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Abstract: Protected areas, or national parks, are established to preserve natural ecosystems; their 
effectiveness on the territory needs to be evaluated. We propose considering a time series of the 
SDG 15.1.2 indicator, “Proportion of important sites for terrestrial and freshwater biodiversity that 
are covered by protected areas, by ecosystem type”, to quantify the presence over time of grassland 
ecosystem in Murgia Alta (southern Italy), within the Natura 2000 and national park boundaries. 
Time series of remote sensing imagery, freely available, were considered for extracting, by Support 
Vector Machine classifiers, a time series of grassland cover mappings from 1990 to 2021. This latter 
was, then, used for computing a time series of the SDG 15.1.2 indicator. A high reduction (about 
15,000 ha) of grassland presence from 1990 to 2004, the foundation years of the national park, fol-
lowed by the increasing stability up to nowadays, was evaluated. Furthermore, grassland presence 
was evaluated in a 5-km buffer area, surrounding Natura 2000 boundary, revealing a continuous 
loss from 1990 up to now (about 500 ha) in the absence of protection actions. This study represents 
the first long-term analysis for the grassland ecosystem in Murgia Alta and the first effort to analyze 
a time series of the SDG 15.1.2 indicator. The findings can provide inputs to governments in moni-
toring the effectiveness of protection actions. 

Keywords: SDG 15.1.2; land cover time series; grassland ecosystem; spatio-temporal trend;  
protected area 
 

1. Introduction 
Natural and semi-natural grassland, hereafter collectively called grasslands, are one 

of the major ecosystems in the world, covering close to one-third of the Earth’s terrestrial 
surface [1,2] and 22% of the European terrestrial surface [3]. As such, they are essential 
contributors to global biodiversity [4]. Grasslands host unique biodiversity associated 
with high levels of fine-scale species diversity [5] and they are among the most species-
rich habitats in agricultural landscapes [6]. According to the United Nations (UN) Con-
vention on Biological Diversity [7], European Union (EU) member states have embraced 
the goal of preventing and safeguarding the reduction or loss of biodiversity with the 
legal tool of the Habitat Directive [8] and the Birds Directive [9] and the main policy strat-
egy posed by the Natura 2000 (N2K) network including an ecological system of protected 
sites for long-term conservation of threatened natural ecosystems [10]. 

Yet, despite regulation in favour of grasslands, they are today one of the most endan-
gered and threatened ecosystems in Europe [11] due to land use (LU) change, agricultural 
intensification, abandonment and urbanization [5]. In addition, the change of climate oc-
curring to the globe can threaten grassland behaviour [12] and contribute to the loss of 
biodiversity (plants, insects, birds) and its related ecosystem services. Therefore, there is 
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an urgent need to monitor grasslands over large extents to assess their current state in 
terms of the area covered [13]. This is the case of “Murgia Alta” N2K Protected Area (PA) 
in the Apulia region, southern Italy, characterized by grasslands ecosystems hosting nu-
merous endemic habitats and rare species, hence, considered of crucial importance for the 
conservation of wildlife and priority species [14]. The monitoring of grassland areas is, 
therefore, crucial in order to evaluate the success of the protection measures on the terri-
tory due to the N2K network or the National Park Authority. This latter has been estab-
lished since 2004. Evaluating the success of PAs in guaranteeing habitat preservation is 
the main objective in [8] reporting (art. 17), as well as of PAs in general [15]. 

Rough estimates of the extent of grasslands can be derived from free periodic map-
pings as those offered by the Copernicus land monitoring services, as Corine Land Cover 
(CLC) [16] or the pan-European High Resolution (HR) grasslands layer [17], but they often 
result inadequately. This may be due to the fact that they are not sufficiently accurate, 
mainly at a local scale, or released with a too wide time interval for supporting local deci-
sion-makers in providing an estimation of the protection actions in the territory [18]. 

A long-term study to investigate spatio-temporal dynamics of grasslands in Murgia 
Alta has never been carried out despite complaints of land degradation since the 1990s by 
local users such as farmers, shepherds and environmental experts. 

Remote sensing (RS) can represent a useful support for monitoring in space and time 
wide areas for a long time and the current availability of high spatial resolution historical 
time series of satellite imagery, free of charge, offers the opportunity for the spatio-tem-
poral investigations required. 

Diverse classification approaches for grasslands mapping based on RS data have 
been implemented and deployed in the literature [19]. These algorithms usually include 
the automatic recognition from satellite data by using Artificial Intelligence (AI) tech-
niques. Among the most recent literature, [20] has trained a Random Forest (RF) classifier 
for a multi-class problem, including grasslands, by using all the available Sentinel-2 im-
ages and reference samples from an existing database. Hence, they have worked at the 
country scale obtaining an F1-score less than 70% for natural grassland. Badreldin et al., 
(2021) [21] have trained an RF classifier for a multi-class problem, including grasslands, 
by using big RS data either from MODIS to generate a monthly average time series of the 
Normalized Difference Vegetation Index (NDVI) or from Sentinel-2 and Sentinel-1 mis-
sions to extract a further time series of spectral indices. They have paid particular attention 
to the selection of reference samples for training since ground-truthing is crucial in RS-
based classification research; the more precise field data, the more accurate the classifica-
tion will be, they declared. They have achieved 98.20% of user’s accuracy and 88.40% pro-
ducer’s accuracy for native grassland. Abdollahi et al. (2022) [22] have considered a deep 
learning algorithm as the most recent Convolutional Neural Network (CNN) classifier for 
a 3-classes vegetation-based problem (i.e., grasslands, forest, other) by using as input a 
short time series of Sentinel-2 imagery and Enhanced Vegetation Index (EVI) obtaining an 
F1-score of 86% for grasslands. Adamo et al., (2020) [23] have explored the performance 
of an object-based knowledge-driven approach to classify very HR images for grasslands 
ecosystem mapping reporting 92.6%, 99.9% and 96.1% for grasslands user’s, producer’s 
accuracy and F1-score, respectively. 

Fassnacht et al. (2015) [24] have focused on the consideration that vegetation cover 
and changes therein can be considered as indicators of degradation levels by analysing 
satellite images from different years. They were interested in degraded grasslands and 
considered locating the degraded areas by Landsat imagery. Li et al., (2020) [25] have also 
considered temporal changes in grasslands cover extracted by Sentinel-2 data, jointly with 
spatial heterogeneity indexes from MODIS imagery, for assessing degradation. 

In this study, we aim to monitor grasslands cover in space and time in Murgia Alta 
to assess whether the ecosystem conservation has been threatened, thus, evaluating the 
effectiveness of protection actions on the territory. According to Tarantino et al., (2021) 
[18], intra-annual time series of four multi-seasonal Sentinel-2 data will be considered in 
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order to take into account the phenological cycle of vegetation in the scene and reducing 
the computational effort respect to Inglada et al., 2017 [20]. We will adopt the supervised 
Support Vector Machine (SVM) classifier, for a multi-class problem, rather than deep 
learning algorithms that require relatively large training datasets to work well, and ade-
quate infrastructure to be trained in a reasonable time [26]. With respect to RF, Grabska et 
al. (2020) [27] have argued that RF may struggle with less-common classes and corre-
sponding imbalanced training data [28], while SVM may perform better in this case. In-
deed, we are interested in grasslands layer so our training reference samples will be cho-
sen more numerous for grasslands LC class and, mainly, selected at the local site scale to 
maximize the accuracy for the grasslands cover mapping. 

