
What we talk about when we talk about software

test �akiness
?

Morena Barboni1[0000−0002−1281−4058]
�, Antonia

Bertolino2[0000−0001−8749−1356], and Guglielmo De Angelis1[0000−0002−1076−0076]

1 IASI-CNR, Rome, Italy
{morena.barboni, guglielmo.deangelis}@iasi.cnr.it

2 ISTI-CNR, Pisa, Italy
antonia.bertolino@isti.cnr.it

Abstract. Software test �akiness is drawing increasing interest among
both academic researchers and practitioners. In this work we report our
�ndings from a scoping review of white and grey literature, highlighting
variations across �aky tests key concepts. Our study clearly indicates the
need of a unifying de�nition as well as of a more comprehensive analysis
for establishing a conceptual map that can better guide future research.

Keywords: Flaky Tests · Flakiness · Software Testing · Scoping Review

1 Introduction

In recent years research aiming at understanding and mitigating the problem
of test �akiness has boomed, also pushed by alarms raised by big companies as
Google [29], Facebook [27] or Apple [17], among others, on the extent and cost
of this phenomenon.

However, in the fast rising of articles addressing the theme, researchers pro-
vide di�erent characterizations and modelings of the involved aspects and con-
nected techniques. Terms such as �aky or intermittent or non-deterministic are
used by some as synonyms, by others to identify di�ering test behaviors. Some
works study in depth the causes of �akiness and introduce more speci�c test
characterizations. However, as it is inevitable when many authors work in con-
currence, a same concept is introduced in more articles using di�ering terms.

Lack of a shared terminology and of an agreed conceptual scheme may be
confounding and may also waste e�ort in re-inventing existing knowledge. For
instance, already in the 90's Carver and Tai [6] warned that multiple executions
of a concurrent program under a same test input might produce di�erent results,
if the underlying sequence of synchronization events is not speci�ed. This sounds
to us closely related with those �aky test categories commonly classi�ed as due
to concurrency or asynchronous wait [26], but to the best of our knowledge no
recent article has ever acknowledged the evident connection. On the other hand,

? Work supported by the Italian MIUR PRIN 2017 Project: SISMA (Contract
201752ENYB), and partially by the Italian Research Group: INdAM-GNCS.



2 M. Barboni, A. Bertolino, G. De Angelis

our analysis of the literature also emphasizes how the same term of a ��aky test�
can refer to situations that require di�erent treatments, e.g., in some cases �xing
the test code, in other ones re�ning the test environment con�guration. For all
such reasons, we think that putting order in the fuzz around test �akiness can
be helpful to better guide future research e�orts.

In this short paper we highlight the problem of inconsistent terminology
based on a scoping review of literature [3, 30] (Section 2), and move some �rst
steps towards proposing a unifying de�nition and vocabulary for test �akiness
(Section 3), which will be the aim of our future work (Section 4).

2 Scoping Review of White and Grey Literature

This study aims to examine de�nitions and key concepts related to software
testing �akiness. For this purpose we borrow from medical research the recently
introduced approach of a scoping review [3, 30]. Similarly to systematic review,
which is a better known methodology in software engineering [16], a scoping
review must apply a de�ned and repeatable search protocol. However, scoping
studies3 do not address the lengthy synthesis stage, aiming rather at a fast de-
scriptive appraisal of broad questions, often as a precursor to deeper systematic
reviews. As our goal was to highlight variations behind de�nitions of �aky tests,
our search methodology relied on two pragmatic criteria: i) it should cover both
white and grey literature, as the phenomenon of �akiness has raised great in-
terest from both academic researchers and practitioners; and ii) for the sake
of timeliness, we established well-delimited boundaries to our search (explained
below). While these limitations may hinder comprehensiveness, nevertheless our
results were already su�cient to �nd inconsistencies, as we discuss later in this
section.
Search Methodology: The entries from the white literature have been re-
trieved by consulting three among the most relevant Academic Digital Libraries
in Software Engineering, namely: Scopus, ACM Digital Library, IEEE eXplore.
For the analysis of the grey literature, we rely on articles posted on Medium.com,
a well-known online publishing platform hosting many informal technology blogs
that are frequently written/followed by Software companies and practitioners.

