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A B S T R A C T

Deep Learning based heart sound classification is of significant interest in reducing the burden of manual
auscultation through the automated detection of signals, including abnormal heartbeats. This work presents a
method for classifying phonocardiogram (PCG) signals as normal or abnormal by applying a deep Convolutional
Neural Network (CNN) after transforming the signals into 2D color images. In particular, a new methodology
based on fractal theory, which exploits Partitioned Iterated Function Systems (PIFS) to generate 2D color
images from 1D signals is presented. PIFS have been extensively investigated in the context of image coding
and indexing on account of their ability to interpolate and identify self-similar features in an image. Our
classification approach has shown a high potential in terms of noise robustness and does not require any
pre-processing steps or an initial segmentation of the signal, as instead happens in most of the approaches
proposed in the literature. In this preliminary work, we have carried out several experiments on the database
released for the 2016 Physionet Challenge, both in terms of different classification networks and different
inputs to the networks, thus also evaluating the data quality. Among all experiments, we have obtained the
best result of 0.85 in terms of modified Accuracy (MAcc).
1. Introduction

A Phonocardiogram (PCG) is the graphic display of the sound waves
produced by the heart. The graphic representation of the characteristics
of the sounds allows the visualizing of the temporal relationships,
precise duration, intensity and contours of the waves [1]. This acqui-
sition technique allows medical staff to register and analyze, during
the auscultation of the cardiac cycle, the audible sounds and murmurs
produced by the movement of the structures of the heart and the
turbulence in the blood flow. During heart functioning, there are two
major tones, S1 and S2, generated by the vibration of the cardiovascular
system. These tones are audible during the cardiac cycle, which varies
in intensity and duration. Between S1 and S2, a systolic sound is
generated, principally by the closure of the atrioventricular valves. On
the contrary, between S2 and S1, a diastolic sound is created by the
filling of the ventricles with blood and their relaxing, see Fig. 1.

Although artificial auscultation is a convenient and low-cost car-
diac diagnostic technology, physicians must have a wealth of clinical
experience. There are several obstacles to the accumulation of such
knowledge and training. For example, individuals may have a different
auditory sensitivity. However, the distinction between different types of
heart murmurs is difficult to describe [2]. Thus, over the years, many
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researchers have worked on the automatic classification of pathological
and healthy heart sounds, but the distinction between the classes of
interest is not trivial. The data is easily influenced by noise in the envi-
ronment and heart sounds corresponding to different heart symptoms
can be almost indistinguishable. Thus, there are still challenges that
require the development of more robust methods for the early diagnosis
of cardiac abnormalities.

In general, the classification task with respect to the PCG sig-
nal is performed by analyzing its features extracted in the time do-
main and/or frequency domain [3,4], the wavelet features [5], and/or
the complexity-based features. The classification methods commonly
used are Machine Learning (ML) techniques and, more recently, Deep
Learning (DL) networks [6,7].

The application of ML techniques to PCG signals has resulted in
a standard processing pipeline being consolidated, consisting of de-
noising, heartbeat segmentation, feature extraction and classification.
While little research has been directed toward denoising, much atten-
tion has focused on segmentation, which is a key step. The segmen-
tation algorithms that work best take advantage of the presence of
an Electrocardiogram (ECG) signal synchronized with the PCG signal.
However, this is not always available, thereby eliminating the advan-
tage of having a much simpler hardware set-up to acquire only the PCG
vailable online 1 July 2023
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Fig. 1. An example of a PCG signal with the four states; S1, Systole, S2 and Diastole.
signal. Removing the need for a precise heartbeat segmentation reduces
possible sources of error in the subsequent steps and imposes a greater
robustness on the feature extraction process.

Indeed, one of the main contributions of the method introduced in
this paper is precisely that it requires neither a denoising process nor
any segmentation steps; it is able to operate directly on the input signal.
As for feature extraction, a wide range of 1D handcrafted features has
been proposed, among which the most widely used are based on Mel-
frequency cepstral coefficients (MFCCs). Subsequently, spectral features
have been introduced by windowing the signal and transforming it
from 1D to 2D, so as to extract more representative features such as
Discrete Wavelet Transform (DWT) coefficients. By integrating feature
extraction and classification into a single end-to-end model, DL has
been shown to outperform previous ML techniques. The most direct
way to apply DL to PCG signals is to consider them as time series and
repurpose architectures typically used to classify sequences, e.g., Long
Short-Term Memory (LSTM) networks.

Accordingly, the idea of transforming a 1D signal into a 2D signal
so as to exploit the greater discriminant power of Convolutional Neural
Networks (Convolutional Neural Network (CNN)) models is the basis
of this work. In fact, we propose a classification method based on the
transformation of a 1D signal into 2D color image, which feeds a CNN
network to classify the related heart sound as normal or abnormal. In-
deed, one of the most significant contributions of this work is precisely
the proposed transcoding technique for transforming the 1D signal into
a 2D image. It has several advantages over other techniques previously
used in the literature, such as DWT, both in terms of its robustness to
noise and its ability to represent the features characterizing the signal.

The 1D signal to 2D color image transformation is based on the
fractal theory, which exploits Partitioned Iterated Function Systems
(Partitioned Iterated Function Systems (PIFS)) [8] to provide a very
compact representation of a signal, capturing its salient features by
considering self-similarities. Consequently, PIFS are scale-invariant, as
they are able to decode a signal at resolutions other than that of the
originally encoded signal. Moreover, encoding self-similarities makes
them robust to noise in the input signal and allows the analysis of
PCGs without any segmentation step. Unlike many other feature
extraction techniques, they do not require a partitioning of the signal
into beats but extract the salient features from the entire signal. The
main difficulty in designing such a transcoding technique is to find a
PIFS coding scheme that can reconcile its application in both 1D and
2D while maintaining compatibility between the elements of the input
signal and the regions mapped in the image. This technique paves the
way for interesting future research ideas, which could further improve
its performance.
2

For the evaluation of the proposed method, we have considered the
database released for the PhysioNet Computing in Cardiology Chal-
lenge 2016 (2016 PhysioNet/CinC) [9,10]. An overview of the main
challenge studies, the proposed classification techniques and the cor-
responding results are provided in [11]. In particular, a CNN Network
and a modified version of the Adaboost algorithm proposed by Potes
et al. achieved the best overall score (about 0.86 of Modified Accuracy
(MAcc)) in the classification of heart sounds as normal or abnor-
mal [12]. It is important to note that all the algorithms proposed in
this challenge were evaluated by using a hidden test set which has
not been released by the challenge organizers. In the absence of the
test set, the classification performance of the techniques proposed in
the studies following the PhysioNet challenge, such as [13–15], was
estimated using the only available data, namely the data contained in
the training and validation sets.