Olsen et al., (2005) [29] considered examining the trend of landscape metrics over 
time as an alternative approach for ensemble investigations not only over a long period 
but also over intermediate periods; this approach could be important to informing man-
agement decisions on how particular interventions affect the sustainability of natural re-
sources [30]. 

Sustainable Development Goals (SDGs) indicators are instrumental for the monitor-
ing of countries’ progress towards sustainability goals as set out by the UN Agenda 2030. 
Earth Observation (EO) data can facilitate such monitoring and reporting processes, 
thanks to their intrinsic characteristics of spatial extensive coverage, high spatial, spectral, 
and temporal resolution, and low costs. EO data can, hence, be used to regularly assess 
specific SDG indicators over very large areas and to extract statistics at any given subna-
tional level [31]. 

To address such concerns, in 2020, the Food and Agriculture Organization (FAO) in-
troduced a new data collection approach that directly measures the indicators through a 
quantitative analysis of standardized land cover (LC) maps (European Space Agency Cli-
mate Change Initiative Land Cover maps—ESA CCI-LC) even though at a global scale 
(300 m spatial resolution). 

Liu et al. (2019) [32] have added that the sustainable use of Earth resources and the 
specific research topics falling into SDG 15, devoted to the sustainable management of 
terrestrial ecosystems, involve satellite-based applications as LC/LU classification, change 
detection, vegetation monitoring, deforestation and biodiversity analysis. 

Kavvada et al. (2020) [33] have analysed existing EO systems to generate data for 
SDG indicators. Cochran et al., (2020) [34] in a research paper, have demonstrated the uses 
of EO data to assist the multi-scale assessment of the SDGs. Liu et al., (2019) [32] have 
claimed that to achieve the goal of worldwide sustainable protection and utilization of 
terrestrial ecosystems, it is necessary to quantitatively assess the implementation of SDG 
15 at all the administrative levels, especially at the grass-roots level. Hence, they have 
considered the whole framework, at the county scale, of SDG 15 composed of 14 indicators 
grouping them into three groups according to the application field: sustainable forest 
management (15.1.1, 15.2.1, 15.4.2 and 15.b.1), halt and reverse land degradation (15.3.1) 
and biodiversity conservation (15.1.2, 15.4.1, 15.5.1, 15.6.1, 15.7.1, 15.8.1, 15.9.1, 15.a.1 and 
15.c.1). 

Indicators SDG 15.1.2, 15.4.1 and 15.5.1 are limited to ‘PAs’, as their definition speci-
fies so. Therefore, there is a clear need to use a map representing the PAs to extract such 
indicators. ‘PA’ variable is not an essential variable per se but can be considered as a socio-
economic variable [35]. 

In our study, we will compute the time series of SDG 15.1.2 indicator “Proportion of 
important sites for terrestrial and freshwater biodiversity that are covered by PAs, by eco-
system type” by using time series of grasslands cover mappings extracted for Murgia Alta 
within N2K and National Park boundaries to estimate the effectiveness of protection ac-
tions for the safeguarding of grasslands ecosystem and its biodiversity. 

Our findings could encourage protection actions by local authorities for preserving 
ecosystems such as grasslands along with their biodiversity. 
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The paper is organized as follows: Section 2 describes materials and methodology 
defining SDG 15.1.2 indicator and its computation. Section 3 reports findings and results 
about both time series of grasslands cover mappings and SDG 15.1.2 indicator trend com-
putation. Section 4 discusses findings providing important information about the effec-
tiveness of protection/conservation actions pursued over time in Murgia Alta and moni-
toring the progress of the Agenda 2030 for Sustainable Development. 

2. Materials and Methods 
2.1. Study Site 

The N2K Murgia Alta study site is a PA (IT9120007) located in the Mediterranean 
basin within the Apulia region, southern Italy. This is a Special Area of Conservation 
(SAC) [8] and in addition a Special Protection Area (SPA) [9], covering nearly 126,000 ha, 
with a national park (about 68,000 ha) included within since 2004. In addition, a 5-km 
buffer area surrounding the N2K boundary was considered (Figure 1) according to the 
Italian Institute for Environmental Protection and Research (ISPRA) suggestions for envi-
ronmental impact assessment in the Natura 2000 PA [36]. 

 
Figure 1. “Murgia Alta” study site, southern Italy. The N2K PA, the National Park and the 5-km 
buffer area in black, red and blue boundaries, respectively, overlaid on a Google satellite image. 

The altitude of the area ranges from 285 to 680 m above the sea level and its climate 
is meso-Mediterranean, oceanic, and subcontinental with dry to sub-humid ombrotype 
[14]. The site is characterized by a typical Mediterranean agro-pastoral landscape with 
millennial LU history mainly occupied by semi-natural rocky dry grasslands (Figure 2), 
traditionally used as extensive pastures, while forest vegetation consists only of residual 
patches of downy oak (Quercus pubescens) woodlands and Aleppo pine (Pinus halepensis) 
plantations [37]. This area is considered of crucial importance for the conservation of wild-
life [38]. In “Murgia Alta”, the semi-natural grassland ecosystem (with 62A0, 6210(*) and 
6220* habitat types) hosts numerous regionally endemic and rare plant species but also 
many with trans-Adriatic distribution [14]. 
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Figure 2. “Murgia Alta” landscape. 

During the last 30–40 years, grasslands ecosystems have been exposed to tremendous 
impacts and accelerated processes of habitat degradation and fragmentation within and 
next to its borders. The pressures related to degradation range from: 
• The Common Agricultural Policy (CAP) which has driven the transformation of 

grassland pastures into cereal crops by stone clearance; 
• Fire events; 
• The illegal waste and toxic mud dumping on transformed areas which has caused 

heavy metal contamination of soils and aquifers; 
• The increasing of traditional legal and illegal mining activities and wind farm infra-

structure; 
• The decrease of long-term average rainfall as a result of climate change and global 

warming; 
• Biotic contamination, i.e., woody encroachment [39] and the spreading of invasive 

species [40,41]. 
In 2004, the national park was instituted, therefore, leading to a series of protection 

and safeguard actions against biodiversity loss and ecosystem degradation. 

2.2. Data Availability 
A multi-temporal dataset consisting of four multi-season satellite imageries with less 

than 10% cloud cover was evaluated for each year considered, namely 1990, 2001, 2004, 
2011, 2018 and 2021.. The choice of these years was based on the need for a long-term 
investigation and the absence of cloud cover along with the open satellite archive of ready-
for-processing satellite imagery availability—time series imagery from Landsat satellite 
collection results from 1990 with well-assessed radiometric and geometric corrections. In 
addition, for comparison purposes, the selected years result close to (differing no more 
than ±2 years) the years of the two available products of CLC [16] (1990, 2000, 2006, 2012, 
2018) and Copernicus Pan-European HR grasslands layer (2015, 2018) [17]. 

From 1990 to 2011, Landsat satellite imagery, at 30-m spatial resolution, was consid-
ered, whereas for 2018 and 2021 Sentinel-2 satellite data, 10-m spatial resolution was used. 
We chose to produce mappings with higher spatial details (10 m) for recent years in order 
to provide local management authorities to be able to rely on a useful and effective tool. 
Indeed, the latter are very interested in the recent situation to be managed. Nevertheless, 
the level of spatial detail of the Landsat images was considered sufficient to outline the 
general trend of the presence of grasslands over the long-term. 