We launched an automated search on the white literature sources by query-
ing: title, abstract and keywords; matching with: �Flaky test� OR �Flakiness�,
and selecting those English papers published until Feb. 2021 (date of the query).
From the collected entries, it appears evident that before Luo et al.'s paper [26],
there were only few works explicitly referring to software testing ��akiness�.

Then, the same query string has been run on Google Search but limiting
the search space to Medium.com and by considering the top-ten returned English
articles written until Apr. 2021 (date of the query).

Even though we did not include a formal snowballing process, during the
analysis of the collected entries, two blog posts, namely [12] and [29], stood out

3 A useful comparison between systematic reviews, scoping reviews and other review
types is available from https://guides.temple.edu/systematicreviews.

https://guides.temple.edu/systematicreviews


What we talk about when we talk about software test �akiness 3

as playing a seminal role, and therefore we decided to also include them among
the grey literature entries.
Overview of Findings: Interestingly, our preliminary analysis of the collected
entries revealed quite di�erent implications and perspective on how literature
conceives �aky tests. Indeed there are works that explicitly refer to their ran-
domised nature: �Flaky tests are software tests that exhibit a seemingly random
outcome (pass or fail) despite exercising unchanged code� [10], but also others
that de�nitively reject such vision: �They are sometimes referred to as random
failures, but in reality, it's often less about actual randomness than very repro-
ducible edge cases that happen in a seemingly random fashion� [41].

In addition, along with de�nitions that exclude any evolution exclusively re-
ferring to the software under test (SUT) as in [10] above, others also cover testing
con�gurations or the execution environment: �A �aky test is a test that can be
failing or passing with no changes in the application or infrastructure� [40].

Finally, most works depict �akiness as an undesired behavior of test pro-
grams, but few others highlight how it may lead developers to disclose potential
bugs not revealed otherwise: �Part of the test or production code has a non-
deterministic outcome� [31].

For lack of space, the complete list of the collected de�nitions is made avail-
able online [4].

3 Commonalities in Test Flakiness Concepts

Based on the outcome of our scoping review, in the following subsections we aim
to bring some order to �aky test-related concepts (Section 3.1) and classi�cations
(Section 3.2), taking a �rst step towards the identi�cation of a more consistent
vocabulary.

3.1 De�nitions of Flaky Test Concepts

Table 1 shows a synthesis of the terminology actively used by both academics and
practitioners. This summary was derived after a careful sampling and analysis of
concepts related to the behavior of test outcomes. The most recurring de�nition
of Flaky Test from the literature is (1) �a test that exhibits a non-deterministic
behavior�. This suggests that any test showing both pass and failure outcomes
upon multiple repeated executions is usually marked as �aky. Conversely, Not
Flaky tests are de�ned by Lam et al. [22] as tests that either always pass or
always fail in a deterministic manner, whereby tests that always exhibit a failure
outcome can be further classi�ed as Consistently Failing Tests [42]. The most
common synonym for �aky test is Non-Deterministic Test [12]. However, we
observed that considering ��aky� and �non-deterministic� as interchangeable
terms can be a source of confusion. In fact, as we discuss in Section 3.2, the
term Non-Deterministic is also used for designating a very speci�c subclass of
�aky tests. On several occasions, �aky tests are also referred to as (3) �tests
that fail intermittently�. Although the manifestation of intermittent outcomes



4 M. Barboni, A. Bertolino, G. De Angelis

Table 1. De�nitions of Flaky Test Concepts

Term De�nition Source(s)

Non-Flaky A test that either always passes or always fails. [22]

Flaky

(1) A test that exhibits a non-deterministic behavior. [17, 25, 27, 31, 34, 37,
39, 45]

(2) A test that provides di�erent results inconsistently. [41]

(3) A test that fails intermittently. [10, 26, 46]

(4) A test that fails randomly. [7]

(5) A test that exhibits pass and failure outcomes despite
exercising unchanged code.