Moreover, any comparison with other methods is not feasible since
the other studies do not specify in detail the sample distribution among
the sets. We paid particular attention to the correct use of the data
without any overlap between the different sets (validation-training)
and by specifying in detail as much as possible which data have been
used. Aiming to allow comparisons with our method, all the data and
images produced for our experiments have been made freely available
at https://www.pcgfractal.icar.cnr.it.

In this preliminary work, we have carried out several experiments,
both in terms of different classification networks and different inputs
to the networks. Among all the experiments, we have obtained the best
result of 0.85 in terms of MAcc by using a Res-Net 101.

2. Related works

An investigation of the literature reveals that there are several
different approaches which are widely used for the classification of PCG
signals based on signal processing, including ML and DL techniques.
Among these, DL has certainly emerged as the most attractive solution
in recent years. An exciting overview of some of the most significant
related papers can be found in [6], which also presents a description
of the major datasets employed in the literature, including the 2016
PhysioNet/CinC.

Although the literature on PCG signal processing, analysis and clas-
sification methods is vast [6], in this section we have decided to discuss
some of those methods which are of interest in terms of the formal
aspects of the proposed techniques. The existing approaches differ with
respect to many characteristics such as the presence or absence of
a segmentation step, the kind of features and classifier adopted for
discriminating the signals into normal and abnormal, or the integration
of both these aspects into the latest end-to-end models based on DL.

https://www.pcgfractal.icar.cnr.it
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The presence or absence of a segmentation step is of relevant
interest because it affects all subsequent processing steps. There are
examples in the literature of approaches which achieve a good per-
formance without segmenting signals, so corroborating our idea that
obtaining good results even without any knowledge about the location
of single heartbeat is possible. In paper [16], an unsegmented approach
is presented which uses five non-linear time-scattering features based
on wavelet scattering transformation from PCG recordings to classify
the signal as normal or abnormal. A k-nearest neighbors (KNN) classi-
fier with different distance functions (Euclidean, Cityblock, Chebyshev,
Minkowsky, Correlation, Cosine and Spearman) has been employed
to estimate the status of the heart abnormality using PCG wavelet
scattering features. Li et al. [17] propose a lightweight heart sound
automatic classification model in which a frequency-domain feature
input feeds an improved three-layer CNN. A weighted loss function is
applied to alleviate the unbalanced positive/negative portions in the
samples, and all the parameters of the network are optimized.

In contrast, with respect to certain other methods an initial seg-
mentation of individual heartbeats is mandatory, a characteristic which
allows them to apply more complex feature extraction techniques.
Normal et al. [18] propose a Markov-switching autoregressive process
to model the raw heart sound signals directly, allowing an efficient
segmentation of the cyclical heart sound states. The segmented sig-
nals were then used to train the Gaussian-mixture Hidden Markov
Model classifier for the identification of abnormal beats. Chowdhury
et al. [19] apply different signal processing techniques to denoise,
compress and segment the PCG signals; a CNN is adopted to classify
the resulting signals. First, the PCG signal is denoised and compressed
using a multi-resolution analysis based on Discrete Wavelet Transfor-
mation (DWT). Then, a segmentation algorithm, based on the Shannon
energy envelope and zero-crossing, is applied to segment the PCG signal
into four major parts. Successively, Mel-scaled power spectrogram and
MFCCs are employed to extract informative features from the PCG
signal, which feeds a 5-layer feed-forward CNN.

It is important to note that all the manuscripts mentioned so far face
crucial steps in the extraction of the features from the PCG signals and,
only subsequently, feed these features into the classifiers. However,
with the advent of DL, CNNs have become more and increasingly
complex an improved performance in classification tasks. Therefore, in
some recent papers, the authors have tried to avoid handcraft feature
extraction. An example is provided by paper [20], where the original
data are segmented by using a U-net and are classified through a multi-
layer CNN. In order to fully exploit the potential of CNNs, a further
step has been to transform the one-dimensional signal into an image.
Indeed, Ren et al. [21] propose a method based on a combination of
Support Vector Machine (SVM) and VGG-16 to detect heart disorders.
They first segmented the PCG files into chunks of equal length, and
then, extracted a scalogram image from each chunk using a wavelet
transformation. Finally, these images are used to classify the PCG
signals. Similarly, in paper [22], the authors propose a classification
method that analyzes the spectrograms of the signals obtained by ap-
plying short-time Fourier transformation. The generated spectrograms
feed different variants of the CNN models. The transfer learning process
used different datasets, apart from 2016 PhysioNet/CinC.

Although robust to noise, CNNs are potentially affected by segmen-
tation errors of the heartbeats. Therefore, the authors of paper [23]
present a ‘without segmentation’ approach by exploiting a Cross-
wavelet transform technique and an AlexNet classifier. In detail, the
heart sounds are first transformed into time–frequency spectrums along
with amplitude and phase, and the obtained cross-wavelet spectrums
are converted into images which feed the deep neural network.

Aiming to design a method which would be both robust to the
presence of noise and versatile with respect to the inherent variability
of the signal, we have investigated a new classification methodology
that does not require any pre-processing and feature extraction steps
or an initial segmentation. This approach is based on a signal-to-image
conversion technique using fractal coding. Next, a CNN is applied to the
3

images to classify the heart sound signals into normal and abnormal.
3. Methodology

In this section, we will describe in detail our proposed methodology
for heart sound classification, which is illustrated in Fig. 2. First, a
transcoding process transforms the 1D input signal into a 2D color
image by implementing two steps. The first, namely encoding, extracts
a code from the 1D input signal, while the second, called decoding,
maps the code extracted in the previous step into a 2D color image.

Next, a CNN is devised to map the image to the corresponding
category (normal or abnormal). We use a simple ResNet [24] as the
CNN, and therefore a description of the network is not provided. The
specification of the different ResNet configurations adopted in the
experiments and the related setting parameters can be found in the
‘‘Experimental results’’ section. Here, we detail the data pre-processing
dedicated to transforming a signal into an image as a result of the
interpolation functions underlying fractal theory. Furthermore, the data
augmentation and balancing processes involved in the experiments are
also explained here.

