2023.100422&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Climate Services 32 (2023) 100422

2

sectors (agriculture, energy, infrastructure and insurance), currently 
available on the C3S website1. 

In the present study, we focused on the development of the prototype 
climate service to assist decision-making of an energy company (ENEL 
Green Power), involved in this project as a stakeholder from the hy-
dropower sector. Specifically, we provided 10-year mean precipitation 
forecasts for the extended cold season, for three drainage basins in 
Southern Europe. However, this paper aims to describe and evaluate the 
models used, rather than to provide the real-time forecasts. 

We adopted a hybrid approach based on the observed variability of a 
skillfully predicted large-scale circulation pattern and the local precip-
itation. Our results show that exploiting the current skill of large-scale 
information and their empirical relationship with regional climate var-
iables, can be key in overcoming the deficiency of the current generation 
of decadal prediction systems to skillfully predict local meteorological 
variables, such as precipitation. However, further development and 
effort is needed to improve this prototype climate service in terms of 
skill and accuracy, predicting other variables and statistics (e.g. fre-
quency and average intensity of extremes) relevant to the needs of the 
end-user, providing forecasts of different temporal horizons and other 
calendar seasons. Similar hybrid approaches can be potentially extended 
and applied to other regions in Europe, while similar products can be 
developed to provide information for other renewable energy sources, 
such as wind and solar power. Last but not least, in order to ensure the 
development of useful climate services with an impact on the end-user 
decision-making, we should involve the end-users more interactively 
in the design and the development of such services so as to provide 
tailored information matching their needs. 

1. Introduction 

Decadal predictions aim to provide valuable information of the 
climate system evolution over the next few years and up to a decade 
ahead. In contrast to long-term climate projections, which mainly pro-
vide an estimate of the climate system response to the external forcings 
by prescribing greenhouse gases, aerosol concentrations and natural 
radiative forcing changes, decadal predictions are additionally 
benefiting from simulating the predictable component of internal vari-
ability through realistic initialization. Initializing the model simulations 
(predictions) by providing a best estimate of the respective observed 
climate state provides the model with the correct “phase” of internal 
variability (Meehl et al., 2014; Boer et al., 2016; Kushnir et al., 2019; 
Meehl et al., 2021). At multi-annual to decadal timescales, the the 
impact of the internally generated climate variability on the climate 
forecasts is comparable to the externally forced signal (Branstator and 
Teng, 2012; Boer et al., 2016; Meehl et al., 2021). Therefore, decadal 
predictions can improve the predictive skill by encompassing both 
sources of predictability, the internal climate variability and the external 
forcing (Doblas-Reyes et al., 2013; Boer et al., 2016; Yeager et al., 2018; 
Smith et al., 2019). Consequently, they present an emerging opportunity 
for the development of climate services to assist planning and decision 
making by governments and businesses in various socio-economic 
sectors. 

Decadal predictions are now produced operationally worldwide, 
bridging the gap between seasonal predictions and climate projections. 
However, despite their rapid evolution in the last decade (Borchert et al., 
2021; Delgado-Torres et al., 2022) and the increasing interest from end- 
users, climate services based on decadal predictions are limited and still 
in incipient stage. On these grounds, the EU Copernicus Climate Change 
Service (C3S) aimed at revealing the potential benefits of decadal pre-
dictions for different industries, and to develop real-time, sector-specific 
prototype decadal prediction products. Under the C3S_34c project, four 
European institutions — the Deutscher Wetterdienst (DWD, Germany), 

the Barcelona Supercomputing Center (BSC, Spain), the Centro Euro- 
Mediterraneo sui Cambiamenti Climatici (CMCC, Italy) and the Met 
Office (UK) — each developed a prototype climate service, respectively 
for infrastructure, agriculture, energy and insurance, in close collabo-
ration with interested end-users operating in these sectors. The four 
forecast products are now available on the C3S website2, while details 
on the case studies are provided in Solaraju-Murali et al. (2021) (agri-
culture), Paxian et al. (2022) (infrastructure), Lockwood et al. (2023) 
(insurance). The co-development with the end-users, along with the 
main challenges to exploit the current predictive skill and tailor the 
climate information to real-world applications are also discussed in 
Dunstone et al. (2022). 

Here, we focus on the development of the prototype climate service 
for the energy sector led by CMCC. The energy sector is very broad, 
encompassing power generation from different energy sources, power- 
grid management, distribution and retail. Weather and climate related 
information has always been relevant to the energy industry, as the 
power needs are strongly altered by the synergy of climate change and 
internal climate variability (Bloomfield et al., 2016; Van Ruijven et al., 
2019; Larsen et al., 2020). Nowadays, it gains even more importance all 
along the energy value chain, due to the transition towards decarbon-
isation. The accelerating integration of renewable energy into the power 
grid renders the energy supply more climate dependent (Ravestein et al., 
2018; Shu et al., 012126, 2018,; Jerez et al., 2019; Wohland et al., 
2019). 