[2, 5, 9, 10, 19, 24, 26,

29, 32, 33, 35, 36, 44]

(6) A test that exhibits pass and failure outcomes al-
though neither the code nor the test has changed.

[11, 15, 21, 49]

(7) A regression test that exhibits pass and failure
outcomes although neither the code nor the test has

changed.

[13]

(8) A test that exhibits pass and failure outcomes al-

though neither the code nor the test infrastructure has

changed.

[40]

(9) A test that exhibits pass and failure outcomes
although neither the code nor the con�guration has

changed.

[18]

(10) A test that exhibits pass and failure outcomes al-
though the code, the inputs and the con�guration have

not changed.

[43]

(11) A test that exhibits pass and failure outcomes al-
though the SW, the HW and the TW have not changed.

[42]`

(12) A test that exhibits pass and failure outcomes while
exercising a potentially changed version of the code.

[20, 23, 26, 38]

(13) A test that exhibits pass and failure outcomes in
apparently identical test scenarios.

[28]

(14) A test that exhibits pass and failure outcomes al-
though neither the test code nor the con�guration pa-

rameters has changed.

[48]

(15) A test that exhibits pass and failure outcomes while
exercising a potentially changed version of the code and
a potentially evolved test environment.

[22]

Non-
Deterministic

A test exhibits both pass and failure outcomes without
any noticeable change in the code, tests, or environment.

[12]

Latent Flaky A test that is not currently �aky, but that could become
so due to a latent source(s) of �akiness.

[33]

Intermittently
Failing

A test that exhibits pass and failure outcomes while there
has been a potential evolution in the SW, the HW or the
TW.

[42]

Consistently
Failing

A test that exhibits a consistent failure outcome. [42]



What we talk about when we talk about software test �akiness 5

can accurately depict the behavior of �aky tests, Strandberg et al. [42] explicitly
di�erentiate Intermittently Failing Tests from the former. We also observed
�aky tests being described as (4) �tests that fail randomly�. However, as speci�ed
by Stosik [41], this de�nition is imprecise because the randomness of �aky tests
is only apparent. Indeed, the (2) �inconsistent behavior� of a �aky test is often
caused by a well-de�ned, reproducible set of conditions. Even though commonly
accepted, de�nitions (1-3) do not provide any insight relative to the context
in which the test exhibits an inconsistent behavior. In particular, it is unclear
whether the �akiness is associated to problems in the test code, in the SUT,
or to any other environmental factor. Moreover, they do not specify explicitly
whether any element, such as the SUT or the test code, underwent any type of
modi�cation across di�erent test re-runs.

Several works extend these generic de�nitions with additional details. In par-
ticular, de�nitions (5 - 11) agree upon the fact that �aky tests �exhibit both pass
and failure outcomes despite exercising unchanged code�. The fact that a given
test can return non-deterministic outcomes for the same code version was iden-
ti�ed as one of the main obstacles for regression testing activities. Whenever a
developer updates the code, the tests are re-run to ensure that said changes do
not break existing functionalities. A regression test failure normally indicates
the (re)introduction of a bug that impacts previously working software. How-
ever, a test that non-deterministically passes and fails for the same code version
provides misleading signals to the developer, who might waste considerable time
and e�ort in debugging the code under test. While de�nition (5) only makes
assumptions related to the SUT, de�nitions (6 - 11) provide further constraints
as to what constitutes a �aky test. In particular, de�nitions (6) and (7) require
both the SUT and the test code to be unchanged, although the latter explic-
itly identi�es a �aky test as a type of regression test. Other authors require the
test environment (8), the con�guration (9, 10) and the inputs (10) to stay the
same upon multiple test executions. The de�nition (11) proposed by Strandberg
et al. [42] speci�es that a �aky test yields di�ering verdicts when �nothing in
the SW, HW or TW has been changed.�. This vision of �akiness stems from
the analysis of test intermittence in industrial Embedded Systems (ES), which
comprise hardware (HW), software (SW), and testware (TW). The TW includes
both software and hardware components, such as test libraries and the physi-
cal environment on which the tests are executed. This de�nition implies that
�aky test verdicts are not caused by modi�cations to the aforementioned Em-
bedded System components. Instead, �akiness can be due to �hidden� state or
environment changes that might have occurred since the previous test run.