3.1. Pre-processing

Before entering into the description of this phase, we consider it
useful to define the context in which some of the adopted functions
have been developed and the reasons that led us to choose these
functions for the conversion of the signal into an image for the purposes
of heart signal classification.

3.1.1. Preliminaries
In 1977, Benoit B. Mandelbrot introduced fractal theory [25], in

which a fractal is defined as a geometric element characterized by
its non-integer dimensions and the property of reproducing the source
entity at any scale. Mandelbrot argues that traditional geometry cannot
represent the objects of the natural world, while fractal geometry with
its non-integer dimensions provides a much more powerful tool. In
1981, John Hutchinson [26] introduced the Theory of Iterate Functions
and demonstrated that there is a point of contact between classic
geometry and fractal geometry. Later, Michael Barnsley, in his book
Fractals Everywhere [27], presents the mathematical concepts behind
Iterated Functions Systems (IFS), and demonstrates an important re-
sult, namely the Collage Theorem, for which an IFS can be used to
represent an image. The Collage Theorem brings to light an important
aspect of the related IFS as it shows that fractal theory constitutes
an excellent tool for the realistic reproduction of natural entities.
In the opposite sense, one might think of starting from any image
and deriving an IFS that reproduces it or, at least, generates a good
approximation. This problem is known as the inverse problem. In 1988,
Arnaud Jacquin provided a good approximation of the solution to the
inverse problem by introducing a modification of the encoding scheme
provided by Barnsley, which is named Partitioned Iterated Function
Systems [8]. Though originally introduced for the encoding of two-
dimensional images, PIFS can be applied in order to generate a compact
representation of objects at different dimensions. Indeed, they have
been extended for the 3D volume compression of Computed Tomog-
raphy (CT) and Magnetic Resonance Imaging (MRI) scans. Similarly,
they can be repurposed to encode lower-dimensional objects, i.e., one-
dimensional signals. An interesting property of PIFS is their ability
to capture the intrinsic features of the encoded object, as they rely
on the representation of self-similarities. Implicitly, PIFS are able to
extrapolate the distinctive features of a signal by providing a very
compact descriptor, a characteristic which makes them widely used
in image retrieval [28,29]. Since PIFS exploit signal self-similarities to
cut out redundancies and extract salient features, we now propose a
hybrid technique to encode a 1D signal using PIFS and then decode it
as a 2D image in an attempt to eliminate the denoising and the signal

segmentation processes.
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Fig. 2. Workflow of the method.
3.1.2. Transcoding the 1D signal into a 2D color image
Given a 1D signal, the method extracts three different PIFS codes so

that each of them can then be decoded as a single channel of a color
image. In general, PIFS encode map portions of the signal, namely do-
mains, onto different parts of the same signal, called ranges, by means
of local affine transformations, providing a compact and distinctive
representation of the whole signal. Thus, the selected domain together
with the parameters of the transformation represent the encoding of
the range. In a second stage, a decoding process is performed, in
which transformations are iteratively applied by implementing the PIFS
decoding procedure introduced by Jaquin [8]. According to the Fixed
Point Theorem [30], the iterative process converges producing the
output 8-bit image. By keeping the range/domain association fixed,
and altering the domain samples, the parameters of the transformation
change, thus providing a slightly different PIFS code. In the present
method, three different PIFS codes are extracted from the 1D signal.
Each of these three PIFS codes produces a corresponding 8-bit image.
The three images thus obtained are regarded as the three channels that
combine to form the final color image which feeds a CNN classifier.
Details on how the coding and decoding are performed are provided in
the following section, while a scheme of the entire transcoding process
is provided in Fig. 3. Moreover, the pseudocode of the encode and
decode procedures is provided in Algorithms 1 and 2, respectively.
Transcoding is an asymmetric process. The encoding step is more
complex, namely O(𝑁𝑅 ⋅ 𝑙𝑜𝑔(𝑁𝑅)) (with 𝑁𝑅 the number of ranges
extracted from the signal), while the decoding step is faster namely
O(𝑁𝑅 ⋅ 𝑙𝑟) (with 𝑙𝑟 the number of samples in a range). In this case, the
encoding step is applied to a 1D signal, so the complexity is greatly
reduced compared to the encoding of an image.

Algorithm 1 Encoding
1: procedure 𝑃𝐼𝐹𝑆𝑐𝑜𝑑𝑒 = Encoding(𝑆𝑖𝑛𝑝𝑢𝑡)
2: 𝑆 ← GetFixedLength(𝑆𝑖𝑛𝑝𝑢𝑡)
3: 𝑅𝑆 ← ExtractRanges(S)
4: 𝐷𝑆 ← ExtractDomains(S)
5: for 𝑒𝑎𝑐ℎ 𝑑 ∈ 𝐷𝑆 do
6: 𝑑𝑓 ← ComputeSaupeFeatures(d)
7: insert 𝑑𝑓 in 𝐹𝑉𝐷𝑆
8: end for
9: KDT ← KDTreeBuild(𝐹𝑉𝐷𝑆

)
10: for 𝑒𝑎𝑐ℎ 𝑟 ∈ 𝑅𝑆 do
11: 𝑟𝑓 ← ComputeSaupeFeatures(r)
12: 𝐷𝑙𝑖𝑠𝑡 ← KDTreeQuery(KDT, 𝑟𝑑)
13: 𝑑𝑚𝑖𝑛 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑒𝑟𝑟(𝑟𝑚𝑠𝑒(𝐷𝑙𝑖𝑠𝑡, 𝑟))
14: [𝛼, 𝛽] ← approximate(r,𝑑𝑚𝑖𝑛)
15: insert (𝑑𝑚𝑖𝑛, 𝛼, 𝛽) in 𝑃𝐼𝐹𝑆𝑐𝑜𝑑𝑒
16: end for
17: end procedure

The encoding step:
In the classic 2D PIFS coding scheme, an image is partitioned into a
set of disjointed square regions (ranges). Each range is represented as
the result of an affine transformation applied to another square portion
4