However, climate information is not important only to anticipate 
supply and demand, but also to plan the operation and maintenance, and 
secure the energy infrastructure. At the same time, identifying future 
climate variations provides a useful tool to assess the available re-
sources, understand possible changes in the energy mix, and integrate 
new infrastructure and storage capacity if needed (Ciscar and Dowling, 
2014; Dubus et al., 2018). 

In this project, ENEL Green Power (hereafter, ENEL-GP), an Italian 
company active in the international market by generating and providing 
electricity from renewable sources, was involved as a stakeholder for the 
hydropower sector in southern Europe. The most important climatic 
factor affecting the hydropower system is precipitation, since it de-
termines the water input in the reservoir’s catchment area, and is the 
main variable affecting river discharge. Lower precipitation leads to 
decreased river discharge and power generation, while increased pre-
cipitation enhances the discharge, and depending on the system capacity 
can contribute to higher power generation (Wei et al., 2020; Huangpeng 
et al., 2021). Temperature is also important, as it regulates the water 
losses through evapotranspiration (Coelho et al., 1, 2016,; Zhao et al., 
2021; Materia et al., 2022), the partitioning between rain and snow, and 
the timing of snow melting (Berghuijs et al., 2014). Earth surface pro-
cesses, such as soil and land cover properties, can also modulate the river 
discharge (Khare et al., 2017). Moreover, extreme weather events, such 
as torrential rain and floods, are crucial to the safety of the current 
infrastructure and the design criteria for building new dams and hy-
dropower installations (Bowles et al., 2013; Fluixá-Sanmartín et al., 
2018). 

Among several needs, the amount of water available in the reservoir 
was of great interest for the end-user. After discussing with ENEL-GP 
team about their needs and different forecast possibilities, it was 
decided to proceed with predicting precipitation, the key attribute for 
the river discharge and the water storage volume, in three European 
drainage basins: Guadalquivir and Ebro in Spain and Po in Northern 
Italy. In decadal forecasts, even though significant skill has been docu-
mented for surface temperature, precipitation still exhibits lower pre-
dictability (Doblas-Reyes et al., 2013; Meehl et al., 2014; Bellucci et al., 
2015; Smith et al., 2019). However, recent studies have reported sig-
nificant predictive skill for Euro-Atlantic circulation regimes at the 

1 https://climate.copernicus.eu/sectoral-applications-decadal-predictions 2 https://climate.copernicus.eu/sectoral-applications-decadal-predictions 
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decadal timescale, when a large ensemble is utilized (Smith et al., 2020; 
Athanasiadis et al., 2020). A potential impact of these regimes on the 
climatic conditions in the areas of interest, may result in increased 
predictability of the local climate. Through a close interaction with the 
end-user, we produced a real-time forecast product3, providing 10-year 
mean precipitation forecast for each of the above-mentioned basins. This 
paper focuses on the development of this prototype climate service, 
providing information regarding the models used and their predictive 
skill and not the real-time forecasts. Further we discusse existing limi-
tations and possible improvements, and we highlight the potential value 
of decadal predictions in climate services for the energy sector. 

2. Material and methods 

2.1. Study Area 

We focus on three European river catchments where the end-user, 
ENEL-GP, is operating: Ebro and Guadalquivir in Spain and Po in Italy 
(Fig. 1). Ebro is located in the northeastern part of Spain and is the 
largest drainage basin of the country, comprising an area of about 
85,000 km2. It is delimited by the Pyrenees and Cantabrian Mountains to 
the north, the Catalan Coastal Range to the east, and the Iberian Range 
to the west and south. It has mainly continental Mediterranean climate 
with oceanic climate influences in the northern and northwestern sec-
tors. The Guadalquivir basin is situated in southern Spain. It has an area 
of approximately 57,500 km2, 90% of which lies in Andalusia and is 
enclosed by Sierra Morena to the north, the Betic Mountain Ranges to 
the south and the Atlantic ocean to the west. Its climate is characterized 
as typical Mediterranean, with mild and rainy winters and hot and dry 
summers. The Po river basin is mainly located in northern Italy with 
small areas (∼5%) lying in France and Switzerland. It covers an area of 
about 74,000 km2, bounded by the Alps to the west and north, the 
Apennines to the south and the Adriatic Sea to the east. The location and 
the heterogeneous topography of the basin leads to diverse climatic 
conditions with main influences of the Alpine and the Mediterranean 
climate. Here, in order to meet the end-user needs, we focus on a smaller 
area for each basin as shown in Fig. 1. 

2.2. Data 

In the current study we use initialized forecasts from four Decadal 
Prediction Systems (DPSs) following the Coupled Model Intercompar-
ison Project phase 6 (CMIP6) protocol (Boer et al., 2016). These are 10- 
year-long retrospective forecasts (hindcasts) of 44 members in total, 
initialized every November from 1960 to 2009. The main characteristics 
of the models used to produce the forecasts are presented in Table 1. A 
detailed documentation of the DPSs (or the respective models) can be 
found in Nicolì et al. (2022) for CMCC-CM2-SR5, in Bilbao et al. (2021) 
for EC-Earth3, in Williams et al. (2018) for HadGEM3-GC3.1-MM and in 
Müller et al. (2018) for MPI-ESM-1–2-HR. We use monthly outputs of 
precipitation and sea level pressure (SLP). 