The vision of test �akiness described in de�nitions (12 - 15) is quite di�erent,
in that they do not require the immutability of the code under test. In particular,
de�nition (12) explicitly admits changes to the code under test among multiple
test re-runs. De�nitions (13, 14) require the same test scenarios, and the same
test and con�guration respectively, but they do not explicitly ask for unchanged
software. Lastly, de�nition (15) admits �a potentially changed version of the code
and a potentially evolved test environment�. We observed that the idea of test



6 M. Barboni, A. Bertolino, G. De Angelis

�akiness emerging from de�nitions (12 - 15) is partly re�ected by Strandberg
et al.'s [42] de�nition of Intermittently Failing Test for the Embedded Systems
domain. As introduced earlier, the authors provide a separate de�nition for In-
termittently Failing Tests, in that Flaky Tests as de�ned in (11) can be rarely
observed in practice. Indeed, industrial ES undergo rapid and frequent changes
during their development process. Conversely, an Intermittently Failing Test
provides di�erent verdicts over time, but it �allows changes in the SW or HW of
the ES under test, as well as in the TW used for testing�. De�nition (15) used in
more traditional software systems is particularly in line with this vision of test
intermittence, as it also admits changes in the code and test environment. To
complete this preliminary categorization, we also report the concept of Latent
Flaky Test proposed by Parry et al. [33]. A Flaky Test is said to be latent if it
contains a source of �akiness that has not yet manifested. The concept of latent
�akiness brings further attention to the problem of exposing test �akiness as
soon as possible, so as to improve the reliability of the test suite.

3.2 Classi�cation of Flaky Tests

As for di�erent types of �akiness, many works broadly split �aky tests into two
groups based on the underlying source of �akiness (Table 2). The dashed line
denotes the separation of di�erent classi�cations of �aky tests that we encoun-
tered during our research. Order-Dependent (OD) tests are usually described
as tests that �can pass or fail based on the order in which they are run". The
unreliability of OD test verdicts is generally caused by their reliance on some
environment state that has been improperly (re)set by another test execution.
Although the research community seems to agree on the concept of OD test,
a minority of works [20, 22] further extend de�nition (1), specifying that OD
tests actually exhibit deterministic behavior. In other words, an OD test either
always passes or always fails for each order of tests, and there exist at least two
orders for which it provides di�erent verdicts. The �aky tests that do not match
this requirement are commonly identi�ed as Non Order-Dependent (NOD).
A typical example would be a test that uses the result of an asynchronous call
without waiting for it to be ready. Based on the availability of the requested
resource, the test can non-deterministically pass (or fail) regardless of its execu-
tion order. The possible root causes of �akiness for a NOD test are plentiful, but
discussing them is out of scope for this work, as they have already been broadly
investigated and analyzed in the literature [1, 10, 18, 26, 42, 44, 49]. During
our research, we also encountered the term Non-Deterministic (ND) being
used for identifying a test that �passes or fails with no changes to test execution
order �. Therefore, using ��aky� and �non-deterministic� interchangeably might
be confusing in certain contexts, as OD tests can be �aky whilst providing a
deterministic outcome for a speci�c order. Conversely, NOD tests always show
a non-deterministic outcome regardless of the order in which they are run(1).
Lam et al. [22] provide a more speci�c de�nition of NOD tests (2), hinting at an
underlying order-dependency. Depending on the failure rate associated to each



What we talk about when we talk about software test �akiness 7

Table 2. Classi�cation of Flaky Tests

Order-Dependent Tests

Term De�nition Source(s)

OD
(1) A test that can pass or fail based on the order in
which it is run.

[2, 10, 14, 21, 23, 26, 36, 38, 47]

(2) A test that can deterministically pass or fail
based on the order in which it is run.