For each satellite image, the spectral bands in the visible (Vis)—near infra-red 
(NIR)—short wave infra-red (SWIR) were considered, resulting in 6 bands for Landsat 5 
TM (except the thermic band) and 10 bands for Sentinel-2 A/B data. 
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Landsat data were freely downloaded from the United States Geological Survey 
(USGS) EarthExplorer portal [42] as Collection 2, Level 2, surface reflectance products, 
thus, atmospherically correct and orthorectified using ground data by USGS. The whole 
N2K PA, plus a 5-km buffer area surrounding the boundary, resulted in being covered by 
the track 188 and frames 31 and 32 floating, so a mosaicking step was realised after crop-
ping the boundary of interest. 

Sentinel-2 data were freely downloaded from the ESA Copernicus Open Access Hub 
[43] as L2A products which are surface reflectance and orthorectified imagery. Even in 
this case, the entire study area results were covered by the two tiles 33TXF and 33TWF, 
thus, their mosaicking was needed. The bands with native spatial resolution of 20 m (i.e., 
B5, B6, B7, B8A, B11, B12) were resampled, by applying the nearest neighbour algorithm 
at 10 m as those natives (B2, B3, B4, B8). 

Table 1 shows the whole set of satellite imagery considered jointly with their acqui-
sition dates. 

Table 1. List of satellite imagery considered. 

Year Acquisition Date Sensor Spatial Resolution (m) Bands 

1990 

March, 1st 
May, 4th 
July, 23rd 

September, 25th 

Landsat 5 TM 30 

B1, B2, B3 (Vis) 
B4 (NIR) 

B5, B7 (SWIR) 
(6 bands) 

2001 

March, 15th 
June, 3rd 

August, 6th 
November, 26th 

2004 

February, 4th 
May, 26th 

August, 30th 
September, 15th 

2011 

February, 7th 
May, 14th 

August, 18th 
October 5th 

2018 

January, 30th 
April, 20th 
July, 19th 

October, 27th Sentinel-2 
A/B 10 

B2, B3, B4 (Vis) 
B5, B6, B7 (Red Edge) 

B8, B8A (NIR) 
B11, B12 (SWIR) 

(10 bands) 2021 

February, 3rd 
May, 24th 
July, 23rd 

September, 26th 

2.3. Methodology 
2.3.1. Time Series of Grasslands Cover 

An inter-annual time series of six grassland mappings was obtained by working over 
a 30-year period from 1990 to 2021. Time series of grasslands cover maps will be used to 
examine their temporal trend. 

The four images of each year, each one with its own bands, were stacked obtaining a 
multi-season raster dataset composed of 24 layers in the case of Landsat data, or of 40 
hlayers for Sentinel-2 data. Each resulting multi-season dataset, for each year, was the 
input to a data-driven (supervised), pixel-based classification algorithm (machine 
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learning) to obtain LC classified maps as output. A different classifier was trained for each 
year. Reference polygons for training each classifier and the subsequent validation of the 
output maps were considered. The polygons were collected through both in-field cam-
paigns and a visual interpretation of available orthophotos for 2018. Such polygons were 
checked on the images related to the other years making use of aerial photos (where avail-
able) and the Google Earth historical database. For each year, the reference polygons were 
distributed in the whole scene according to the real percentage of presence of each class 
on the ground by a “stratified” sampling to ensure a minimum number of polygons—
samples for each class (i.e., stratum) [44]. The reference pixels were divided into training 
and validation datasets randomly per each LC class. Approximately 70% and 30% of the 
samples for each class were considered for training and validation, respectively. Nearly 
50% of the training and validation pixels were represented by grassland samples since 
this was the dominant LC in the scene and the class of greatest interest in this study, so 
high accuracy was required for this class. The cultivated herbaceous vegetation was rep-
resented by almost 25% of reference pixels since this was the second major class in the 
scene. The remaining area was covered by both natural needle-leaved evergreen and non-
herbaceous cultivated classes. Table 2 lists the total number of training and validation 
pixels considered for grasslands. Columns 3 and 4 report, in brackets, the percentage of 
grasslands pixels with respect to the multi-class training and validation dataset, respec-
tively. 

Table 2. Total number of grasslands pixels selected in each year for training and validation. The 
percentages in columns 3 and 4 are related to the whole multi-class training and validation dataset, 
respectively. 

Year Res.(m) N. Training Grasslands N. Validation 
Grasslands 

1990 30 10,731 (54.43%) 6045 (55.69%) 
2001 30 9680 (51.95%) 4994 (58.66%) 
2004 30 8531 (52.11%) 4572 (55.06%) 
2011 30 8556 (51.88%) 4518 (58.50%) 
2018 10 113,733 (56.04%) 55,163 (62.36%) 
2021 10 113,594 (53.91%) 58,362 (48.10%) 

Ground truth data are related to 12 LC classes, including grasslands, labelled accord-
ing to the FAO-Land Cover Classification System (FAO-LCCS; Version 2) taxonomy [45] 
that is an open (expandable) classification system with a virtually infinite number of mu-
tually exclusive classes. Furthermore, it offers a framework to integrate EO data with in- 
situ and ancillary data (e.g., lithology, soil aspects, soil surfaces), reducing uncertainties 
and class overlaps providing a higher level of detail. [46–49]. Grasslands were coded as 
A12/A2.A6 “Natural Terrestrial Vegetation/Herbaceous.Graminoid”, according to FAO-
LCCS2 taxonomy, thus, taking into account as it appears from remote sensing observa-
tions [23]. 

For the evaluation of multi-class LC mappings, an SVM classifier was trained for each 
year. SVM is a non-linear supervised classifier with no assumption on the data distribu-
tion and aimed at finding the optimal separating hyperplane that can divide the input 
dataset into the predefined number of classes [50,51]. It results particularly effective in 
high dimensional spaces [52] and is well-suited when small training data sets are availa-
ble. Thus, SVM was adopted for our study. Following the recommendations reported in 
[53], in our study, a radial basis function was selected as kernel type while the penalty 
parameter chosen was taken as 100. According to [54], the gamma in the kernel function 
was chosen as the inverse of the band numbers used in the input data. SVM classifier was 
implemented by e1071 package in R 4.0. 3 open-source language in the RStudio IDE 
v1.3.1093 (www.rstudio.com) (accessed on 27 November 2022). 
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Then, from LC mappings produced as output, the grasslands layer was extracted. 
The whole workflow for obtaining the grasslands cover mapping, for each year consid-
ered, is shown in Figure 3. 

 
Figure 3. Workflow for the grasslands cover mapping, for each year. 

