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1 Introduction

Smart bicycle sharing is a form of public transport that provides short-term self-service bicycle hir-
ing [Mai09, Mid11]. It has evolved a long way from the early ideas dating back to the sixties. Today,
hundreds of cities worldwide have such programs, operating up to tens of thousands of vehicles and
thousands of docking stations (e.g. Hangzhou or ParisEI). Recent popularity of bike-sharing gained mo-
mentum with the introduction of information and smart card technologies, which improved service pre-
dictability, reduced the risks of theft or damage, and streamlined the subscription procedures. In those
cities, smart bike-sharing has become a reliable mode of public transport, welcomed by the general
public for its dependability and bicycle’s environmental, societal, and health benefits [PDH10]. How-
ever, smart bike-sharing programs raise multiple issues concerning their carbon footprint [FWHT4],
integration with other modes of public transport, choosing proper service features [tBFGI4], and
understanding the effects of user incentives [FG14], to mention a few.

"nstitute for Transportation and Development Policy of China, http://www.publicbike.net/defaulten.aspx;
Vélib, http://www.velib.paris.fr
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Figure 1: PDFs of cycling times (Data) in London (right) and Pisa (left) aggregated over one month
(October 2013 and October 2014, respectively) and the predictions using a uniform model (light lines)
and a flow model (dark lines).

In developed urban environments, the question that potential users of any public form of transport
will be asking themselves increasingly often is ‘which’ mode of public transport to rely on rather than
‘if” they will use public transport. This concerns smart bike-sharing too, since the majority of cycling
trips in cities could also be made by a combination of walking and other modes of public transport,
or by a private bike. A potential user may favour safety, health and environmental impacts of using a
bike-sharing service, but there are likely to be other factors that favour some alternative option. The
successful running of multiple public transport services may in the long term be determined not only
by proper top-down planning, but also by the cumulative effect of ‘micro-decisions’ by the public, as
the example of the bike-sharing system in Melbourne [Carl4] suggests. Being able to evaluate the
balance between services and policies could in the long run determine the success of some programs.

It is notoriously difficult to evaluate user satisfaction from the available data collected by the
system. Typical bike-sharing data consists of static parameters of stations and fluctuating numbers of
parked vehicles, either provided by the operator, or collected from a public domain. Oftentimes vehicle
identification numbers are also available. They allow to relate hiring with the corresponding returning
events and to visualise the dominant spatial and temporal vehicle flows in cities [FNO09, BAFT11,
OCB14]. Naturally, this data concerns only such trips which actually, and thus successfully took place,
and raises the issue of missing information about users who chose an alternative transport service.
Moreover, even the successful trip data concerns only the middle part of the ‘walk-cycle-walk’ travel
cycle. The missing links conceal the trip—objective relation, which is important to the evaluation of
a system from the service efficiency perspective. Alternative approaches such as [BMLEGI12] provide
useful complementary insights, but they are susceptible to similar bias issues.

The main contribution of this paper is to show that a model based approach, that takes into account
certain minimal assumptions about the user behaviour, can provide complementary insights into the
performance of bike-sharing from a users’ perspective. This is illustrated by showing that the aggre-
gated cycling time distributions of real bike-sharing systems can be reproduced to a degree without
the parameter fitting of real systems, or the use of privacy-sensitive user information. Furthermore,
enriching the model in a step-wise manner suggests other generic insights into the multifaceted ques-
tion of user satisfaction. We explore the interpretation of cycling trip durations in a manner akin to
that of an ‘actuary’. Statistics of human life’s duration follow a certain probability lawﬂ The subtle
features of the probability density function (PDF), especially in the so-called ‘tail’ of the distribution,
are oftentimes of most interest, since they have important consequences to the conditional expected