[20, 22]

Victim OD test that always passes when run in isolation from
other tests.

[23, 38]

Brittle OD test that consistently fails when run in isolation
from other tests.

[23, 38]

Non Order-Dependent Tests

Term De�nition Source(s)

NOD
(1) A test that non-deterministically passes and fails
regardless of its execution order.

[2, 20]

(2) A test that non-deterministically passes and fails
for at least one execution order.

[22]

ND A test that non-deterministically passes or fails with
no changes to test execution order or implementation
of test dependencies. .

[23]

NDOD NOD test where at least one order's failure rate sig-
ni�cantly di�ers from other orders' failure rates.

[22]

NDOI NOD tests where all failure rates do not signi�cantly
di�er.

[22]

ID A test whose outcome depends on the implementa-
tion of a non-deterministic speci�cation.

[23]

Smelly A test that might be �aky due to the presence of a
test smell (i.e. a bad testing practice).

[1, 2, 42]

order, they classify a NOD test as either a NDOI or a NDOD, which we discuss
later.

Classi�cation of OD Tests According to several works [23, 38], there exist
two di�erent types (see Table 2) of OD �aky tests: Victim (OD-Vic) and Brittle
(OD-Brit). The di�erence between the two lies in the behavior of the OD test
when run in isolation from the test suite. If an OD test �consistently passes when
run by itself, but fails when run in combination with some other test(s)", then
it is marked as a Victim. Indeed, it su�ers the consequences of executing other
tests (i.e., polluters) that modify the test environment state without cleaning it
up. On the other hand, a Brittle �fails when run in isolation but passes when
run with some other test(s)". The �akiness of a Brittle comes from its reliance
on some state that should be set up by other tests. When this precondition is
missing, the Brittle exhibits a failing behavior. Table 3 illustrates additional def-
initions for tests that, although not �aky, play an important role in the behavior
of OD tests. As introduced earlier, a Polluter (or State-Polluting test) is (1) �a
test that pollutes (i.e. modi�es) the state shared across tests". Gyori et al. [14]



8 M. Barboni, A. Bertolino, G. De Angelis

Table 3. Classi�cation of Order-Dependent Related Tests

Term De�nition Source(s)

Polluter
(1) A test that pollutes (i.e. modi�es) the shared state. [14]

(2) A test that pollutes the state on which a Victim depends. [38]

Helper A test whose logic (re)sets the state required for an Order-Dependent
test to pass.

[38]

Cleaner A test order that resets the state polluted by a polluter. [38]

State-Setter A test order that sets up the state for a brittle. [38]

specify that if a test makes assumptions about the shared location, the result-
ing dependency can a�ect the reliability of its outcome. Shi et al. [38] provide
a consistent de�nition (2), although they clarify that a Polluter can comprise
multiple tests, as long as their combination causes a Victim to fail consistently.
It is worth noting that both de�nitions suggest that a Polluter always causes
its Victim to fail, raising a �false alarm". While this is the most common sce-
nario [47], a polluter might also generate a state in which an OD test accidentally
passes, masking a real fault in the code under test. Such failures are sometimes
referred to as missed alarms[47] or silent horrors[45]. Shi et al. [38] also pro-
vide a de�nition for Helpers. These are commonly run in between OD tests to
ensure that the state is properly cleaned or set up before their execution. In par-
ticular, the Cleaners reset the state previously modi�ed by a Polluter, so that
subsequent OD tests are not negatively a�ected by the dependency. Conversely,
State-Setters implement logic that purposefully sets up the state required for
a Brittle to pass.