Accuracy Assessment of Grasslands Cover Mappings 
The protocol described in [55,56] and implemented in [57] was adopted for the clas-

sification accuracy assessment applied to obtain grasslands cover mappings. This protocol 
starts from the information obtained from the traditional Confusion Matrix (CM) [58] 
where the map categories (classes) (i = 1, 2, …, q) are represented by rows and the reference 
categories (j = 1, 2, …, q) by columns, both expressed as sample counts. Then, each cell of 
the CM is modified and reported in terms of the estimated area proportion pij, for the 
population in each cell i,j of the matrix, obtaining the population CM. More specifically, if 
i represents the mapped class and j the reference class, “population” is defined the full 
region of interest, and pij is, therefore, the value that would result if a census of the popu-
lation was obtained (i.e., complete coverage reference classification). The specific formula 
for estimating pij depends on the sampling design used. For an equal probability sampling 
design (e.g., simple random and systematic sampling) and for stratified random sampling 
in which the strata correspond to the mapped classes, it can be obtained as: 

pij = Wi nij/ni, (1)

where Wi = Amapped,i/Atot is the proportion of the area mapped as class i, Amapped,i is the area 
mapped (hectares, ha) as class i in the map and Atot represents the total mapped area of 
the scene. For simple random and systematic sampling, Equation (1) represents an esti-
mator recommended because it will have better precision than the estimators commonly 
used [58]. 

Substituting pij of Equation (1) into the formulas for overall accuracy (OA), user’s 
accuracy (UA) and producer’s accuracy (PA) according to [58] but rather considering the 
population CM, the modified estimators of OA, UA and PA with standard errors esti-
mates can be obtained as [56]: 

OA = ∑ 𝑝௝௝௤௃ୀଵ  (2)𝑈𝐴௜ = 𝑝௜௜ 𝑝𝑖.ൗ  (3)𝑃𝐴௝= 𝑝௝௝ 𝑝.௝ൗ  (4)

In addition, the mean F1-score of the classification results was computed as a har-
monic mean of precision and recall (5). Precision indicates how many pixels classified as 
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true are actually true, while recall shows how many true pixels were correctly classified 
as true [59–61]. 𝐹1 − s𝑐𝑜𝑟𝑒 =  2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 = 2 ∗ 𝑈𝐴 ∗ 𝑃𝐴𝑈𝐴 + 𝑃𝐴 (5)

Lastly, the macro-averaged F1-score (or macro F1-score) [62] was computed as the 
arithmetic mean of all the per-class F1-score, hence, considering all classes equally im-
portant. 

2.3.2. SDG 15.1.2 Indicator Computation 
SDG 15.1.2 indicator “Proportion of important sites for terrestrial and freshwater bi-

odiversity that are covered by PAs, by ecosystem type” belongs to the Target 15.1, “By 
2020, ensure the conservation, restoration and sustainable use of terrestrial and inland 
freshwater ecosystems and their services, in particular forests, wetlands, mountains and 
drylands, in line with obligations under international agreements” within Goal 15, “Life 
on Land”. FAO is the custodian agency for this indicator and official metadata are availa-
ble at SDG UN Metadata website [63]. 

The purpose of SDG 15.1.2 indicator is to provide a tangible measure of the effective-
ness of actions adopted by the protection authorities for the conservation, restoration and 
sustainable use of ecosystems. The indicator is currently classified as Tier I. This means 
that the indicator is conceptually clear, has an internationally established methodology 
(i.e., standards are available) and data are produced regularly by countries [64]. The global 
indicator is compiled at the national level although, according to proposed metadata im-
provements, it could be disaggregated at the regional level and considering the variety of 
ecosystem types found in marine and terrestrial environments. 

The basic computation methodology consists in a spatial overlap between polygons 
for PAs from the World Database on PAs (by the International Union for Conservation of 
Nature (IUCN) [65] or the Other Effective Area-based Conservation Measures (OECMs)) 
and those for terrestrial and freshwater Key Biodiversity Areas (KBAs) from the World 
Database of KBAs [66] (including Important Bird and Biodiversity Areas, Alliance for 
Zero Extinction sites [64]) insisting on the same area. 

According to the World Database of KBAs, the KBA of interest for this study is site 
ID 2799 “Murge” (since 2002) (extension: 143,150 ha) [66]. 

According to the list of protection categories proposed by IUCN [65,66], Alta Murgia 
National Park and N2K site, both overlapping “Murge” KBA, belong to category II and 
IV, respectively. Category II explicitly refers to the national parks whereas category IV 
refers to the habitat/species management area. N2K site can be included in such latter 
category as the boundary area was designed as SPA and SAC from the Birds Directive 
and Habitats Directive, respectively, in 1998 (Figure 4). 
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Figure 4. In grey colour, KBA area corresponding to the study site. 

In this study, SDG 15.1.2 was computed for each different IUCN protection catego-
ries. Grasslands ecosystem type was selected for computation and grasslands ecosystem 
mappings were used for the multi-temporal SDG 15.1.2. indicator estimation. 

For N2K PA, SDG 15.1.2. indicator was computed as: 𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑠 𝑐𝑜𝑣𝑒𝑟 𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁2𝐾 𝑃𝐴 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑀𝑢𝑟𝑔𝑒 𝐾𝐵𝐴 ሾℎ𝑎ሿ𝑀𝑢𝑟𝑔𝑒 𝐾𝐵𝐴 ሾℎ𝑎ሿ 𝑥 100 (6)

Similarly, for the Murgia Alta National Park boundary: 𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑠 𝑐𝑜𝑣𝑒𝑟 𝑤𝑖𝑡ℎ𝑖𝑛 portion of 𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑎𝑟𝑘 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑀𝑢𝑟𝑔𝑒 𝐾𝐵𝐴 ሾℎ𝑎ሿ 𝑀𝑢𝑟𝑔𝑒 𝐾𝐵𝐴 ሾℎ𝑎ሿ 𝑥 100 (7)

The unit of measurement at the numerator and denominator must be the same. In 
the Formulas (6) and (7) the hectare was adopted by convention. 

Thus, the indicator estimates the percentage of coverage of the selected ecosystem 
within a PA, or in its portion contained in a reference KBA, with respect to this one. 

To evaluate the impacts of the ecosystem protection and conservation policy adopted 
since the establishment of the PAs, the measurements of the indicator were repeated for 
different years in order to quantify the changes on the ecosystem coverage (loss/restora-
tion) over time. 

Thus, to facilitate the indicator calculation, a plugin in the Quantum Geographical 
Information System (QGIS) was developed and shared with the scientific community. 
Currently, the plugin is under evaluation by the QGIS user community. Once the 
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evaluation process is completed, it will be available through the official QGIS plugin re-
pository as SDG_15_1_2_calculator [67]. 

The plugin requires as input only the boundary maps of both KBA and PA consid-
ered and a cover map related to a generic ecosystem. 

3. Results 
The investigation, aiming to assess the long-term spatio-temporal dynamics of grass-

lands in Murgia Alta PA, was based on two main steps: 
1. Generation of time series of LC maps and extraction of grasslands cover for the pe-

riod 1990–2021 (one mapping for each of the following years: 1990, 2001, 2004, 2011, 
2018, 2021); 

2. Computation of time series of SDG 15.1.2 indicator for the N2K PA and national park 
categories by using the time series of grasslands mappings and analysis of the tem-
poral trend. 
The findings obtained are presented separately below. 

3.1. Time Series of Grasslands Cover 
Figure 5 shows, for each year, the trend of NDVI mean value (computed in a window 

with grasslands presence in each year) for grasslands across the four selected seasonal 
images. The plot can allow to understand the specific behaviour in the phenological cycle 
of grasslands in the study site. According to the experts’ knowledge, grasslands achieve 
the highest biomass peak in spring, mainly April–May, and a second lowest peak in fall, 
mainly October–November. This expected trend can be found in the plot for the different 
years except for 2021 in which average temperatures above mean values in February and 
summer were registered [68]. This can explain the lowest value for the NDVI mean in 
spring considering that the selected image was acquired at the end of May (May 24th). 
Evidently, there was an early peak of biomass in 2021 and the selected image does not 
contain this information to be used for classification. This can explain the lowest OA ob-
tained for the 2021 grasslands mapping. 
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Figure 5. Trend of the NDVI mean values for grasslands across the four selected images for each 
year. 