2Cf. the Gompertz-Makeham model.
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life-times, and to the assessment of long term risks. In this article we will compare two data-sets,
each consisting of cycling trips, aggregated over one month (October) and referring to bike-sharing
systems in two cities: London (UK) and Pisa (Italy). As is evident from Fig. || (Data), the cycling
time PDFs share remarkable similarities, such as a mode at about 10 minutes, or an algebraic ‘tail’
of the distribution beyond 30 minutes (cf. also Fig. 3 in Ref. [BAFT11]). The latter part of the PDF
is well approximated by f(t) o t717% with an exponent a > 0. Validity of this law spans nearly
three decades and appears to be limited only by the sample size. In both cases, it predicts cycling
trips whose duration exceeds the time necessary to traverse a corresponding city. One of the main
motivating ideas of this article is to uncover a ‘story’ told by these cycling time PDFs. To capture the
domain independence of such distributions, we will use an agent-based model with a basic assumption,
that bike-sharing users’ main concern is to save travel time and to arrive at the planned destination
with a high probability within the expected time. We will show that their algebraic parts reveal more
about the user satisfaction than any other characteristic does. The ‘risks’ and ‘expected conditional
life-times’ will be related to the personal contingencies of being late at one’s appointment. Varying the
agent and station distributions, we will obtain the ‘uniform’, and the ‘low’ models (whose PDF's are
also shown in Fig.|1)) and relate several differences of these models to the factors affecting user satisfac-
tion with the system. This will be achieved using a simulation approach, applied to Markov Renewal
Process models (MRP) [C75, [Kul95]. Markov Renewal Process is the simplest stochastic modelling
framework which can accomodate sufficient behavioural complexity required for our purposes, thanks
to a possibility to use non-Markovian renewal PDF's.

The outline of the paper is as follows. Section [2| briefly recalls the essence of MRPs, provides a
description of the bike-sharing model, including its justification, and describes the simulation method.
The results concerning trip duration distributions are presented in Section |3 whereas models for Pisa
and London are discussed in Section[d] Section [f] concludes with some further considerations and open
issues.

2 The Bike-sharing Model

2.1 Markov Renewal Processes

Markov Renewal Processes (MRP) are a generalisation of Continuous Time Markov Chains to non-
Markovian events, and non-exponential distributions of inter-event times [C75, [Kul95]. In this section
we briefly recall MRPs, and motivate their use for the modelling of bike-sharing user behaviour.

Let (X,T) = {X;,T;;i € IN} be a stochastic process taking place in EN x RY, where E is some
countable set, representing the ‘state space’, and Ry = [0,00) represents the time-line of evolution.
Markov Renewal Process is a Kolmogorov model with the conditional probability given by

Pr {Xn—i—l = jan—i—l -1, <t ’ Xn = Z} = Qij(t)a (1)

for each pair of states 4, j € E, where Q;;(t) is a right-continuous, non-decreasing and bounded function
satisfying (Q;j(00) < 1 (a so-called cadlag function) and 3, @ij(c0) = 1. A matrix Q = (Q4;(t); 4,7 €
E) with these properties is called a semi-Markov kernel of (X,T"). It is easily shown that a matrix
P = (Pj;), whose elements are defined by Pj; = @Q;;(00), is a stochastic matrix, and that functions
Fij(t) = Qi;(t)/Pj, for each i,j € E, are distributions. As a consequence, X = (Xp;n € IN) is a
Markov chain (DTMC) with state space E and transition matrix P, i.e.

Pr {XnJrl = j | Xn = ’L} = Pija (2)
and the distribution of sojourn time in a state i, conditional on a subsequent jump to a state j, is

given by Fj;(t):
Pr {Tn+1 T, <t | X, =1, Xn+1 = j} = Flj(t) (3)

QUANTICOL 3 May 27, 2015



Model-based Assessment of User-satisfaction (Revision: 1.0; May 27, 2015) May 27, 2015

return .
arrive

return

Figure 2: The automata of a bicycle station (left) and a user-agent (right). The state space cor-
responding to a system of A agents and S stations, is a cartesian product F = Hle{(), ce, G X
{H,R, A, M}A.

A large group of probabilistic models used in tranport modelling can be interpreted as MRPs
with a special choice of the kernel, most notably with kernels that are restricted to functions of the
current state only. Examples include continuous time Markov chains (CTMC) and various queueing
models [C75].

2.2 Motivation for the use of MRP

The MRP generalises a Markov Process in two aspects: it provides a mechanism to use arbitrary
distributions (and not only exponential ones), and it allows to use transitions, conditioned on a
current state and on the state to be entered subsequently. These are the main features used in what
follows.