Classi�cation of NOD Tests As introduced earlier, a NOD test inconsistently
passes and fails even for the same execution order. Given the erratic and usually
infrequent manifestation of NOD �akiness, these tests are generally harder to
identify and debug. Indeed, the inconsistency of the test outcomes is not sim-
ply attributable to the presence of a test order dependence. However, a recent
work of Lam et al. [22] questions the adequacy of this de�nition, specifying that
NOD �akiness can sometimes be a�ected by the execution order. As a result
of this observation, the authors further re�ne the de�nition of a NOD tests,
specifying that it (2) "fails non-deterministically for at least one order (fail-
ure rate is neither 0% nor 100%)". Depending on the failure rate associated
to each execution order, a NOD test can be further classi�ed into two groups.
Non-Deterministic Order-Dependent (NDOD) show a signi�cantly higher
failure rate for at least one execution order. Since there exists an order for which
the �akiness is much more likely to manifest, NDOD tests are characterized by
an underlying order dependence. NDOD tests should not be confused with OD
tests, because the latter always behave in a deterministic manner. On the other
hand, Non-Deterministic Order-Independent (NDOI) tests are character-
ized by a similar failure rate for each possible execution order, thus they are more
in line with the general idea of non order-dependent test. Again, this underlines



What we talk about when we talk about software test �akiness 9

the fact that Non-Deterministic tests and Flaky Tests should not be used as
synonyms. Although NOD tests can be further classi�ed according to the root
causes of their �akiness, here we just focus on two further de�nitions that might
generate confusion among researchers and practitioners. An Implementation
Dependent (ID) test is de�ned by Lam et al. [23] as �a test whose outcome de-
pends on the implementation of a non-deterministic speci�cation". Therefore it
can be identi�ed as a NOD test whose �akiness is caused by wrong assumptions
about the SUT, which unexpectedly behaves in inconsistent manners. Lastly, a
Smelly Test is not necessarily �aky. The term �smelly" is commonly used for
identifying any kind of a poorly designed test. We can depict a test smell as an
anti-pattern that decreases the quality of the test suite and/or the code under
test. The e�ects of a test smell can range from poor test code understandability
up to pontentially missing severe bugs into the SUT. Several works [1, 2, 42]
identify the presence of a test smell as a potential cause for test �akiness as well.
In particular, Alshammari et al. [2] report speci�c classes of smells that can be
commonly found in �aky tests. For instance, the Mistery Guest smell can be
found in a test whose execution relies on some external resources. The under-
lying dependency can cause the test to exhibit a non-deterministic behavior, in
that the availability of such resources can change over time.

4 Conclusions and Future Work

Motivated by the lack of a consistent vocabulary, we undertook a pragmatic
scoping review of white and grey literature, based on which we reported a �rst
analysis of de�nitions relative to �akiness concepts, as well as a �rst classi�cation
of �aky test types. This study provides a preliminary assessment of key concepts
and evidences the need of establishing an agreed terminology, perhaps after
having conducted a more extensive synthesis of current knowledge. We think that
the study of causes and remedies to test �akiness must also link to other related
research topics, such as the already mentioned early literature on replaying of
concurrent tests [6] or even the several studies about the nature of bugs [8].

References

1. Ahmad, A., Lei�er, O., Sandahl, K.: Empirical analysis of factors and their e�ect
on test �akiness-practitioners' perceptions. arXiv preprint arXiv:1906.00673 (2019)

2. Alshammari, A., Morris, C., Hilton, M., Bell, J.: FlakeFlagger: Predicting �akiness
without rerunning tests. In: Proc. ICSE Art. Ev. track. IEEE (2021)

3. Arksey, H., O'Malley, L.: Scoping studies: towards a methodological framework.
International Journal of Social Research Methodology 8(1), 19�32 (2005)

4. Barboni, M., Bertolino, A., De Angelis, G.: Supplemental Material: What
we talk about when we talk about software test �akiness (Jun 2021).
https://doi.org/10.5281/zenodo.5016745, https://doi.org/10.5281/zenodo.