For the evaluation of the hindcasts we use E-OBS (Cornes et al., 
2018) for precipitation and the Hadley Centre Sea Level Pressure dataset 
(HadSLP2r) (Allan and Ansell, 2006) for SLP, for the period from 
November 1960 to December 2019. E-OBS is a daily, gridded dataset for 
Europe (25◦N–71.5◦N x 25◦W–45◦E) based on station observations from 
European Climate Assessment & Dataset (ECA&D). The data are avail-
able on 0.1◦ and 0.25◦ regular grids and cover the period from 1950 to 
date. For this analysis we use the 0.25◦ dataset. The HadSLP2r provides 
global, monthly, gridded data based on terrestrial and marine observa-
tions. The data cover the period from 1850 to present at a spatial 

resolution of 5◦. 

2.3. Methods 

2.3.1. Post-processing 
First, the predicted precipitation is re-gridded to the observations’ 

grid (0.5◦x0.5◦) using a first-order conservative method, while both 
predicted and observed SLP are bi-linearly interpolated to a 
1◦x1◦ regular grid. Monthly precipitation and SLP anomalies are 
computed for both hindcasts and observations with respect to the period 
1981–2010. It should be noted that due to the models’ tendency to drift 
towards their own climate state, the climatology of the models is 
computed for each forecast-year separately, using different initialization 
years so as to always obtain the reference period 1981–2010. For the 
computation of the multi-model ensemble mean anomalies we average 
all the members together (pooling method). 

2.3.2. NAO Index 
We compute the NAO index as the difference of the zonally averaged, 

standardized SLP anomalies over the longitudes 80◦W–30◦E, between 
the latitudes 35◦N and 65◦N (Jianping et al., 2003). We follow this 
method in order to consider the longitudinal migration of the centers of 
action (Barnston et al., 1987) and best capture the large-scale impacts of 
the NAO variability. 

2.3.3. Variance Adjustment 
After averaging over the ensemble members, the variance of the 

predicted NAO is much lower in comparison to the observed, due to the 
small signal-to-noise ratio (Scaife et al., 2018; Smith et al., 2019) of the 
models. Using a NAO index with reduced variance in the hybrid 
approach we implement in this study (see subSection 2.3.4), would 
result in unrealistically low absolute values of precipitation anomalies. 
In order to provide reliable forecasts we proceed with calibration of the 
model output. Following Eade et al. (2014), we adjust the variance of the 
multi-model ensemble mean so as to render it equal to the predictable 
component of the observed variance, while the spread of the ensemble 
members is adjusted to match the unpredictable component of the 
observations. 

2.3.4. Hybrid Approach 
We use a hybrid approach which relies on the observed linear rela-

tionship between the North Atlantic Oscillation (NAO) and precipitation 
in each basin and the dynamically predicted NAO by the DPSs. The NAO 
is one of the leading modes of atmospheric variability in the Euro- 
Atlantic sector with dominant climatic impacts in Europe (Walker and 
Bliss, 1932; Van Loon and Rogers, 1978; Wallace and Gutzler, 1981), 
including a major influence on precipitation from interannual to mutl-
tidecadal timescales (Hurrell, 1995; Thompson and Wallace, 2001; 
Woollings et al., 2015). During the positive phase of the NAO, when the 
pressure gradient between the subpolar low pressure system and the 
subtropical high is strong, the Atlantic storm track is shifted northwards, 
resulting in drier than normal conditions in the Mediterranean and 
wetter than normal conditions in northern Europe (Athanasiadis et al., 
2010; Wettstein and Wallace, 2010). During the negative NAO phase the 
opposite happens. Storms are directed to the southern Europe, affecting 
the Mediterranean. 

To predict the precipitation using NAO as a predictor, we first 
perform linear regression of the observed aggregated precipitation 
anomalies in each basin onto the observed NAO index, using the least 
squares method. We perform the regression on the decadal components 
of the two timeseries, derived from the 10-year running average from 
1961 to 2019. In order to predict the decadal mean precipitation 

anomalies in each basin (pr′
B), the regression coefficients (a, b) of the 

observed linear fit are combined with the NAO index predicted by the 
DPSs (NAODPS) according to: 

3 available on the C3S website ( https://climate.copernicus.eu/decadal 
-predictions-energy) 
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pr′
B[t] = a × NAODPS[t] + b  

where t = 1,2…n indicates the decadal mean, B ∈ {Ebro,Po,
Guadalquivir} refers to the basin, the prime (′) signifies the anomalies 
with respect to 1981–2010 and the overbar () signifies decadal 
averaging. 