As an example, Figure 6 shows the multi-class LC mapping produced for 2021 and 
the list of LC classes with description and code according to FAO-LCCS2 taxonomy. 

 
Figure 6. Multi-class LC mapping for 2021 and its legend in FAO-LCCS2 taxonomy. 

Table 3 shows the list of OAs (%) and macro F1-scores (%) of the classified multi-class 
time series of LC mappings obtained by the supervised pixel-based classification ap-
proach described in sub-Section 2.3.1 for the whole 5-km buffer area surrounding the N2K 
boundary. The OA values resulted greater than 90% and macro F1-score not lower than 
82%, hence, confirming the high level of reliability of the mappings produced. 
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Table 3. List of OAs (%) and macro F1-score (%) for the classified multi-class time series of LC map-
pings. 

Year Res.(m) OA (%) Macro 
F1-Score (%) 

1990 30 94.04 ± 0.39 89.07 
2001 30 96.36 ± 0.35 92.37 
2004 30 93.74 ± 0.46 83.07 
2011 30 93.86 ± 0.46 82.11 
2018 10 97.37 ± 0.09 94.24 
2021 10 90.73 ± 0.37 89.60 

In Figures 7 through 9, grasslands cover layers extracted from the classification pro-
cessing are shown, for each year, on the right column, whereas the available CLC map-
pings [16] considered for comparison purposes are reported on the left. 

Figure 7 reports the classified mappings obtained for 1990 and 2001 compared with 
CLC mappings for 1990 and 2000, respectively. For our study, 1990-year mapping repre-
sents the starting point further back in time and 1990–2001 is the longest period (11 years) 
investigated between one mapping and the next. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Grasslands classified mappings (30 m spatial resolution) for 1990 and 2001 on the right vs. 
CLC mappings (100 m spatial resolution) for 1990 and 2000 on the left. 
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Before the year 2000, CLC mappings were being updated without a regular fre-
quency, as happened later, so after the first mapping of 1990 the next updating occurred 
after 10 years. As is well known, CLC is based on a different taxonomy (than the one used 
in our map, i.e., FAO-LCCS2). Thus, both 231 “Pastures” and 321 “Natural Grasslands” 
classes in CLC mappings were selected as representing the grasslands layer to be consid-
ered in this study.  

Figure 8 shows the resulting mappings for 2004 which can be considered as the ref-
erence status for the grasslands presence for assessing the effectiveness of the institution 
of the national park which occurred in that year. The National Park Authority launched a 
series of safeguard actions for the protection of the grasslands ecosystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Grasslands classified mappings (30 m spatial resolution) for 2004 and 2011 on the right vs. 
CLC mappings (100 m spatial resolution) for 2006 and 2012 on the left. 

The mappings obtained for 2004 and 2011 vs. CLC mappings for 2006 and 2012, re-
spectively, are reported in Figure 8. Starting from 2000, CLC mappings were updated 
every 6 years, according to the request of [8]. 

Figure 9 shows the mappings obtained for 2018 and 2021 vs. CLC and Copernicus 
HR grasslands layer mappings, both for 2018. Nowadays, no ancillary products are avail-
able to be compared with the classified map obtained for 2021. 
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Figure 9. Grasslands classified mappings (10 m spatial resolution) for 2018 and 2021 on the top right 
vs. CLC mappings (100 m spatial resolution) and Copernicus HR grasslands layer (10-m spatial 
resolution) for 2018 on the bottom left. 

Thanks to the availability of Sentinel-2 data, mappings at 10 m spatial resolution were 
achieved since 2018. Hence, for the same year, the Copernicus HR grasslands layer at 10-
m spatial resolution was, also, considered. 

Table 4 reports information about the accuracy of the obtained time series of binary 
grasslands/non-grasslands cover, where grasslands layer was extracted from multi-class 
classification, for the whole N2K boundary plus the 5-km buffer area surrounding. For 
quantitative comparison purposes, CLC and Copernicus grassland layers were validated 
by considering the same validation dataset used for validation of the classified mappings 
which differ no more than ±2 years. The results are also reported in Table 4. 

Table 4. OA%, UA%, PA% and F1-score% for time series of binary grassland/non-grassland map-
pings produced by supervised classification for the whole N2K boundary plus the 5-km buffer area 
surrounding. 

Year Source Res. (m) OA (%) UA (%) PA (%) F1-Score (%) 

1990 
Classified 30 96.81 ± 0.17 97.52 ± 0.20 87.97 ± 0.24 92.49 

CLC 100 90.24 ± 0.86 84.77 ± 1.41 63.56 ± 0.97 72.65 
2000 CLC 100 90.59 ± 0.96 85.74 ± 1.51 63.60 ± 1.04 73.03 
2001 Classified 30 98.40 ± 0.13 97.38 ± 0.23 92.40 ± 0.17 94.82 
2004 Classified 30 97.80 ± 0.16 96.76 ± 0.26 88.88 ± 0.22 92.65 
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2006 CLC 100 90.06 ± 1.01 83.37 ± 1.66 58.33 ± 1.13 68.63 
2011 Classified 30 95.94 ± 0.23 96.83 ± 0.23 79.67 ± 0.28 87.41 
2012 CLC 100 87.01 ± 1.16 91.81 ± 1.35 52.21 ± 1.17 66.56 

2018 
Classified 10 99.45 ± 0.02 98.93 ± 0.04 97.75 ± 0.03 98.33 

CLC 100 86.08 ± 1.03 87.08 ± 1.38 50.61 ± 1.05 64.01 
Copernicus 10 88.75 ± 0.10 92.40 ± 0.12 69.53 ± 0.12 79.35 

2021 Classified 10 95.70 ± 0.07 97.68 ± 0.06 77.81 ± 0.07 86.61 

3.2. Grasslands Cover Temporal Trend 
Results of the computation of SDG 15.1.2 indicator for each year are shown in Table 

5 for the time series of LC obtained by supervised classification and for CLC and Coper-
nicus HR grasslands products considered for comparison purposes. SDG 15.1.2 indicators 
were computed within the N2K PA boundary (Category IV [65,66]) and the national park 
boundary (Category II [65,66]) by the grasslands ecosystem. In addition, grasslands cover 
within the 5-km buffer area surrounding the N2k boundary is reported. 

Table 5. Grasslands coverage and SDG 15.1.2 indicator resulting from time series of LC classified 
mappings, CLC and Copernicus HR products analysed within the N2K PA and the national park 
boundaries. In addition, grasslands coverage within the 5-km buffer area surrounding N2K PA 
boundary is reported. 