We will assume that bike-sharing users are time-conscious people whose decision to use bike-sharing
is determined by the concern to save travel time, and to reach their objective at the expected time
with high degree of certainty. If we accept this premise then we must also accept that the speed of
travel is a major factor in the competitiveness of various modes of transport. To take the speed of
travel into account in a stochastic model, it is easy to show that transition rates must be functions
of both the current and future states, and that the probability distributions are not exponential. Let
the state space represent an ‘address book’ of all the stations; we may take £ = {1,...,S} where S
is the number of stations, and each index is uniquely associated to some address x;. For an arbitrary
pair of indices 7 # j, consider a trip from x; to x; along a fixed path, traversed at a constant pace p,
measured in minutes per kilometer. The duration of this trip is 7' = p |x; — x|, where |-| is the length
of the path in kilometers. This result can be given a distribution function Fj;(t) =1 — 1,55%, where
14 is an indicator function, equal to one if A is true and zero otherwise, and tfj = pl|x; — x;| is the
so-called activation time. Clearly, Fj;(t) is not an exponential distribution for any pair of indices, and
its parameter t?j is a function of the current state i, and a possible future state j. This argument is
easily generalised to stochastic travel processes. Any trip between a pair of distant locations (7, j) will
take a human traveller at least some finite time t?j > 0, so that Fj;(t) =0if t < t;‘ﬂ The exponential

J
distribution, on the other hand, is characterised by t; = 0 thus it allows arbitrarily fast travelling.

2.3 An outline of the model

The bike-sharing model is a generalisation of these motivating ideas. It describes a population of
agents and bicycle stations. A two-dimensional rectangle is used to represent a city. The population
of agents and the array of stations are contained within this area.

3A bound of t;, obtained by substituting the speed of light for 1/p gives absolute certainty, but also much larger

bounds, assuming much slower speeds, can be used with near certainty.
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Figure 3: Square 6x6 and star-shaped 5x7 station configurations in a 3x3 km square.

2.3.1 Population of bicycle stations

A station is represented by a triple (n, ¢, x), where n is the number of available bicycles (the occupation
number), ¢ is the capacity, and x is the geographical coordinate (the address) of a given station. An
automaton of a typical station with capacity c is shown in Fig. [2l The configuration of stations can
be arbitrary. Two different configurations, one rectangular and one star-shaped, are shown in Fig.
The total number of bikes is N = Z;q:l n;, and the total capacity C' = Zle ¢;. Fixed capacity and
instantaneous transaction approximations are assumed throughout.

2.3.2 Population of user-agents

A user-agent combines several human factors pertaining to travelling and decisions. Each agent is
parameterised by two addresses that specify the agent’s origin and destination locations. The cycling
and walking paces, and corresponding rates, are considered as random numbers sampled from a normal
distribution. The typical human speeds of 5 km/h for walking, and 12 km/h for cycling, yield paces
of 12 min/km, and 5 min/km, respectively, whereas the mean of both rates is set to one (min—1!).
The agent states (see Fig. are denoted and interpreted as follows: H= {wants to hire a bike},
R= {wants to return a bike}, A= {wants to arrive}, and M= {wants to reset}. A single ‘walk-cycle-
walk’ travel cycle is quantified by a sequence of transitions H—-R—A—M, with transition epochs 77,
Ts, T3, Ty. The total duration of a trip is Ty — 11, whereas the duration of its cycling part is T3 — 7T5.
An additional ‘mutation’ transition M—H is added to make agents’ life cyclic and states recurrent,
and allow continual regeneration of their objectives.

2.3.3 Stochastic dynamics

Agents drive the system by spontaneous decisions. There are two types of agent decisions that result
in firing or mutation transitions. Firing transitions are further distinguished as either ‘take’ or ‘return’
transitions. They are synchronised in an obvious manner with two kinds of state-changes occurring at
bicycle stations (see Fig. . The remaining ‘arrive’ and ‘reset’ transitions are mutation transitions.
They are defined by not being synchronised with the station updates. Both re-initialise the agent
states, the first one resulting in the arrival at a destination, the second one in a complete regeneration
of its objectives. Agents’ objectives can be initialised in various ways. In this article, we consider
the so-called spot commuter mutation protocol. A spot commuter selects a random new pair of
locations and the time until activation, both sampled from appropriate distributions. We remark that
other protocols can be easily designed where, for example, the arrival epoch, rather than the departure
moment, is a relevant issue. It is important to emphasize that agents can estimate the expected arrival
epoch using a markovian forecasting protocol and, consequently, measure the late arrival epoch as a
difference between the expected and actual arrivals.