2.3.5. Validation Metrics 
The predictive skill of both the dynamical (DPS) and the hybrid 

approach is firstly assessed by the anomaly correlation coefficient 
(ACC), which measures the strength of the linear relationship between 
the model and observations and the ability to predict the co-variability 
of the two timeseries. The ACC lies between − 1 and  + 1. Positive values 
indicate that the model co-varies with the observations, and the closer 
to  + 1 the better the synchronization between modeled and observed 
anomalies on average (Wilks et al., 2011). For the verification, in order 
to use the same initialization years for all forecast periods (1961–2009), 
the verification period varies for different forecast year ranges given the 
availability of the observations. For example, for the first 5 forecast 
years (lead years 1–5) the verification period is 1961–2014, while for the 
first 10 forecast years (lead years 1–10)forecast range 1–10 years the 
verification period is 1961–2019. We test the statistical significance of 
the ACC, at the 95% significance level against the null hypothesis of non- 
positive correlation using a one-sided Student’s t-test. We compute the 
effective degrees of freedom following Bretherton et al. (1999) in order 
to account for the impact of the temporal auto-correlation. 

In order to assess the skill of the hybrid approach to predict the 
magnitude of the observed variability we also use the Mean Squared 

Skill Score (MSSS) (Murphy et al., 1988) relative to the climatology. The 
MSSS is based on the Mean Squared Errors (MSE) of the model pre-
dictions and climatology with respect to the observations. Since here we 
use the MSE of the anomalies and not of the full values, the MSSS does 
not include the error of the unconditional bias (mean bias), but com-
bines only the correlation and the conditional bias (Murphy et al., 1988; 
Goddard et al., 2013). Negative values of MSSS indicate that the 
climatological forecast performs better, while positive MSSS indicates 
that the model holds an added value compared to climatology. MSSS 
equal to zero indicates no improvement over the climatology. Statistical 
significance is tested against the null hypothesis that there is no differ-
ence between the mean squared errors of the modeled and climatolog-
ical forecasts, using a two-sample t-test. 

In addition, we use contingency tables along with the hit rates and 
false alarm rates, in order to demonstrate the forecast reliability in 
predicting a categorical (yes/no) outcome. The contingency table in-
dicates the counts of four types of classification between the predicted 
and observed events. These are: (i) the number of events predicted to 
occur that have occurred (hits), (ii) the number of events predicted to 
occur but have not occurred (false alarms), (iii) the number of events 
predicted to not occur but have occurred (misses) and (iv) the number of 
events predicted to not occur that have not occurred (correct rejections). 
The hit rate is the ratio of the successfully predicted events to the times 
this event has occurred [hits/(hits + misses)] while the false alarm rate 
is the ratio of the erroneously predicted non-occurrence to the times that 
the event has not occurred [false alarms/(false alarms  + correct re-
jections)] (Wilks et al., 2011). Here, we define the dichotomous event as 
the above/below average aggregated precipitation in each basin, based 
on the time period 1961–2019. 

Fig. 1. Topography and river network of the three drainage basins: Ebro (a), Guadalquivir (b) and Po (c).  

Table 1 
Specifications of the Decadal Prediction Systems.  

Prediction System CMCC-CM2-SR5 EC-Earth3 HadGEM3-GC3.1-MM MPI-ESM-1-2-HR 

Atmospheric Model Name CAM5 IFS36R4 UM ECHAM6 
Resolution ∼100 km ∼80 km ∼60 km ∼100 km 
Vert. Levels 30 91 85 95 

Ocean Model Name NEMOv3.6 NEMOv3.6 NEMOv3.6 MPIOM 
Resolution 1◦ 1◦ 0.25◦ 0.4◦

Vert. Levels 50 50 75 40 
Ensemble Size 14 10 10 10  
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Probabilistic skill metrics were considered in the discussions with the 
end user and were also included (Brier Skill Score) in the respective fact 
sheets. For reference, we point the reader to the respective web page: 
https://climate.copernicus.eu/decadal-predictions-energy. 

3. Results 

3.1. Dynamical Predicted Precipitation 

The dynamically simulated and observed annual cycle of precipita-
tion in each basin is presented in Fig. 2. All the basins exhibit a pro-
nounced annual cycle. Guadalquivir has a typical Mediterranean climate 
with more precipitation during the cold season, between October and 
April, and a large deficit during the summer season. It is the driest of the 
three basins, receiving an annual average precipitation of 438 mm. On 
the other hand, Ebro and Po, with annual mean precipitation of 592 mm 
and 1035 mm respectively, show two maxima, in spring (MAM) and late 
autumn (SON). However, while the Ebro basin shows higher precipita-
tion in the winter (DJF) than in the summer (JJA), with minimum in 
July, summer in the Po basin is considerably wetter than winter. This is 
mainly due to the rather complex climatology of the Po basin, charac-
terized by an Alpine climate in the north with low precipitation during 
winter and maximum precipitation during summer (Supplemental 
Fig. S1). In the other two basins the annual cycle is more homogeneous 
in space in terms of seasonality, but the magnitude of precipitation is 
spatially highly variable (Supplemental Fig. S1). 