Algorithm 2 Decoding
1: procedure Image = Decoding(𝑃𝐼𝐹𝑆𝑐𝑜𝑑𝑒)
2: 𝐼ℎ ← CreateMatrix(W, W, 3)
3: 𝐼ℎ−1 ← 𝐼ℎ + 𝑒𝑟𝑟𝑚𝑖𝑛
4: while ||𝐼ℎ − 𝐼ℎ−1||2 ≥ 𝑒𝑟𝑟𝑚𝑖𝑛 do
5: 𝐼ℎ−1 ← 𝐼ℎ
6: for 𝑒𝑎𝑐ℎ 𝑟 ∈ 𝐼ℎ do
7: [𝑑𝑚𝑖𝑛, 𝛼, 𝛽] ← GetCode(𝑃𝐼𝐹𝑆𝑐𝑜𝑑𝑒,r)
8: 𝑑 ← GetDomain(𝐼ℎ−1, 𝑑𝑚𝑖𝑛)
9: 𝑟 ← 𝛼 ⋅ 𝑑 + 𝛽

10: 𝐼ℎ ← Replace(r, 𝐼ℎ)
11: end for
12: end while
13: IMAGE ← 𝐼ℎ
14: end procedure

of the image itself, called a domain. The size of the range and domain
is fixed a priori. Ranges represent a coverage of the image, since each
part of the image must be encoded only once. Conversely, domains may
overlap, since the greater their number, the higher the probability of
selecting a good domain to approximate a given range. Since there is a
direct correspondence between the ranges (domains) in the 1D signal
and those in the decoded image, the length of the input signal and
the size of the output image are also correlated. In other words, the
number of samples in the input signal must be equal to the number of
pixels in the output image. Considering that the generated image will
be the input to a CNN network, it is desirable to have it in a square
dimension 𝑊 ×𝑊 , which should be compatible with the input of such
a network. Moreover, to facilitate the calculations, PIFS operate with
ranges and domains whose size is a power of two (generally 8 × 8 for
the ranges and 32 × 32 for the domains). Knowing that the ranges are
to represent a coverage of the image, and following the same rationale
of simplifying calculations, it is appropriate to set the size of the output
image as a power of two and a multiple of the size of the range. Based
on these considerations, the output image size is set as the power
of two closest to the input size of the CNN network adopted as the
classifier. Consequently, the number of ranges/domains depends on the
size 𝑊 ×𝑊 of the input image. Fixing the size of both the output image
and ranges automatically determines the total number of ranges to be
encoded and the number of samples the input signal should consist
of. Moreover, they are constant and fixed once and for all. Having
all input signals of a fixed length depends on the application context,
which is not the case in relation to phonocardiograms. For this reason,
the variability of the PCG length must be handled appropriately before
applying the encoding process to guarantee that all the input signals
have a fixed length 𝐿𝑡𝑎𝑟𝑔𝑒𝑡.

We assume that any anomaly, if present, is located in the central
part of the signal. Consequently, for a signal 𝑆𝑖𝑛𝑝𝑢𝑡 of 𝐿𝑖𝑛𝑝𝑢𝑡 length such
that 𝐿𝑖𝑛𝑝𝑢𝑡 ≥ 𝐿𝑡𝑎𝑟𝑔𝑒𝑡, a new signal 𝑆 is obtained considering the central
part of 𝑆𝑖𝑛𝑝𝑢𝑡 as consisting of 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 samples. Conversely, in the case
𝐿𝑖𝑛𝑝𝑢𝑡 < 𝐿𝑡𝑎𝑟𝑔𝑒𝑡, the signal 𝑆 to encode is obtained by replicating 𝑆𝑖𝑛𝑝𝑢𝑡
until 𝐿 samples can be extracted.
𝑡𝑎𝑟𝑔𝑒𝑡
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Fig. 3. The transcoding process.
All the signals are normalized, that is each 𝑆 is standardized by
subtracting the mean and dividing by the standard deviation of its
samples.

PIFS consist of a set of local affine contractive transformations,
which exploit the signal self-similarities to cut-out redundancies, while
extracting salient features. In more detail, given an input signal 𝑆, it is
partitioned into a set 𝑅𝑆 = {𝑟1,𝑆 , 𝑟2,𝑆 ,… , 𝑟

|𝑅𝑆 |,𝑆} of disjointed regions
of length |

|

𝑟𝑆 ||, named ranges. A further set 𝐷𝑆 = {𝑑1,𝑆 , 𝑑2,𝑆 ,… , 𝑑
|𝐷|,𝑆}

of longer regions is extracted from the same signal 𝑆. These regions
are called domains and can overlap with each other. To speed up the
decoding process, |

|

𝑑𝑆 || is usually set to 4 |
|

𝑟𝑆 ||. Since a range is coded by
applying an affine transformation to a corresponding domain, both the
ranges and domains must have the same size. Thus, the domains are
extracted from a four-downsampling of 𝑆.

The signal 𝑆 is encoded range by range: for each range 𝑟𝑖,𝑆 , with
𝑖 = 1,… , |𝑅𝑆 |, it is necessary to find a domain 𝑑𝑗,𝑆 , with 𝑗 = 1,… , |𝐷𝑆 |,
and two real numbers 𝛼 and 𝛽 such that

min
𝑗∈1,…,|𝐷𝑆 |

{

min
𝛼,𝛽

‖

‖

‖

𝑟𝑖,𝑆 −
(

𝛼𝑑𝑗,𝑆 + 𝛽
)

‖

‖

‖2

}

. (1)

This minimizes the quadratic error with respect to the Euclidean
norm. The inner minimum in (1) on 𝛼 and 𝛽 can be immediately
computed by solving a minimum square error problem, obtaining

𝛼𝑖,𝑗 =

∑

1≤𝑘≤|𝑟𝑖,𝑆 |(𝑟𝑖,𝑆 (𝑘) − 𝑟𝑖,𝑆 )(𝑑𝑗,𝑆 (𝑘) − 𝑑𝑗,𝑆 )
∑

1≤𝑘≤||
|

𝑑𝑗,𝑆
|

|

|

(𝑑𝑗,𝑆 (𝑘) − 𝑑𝑗,𝑆 )2
(2)

𝛽𝑖,𝑗 = 𝑟𝑖,𝑆 − 𝛼𝑑𝑗,𝑆 , (3)

where 𝑟𝑖,𝑆 and 𝑑𝑗,𝑆 are the mean values of the range 𝑟𝑖,𝑆 and the do-
main 𝑑𝑗,𝑆 , respectively. The outer minimum on 𝑗, however, requires an
exhaustive search over the whole set 𝐷, which is very computationally
expensive. Therefore, ranges and domains are classified by means of
feature vectors in order to reduce the cost of searching the domain pool:
if the range 𝑟𝑖,𝑆 is being encoded, only the domains having a feature
vector close to that of 𝑟𝑖 are considered.