The model that is used for the travel process is a composition of a conditional travel process and a
station utility model, addressing two major sources of uncertainty of travel in urban environments. The

QUANTICOL ) May 27, 2015
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Figure 4: Spatial (left) and temporal (right) decision criteria of participation.

conditional travel process addresses the randomness due to various interactions with the environment.
It states that, conditional to fixed end points and a fixed itinerary, the travel time is a stochastic
variable that corresponds to a first passage process of a one-dimensional random walk. The so-
called renewal distribution of this process is the inverse Gaussian distribution [Chh88] which is further
approximated by a delayed exponential distribution function F(t) = 1 —1scgae™" "), Here, t* = pd
is the activation time of an agent a, p® is its travel pace, d is the distance, and r? is as arrival rate,
related to the diffusion property of a random walk. The station utility model, combined with the
assumption of stochastic dynamics, address the decision process under uncertainty. Following the
von Neumann-Morgernstern axiomatic approach to the description of such decisions, the existence
of station utility functions with respect to hiring and returning is posited in the form w;;(7), for
1,7 € E, with a control parameter 7, called the decision scale parameter. It is a ‘motivational’
parameter, describing the perceived utility of a station from an agent’s point of view, and influences
the agents’ decision to return a bike to a particular station. A model for station utility perception
is proposed in which the probability of {d > =z} for large distances x is given by, approximately,
Pr{d > x} ~exp —pji. Thus, agents with a larger 7 value tend to search for suitable stations in a
greater area surrounding their target. However, venturing further away from the destination increases
the walking fraction of the trip, so that the total trip duration is likely to increase. On the other hand,
smaller values should lead to shorter trips, provided that a suitable station can actually be found
within the search area.

Composition of the two models yields a renewal function Fl‘;(t) for an agent’s a arrival epoch T" at
a station j, given the current state i, as

Pr {T < t} = le; (t) =1- 1tgtgjeiuij(7a)ra(t7t?j) . (4)

2.3.4 Elective participation and posterior evaluation

Agents are provided with the capacity to decide whether to accept or reject bike-sharing as a means
of achieving their objective, and to measure the effectiveness of a trip in the case of acceptance. They
decide whether a bike-sharing trip is a viable alternative to walking by estimating a kind of triangle
inequality. Assuming that agents know the distance from the origin (x) to the destination (y) and
to the neigbouring stations (s) in advance, and their physical parameters, they estimate the expected
travel time using a station s as 724 —|—Tsfy, and compare it against the estimated time of walking directly
to the destination, 7y (‘s” and ‘f” refer to walking and cycling, respectively, see Fig. . A station is
accepted as a candidate for a trip if it satisfies the triangle inequality

Tes T Tsfy < T;y . (5)

If at least one station in the network satisfies , a bike-sharing trip is accepted, otherwise it is
rejected.
Agents estimate the cycling time from the origin to destination, T)]:y. A trip is accepted only if

i, <te, (6)

where t. is the cycling tolerance parameter.

QUANTICOL 6 May 27, 2015
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Figure 5: The first half of the stochastic simulation algorithm determines the sojourn time (t,) and
the participating channels in the next transition (M,).

For an acceptable trip, agents estimate the efficiency of a trip by comparing the actual trip duration
Tiot = Ty — 11 with the estimated trip duration, had the agent walked the same itinerary, i.e. with
7% = 17 +75+715 (where indices 1,2,3 denote the consecutive parts of the ‘walk-cycle-walk’ travel cycle).
To decide whether using bike-sharing has been a winning strategy, agents estimate the efficiency ratio

7_8

- ﬂot ‘ (7)

Thus agents can decide, retrospectively, whether bike-sharing saved time (e > 1) or if it was a waste
of time (e < 1). Inclusion of the marginal case as failure is motivated by the assumption that walking
is preferred to cycling by default.