The grey lines in Fig. 2 represent the annual cycles over different 
decades as an indication of the decadal variability of precipitation. In all 
basins there are significant decadal fluctuations in all seasons, except for 
the warm season in Guadalquivir, from April to October, when the 
decadal variability is weak. The multi-model ensemble mean is gener-
ally successful in capturing the annual cycle in the three basins. 

However, it underestimates the amplitude of precipitation in Gua-
dalquivir during the wet season, especially in autumn, while it shows 
greater than the observed precipitation in Ebro during the spring peak 
and the adjacent months. In the Po basin, the summer low is shifted by 
one month (August) and is considerably lower than the observed mini-
mum. Drier conditions are also simulated during autumn while there is 
an overestimation of the precipitation during the spring peak. 

Fig. 3 shows the multi-model deterministic skill (ACC) of the annual 
and seasonal precipitation in south-western Europe, for the first 10 
forecast years (lead years 1–10). Correlations of annual precipitation 
anomalies are relatively high in most of the Iberian Peninsula, although 
there are large areas where the correlation is not statistically significant, 
particularly in the eastern part of the peninsula, including a large 
portion of the Ebro basin. In winter, positive skill is found only in the 
western part of Andalusia, where the Guadalquivir basin is located, 
while in the rest of the domain the skill is poor. During the transition 
seasons (MAM, SON) the ACC is mostly negative, or not significant, over 
the whole domain, excluding the north western part of the Iberian 
Peninsula during spring. Summer precipitation shows significant skill 
over some parts of the Mediterranean region. Over the Iberian peninsula 
the multi-model ensemble shows high skill exceeding 0.7 in some areas, 
including Guadalquivir. However, we should note that these regions 
during summer are generally dry with little interannual to decadal 
variability (see Fig. 2, Guadalquivir). 

The annual and seasonal correlations of the aggregated precipitation 
anomalies in the three drainage basins are summarized in Table 2. As it 
was already depicted by the correlation maps in Fig. 3, the direct pre-
dictive skill for the DPSs precipitation in the three basins is quite poor 
except for the annual, winter and summer precipitation anomalies in the 
Guadalquivir basin where the skill is statistically significant with values 
of 0.42, 0.34 and 0.67 respectively. In the Po basin the ACC is negative in 
all seasons, while in Ebro positive skill is found for annual and summer 

Fig. 2. Mean annual cycle of aggregated precipitation in the three basins for 1960–2019. The black line represents the E-OBS dataset, while the red line the multi- 
model output. The grey lines depict observed decadal means. 
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anomalies, although ACC values are low and not significant. 

3.2. Building a Hybrid Approach to Predict Precipitation 

Given the overall poor predictive skill for precipitation, particularly 
in Ebro and Po, we explore the potential of using NAO as a predictor in 

the framework of a hybrid approach based on the observed statistical 
relationship between the NAO and precipitation in the three basins and 
the dynamical predictions of the NAO index. Such a hybrid approach, in 
order to be skillful, requires a physical connection between the NAO and 
precipitation and a skillful dynamical predictions of the predictor. 

To assess the ability of the multi-model ensemble in predicting the 
NAO, we compute the ACC for the extended winter NAO (Novem-
ber–March, NDJFM) for all possible forecast-year ranges (Fig. 4, left). 
The skill is statistically significant for various forecast-year ranges, and 
is generally increasing for longer averaging periods, with a maximum of 
0.56 for forecast years 1–10 (indicated by the ”X” marker). In Fig. 4 (on 
the right) we also present the observed and simulated NAO timeseries 
for the first 10 forecast years (lead years 1–10), along with the 75% and 
95% of the ensemble spread (the darker and lighter shading, respec-
tively). The observed timeseries is the 10-year running average of the 
NDJFM NAO index, while the predicted NAO timeseries are calibrated in 
order to adjust the variance, since otherwise the model signal is too low 
due to the small signal-to-noise ratio (Eade et al., 2014; Scaife et al., 
2018). The multi-model ensemble is able to capture most of the decadal 
variability of the NAO depicting the prominent positive trend from the 

Fig. 3. Anomaly correlation coefficient (ACC) maps for annual and seasonal precipitation (DJF: winter, MAM: spring, JJA: summer, SON: autumn) at the first 10 
forecast years (lead years 1–10), between the multi-model ensemble mean and the observations. The black lines represent the borders of each basin. Stippling in-
dicates statistically insignificant values at 95% significance level, against the null hypothesis of non-positive correlation, using a one-sided t-test, accounting for 
autocorrelation. 

Table 2 
Anomaly Correlation Coefficient (ACC) between the observed and the multi- 
model ensemble mean aggregated precipitation in the three drainage basins 
for different seasons. ACC is computed for the first 10 forecast years (lead years 
1–10). Statistical significance is tested against the null hypothesis of non- 
positive correlation, using a one-sided Student’s t-test, accounting for 
autocorrelation.  