In order to compute the feature vectors, Saupe’s operator [31] has
been adopted since it has proven to be the best compromise between
discriminating power and computational simplicity. By considering
a range/domain as a sequence of signal samples, Saupe’s operator
calculates the mean and variance of the samples. Thus, by subtracting
the mean from each sample in the sequence and dividing it by the
variance, Saupe’s operator generates a new sequence representing the
feature vector associated with the range/domain.
5

All the feature vectors obtained from the domains are then entered
into a multidimensional search tree 𝑇 , i.e. a KD-Tree. During the
encoding process, the feature vector of each range 𝑟𝑖,𝑆 is used to query
the tree 𝑇 to select the first n_cd closest candidate domains. For each
candidate domain 𝑑𝑗,𝑆 the coefficients 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 are computed, so
that 𝑟𝑖,𝑆 = 𝛼𝑖,𝑗 ∗ 𝑑𝑗,𝑆 + 𝛽𝑖,𝑗 + 𝑒𝑟𝑟𝑖,𝑗 . Among the 𝑛 candidate domains, the
one providing the minimum error 𝑒𝑟𝑟𝑖,𝑗 is selected as the best. If the
selected domain provides an 𝛼𝑖,𝑗 such that |𝛼𝑖,𝑗 | > 1 the decoding will
not converge [32]. In that case, each k-th sample 𝑟𝑖,𝑆 (𝑘) of the range
𝑟𝑖,𝑆 such that 𝑟𝑖,𝑆 (𝑘) > (𝑚𝑒𝑎𝑛(𝑟𝑖,𝑆 ) + 0.5 ⋅ 𝑠𝑡𝑑(𝑟𝑖,𝑆 )) is set to 𝑚𝑒𝑎𝑛(𝑟𝑖,𝑆 ) and
𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 are recomputed.

The index 𝑗 of the selected domain, the value of 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 ,
represents the encoding of 𝑟𝑖,𝑆 , while the encoding 𝐶𝑆 of the signal
𝑆 is given by concatenating encodes of all the ranges covering 𝑆.

The decoding step:
The decoding exploits the code computed from the 1D signal, albeit

implementing the standard PIFS decoding technique of a 2D image. In
other words, while in the encoding ranges 𝑟𝑖,𝑆 and domains 𝑑𝑖,𝑆 there
are sequences of samples from a 1D signal, in the decoding these cor-
respond to square regions of a 2D image 𝐼 (𝑟𝑖,𝐼 and 𝑑𝑖,𝐼 , respectively).
Thus, the range/domain matches and 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 coefficients computed
from the 1D signal 𝑆 are now used to decode a 2D image 𝐼 according
to the standard 2D PIFS decoding process.

For the decoding, the PIFS iteratively compute ranges 𝑟𝑖,𝐼 by apply-
ing an affine transformation to the corresponding encoding domain 𝑑𝑗,𝐼 .
The decoding process can start from any initial image as it will converge
to the output image according to the Fixed Point Theorem [30].

A crucial aspect is that in 1D signals each domain includes four
consecutive ranges, while in a 2D image a domain includes four ad-
jacent ranges that form a square region that is four times the size of
the range. To make the decoding process of a 2D image consistent
with the code extracted from a 1D signal, the ranges 𝑟𝑘,𝐼 , 𝑟𝑘+1,𝐼 , 𝑟𝑘+2,𝐼 ,
𝑟𝑘+3,𝐼 included in the domain 𝑑𝑗,𝐼 must correspond to the ranges 𝑟𝑘,𝑆 ,
𝑟𝑘+1,𝑆 , 𝑟𝑘+2,𝑆 , 𝑟𝑘+3,𝑆 included in the corresponding domain 𝑑𝑗,𝑆 in the
1D signal. To maintain this correspondence, the ranges and domains
are located in the image according to the Peano space-filling curve [33]
which provides a z-ordering of the 2D space according to the Morton
order, so that a point’s position along the curve is determined by a
bitwise interleaving of its coordinates [34] (see Fig. 4).

The pixel values in the decoded image 𝐼 are calculated by applying
an iterative process described below. Let 𝐼ℎ (with ℎ > 0) be the image
to be computed during the iteration ℎ and 𝐼0 a completely black image.
For each range 𝑟ℎ the corresponding 𝑗 (coding domain index), 𝛼 and
𝑖,𝐼 𝑖,𝑗
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Fig. 4. Correspondence among ranges (domains) in 1D Signal 𝑆 and 2D image 𝐼 based on 2D Peano/Morton space filling curve.
𝛽𝑖,𝑗 are extracted from the encoding 𝐶𝑆 . Thus, the decoding process ex-
tracts the 𝑗th domain from the 𝐼ℎ−1 image, applies a contraction (resize)
by a factor of 0.25 to it to calculate 𝑟ℎ𝑖,𝐼 = 𝛼𝑖,𝑗𝑑ℎ−1𝑗,𝐼 + 𝛽𝑖,𝑗 and replaces
the decoded range at the same position in the 𝐼ℎ image. In order to
ensure that the values in 𝑟ℎ𝑖,𝐼 represent valid pixels values, a lower- and
upper-bound is applied, so that 𝑟ℎ𝑖,𝐼 = 𝑚𝑎𝑥(𝐼𝑚𝑖𝑛, 𝑚𝑖𝑛(𝑟ℎ𝑖,𝐼 , 𝐼𝑚𝑎𝑥)), where
[𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥] represents the range of valid values for the pixels in the
image. When all the ranges have been decoded and placed in 𝐼ℎ, 𝐼ℎ−1 is
set to 𝐼ℎ and the decoding process is repeated until ‖𝐼ℎ−𝐼ℎ−1‖2 < 𝑒𝑟𝑟𝑚𝑖𝑛,
where 𝑒𝑟𝑟𝑚𝑖𝑛 is a constant value fixed a priori. The parameter 𝑒𝑟𝑟𝑚𝑖𝑛
estimates the convergence as a function of the difference between two
consecutive iterations, and it is generally observed that 𝑒𝑟𝑟𝑚𝑖𝑛 = 10−3 is
sufficient to ensure that the decoding method has converged.