5016745

5. Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., Marinov, D.: DeFlaker:
Automatically detecting �aky tests. In: Proc. ICSE. pp. 433�444. ACM (2018)

https://doi.org/10.5281/zenodo.5016745
https://doi.org/10.5281/zenodo.5016745
https://doi.org/10.5281/zenodo.5016745


10 M. Barboni, A. Bertolino, G. De Angelis

6. Carver, R.H., Tai, K.C.: Replay and testing for concurrent programs. IEEE Soft-
ware 8(2), 66�74 (1991)

7. Champier, C.: Flaky tests caused by a production bug: �x the �akiness, not the
bug. Online on medium.com (Feb 2019)

8. Cotroneo, D., Grottke, M., Natella, R., Pietrantuono, R., Trivedi, K.S.: Fault trig-
gers in open-source software: An experience report. In: Proc. ISSRE. pp. 178�187.
IEEE (2013)

9. Dutta, S., Shi, A., Choudhary, R., Zhang, Z., Jain, A., Misailovic, S.: Detecting
�aky tests in probabilistic and machine learning applications. In: Proc. ISSTA. pp.
211�224. ACM (2020)

10. Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding �aky tests:
The developer's perspective. In: Proc. ESEC/FSE. pp. 830�840. ACM (2019)

11. Eloussi, L.: Flaky tests (and how to avoid them). Online on medium.com (Sep 2016)
12. Fowler, M.: Eradicating non-determinism in tests (Apr 2011)
13. Groce, A., Holmes, J.: Practical automatic lightweight nondeterminism and �aky

test detection and debugging for Python. In: Proc. QRS. pp. 188�195. IEEE (2020)
14. Gyori, A., Shi, A., Hariri, F., Marinov, D.: Reliable testing: Detecting state-

polluting tests to prevent test dependency. In: Proc. ISSTA. pp. 223�233. ACM
(2015)

15. King, T.M., Santiago, D., Phillips, J., Clarke, P.J.: Towards a bayesian network
model for predicting �aky automated tests. In: Proc. QRS-C. pp. 100�107. IEEE
(2018)

16. Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele
University 33(2004), 1�26 (2004)

17. Kowalczyk, E., Nair, K., Gao, Z., Silberstein, L., Long, T., Memon, A.: Modeling
and ranking �aky tests at Apple. In: Proc. ICSE-SEIP. pp. 110�119. ACM (2020)

18. Lam, W., Godefroid, P., Nath, S., Santhiar, A., Thummalapenta, S.: Root causing
�aky tests in a large-scale industrial setting. In: Proc. ISSTA. pp. 101�111. ACM
(2019)

19. Lam, W., Mu³lu, K., Sajnani, H., Thummalapenta, S.: A study on the lifecycle of
�aky tests. In: Proc. ICSE. pp. 1471�1482. ACM (2020)

20. Lam, W., Oei, R., Shi, A., Marinov, D., Xie, T.: iDFlakies: A framework for de-
tecting and partially classifying �aky tests. In: Proc. ICST. pp. 312�322. IEEE
(2019)

21. Lam, W., Shi, A., Oei, R., Zhang, S., Ernst, M.D., Xie, T.: Dependent-test-aware
regression testing techniques. In: Proc. ISSTA. pp. 298�311. ACM (2020)

22. Lam, W., Winter, S., Astorga, A., Stodden, V., Marinov, D.: Understanding re-
producibility and characteristics of �aky tests through test reruns in Java projects.
In: Proc. ISSRE. pp. 403�413. IEEE (2020)

23. Lam, W., Winter, S., Wei, A., Xie, T., Marinov, D., Bell, J.: A large-scale longitu-
dinal study of �aky tests. Proc. ACM on Programming Languages 4(OOPSLA),
1�29 (2020)

24. Lee, B.: We have a �aky test problem. Online on medium.com (Nov 2019)
25. Liviu, S.: A machine learning solution for detecting and mitigating �aky tests.

Online on medium.com (Oct 2019)
26. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of �aky tests.

In: Proc. FSE. pp. 643�653. ACM (2014)
27. Machalica, M., Samylkin, A., Porth, M., Chandra, S.: Predictive test selection. In:

Proc. ICSE-SEIP. pp. 91�100. IEEE (2019)
28. Malm, J., Causevic, A., Lisper, B., Eldh, S.: Automated analysis of �akiness-

mitigating delays. In: Proc. AST. pp. 81�84. IEEE (2020)



What we talk about when we talk about software test �akiness 11

29. Micco, J.: Flaky tests at Google and how we mitigate them (May 2016)
30. Munn, Z., Peters, M.D., Stern, C., Tufanaru, C., McArthur, A., Aromataris, E.:

Systematic review or scoping review? guidance for authors when choosing between
a systematic or scoping review approach. BMC medical research methodology
18(1), 1�7 (2018)

31. Otrebski, K.: Flaky tests. Online on medium.com (Apr 2018)
32. Palmer, J.: Test �akiness � methods for identifying and dealing with �aky tests.