Basins Annual DJF MAM JJA SON 

Guadalquivir 0.42 0.34 0.14* 0.67 − 0.19* 
Ebro 0.17* − 0.28* − 0.08* 0.29* 0.05* 
Po − 0.38* − 0.25* − 0.6* − 0.06* − 0.19* 

*Statistically insignificant values at 95% level. 
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mid 60’s until the 90’s and a negative trend afterwards. However, after 
2012 the predicted winter NAO shows predominantly negative anoma-
lies, while observations tend to positive anomalies. Despite these dis-
crepancies, the multi-model ensemble is in good agreement with the 
observations and shows statistically significant ACC. 

Fig. 5 shows the Pearson’s correlation coefficient between the 
observed 10-year running averages of the NAO and precipitation 
anomalies for each grid point over Europe, during NDJFM for the period 
1961–2019. The results depict the characteristic north–south dipole 
over Europe (Thompson and Wallace, 2001; Woollings et al., 2015). The 
NAO is negatively correlated with the precipitation anomalies in 
southern Europe while positive correlations are observed in northern 
Europe. The two bands of strong correlations are separated by a zone of 
not statistically significant correlations in central Europe. Focusing on 
the three drainage basins, we find significant linear relationships be-
tween the aggregated precipitation anomalies and the NAO. Precipita-
tion in the Spanish basins exhibits high anti-correlation with the NAO, 
exceeding -0.8, while moderate anti-correlation is observed for the Po 
basin (-0.62). 

The fact that the multi-model ensemble can skillfully predict the 
phase of decadal fluctuations of NDJFM NAO, along with the strong link 

of NAO with the precipitation over the target basins, indicates that NAO 
is a suitable predictor for rainfall this season. Therefore, we developed a 
hybrid approach where the predicted NDJFM NAO is combined with the 
observed linear relationship of the NAO and precipitation in each basin. 
We focus on NDJFM since for the other calendar seasons, either the 
predictive skill of the NAO is low, or the relationship between the NAO 
and precipitation in the basins is not robust (Supplemental Fig. S2,S3, 
Table S1). 

In Fig. 6, we present the observed and the predicted through the 
hybrid approach precipitation anomalies, as percent deviations from the 
1981–2010 climatology. Even though the hybrid approach does not 
capture all the observed precipitation fluctuations, we find statistically 
significant ACCs at 95% level in all basins. The hybrid approach exhibits 
ACC = 0.59, 0.46, 0.54 for Po, Guadalquivir and Ebro respectively, 
outperforming the direct multi-model ensemble output which shows 
statistically significant ACC only for the Guadalquivir basin (0.34), 
while for Ebro and Po its ACC is close to zero (-0.01 and 0.16 respec-
tively). The MSSS is lower in all basins, due to the small signal-to-noise 
ratio and/or the fact that precipitation is not controlled solely by the 
NAO. Other modes of atmospheric variability, such as the Eastern 
Atlantic Pattern (EAP) (Wallace and Gutzler, 1981) and the 

Fig. 4. Left: Anomaly correlation coefficient (ACC) for extended winter (NDJFM) NAO between the multi-model ensemble mean and the observations, for different 
forecast-year ranges. The cyan ’O’ markers indicate statistically insignificant correlations, at 95% significance level. The white ’X’ marker indicates the forecast-year 
range with the highest ACC (=0.56). Statistical significance is tested against the null hypothesis of non-positive correlation, using a one-sided Student’s t-test, ac-
counting for autocorrelation. Right: Predicted (red line) and observed (black line) timeseries of NDJFM NAO for the first 10 forecast years (lead years 1–10). The 
ensemble spread (centered 75% and 95% percentiles) are shown in shading (darker and lighter shading, respectively). 

Fig. 5. Left: Correlation map between the decadal components (10-year running average) of the observed NAO and the precipitation anomalies during the extended 
winter (NDJFM) for the period 1961–2019. Stippling indicates statistically insignificant values at 95% significance level. Right: Scatter plots of the observed decadal 
precipitation anomaly in each basin against the observed NAO index during the NDJFM for the period 1961–2019 (from top to bottom: Guadalquivir, Ebro, Po). The 
red solid line shows the respective linear regression line. The Pearson’s correlation coefficient (r) along with the equation of the linear fit are indicated at the left 
bottom corner of each plot. All the correlations are statistical significant at 95% significance level. Statistical significance is tested against the null hypothesis of zero 
correlation, using a two-sided Student’s t-test, accounting for autocorrelation. 
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Scandinavian Pattern (SCAN) (Moore et al., 2013), also affect on pre-
cipitation over Europe (Moore et al., 2013; Comas-Bru and McDermott, 
2014). Despite the low values, MSSS is positive (pvalue= 0.246, 0.063, 
0.053 for Guadalquivir, Ebro and Po respectively) in all basins indi-
cating that this model is an improvement over the climatological fore-
cast. Table 3 presents the contingency tables for forecasting above or 
below average precipitation, and the corresponding hit and false alarm 
rates for each basin. In general the hybrid approach can discriminate 
above/below average precipitation events with hit rates ranging be-
tween 72% and 81%, and false alarm rates lower than 36%. 