The image so obtained represents the first channel of a color image.
In order to increase the amount of information extracted from the
signal, two further channels are generated. The second channel is
obtained by a similar decoding process, where each domain is standard-
ized according to the formula 𝑑𝑗,𝑆 = (𝑑𝑗,𝑆 − 𝑑𝑗,𝑆 )∕𝑠𝑡𝑑(𝑑𝑗,𝑆 ) before the
affine transformation is applied. Finally, the third channel is similarly
obtained by transforming the domain according to the formula 𝑑𝑗,𝑆 =
(𝑑𝑗,𝑆 − 𝑑𝑗,𝑆 )2. The color values in the resulting image 𝐼 are finally
normalized with respect to a correction parameter 𝛿. In each of the
three channels 𝐼𝑐 with 𝑐 = 1, 2, 3, of the image 𝐼 the pixel values are
mapped to the interval [0, 𝛿], according to the following procedure.
Let 𝐻 be the histogram of one of the color channels of 𝐼 . From 𝐻 , we
determine the value 𝑘 such that 99% of the pixels have a value within
the interval [−𝑘, 𝑘]. Pixels whose value lies outside that interval are
saturated with respect to the nearest extreme that is −𝑘 or 𝑘. Finally,
the value of each pixel in 𝐼𝑐 is mapped to the interval [0, 𝛿] according
to the following formula:

𝐼𝑐 (𝑖, 𝑗) = 𝛿 ⋅ 𝑙𝑜𝑔𝛿

(

𝑚𝑎𝑥(𝐼𝑐 ) − 𝐼𝑐 (𝑖, 𝑗)
(𝑚𝑎𝑥(𝐼𝑐 ) − 𝑚𝑖𝑛(𝐼𝑐 ))

)

. (4)

4. Database

The data used in this study are from the database released for
the PhysioNet Computing in Cardiology Challenge 2016 (2016 Phys-
ioNet/CinC) [9,10]. It includes 3,240 heart sound signals collected from
764 adult subjects, saved in wav format with a length from 5 to above
120 s. The heart sound samples were recorded from different locations
(aortic, pulmonic, tricuspid and mitral areas) using different acquisition
sensors.
6

All the heart sound signals were labeled as normal or abnormal
by medical experts. Precisely, the set of sound signals is constituted
by 665 abnormal and 2,575 normal PCG signals and is divided into
six sub-datasets (a through f ). The normal sounds were acquired from
healthy subjects, while the abnormal ones were collected from subjects
suffering from various heart illnesses, such as heart valve defects and
coronary artery diseases.

The 2016 PhysioNet/CinC database was divided into training and
validation sets, while the testing set used for the challenge was blinded.

In our experiments, we considered five sub-datasets (a through e),
and we used as a testing set the validation set acquired from the
PhysioNet providing, of course, for the removal of the signals of the
testing set from the training set.

Table 1 reports the number of abnormal and normal signals used in
this study and their distribution over the training and testing sets.

In both the training and testing datasets, many signals have a low
quality and, therefore, they were labeled as ‘unsure’ by the organizers
of the Challenge [9]. The unsure signal percentages for each sub-dataset
are specified in Table 2 which also summarizes the number of signals,
the signal percentages and the time lengths.

Due to both the reduced number and the strong unbalancing of the
data, an augmentation process was applied, which is described in the
next section.

4.1. Data augmentation

Since the whole dataset is very unbalanced with respect to both
the number of samples per class (normal and abnormal) and the origin
of the signals (the sub-datasets have different numbers of total signals
and each is unbalanced per class), data augmentation provides a way
of balancing the dataset with respect to these two aspects. However,
during the encoding step imposing a fixed length for the input signals
with a length > 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 and selecting only the central part of a signal
could exclude from the image information relevant for training the
classifier. To overcome this potential problem and at the same time to
increase the size of the training dataset, a data augmentation process
was implemented. The data augmentation process consists in taking a
signal 𝑆 and concatenating it to itself, obtaining a signal 𝑆2, which is
then split into several parts, each with a length equal to 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 and to
which the transcoding process is applied. In the following paragraphs,
we refer to this augmentation process as Replication.

Regarding the balancing of the total number of normal and abnor-
mal signals (in the following paragraphs, we refer to this problem as
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Table 1
Details about the heart sound signals used in this study.
Sub-Dataset Training set Testing set

# Abnormal # Normal Total # Abnormal # Normal Total
signals signals signals signals signals signals

a 252 77 329 40 40 80
b 55 337 392 49 49 98
c 20 4 24 4 3 7
d 23 22 45 5 5 10
e 130 1905 2035 53 53 106

Total 480 2345 2825 151 150 301
Table 2
Summary of some features of 2016 PhysioNet/CinC database.
Sub-Dataset Tot. signals Proportion of signals (%) Signal length (s)

Abnormal Normal Unsure Min Median Max

a 409 67.5 28.4 4.2 9.3 35.6 36.5
b 490 14.9 60.2 24.9 5.3 8 8
c 31 64.5 22.6 12.9 9.6 44.4 122.0
d 55 47.3 47.3 5.5 6.6 12.3 48.5
e 2,141 6.8 83.2 9.9 8.1 21.1 101.7
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class balancing) it is important to define the number 𝑛𝑐 of sub-signals
that can be extracted from each signal 𝑆2 belonging to the class with
he lower number of samples. To balance two classes 𝐴 and 𝐵 with 𝑁𝐴
nd 𝑁𝐵 number of signals, respectively, such that 𝑁𝐴 < 𝑁𝐵 , the value
f 𝑛𝑐 is computed as 𝑁𝐴∕𝑁𝐵 . Thus, each signal of 𝐴 is divided into 𝑛𝑐
ub-parts producing 𝑛𝑐 new signals. This process is applied to obtain
he same number of signals per class for each sub-dataset. Regarding
he process applied to obtain the same number of samples for each sub-
ataset (in the following paragraphs, we refer to this problem as dataset
alancing) the process is based on the extraction of 𝑛𝑑 sub-parts from
ach sample of the sub-dataset, having a number of samples 𝑁𝑠 < 𝑁 ,
here 𝑁 is the number of signals of the largest sub-dataset. Clearly,
𝑑 = 𝑁∕𝑁𝑠.

A different augmentation strategy from the literature was also con-
idered, namely the Oversample using the Adaptive Synthetic (ADASYN)
lgorithm [35]. The ADASYN method balances the number of samples
etween classes by synthetically creating new examples of the minority
lass through linear interpolation between the existing samples of the
inority class. ADASYN extends the Synthetic Minority Oversampling
echnique (SMOTE) method in that it creates more examples near the
oundary between the two classes, rather than within the minority
lass.