e

2.3.5 Relation to Collective Adaptive Systems

The proposed bike-sharing model describes a collective system in a sense of a collective of agents that
act concurrently. These agents do not interact directly. They represent non-cooperating entities with
independent objectives. However the decisions that they make directly affect the stations. The states
of stations influence other agents’ decisions, so that decisions of one agent influences the decisions of all
agents indirectly through the stations, and may be interpreted as a kind of weak interaction between
agents. This approach is appropriate to real bike-sharing systems, if we adopt the common view that
the participants go about their objectives by and large independently of what others’ objectives areﬁ
This may well be only a ‘first order’ approximation, but we claim it is a reasonable one. We will
attempt to substatiante this claim by providing numerical evidence that the model yields meaningful
predictions in section [ that it captures the essential features of data from real bike-sharing systems
and, moreover, yields fruitful interpretation of the user experience that could be tested, in section
We do not attempt to fit the model to the the ‘invisible hand’, or information paradigms of collective
adaptive systems (CAS) of behavioural economicsﬂ However, the bike-sharing model is consistent with
a kind of ‘weak’ form of adaptivity, because a limited form of agent congnition is taken into account.
It is incorporated into the Kolmogorov and the station utility models and is built on some very
basic input from the two system approach to decision-making of people [Kah03|]. The cognition and
spontaneous decisions are embodied by, respectively, a loose survival policy in the guise of time-saving
assumption which, in its turn, is a consequence of the causality of stochastic travel processes, and on
the assumption that spontaneous decisions can be considered as random events that are conditionally
independent on the past. As a next order approximation, modifications to the utility model could
be considered to take into account variations of human decision making based on the instantaneous
environmental conditions, and other forms of adaptation by introducing user incentives, designed with
the aim to help redistribute bicycles from mostly full to mostly empty stations.

4assuming that the collision avoidance among agents and similar manouvering is irrelevant, at least to the first order
in approximation
®see e.g. [MPQ9] for an introduction to CAS in behavioural economics
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2.4 Method of simulation

Discrete stochastic processes are oftentimes simulated using methods that produce statistically exact
sample paths [Gil76, [And07]. The basic method requires two random number generations per step,
one for each member of the pair (X,7T"). Thus, a statistically exact ‘first reaction’ of an M-channel
Markov Process with rates A;(X,,), ..., Am(Xy) at the nth step could be determined as follows:
The sojourn time t, = T,+1 — T, in a current state X, is drawn from an exponential distribution
1—exp (=A(Xy)t), where A\(X,,) = Ef\il Ai(X,), whereas the next transition channel m is drawn from
a discrete M-point distribution with weights A;(X,), i = 1,..., M, where \; = )\i/)\ﬁ A practical
algorithm consists of drawing two random numbers x,y ~ U(0, 1) from a uniform distribution U, then
letting t,, = —ﬁlnx, and letting m be such that M << >y N\ < y < ij{l N\ < 1[Gil76l
And07, [GHP13]. Alternative statistically exact methods [GB00], and other, exact and approximate
variations exist to address specific issues viz. multiple time-scales (see, e.g. [GHPI13] and references
therein).

Although the bike-sharing model is non-Markovian (see section , the same idea of simulating
Markovian Processes can be adapted to obtain a statistically exact simulation of the bike-sharing
model. In this case, each agent-station pair must be considered as a possible transition channel (thus
M can be quite large) and the total transition rate in a state X is obtained as a sum of rates from
all channels, the rate for each channel being rfj(t; T = Lisga wij (7%)p®. Note that although a one
agent — one station pair distribution is (a delayed) exponential, the system of many stations or many
agents gives a non-exponential distribution of the form 1 — e E(®)_ The phase, R(t), defined as an
integral over the total rate, R(t) = fg >org(t's7)dt, is illustrated in Fig. |5, The main steps of the
analogous ‘first reaction’ algorithm are as follows. A random number x ~ U(0,1) is drawn and the
sojourn time ¢, is solved for from —Inz = R(t,) (see Fig.[5). The number (M,) and identities of
channels, participating in the next reaction, are defined as all the channels with the activation times
satistying &7, <t (M,, =5 in Fig. . The first reaction channel is then determined, using the second
draw of a random number, and a discrete M,-point distribution, as before.

3 Basic predictions and analysis

3.1 Useful metrics

Although bike-sharing is generally designed with short trips in mind, a long bike-sharing trip may
be perceived favourably by the user if the alternative would result in an even longer trip. The trip
durations, which are the primary data directly measured and modelled, are therefore not adequate
to describe the user perspective, unless the effects of competing modes of transport are taken into
account. We propose the following three metrics which make such comparison indirectly and are
therefore better indicators of a system’s functioning than trip durations.