Online on medium.com (Nov 2019)
33. Parry, O., Kapfhammer, G.M., Hilton, M., McMinn, P.: Flake it'till you make it:

Using automated repair to induce and �x latent test �akiness. In: Proc. ICSE
Workshops. pp. 11�12. ACM (2020)

34. Presler-Marshall, K., Horton, E., Heckman, S., Stolee, K.: Wait, wait. no, tell me.
analyzing selenium con�guration e�ects on test �akiness. In: Proc. Wksp AST. pp.
7�13. IEEE (2019)

35. Rahman, M.T., Rigby, P.C.: The impact of failing, �aky, and high failure tests on
the number of crash reports associated with Firefox builds. In: Proc. ESEC/FSE.
pp. 857�862. ACM (2018)

36. Shi, A., Bell, J., Marinov, D.: Mitigating the e�ects of �aky tests on mutation
testing. In: Proc. ISSTA. pp. 112�122. ACM (2019)

37. Shi, A., Gyori, A., Legunsen, O., Marinov, D.: Detecting assumptions on deter-
ministic implementations of non-deterministic speci�cations. In: Proc. ICST. pp.
80�90. IEEE (2016)

38. Shi, A., Lam, W., Oei, R., Xie, T., Marinov, D.: iFixFlakies: A framework for
automatically �xing order-dependent �aky tests. In: Proc. ESEC/FSE. pp. 545�
555. ACM (2019)

39. Silva, D., Teixeira, L., d'Amorim, M.: Shake it! detecting �aky tests caused by
concurrency with Shaker. In: Proc. ICSME. pp. 301�311. IEEE (2020)

40. Sªapi«ski, M.: What is �akiness and how we deal with it. Online on medium.com

(Feb 2020)
41. Stosik, D.: Dealing with �aky tests. Online on medium.com (Nov 2019)
42. Strandberg, P.E., Ostrand, T.J., Weyuker, E.J., Afzal, W., Sundmark, D.: Inter-

mittently failing tests in the embedded systems domain. In: Proc. ISSTA. pp.
337�348. ACM (2020)

43. Terragni, V., Salza, P., Ferrucci, F.: A container-based infrastructure for fuzzy-
driven root causing of �aky tests. In: Proc. ICSE-NIER. pp. 69�72. IEEE (2020)

44. Thorve, S., Sreshtha, C., Meng, N.: An empirical study of �aky tests in android
apps. In: Proc. ICSME. pp. 534�538. IEEE (2018)

45. Vahabzadeh, A., Fard, A.M., Mesbah, A.: An empirical study of bugs in test code.
In: Proc. ICSME. pp. 101�110. IEEE (2015)

46. Waterloo, M., Person, S., Elbaum, S.: Test analysis: Searching for faults in tests
(n). In: Proc. ASE. IEEE (Nov 2015)

47. Zhang, S., Jalali, D., Wuttke, J., Mu³lu, K., Lam, W., Ernst, M.D., Notkin, D.:
Empirically revisiting the test independence assumption. In: Proc. ISSTA. pp. 385�
396. ACM (2014)

48. Ziftci, C., Cavalcanti, D.: De-Flake your tests: Automatically locating root causes
of �aky tests in code at Google. In: Proc. ICSME. pp. 736�745. IEEE (2020)

49. Zolfaghari, B., Parizi, R.M., Srivastava, G., Hailemariam, Y.: Root causing, detect-
ing, and �xing �aky tests: State of the art and future roadmap. Software: Practice
and Experience (2020)


	What we talk about when we talk about software test flakiness