. Experimental results

To analyze the performance of the proposed method, several exper-
ments were carried out, adopting different strategies for the balancing
rocess. The results were evaluated according to the following metrics,
he F1-measure, Area Under Curve (AUC) and a MAcc, which was used
or the scoring of the challenge and of our experiments. MAcc is com-
uted as an average between the Sensitivity and Specificity measures.
hree different configurations of ResNet were considered separately:
esNet-18, ResNet-50 and ResNet-101. The parameter settings for both

he transcoding process of a signal S in an image I and the training are
eported in Table 3.

The results of the experiments are shown in Table 4. For the
irst experiment (Exp.1), no data augmentation process was applied.
or the other two different experiments (Exp.2 and Exp.3) a class
alancing was adopted by applying the ADASYN and Replication aug-
entation method, respectively. For the remaining experiments (Exp.4

nd Exp.5), the dataset balancing was also applied, using the ADASYN
nd Replication strategy, respectively. The best measures for each ex-
eriment are highlighted in bold in Table 4 and the absolute best
7

s

easures are underlined in bold. The best performance was obtained
y using ResNet-101 with dataset balancing adopting the Replication
ugmentation process. To evaluate the leverage of each dataset on the
inal classification, for all the experiments, the Total Error Rate (TER)
as computed:

𝐸𝑅 = 𝐹𝑃 + 𝐹𝑁
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(5)

where False Positive (FP) and False Negative (FN) are defined as
the number of signals wrongly classified as pathological and healthy,
respectively. For simplicity, in Table 5 only the results of the TER
for Exp.5 are reported, but similar results were obtained in the other
experiments.

The worst result was always obtained for the dataset b. Comparing
the data in Table 2, we note that the sub-dataset b includes the
reatest number of unsure signals, i.e. signals with a poor quality.
oreover, the median of signal lengths of the sub-dataset b (seconds,
hich corresponds to 16,000 samples at 2 KHz) is the smallest of the
hole dataset. Considering that the input length 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 required by
ur approach is much longer (seconds, which corresponds to 65,536
amples at 2 KHz), the signals of the sub-dataset b are much more
ffected by the replication process described in the encoding step of
ection 3.1.2. These two features of the sub-dataset b, i.e. the high
resence of unsure signals and the low median length, could explain
he low performance in this sub-dataset. Therefore, further experiments
ere conducted according to the strategy of Exp.1 and Exp.5 and the

esults are reported in Table 6. In these new experiments, the sub-
ataset b was excluded first from the training set (Exp. 1.1 and Exp.
.1.) and later also from the testing set (Exp. 1.1 and Exp. 5.2).

Note that all the measures in terms of MAcc, F-measure and AUC
re, generally, higher than those obtained with experiments including
he sub-dataset b. In particular, the absolute best MAcc and F-measure
ere obtained for Exp.5.2 with a ResNet-50, while the best value of
UC was always achieved for Exp.5.2 but with a ResNet-18. As for Exp.
.1, Resnet-18 achieved the best results in terms of MAcc, F1-measure
nd AUC, and was equaled by ResNet-101 only with respect to the first
wo.

A comparison with other methods in the literature using the Phys-
onet/Cinc 2016 sub-datasets is not feasible because, in most cases, a
etailed explanation of how the signals were partitioned into training
nd testing sets is not provided.

To provide a complete analysis of our results, in Table 7 we show a
omparison of our approach with the methods described in Section 2,

pecifying the data distribution, as reported in these corresponding
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Table 3
Parameter settings for the transcoding process and the training of the network.

Parameters for the transcoding process Parameters for the training

Parameter Description Value Description Value

W side of I 256
𝐿𝑡𝑎𝑟𝑔𝑒𝑡 fixed length of S 65536 learning rate 0.001
n_cd number of candidate domains 16 training epochs 100
|𝑟𝑖,𝑆 | size of the range in S 64 batch size 32
|𝑟𝑖,𝐼 | size of the range in I 8 × 8 network optimizer Adam
𝛿 correction parameter 65536
Table 4
Results with the different strategies of augmentation and balancing and the different ResNet configurations.

Balancing
(Augmentation
Method)

ResNet MAcc F1-measure AUC

Exp.1 NO
18 0.70 0.64 0.70
50 0.71 0.67 0.71
101 0.71 0.65 0.71

Exp.2 Class Balancing
(ADASYN)

18 0.68 0.59 0.71
50 0.69 0.73 0.69
101 0.67 0.63 0.67

Exp.3 Class Balancing
(Replication)

18 0.71 0.71 0.71
50 0.74 0.69 0.74
101 0.69 0.64 0.69

Exp.4 Dataset Balancing
(ADASYN)

18 0.65 0.67 0.65
50 0.67 0.62 0.67
101 0.62 0.54 0.62

Exp.5 Dataset Balancing
(Replication)

18 0.72 0.71 0.81
50 0.73 0.73 0.73
101 0.75 0.73 0.75
Table 5
TER for each dataset starting from
the results obtained with ResNet-
101 in Exp.5 shown in Table 4.
Dataset TER

a 8.31%
b 13.95%
c 0.00%
d 1.33%
e 1.33%

papers. We have excluded the method in [22] from the comparison
since it uses further datasets.

6. Discussion

This is a preliminary work in which we present an architecture for
mapping 1D signals into 2D color images for classification purposes.
In order to stress the proposed method, we have conducted several
experiments related to the classification task, evaluating different CNNs
and considering different inputs for these networks.

From an analysis of Tables 4 and 6, it is clear that there is no
substantial variation between the performance of the different networks
in the individual experiments. This suggests that shallower networks
are already able to capture the truly discriminative features present in
the image. This can be attributed to the very nature of the proposed
method, i.e., PIFS captures the underlying structure of the signal by
concentrating it in the low frequencies, in no way favoring the noise
and detail features typically carried out by the high frequencies. Such
features are indeed those captured by the first layers of a CNN network
and, therefore, a Resnet-18 is able to match the performance of much
deeper networks such as Resnet-50 and Resnet-101.

Comparing the results of Exp.1 and Exp.5 (shown in Table 4) with
those reported in Table 6, there is an appreciable variation in perfor-
8

mance, when b was eliminated from both the training and testing sets
(Exp.1.2 and Exp.5.2). This suggests, that b is indeed representative of
a strong variability. However, when sub-dataset b was eliminated from
the training set only (Exp.1.1 and Exp.5.1), the change in performance
is very slight. Given that it consists of more than a few samples, it can
be inferred that the method is particularly robust, as well as a good
generalization ability. Moreover, considering that it does not benefit
from this information in training, it is evident that it is still able to
maintain a good performance.