3.1.1 Median trip efficiency

The efficiency, gain, or reward of a trip is a measure of how useful a particular trip is to an agent, as
compared with the same trip made by walking. We will use a median efficiency IMe, defined through

Pr{e < Me} = % (8)

to describe the same for a population of agents: bike-sharing trips with larger IMe tend to save travel
time with respect to trips with smaller median efficiency.

Sinterpreted as rolling an M-faced ‘loaded die’ with weights (\;).
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Figure 6: The decision parameter 7 = 2.5 yields optimal efficiency, shortest total trips, and the best
confidence (central 80% percentile) for the rectangular 6 x 6 station array of stations (left, cf. Fig. |3]).
Similar qualitative picture but worse quantitative characteristics (lower efficiency, longer trips, higher
uncertainty) characterise the star-shaped 5 x 7 configuration (right, cf. Fig. |3). Both insets show
variations with respect to the number of stations (5) and different filling degrees N/C = 0.25,0.5,0.75.

3.1.2 Excluded population metric

Agent locations are sampled with the assumption that each agent is interested in using bike-sharing.
However, an agent uses bike-sharing only if the triangle inequalities , and the cycling tolerance
inequality @, are satisfied. The fraction of all agents who, based on the union of these inequalities
do not, or cannot choose bike-sharing (because of empty stations), is called the excluded population
metric (EPM).

3.1.3 Congestion metric

In a queueing model approach to bike-sharing, Fricker and Gast [F'G14] identify completely empty or
full stations as problematic because they inhibit one direction of traffic. To relate their work to ours,
we introduce the bicycle and the slot congestions as follows,

. 1 t S 1 t S
= — Tre (iy—p L = — Tro ip\—
; tS/O ; (si(D=ci}r D 755/0 Zz; {55 (£)=0} 5 9)

Since both parameters range from pti = 0 (no station is ever full/empty), to pfﬁ =1 (all stations are
always full/empty) they give an average measure of ‘problematic stations’ in the sense of [FG14]. Note
that p; +p; <1 for all .

3.2 Model parameters

The results in this section concern a single agent model (except in section where a multi agent
model is used) with 6x6 rectangular, or 5x7 star-shaped station configurations as in Fig. |3, with
¢; = 20 and an initial filling degree N/C = 0.5, placed in a 3x3 km area (similar to Fig. , and
random initial configuration of bicycles in stations.

3.3 Decisions determining travel efficiency

The trip efficiency metric (7)) provides insight in the effectiveness of bike-sharing trips as shown by
the simulation results in Fig.[6] They show that there exists a compromise value of the decision scale
parameter 7 (see Sect. , which minimises both the median of total trip times and the scatter
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Figure 7: The PDF of trips as a function of the efficiency and median efficiency of trips as a function of
cycling time for square shaped configuration (left two graphs, cf. Fig.|3) and a star-shaped configuration
(right two graphs, cf. Fig. |3) provide complementary information about the trip—efficiency relation.

of their distribution and maximises the median efficiency. The insert shows the median efficiency for
different system sizes and N/C.

Additional insights into the trip—efficiency relationship are provided by Fig. m (regular and star-
shaped grid examples), showing the PDFs of efficiency, and median efficiency as a function of cycling
trip duration for three cases: the near-optimal 7 = 2.5 (cf. Fig. @, and sub-optimal ones: 7 = 1.25,
and 7 = 6. The sub-optimal PDF's either have a peak near e = 1, meaning that a typical trip either
is not worth taking, or is marginally so (7 = 6), or have excessive exposure to anomalous long trips,
accumulating near a zero efficiency (7 = 1.25). Figure[7| (right) shows that travel is most efficient in a
window of cycling times between roughly 5 and 15 minutes. The latter time can be explained by the
considered size of the area (3x3 km).

Values of T below a certain threshold may result in the perceived utility of all stations becoming
negligible. In that case, the model predicts very long ‘cycling’ trips, even longer than cycling across
the entire city! Curiously, there exists a real life analogy of the negligible utility settinéﬂ Occasionally,
users abandon their bicycles ‘on the curb’, preferring to leave them unguarded (paying fees for extended
usage, or even a fine) rather than taking time to park them.