Year Source Res. 
(m) 

N2K PA National Park 5-km Buffer Area  
Coverage 

(ha) 
SDG 15.1.2  

(%) 
Coverage 

(ha) 
SDG 15.1.2 

(%) 
Coverage 

(ha) 

1990 
Classified 30 49,489 34.21 33,587 23.44 923 

CLC 100 35,759 24.71 25,798 17.99 0 
2000 CLC 100 34,753 24.00 25,323 17.66 0 
2001 Classified 30 36,916 25.49 25,665 17.92 783 
2004 Classified 30 35,136 24.28 24,706 17.24 682 
2006 CLC 100 30,511 21.11 22,933 15.98 0 
2011 Classified 30 35,744 24.77 24,652 17.21 642 
2012 CLC 100 32,932 22.80 25,676 17.88 0 

2018 
Classified 10 40,674 28.12 27,453 19.16 526 

CLC 100 33,261 23.03 26,009 18.11 0 
Copernicus 10 42,694 29.52 27,404 19.09 15823 

2021 Classified 10 35,136 24.31 23,424 16.35 439 

Table 5 shows in chronological order the different grasslands mappings available 
from the different sources such as supervised classification, CLC or Copernicus in order 
to appreciate the agreement between the different products which differ each other no 
more than ±2 years to be compared. A further Copernicus HR grasslands layer available 
for 2015 [17] was not considered, since the time gap from other products (immediately 
previous or following) would have been 3 years. The last CLC product results for 2018: 
for this year products from three different sources are available. 

For 1990, a significant difference (about 10%) has emerged in the values of SDG 15.1.2 
indicator between the classified mapping and CLC layer (34.21% and 24.71%, respec-
tively) in the N2K PA, and it has resulted slightly lower (about 5%) in the national park 
area (23.44% and 17.99%, respectively). About ten years later, comparing classified map-
ping for 2001 with CLC for 2000, such a difference, substantially, has disappeared as the 
values of the SDG 15.1.2 indicator result somewhat compatible (25.49% vs. 24.00%, respec-
tively, for N2K PA and 17.92% vs. 17.66%, respectively, for the national park area). This 
can be explained as a clear inaccuracy (underestimation) in the older CLC product that 
was later improved. In any case, for CLC products, SDG 15.1.2 indicator values always 
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have resulted lower than those from classified mappings. In 2018, the underestimation of 
CLC product with respect not only to the classified mapping (about 5%) but also to Co-
pernicus layer (about 6%) has been evident. Indeed, the latter has resulted quite compati-
ble with the SDG 15.1.2 indicator value obtained from the classified mapping (29.52% vs. 
28.12%, respectively, in the N2K PA and 19.09% vs. 19.16%, respectively, in the national 
park area).  

The resulting temporal trends can be better estimated by plotting the quantitative 
results of Table 5 as in Figure 10 which shows, on the same plot, the temporal trend, dur-
ing the period 1990–2021 of SDG 15.1.2 indicator for grasslands ecosystem from the time 
series of classified mappings. The plotted values have been computed within the N2K PA 
and the national park boundaries and normalized to the 1990 data for assessing possible 
differences between the two trends beyond the absolute values of each one. 

 
Figure 10. Temporal trend of SDG 15.1.2 indicator for grasslands within N2K PA and National Park 
boundaries during the period 1990–2001 resulted from time series of classified mappings and nor-
malized to the 1990 data. 

Both the plots show the same temporal trend—a significant reduction of grasslands 
can be assessed from 1990 to 2001. The reduction continued more slowly until 2004, when 
the national park authority was established, and then, substantially, the trend results hav-
ing stabilized in the following years until 2021. 

Below, Table 6 reports the change matrix related to the transitions of grasslands be-
tween 1990 and 2001, which is the period characterised by the highest grasslands reduc-
tion; the main transition results are cultivated areas (about 34%), mainly herbaceous, with 
about 1.5% to burn areas. 
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Table 6. Change matrix for grasslands transitions between 1990 and 2001 expressed as percentage 
of change respect to the initial state. 

  Initial State 
  1990: GRASSLANDS (%) 

Fi
na

l s
ta

te
 

2001 

Unclassified 0.19 
Cultivated Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Evergreen 4.68 
Cultivated Terrestrial Vegetation/Trees.Broadleaved.Deciduous 1.03 
Cultivated Terrestrial Vegetation/Shrubs.Broadleaved.Deciduous 0.10 
Cultivated Terrestrial Vegetation/Herbaceous 28.45 
Natural Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Evergreen 0.00 
Natural Terrestrial Vegetation/(Trees/Shrubs)Broadleaved.Deciduous 0.37 
Natural Terrestrial Vegetation/(Trees/Shrubs)Needleleaved.Evergreen 0.92 
Natural Terrestrial Vegetation/Herbaceous.Graminoid (GRASSLANDS) 62.10 
Artificial Surfaces/BuiltUp 0.39 
Artificial Surfaces/NonBuiltUp.ExtractionSites 0.33 
Artificial or Natural Waterbodies/Water 0.00 
Burn Area 1.42 

In 2018, a slight increase can be evaluated, probably due to the regrowth of grass-
lands on those areas affected by fires previously, followed by a successive decrease regis-
tered for 2021. Below, Figures 11–13 can explain this trend. 

 
Figure 11. Grasslands mapping for 1990 overlapped on that for 2018: grasslands regrowth areas in 
green. In the two close-ups on the sides several burned areas can be recognized where grasslands 
regrowth has been mapped in 2018. 
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Figure 12. Grasslands mapping for 2011 overlapped on that for 2018: grasslands regrowth areas 
highlighted in mustard yellow. In the two close-ups on the sides the boundaries of several burned 
areas mapped by the official fire registry related to fire events happened in 2012 (on the left) and in 
July 2011 and 2015 on the right are overlaid on the mappings. 

 
Figure 13. Grasslands mapping for 2021 overlapped on that for 2018: grasslands regrowth areas 
highlighted in mustard yellow. In the close-up on the left an example of misclassification is shown 
and the other close-ups report recent burn areas. 

In the long-term period, new areas of grasslands can be detected in the period 1990–
2018, particularly due to natural colonization of burned forest surfaces (Figure 11). 
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In the short-term period: 
• Comparing 2011 and 2018: important large fire events (mapped from the official fire 

registry) which happened after 2011 in forested areas can be focused on. One fire 
event happened in 2012 and the other two events happened in the same area in July 
2011 (where partial regrowth of grasslands was already detected with the 2011 map-
ping by using August and October images for the mapping) and in 2015 for the sec-
ond time (Figure 12). Hence, these fire events can allow to explain the 2018 grasslands 
increase with respect to the previous one in 2011. 

• Comparing 2021 and 2018: either several areas with misclassification (2021 grass-
lands mapping reported the lowest OA) can be evidenced or recent burn areas for 
which no official mapped data are available from the official fire registry. Some of 
these areas are located outside the national park boundary (Figure 13). Hence, these 
considerations can allow to explain the 2021 grasslands lost with respect to the pre-
vious 2018 mapping. 
Since KBA does not cover the 5-km buffer area surrounding the N2K boundary, the 

estimation of the SDG 15.1.2. indicator in this area was not possible, hence, in Table 5, in 
last column, grasslands coverage has been reported. Although there was a small presence 
of grasslands in the area, a continuous decreasing temporal trend of grasslands can be 
observed over the 30-year period analysed, with an overall loss of about 500 ha. 