As an attempt to provide some additional information to the end-user 
we also produced forecasts of the number of wet days in each basin 
during the NDJFM season (Supplemental Fig. S4). The number of wet 
days is a good indicator of the precipitation frequency and a rough 
estimator of its intensity, especially when it is combined with informa-
tion regarding the mean precipitation. For example, an increased mean 
precipitation but a lower number of wet days during a season, could 

mean that the mean intensity of the rainy events increased. Following 
the same approach as for the precipitation forecasts, we find statistically 
significant ACC between observed and predicted number of wet days in 
all basins. However, given that both the precipitation anomaly and the 
number of wet days vary in the exact same way, as predicted through the 
NAO, no conclusions can be drawn for the mean precipitation intensity. 

4. Discussion 

Previous studies have provided evidence that coupling a statistical 
model to dynamical predictions of large-scale information, can improve 
the seasonal (Strazzo et al., 2019; Thornton et al., 2019; Cionni et al., 
2022) and decadal (Simpson et al., 2019; Wu et al., 2019; Redolat et al., 
2020; Borchert et al., 2021; Lockwood et al., 2023) forecasts of the local 
climate and/or other weather-related variables. However, in the case of 
decadal predictions, studies focusing on climate services for specific 
end-users are limited. Here, we developed a prototype climate service 

Fig. 6. Predicted and observed timeseries of extended winter (NDJFM) precipitation anomalies the first 10 forecast years (lead years 1–10). The black line represents 
the observations while the red line the output of the hybrid approach. The precipitation anomalies are presented as percent deviations from the 1981–2010 
climatology. The ensemble spread (centered 75% and 95% percentiles) are shown in shading (darker and lighter shading, respectively).The horizontal dotted line 
indicates the observed 1960–2019 climatological average. 

Table 3 
Contingency tables of above average precipitation.  

Above Average Precipitation Observed   
Guadalquivir Ebro Po   

Yes No Yes No Yes No 

Predicted Yes 18 9 20 7 21 6 
Hits False alarms Hits False alarms Hits False alarms 

No 7 16 5 18 5 18 
Misses Correct rejections Misses Correct rejections Misses Correct rejections 

Hit Rate: 72% 80% 81% 
False Alarm Rate: 36% 28% 25%  
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for the hydropower sector, by exploiting the predictive skill of NAO and 
its remote impact on precipitation in Southern Europe. This was a co- 
developed process, where we worked with the end-user (ENEL-GP, an 
operator of the renewable energy sector) to explore the current capa-
bility of a set of DPSs to meet their needs. Our results indicate that 
despite the low predictive skill for the precipitation in the direct multi- 
model ensemble output, predicting large-scale circulation anomalies 
that control precipitation can be key to improve substantially our pre-
dictive skill. Nevertheless, we recognise that further development and 
effort is needed in order to use this information in an operational 
context. 

In the present study, precipitation forecast is one of the main needs of 
the end-user since it is a key driver of hydropower systems. However, the 
safety of the dams is also of great interest to the company. Extreme 
precipitation events can cause severe damages to their infrastructures 
and put the power plant operation in danger. Observations and climate 
projections indicate significant changes in the frequency and intensity of 
precipitation extremes in many regions over Europe (Coppola et al., 
2021; Huo et al., 2021; Zittis et al., 2021). However, beyond any vari-
ability associated with long-term trends, decadal predictions generally 
exhibit low skill in predicting decadal variations of precipitation ex-
tremes. (Eade et al., 2012). In addition, while precipitation determines 
the water input in the reservoir, temperature and wind regulate the 
water losses through evapotranspiration. Moreover, changes in tem-
perature, especially in mountainous regions, can alter the partitioning of 
precipitation to rain and snow, as well as the timing and intensity of 
spring snowmelt. As regards energy production, the end user would be 
ultimately interested in knowing the energy potential (level of water in 
the dam) for every month, yet in order to do so one would need a hy-
drological model, etc. After discussing this with the end user it was 
decided to stick to predicting precipitation. 

Forecasts of 10-year averages provided here could be beneficial to a 
company operating in the hydropower sector for general planning, 
including new investments and contracts. However, different temporal 
horizons (e.g. 6–24 months) would be more useful for plant manage-
ment purposes at operational level. Thus, bridging the gap between the 
seasonal and decadal predictions, providing information at an inter-
mediate, multi-annual timescale, is a challenge we should overcome in 
the future in order to better address user needs. Forecasts for the other 
calendar seasons are also important for assisting the operational plan-
ning of hydropower systems. The multi-model ensemble used in this 
study shows generally low skill in predicting precipitation in the basins 
of interest and the NAO in the transitional seasons and summer. We 
point out though that the multi-model ensemble used here is only a sub- 
set of a larger set, currently available through the CMIP6 DCPP archive. 
Utilizing more models and a larger ensemble has been shown to increase 
the predictive skill in decadal predictions (Smith et al., 2019; Smith 
et al., 2020; Athanasiadis et al., 2020; Meehl et al., 2021). In addition, 
not all models display the same skill in predicting different variables in 
different regions (Supplemental Fig. S5, S6; (Delgado-Torres et al., 
2022)). Selecting the best model or multi-model ensemble (or sub- 
ensemble) for each specific region, season, variable and forecast 
period could significantly increase the skill (Dobrynin et al., 2018; 
Neddermann et al., 2019; Dalelane et al., 2020; Smith et al., 2020). 