3.4 Typical cycling time distributions: algebraic ‘tail’, major and minor modes
3.4.1 Conditional expectation of travel times

In Fig. 8| the distribution of cycling times is shown for several values of 7. Note that for smaller values
of 7, the times are distributed asymptotically as t~17¢, i.e. the distribution has ‘an algebraic tail’.
Since walking is less uncertain, the distribution of late arrival times to the destination has qualitatively
similar asymptotic properties as cycling time distributions. Let us briefly summarise the implications
of distributions having algebraic tails, and how the existence of such tails in the cycling distributions
may suggest quantifying user dissatisfaction with the system.

Someone interested in the expectation of being late at a destination, would assume that the arrival
time is some stochastic process 7', with a distribution F'(t), i.e. Pr{T" < t} = F(t), and would compute
the conditional expectation of arrival time, given that currently at time ¢ the destination hasn’t been
reached yet: B, T = [ yF(dy)/ [ F(dy). Freely adjusting the reference frame so that the expected
arrival time is set to zero, then if ¢ < 0 one is early, and if ¢ > 0 one is running late. As a general
feature of typical distributions, 5,7 ~ 0 if ¢ < 0, meaning that one is expected to arrive ‘on time’
provided a long enough time allowance. However, if ¢ > 0 then the expectation is at least ¢ (meaning
E,T > t), but the precise expression depends crucially on F. If the distribution is strictly algebraic
‘in the tail’, then E;T = ¢ + a—ilt if @ > 1, and ;T = oo otherwise. Figure |8 (right) shows how
ET changes with t for 7 = 2.5 leading to on average shorter trips but occasionally long delays, and
7 = 6 (more tolerance), leading to on average longer trips, but more predictable delays that are closer
to a normal distribution. It is useful to think in terms of the expected delay §, defined for ¢ > 0

"This was reported to us by the office running the shared bicycle system in Pisa (M. Bertini, private communication)
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Figure 8: Cycling time PDF (left) and expected late arrival time (right)

through ;T = t + §. For comparison, the normal distribution yields § ~ o2/t for large t, which
means that the near-immediate arrival becomes more certain as the delays accumulate. This is in
stark contrast with algebraic distribution, for which we have § = ¢/(a—1). In this case, because §  t,
the near-immediate arrival becomes less probable as the delays accumulate. This situation suggests
that relatively long undesired trips can sometimes occur that would be perceived negatively by the
users who, as we stipulated in the beginning, are time-conscious agents. The exponent a, or the ratio
a/(a — 1) can be used to quantify this effect. A qualitative comparison of the curves in Fig. |8 (left)
and the histograms in Fig. |1 (Data) suggest that the actual behaviour is consistent with moderate
risk-taking, exemplified by the optimal 7 = 2.5.

3.4.2 Rational vs. smart decisions

The model predicts a minor mode at zero minutes’ travel. This feature is present in some cities (Pisa,
see below, and Lyon, see [BAFT11]) but is absent in the London dataset. Borgnat et al. [BAFT11]
suggest that mistakenly hired malfunctioning vehicles are the explanation. In our model, short trips
result invariably from a station of a previous hiring being selected for returning. Such trips exist in the
model because all stations, including ones that have just been used for hiring, are equally valid (but
not equally probable) options for returning. This is a consequence of the distance-only dependent
utility model. A typical setting, whose likely outcome is a O-minute trip, should have a common
nearest station to both the origin and destination locations, placed roughly in the middle between the
two objectives. In this setting, it would be ‘rational’ to hire a bike at the midway station, only to find
afterwards that it is also rational to return it there too, even if an agent would be better off walking
to the destination directly. This feature of the model is kept because it reproduces the data in Pisa
while the overestimate in the London dataset is moderate, and because we have no factual data to rule
out a possibility of similar decisions by real users. In the case of a future confirmation of a plausible
hypothesis by Borgnat et al., it could be changed by a modification to the station utility model.