4. Discussion 
This study aims to assess the long-term spatio-temporal evolution of grasslands eco-

system presence in Murgia Alta N2K PA, southern Italy. Several grassland habitats are 
endemic in this area and their conservation is considered of crucial importance by local 
authorities and decision makers responsible for environmental management. Hence, the 
need for periodic monitoring of protection actions implemented along with the search for 
a related indicator to assess their effectiveness on the territory and which can result as 
suitable, internationally recognized and easy to calculate, emerges. Within this frame-
work, the use of time series of satellite imagery in the optical spectrum along with in-field 
data and AI techniques have been considered to monitor such grasslands ecosystems. 

4.1. Time Series of Grasslands Cover Mappings 
The free-of-charge availability of time series of HR satellite imagery, mainly from 

Landsat and Sentinel-2 missions, has offered the possibility for a long-term (three decades 
from 1990 to 2021) study on a wide area as Murgia Alta N2K PA (126,000 ha) that has 
never been investigated for such a long period. Grasslands are the dominant ecosystem in 
this area with large patches detectable with 10–30 m spatial resolution (by considering 
Sentinel-2 or Landsat imagery, respectively). Local experts’ measurements have been col-
lected only recently, and there is a lack of information back in the past enlarged to the 
entire PA, at the local scale. 

Four multi-seasonal satellite images for each year were considered to produce six LC 
mappings in the period 1990–2021 (for 1990, 2001, 2004, 2011, 2018, 2021) investigated by 
using a supervised, pixel-based, classification approach through SVM classifiers. The su-
pervised approach was possible because of the availability of ground-truth data for 2018 
collected during in-field campaigns and visual interpretation of available orthophotos for 
training classifiers (one for each year). The availability of reference data for the other years, 
mainly back in time, represents a real open challenge. De Simone et al. (2021) [31], working 
at the global scale, had the opportunity to consider databases already available for multi-
ple years to be used for reference data selection. Working at the local scale, we needed to 
check the available reference data over each year under investigation through an accurate 
photointerpretation of available aerial photos and Google Earth historical database to as-
sess whether any changes had occurred. Hence, at the local scale, only a semi-automatic 
approach can be followed. Special attention was paid for grasslands samples representing 
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the target LC class of this study. Therefore, the percentage of grasslands samples repre-
sented more than 50% of the whole multi-class dataset for each yearly mapping (Table 2). 

As a result, a multi-temporal/multi-class ground truth dataset was obtained. Accord-
ing to [18], a multi-class was preferred to a binary (grasslands/non-grasslands) classifica-
tion since higher accuracy and lower misclassifications were obtained by the multi-class 
classifier. The multi-class LC mappings produced have great accuracy resulting in an OA 
value not lower than 90% (the lowest value equal to 90.73 ± 0.37% for 2021) and macro F1-
score not lower than 82% (Table 3) among the different mappings. Similarly, the OA val-
ues obtained for the binary grasslands/non-grasslands classified mappings (Table 4) re-
sulted not lower than 95.70 ± 0.07% (for 2021). In the different mappings, quite high UA 
and PA values (up to 98.93 ± 0.04% and not lower than 77.81 ± 0.07%, respectively) with 
the lowest F1-score equal to 86.61% (for 2021) resulted for grasslands. The lowest results 
for 2021 mapping, although being the most recent, can be explained for the average tem-
peratures above mean values in February and summer which caused probably an early 
peak of biomass usually happening in April–May, so that the selected image of the end of 
May 2021 lost this information (Figure 5). 

The highest F1-score value equal to 98.33% resulted from the classified mapping of 
2018. 

According to [18], as an alternative to the extraction of classified mappings, other 
available products as CLC grasslands layer or the HR grasslands Copernicus service were 
considered and compared, but on the largest whole N2K PA. These freely-available prod-
ucts results are not so accurate and reliable since (i) they are not annually updated. Indeed, 
CLC inventory was initiated in 1985 even though the first product was released labelled 
as 1990: hence, a sort of temporal mismatch exists. Further product updates have been 
produced in 2000, 2006, 2012, and 2018. According to the CLC products timeline, for com-
parison purposes, the classified mappings were extracted for the same year, 1990, as the 
further back in time starting point followed by the next mapping after 11 years (2001) 
which represents the longest period analysed; then the investigation pursued more regu-
larly in time. Furthermore, Copernicus HR grasslands layers are not regularly updated 
and provided for 2015 and 2018 only, thus, (ii) both services are produced at a pan-Euro-
pean scale even though each one was at a different spatial resolution (100 m and 10 m for 
CLC and Copernicus products, respectively); (iii) CLC is a multi-class product with a dif-
ferent taxonomy—both 231 “Pastures” and 321 “Natural Grasslands” classes were con-
sidered to represent grasslands layers as expressed by FAO-LCCS2 taxonomy considered 
in our classified mappings; and (iii) Copernicus product results are noisy and affected by 
misclassification (with overestimation particularly emphasised in the 5-km buffer area 
where 15,823 ha of grasslands with many scattered pixels are mapped whereas CLC prod-
uct has no grasslands presence in this area due to its underestimation and coarse spatial 
resolution), as shown in Figure 14 where grasslands presence results are mapped all along 
the road (Figure 14b), whereas dense tree canopies can be recognized from aerial photos 
(Figure 14c). 
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Figure 14. Overestimation and misclassification in the Copernicus grasslands layer 2018. (a) Aerial 
photo (2018); (b) Copernicus grasslands layer; (c) aerial photo close-up in which dense tree canopies 
result rather than grasslands along the road. 

To evaluate the reliability of CLC and Copernicus HR grasslands layers compared to 
the time series of classified mappings produced, this work has considered satellite im-
agery acquired no more nor less than 2 years with respect to the years of the available 
products. The presence of cloudiness represented a limitation for optical satellite acquisi-
tions, and it has been considered for the choice of multi-seasonal imagery, hence, those 
years characterized by a dominant clear sky were preferred. 

The OA values for CLC layers resulted not higher than 90.59 ± 0.96% (for 2000) and 
F1-score values range between 64.01% (for 2018) and 73.03% (for 2000), respectively. In 
addition, for a qualitative analysis, from Figures 7 to 9 the low accuracy and the low level 
of detail due to the coarse spatial resolution of the CLC products can be appreciated. 

Compared to the higher OA of the classified product for 2018 (99.45 ± 0.02%), Coper-
nicus grasslands mapping results in a lower OA equal to 88.75 ± 0.10% even though 
greater than the one of the CLC product (86.08 ± 1.03%). The same for the F1-score values 
resulting equal to 79.35% vs. 98.33% for the Copernicus and classified product, respec-
tively. 

Nowadays no ancillary products are available to be compared with the classified 
map obtained for 2021. 

Hence, the freely-available mappings produced at the European scale (detail level) 
that can be considered for the assessment of spatio-temporal trends in grasslands are not 
a reliable product at the local scale, as required in this study, due to both temporal and 
spatial constraints characterizing them. Thus, in this paper, grasslands mappings were 
obtained at the local scale by training, with local reference samples, supervised machine 
learning classifiers which were fed in input with four multi-seasonal satellite images. Fur-
thermore, grasslands, which was the LC class of greatest interest in the study, were rep-
resented by nearly 50% pixels of the whole multi-class reference dataset. 

The findings obtained suggest that the mapping accuracy for the LC of interest can 
be improved by specializing ground truth reference data for the class of interest more than 
for the other classes, hence, reducing the efforts in the search for a reliable training data 
set. 