The proposed balancing method produces a significant performance
increase unlike ADASYN, whose application worsens the performance,
albeit live, also with respect to the method without any augmentation.
This is attributable to the fact that ADASYN tries to estimate the
distribution of input signals for the purpose of synthesizing new ones
as a combination of neighboring elements in the input space. Given
the size of the input space and the limited number of signals avail-
able, the synthesized ones are likely to be subject to, which introduce
false anomalies into the generated signals. In contrast, the introduced
balancing technique is based on the replication of real sequences of
samples in the input, so it strongly limits the potential introduction
of artifacts to only the junction points of the replications. Moreover,
balancing at the sub-dataset level is more effective than its application
at the class level. This can be explained in terms of a consideration that
the signals in each dataset have inherent characteristics arising from
the context and the devices with which they were acquired. Dataset
balancing provides a sufficient number of signals to represent each
of these conditions adequately. As regards the comparisons with the
methods shown in Table 7, such an analysis is prevented by the fact that
no knowledge is provided of how the signals from the Physionet/Cinc
2016 dataset were organized for the experiments. Nevertheless, we can
highlight the good performance of our method.

PIFS have been extensively explored in image indexing and retrieval
due to their ability to capture structural information in an image
while leaving out details and noise. For this reason, PIFS have been
considered as a central element of our transcoding process, which is
robust to noise and does not require any pre-processing or segmentation
of the signal for exactly this reason. This last aspect is of paramount
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Table 6
Results of the experiments Exp.1 and Exp.5 excluding dataset b from the training set (Exp.1.1, Exp.5.1) and also from the
testing set (Exp.1.2, Exp.5.2).

Balancing
(Augmentation
Method)

ResNet MAcc F1-measure AUC

Exp.1.1 NO
18 0.70 0.63 0.71
50 0.70 0.65 0.70
101 0.70 0.69 0.70

Exp.1.2 NO
18 0.79 0.79 0.81
50 0.78 0.77 0.78
101 0.79 0.79 0.79

Exp.5.1 Dataset Balancing
(Replication)

18 0.74 0.75 0.81
50 0.75 0.72 0.75
101 0.73 0.71 0.73

Exp.5.2 Dataset Balancing
(Replication)

18 0.84 0.84 0.91
50 0.85 0.86 0.85
101 0.84 0.85 0.84
Table 7
The results of other methods that have worked on the 2016 Physionet/CinC dataset.

Year Ref MAcc Distribution data

2022 [16] 0.97 training 70%, testing 30%
2021 [17] 0.86 training 60%, validation 20%, testing 20%
2019 [18] 0.86 Training 2072, testing 800
2021 [20] 0.87 not specified
2020 [19] 0.97 training 90%, validation 10%
2018 [21] 0.56 3-fold cross-validation on e, b, and f sub-datasets
2021 [23] 0.98 Training 3240, testing 301

importance, as it makes our method extremely extensible and applica-
ble to signals of a very different nature without requiring any special
adjustments or modifications.

Another important advantage of the proposed method is its potential
application with lighter networks on lower-performing devices. Indeed,
PIFS are asymmetric schemes in which the encoding is computationally
expensive,but the decoding particularly fast. In the specific case, the
encoding is applied to a 1D signal, so it is much less expensive than
if applied to a 2D image, while only the light part of the transcoding
process, i.e., the decoding, involves a 2D signal, making the whole
method high-performing and particularly fit for purpose. Moreover,
PIFS are interpolators, so the same code could be decoded at different
resolutions (higher or lower). This may be an advantage when networks
are able to process input images at higher resolutions. At the same time,
the code could be decoded at lower resolutions, without going through
any image resizing which would result in a greater loss of information,
working with lighter networks on lower-performing devices.

As this is an initial work in the use of PIFS as a signal transcoding
tool, this method demonstrates the feasibility of the process, but leaves
room for improvements. First, further research is needed to overcome
the fixed length limitation of the input signal. In a real application,
the system could be set to acquire the signal of the desired length.
However, if it is necessary to process pre-existing signals or signals
acquired from other applications, the limitation on length persists. As
detailed in Section 3.1.2, the current method truncates signals that are
too long at the central part and replicates signals that are too short by
spliced repetitions. This problem is the main issue to be investigated in
future extensions of the method.

Another aspect worthy of attention is the way the different color
channels are generated. Currently, domain transformation provides a
different representation of the corresponding range in each channel,
thus increasing the information content of the whole color image. This
choice has been found to be the best performing method downstream
of a range of possible options, corroborated by the fact that it is
consistent with the approach which has been implemented in other
9

works adopting PIFS for image indexing purposes.
However, this finding does not eliminate the strong correlation that
there can be among the three channels of the image derived from a
signal. A possible line of investigation could be to maintain the same
range/domain relationship for the different channels, while changing
the representation domain, i.e., spatial for the first channel and spectral
for the remaining two, based on different transforms, such as the Fast
Fourier Transform and Discrete Wavelet Transform.

7. Conclusions and future works

This paper proposes a new fractal-based method of 1D to 2D signal
transcoding, which maps the input signal to a color image in order to
benefit from CNNs which are performing increasingly impressively in
classification tasks. The contributions of this work are several. First, it
is an initial work on the possibility of using the PIFS coding scheme
for signal transcoding. Indeed, one of the main difficulties has been
precisely that of readjusting the original definition of the encoding
scheme so that it is compatible with 1D encoding and 2D decoding.
Secondly, the choice of using PIFS has been dictated by their ability to
operate directly on the input signal without requiring any denoising or
segmentation steps. This aspect makes the method particularly attrac-
tive because of its robustness to noise and signal variability. Moreover,
PIFS are able to extract features which are captured by the first layers
of a CNN network and, therefore, a Resnet-18 is able to match the
performance of much deeper networks. This characteristic makes our
approach particularly suitable for implementation on devices with a
low computational power.

However, the current definition of the transcoding scheme imposes
a fixed length on the input signal, making a truncation or replication
operation necessary if the signal is longer or shorter than the pre-
determined length. Our future work will address the removal of this
limitation by considering the development of an encoding process that
generates images whose size depends on the number of samples of the
PCG signals and the use of a classifier that can receive input images
which have a variable resolution. Therefore, new experiments will be
carried out in the near future regarding the transcoding processes,
classification networks and different databases.
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