A well-known issue of the statistical models, is their reliance on the 
assumption that the relationship between the predictor and the pre-
dictand (here the NAO and the precipitation) is stationary. However, 
previous studies (Walter and Graf, 2002; Pauling et al., 2006; Beranová 
et al., 2007; Rust et al., 2021) have demonstrated that the impact of NAO 
on the European climate changes in time, and this could cause loss of 
skill in future forecasts. This is related to the fact that NAO explains only 
a fraction of the overall precipitation variability over Europe, and other 
large-scale circulation patterns can actually enhance or cancel its effect 
on precipitation (Vicente-Serrano et al., 2008; Moore et al., 2013; 
Comas-Bru and McDermott, 2014). Implementing more complex statis-
tical models such as multivariate regression, EOF-based analysis or 

elaborate machine learning techniques (Wu et al., 2019; Wang et al., 
2021; Cionni et al., 2022) including more predictors could increase the 
accuracy and reliability of the predictions. However, careful selection of 
the predictors is required, since they have to be skillfully predicted by 
the DPSs. 

Despite the limitations of this study, the current results are prom-
ising. Although the multi-model ensemble do not reproduce well the 
precipitation variability, the hybrid approach improves the predictive 
skill significantly. Coupling statistical models with the dynamical pre-
dictions can overcome the small signal-to-noise ratio of models and/or 
their deficiency to represent the main teleconnections, and thus present 
a high potential for supporting decision-making in the hydropower 
sector. Further effort and revision of this prototype climate service could 
lead to more mature products, which could help in the operational 
development of decadal climate services. Last but not least, this hybrid 
approach can be potentially extended and applied to other regions in 
Europe, while similar products can be developed to provide information 
for other renewable energy sources such as wind and solar power 
(Wohland et al., 2019; Correia et al., 2020). 

5. Conclusions 

This study, which was conducted in the framework of a C3S project, 
aims to reveal the potential of decadal predictions for the development 
of climate services for the energy industry. Through close interaction 
with a renewable energy company, we developed a prototype decadal 
climate service for the hydropower sector, predicting precipitation in 
three drainage basins in Southern Europe: Guadalquivir and Ebro in 
Spain and Po in northern Italy. 

Using initialized predictions from four Decadal Prediction Systems 
(DPSs) (respective models: HadGEM3-GC3.1-MM, EC-Earth3, CMCC- 
CM2-SR5, MPI-ESM-HR), the predictive skill of precipitation was 
found to vary with the calendar season and the geographical area 
considered (basins). Even though statistically significant skill was found 
in a few cases, overall the direct skill of the multi-model ensemble was 
limited for the purposes of the climate service. For this reason, in order 
to better meet the needs of the end-user, we adopted a hybrid approach 
which combines a statistical model with the skillful dynamical pre-
dictions of the NAO. The statistical component is a simple linear 
regression model, using as a predictor the observed NAO which drives a 
large part of the precipitation variability in the three drainage basins. By 
implementing the hybrid approach significant skill arises in all basins for 
precipitation during the extended cold season (NDJFM) for the forecast 
range 1–10 years. The hybrid approach outperforms the direct output of 
the DPSs, especially for the cases of the Ebro and Po basins where the 
Anomaly Correlation Coefficient (ACC) reaches values greater than 0.5, 
compared to almost zero in the direct output. The Mean Squared Skill 
Score (MSSS) is low but positive, showing that the decadal predictions 
have an added value compared to the climatological forecasts, which are 
often used by end-users. 

Our results indicate that deficiencies of the current generation DPSs 
can be overcome by combining high skill large-scale pressure patterns 
from the DPSs and their statistical relationships to regional precipita-
tion. This enables useful information to be provided to the energy sector. 
However, future efforts are required to increase the skill and reliability 
of such predictions and extend their use to other temporal aggregations, 
seasons and user-relevant variables. Despite various challenges, our 
study provides encouraging results indicating that decadal predictions 
can be a useful tool for developing climate services and assisting 
decision-making for energy sector planning and operations. 

Data Availability 

All data used in this study are publicly available online. The DPSs 
output is available on the Earth System Grid Federation (ESGF) under 
the references: CMCC-CM2-SR5 (Nicolì et al., 2020), MPI-ESM1–2-HR 
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(Pohlmann et al., 2019), EC-Earth3 (EC-Earth et al., 2019), HadGEM3- 
GC3.1-MM (Hermanson et al., 2020). The observational/reanalysis 
data are available at the NOAA Physical Sciences Laboratory ( 
https://www.esrl.noaa.gov/psd/data/gridded/data.hadslp2.html) for 
HadSLP2r and at the C3S ( http://surfobs.climate.copernicus. 
eu/dataaccess/access_eobs.php) for E-OBS. 
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