4.2. Grasslands Cover Spatio-Temporal Trend 
Time series of grasslands mappings obtained as described above were considered to 

assess the spatio-temporal trend of grasslands presence in Murgia Alta study site. This 
represents the first attempt of a long-term analysis at the local scale for such a large en-
demic ecosystem subject to conservation actions by the N2K network and the National 
Park authority whose effectiveness on the territory should be monitored. Therefore, in 
order to address the need to use a measure that was internationally recognized, achieving 
SDGs and providing the estimation of grasslands ecosystem conservation on a specific 
territory, this study has considered the SDG 15.1.2 indicator by the UN. Furthermore, this 
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indicator can allow for estimating whether the areas are adequately under protection for 
the long-term conservation of natural habitats and ecosystems. 

The suitability of the SDG 15.1.2 indicator, assigned the ecosystem, to be declined at 
varying categories of protection on the territory, has represented a good fit for our study 
to express an estimate for the conservation of biodiversity within the boundaries of the 
N2K network and the national park, both within the territory of Murgia Alta site. The 
computation of a percentage related to the extent of the reference KBA insisting on the 
specific territory can allow the introduction of a sort of normalized estimation. 

Unlike other indicators in the group of SDG 15 already being considered in different 
studies as in [31], SDG 15.1.2 indicator needs to be more widely employed and dissemi-
nated to appreciate if it can result as suitable as a reference indicator, according to what 
has been applied in this study. Liu et al., (2019) [32], considering the connotation of differ-
ent levels of biodiversity (genetic diversity, species diversity, ecosystem diversity and 
landscape diversity) in China, selected five sub-indicators that were most closely related 
to the biodiversity at each level and constructed a biodiversity index based on RS data to 
identify important areas for biodiversity. Hence, they referred the computation of SDG 
15.1.2 to the BI computation. However, to the best of our knowledge, in the current liter-
ature, no studies have implemented the time series of SDG 15.1.2 indicator at local level 
and our study may represent the first effort to compute the time series of SDG 15.1.2 indi-
cator as well as we propose. In our opinion, the latter can allow to estimate the evolution 
trend in time and space and to detect changes of a specific ecosystem giving indications 
about the effectiveness of the different protection measures on the territory for a long-
term analysis as the 30-years period 1990–2021 for the grasslands ecosystem in Murgia 
Alta within the N2K PA and national park boundaries. 

A significant indication of the actual effectiveness of protection actions can be de-
rived considering what has occurred immediately outside the area under protection. For 
this area the computation of SDG indicator 15.1.2 was not possible due to this area not 
being covered by any KBAs. Furthermore, indications about future actions, that local de-
cision makers might take, can be possible from this kind of analysis. 

The findings, expressed as SDG 15.1.2 indicator percentage values, resulting within 
N2K boundary show a significative reduction (about 10 percentage points) of the presence 
of the ecosystem from 1990 (34.21%) to 2004 (24.28%) corresponding to about 15,000 ha, 
more emphasised (about nine percentage points) up to 2001 (25.49%) of about 13,000 ha, 
as shown by Figure 10, then followed by a substantial stabilization. The same trend can 
be confirmed within the national park boundary with a reduction of about 9000 ha (about 
six percentage points) from 1990 (23.44%) to 2004 (17.24%), more emphasised (5.5 percent-
age points) up to 2001 (17.92%) of about 8000 ha. The lower values in the national park 
can be explained since this area is a subset of the N2K PA. Considering that the national 
park was instituted in 2004, those outcomes offer the possibility for a two-fold considera-
tion: 
1. National park action on the territory has resulted effective to preserve the grasslands 

ecosystem conservation; 
2. National park protection actions have resulted more effective than those of N2K net-

work implemented in the area since 1998. 
The long-term monitoring of 1990–2021 in space and time can be evaluated through 

Figure 15 where 2021 grasslands mapping was overlapped with that for 1990, providing 
evidence (in mustard yellow colour) about temporal and spatial grasslands lost. 
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Figure 15. Grasslands mapping for 2021 overlapped over that for 1990: grasslands lost in 2021 results 
in mustard yellow. Two close-ups on the sides show the satellite images (in RGB composition: Red-
NIR-Blue) for 1990 (Landsat) and 2021 (Sentinel-2) on the left and right side, respectively: the loss 
of grasslands in the square area to cultivated area can be appreciated. 

The important contribution from a time series of LC mappings is represented by the 
possibility not only to detect LC changes but also to know the from-to LC classes [57] 
involved in the change during time. In our case study, most of the changes have been 
found towards cultivated areas (as an example Figure 16) or burned areas (Table 6). 

 
Figure 16. Time series of aerial photos from 2000 to 2018: grasslands area, within red boundary, 
changed into a cultivated area over time. 

Outside PA, in the 5-km buffer area surrounding, the trend of the presence of grass-
lands can be evaluated in terms of presence in hectares due to no KBAs covering the study 
area. Here the presence of grasslands, although not so extensive to be mapped by the 
coarse spatial resolution of the CLC product, has suffered a continuous declining trend 
starting from 1990 to the present (Table 5, last column) with an overall loss of about 500 
ha. These findings can allow to evaluate the effects of the absence of any protection and 
safeguard actions in the buffer area differently from what has happened within the N2K 
and national park boundaries. 

According to the confidence from the outcomes of the study it can be argued that the 
presence of preservation and conservation actions on the territory as those carried out by 
the establishment of a PA or, even more effective, of the national park authority have been 
essential to protect the grasslands ecosystem from its continuous degradation. 
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5. Conclusions 
The aim of the present study was to assess the spatio-temporal dynamic, in the long-

term, of the presence of grasslands which hosts endemic habitats and is the dominant 
ecosystem in “Murgia Alta”, a N2K network PA with a national park within, exposed to 
degradation. The free availability of time series of RS data was exploited to obtain, by 
machine learning supervised algorithms (SVM) trained at local scale, time series of LC 
mappings for grasslands cover. Those mappings were considered for the evaluation of 
spatio-temporal trends for the presence of grasslands in the study area by estimating the 
time series of the SDG 15.1.2 indicator. The latter was computed for different conservation 
categories: the N2K PA and the national park categories. 

From the findings the following has emerged for assessing the monitoring of grass-
lands presence: 
• RS is a powerful tool for environmental monitoring because it provides both tem-

poral and spatial information [11]; 
• The availability of free time series of satellite data at high spatial resolution can offer 

the possibility for a long-term analysis on wide areas at a local scale. As a result, the 
costs for expensive in-field campaigns can be reduced and updated time series of LC 
mappings can be available whenever needed; 

• Working at the local scale along with using AI techniques allow to obtain more accu-
rate mappings than those offered by the available Copernicus services; 

• Time series of SDG 15.1.2 indicator can allow the estimation of the spatio-temporal 
dynamics of an ecosystem in relation to the levels of protection featured on the terri-
tory, providing support in estimating the effectiveness and impact of protection and 
conservation actions. 
Grasslands ecosystem in Murgia Alta N2K PA has been reduced from about 50,000 

ha to 35,000 ha over the 30-year period of 1990–2021—with the establishment of the Na-
tional Park Authority, the ecosystem degradation process has somewhat stopped. 

From the evaluation of what has been detected inside and outside the protection 
boundaries, several directives to local or EU decision makers can be provided to direct 
policies toward the introduction of new PAs and/or the implementation of ecological net-
works between existing PAs [69] as possible initiatives for preserving biodiversity and the 
proper functioning of ecosystems. 
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