3.4.3 Central mode of the distribution

The most prominent feature of the distributions is a mode, typically around 10 minutes. We found that
its precise location and the shape of the distribution in the vicinity of the mode is approximated to a
good degree by assuming that the cycling tolerance parameter t. (see section is a random number
from a uniform distribution, t. ~ U (tmin, tmax)- Presence of the cutoff in the expected cycling time
is an important underlying property leading to the observed distributions, affecting the characteristic
‘neck’ of these distributions between the mode and the crossover into the algebraic ‘tails’ Fig.

QUANTICOL 11 May 27, 2015



Model-based Assessment of User-satisfaction (Revision: 1.0; May 27, 2015) May 27, 2015

1.5 100 100 - 25
90
1.4 80 80 20
70 _
c @ X
1.3 S 60 S 60 15 &
S L 8 50 I £
12 Hf || _agents | S 40 S 40 10 9
10 ) c A
50 —— 30
1.1 100 —— 20 20 5
200 ——
500 — 10
1.0 WL F—r—1— 0 0 =l 0
0 0204 0608 1 0 0204 0608 1 0 02040608 1
N/C N/C N/C

Figure 9: System characteristics as a function of the stations filling degree N/C.

Typically in real systems, t,.x corresponds to the free cycling allowance.

3.5 Travel efficiency describing the agent’s perspective

In a queueing model approach to bike-sharing, Fricker and Gast predict that the population of
problematic stations increases when a system has many, or few bicycles with respect to its capacity.
They show the existence of an optimal station filling degree, whose value is not far from N = %C. In
our model, neither of the used metrics, except for p™ + p~ demonstrate conclusively relevance of such
an optimality criterion. For example, the efficiency (and with it user satisfaction) remain high in a
wide range of occupancy numbers without a statistically significant extremum. The median efficiency,
taken as a function of the filling level is a highly fluctuating variable, as suggested by Fig. |§| (left)ﬂ
As another example, Fig. shows that the excluded population remains low for a larger value of 7.
The latter would suggest an equally high service level by a network of any size, provided that agents
are willing to search for a station in a large area. However, as we have seen in Fig. [0 the efficiency
deteriorates markedly with increasing 7. The apparent disagreement with results in [F'G14] is mostly
in the interpretation of the term ‘problematic’. In our model, no normative assumptions regarding
the ‘fitness’ of the stations separately from the agent dynamics are being made. Instead, performance
of a system is evaluated on the trips that actually take place and by gauging their effectiveness
against certain benchmark durations available for each trip. In this view it is then not surprising that,
for example, agents, who manage to use bike-sharing in a nearly empty system, need not find their
experience ‘problematic’. On the other hand, an empty system leads to high EPM (Fig. @ right) which
should be troublesome news to an operator, committed to increasing a system’s usage. This and the
large fraction of trips in the ‘tail’ of the distribution when a system is too full (Fig. E[, right) should be
alarming to potential users who do not find a suitable bike to hire or return. Increasing the number
of agents will increase the flows, and deteriorate the statistics of user-side efficiency. There may be
conflicting objectives addressing different ‘problematic’ aspects. We believe that similar conflicting
values maybe among the issues, faced or to be faced by designers of real systems, and it is therefore
desirable that an adequate model is not limited to predicting a unique optimality criterion. Exploring
several metrics with our models we may begin to address issues like

e Given a certain density of population, presumably interested in using the bike-sharing, and
a certain configuration of bicycle stations, what is the fraction of population that will find it
impractical to use it?

8near empty and near full system extremes are clearly unfavourable
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Figure 10: Model with N = 252 and C' = 720: Median efficiency is relatively insensitive to rising
congestion levels (left panel). Likewise the EPM, although rigid tolerance (small 7) result in an
unusable system (right panel).

e Can efficiency of trips be improved by changing the number of vehicles or station capacities?

Our model shows that these objectives are not identical and possibly require a trade-off. However,
they suggest several ways of attacking the problem such as considering different system configurations
or changing the utility perception by introducing incentives. We have shown that such models can
address these issues, considering both potential and actual users of the system, providing insight into
system performance from a user point of view that is complementary to pure data analysis of real
systems. The latter naturally excludes data on potential but unsuccessful users which is hard to obtain
in other ways.

4 Pisa and London datasets

The bike-sharing systems in London and Pisa differ in size by orders of magnitude, as is evident from
Table [l

Characteristic Pisa | London
Stations 15 742
Approximate fleet size 150 | 11,500
Approximate capacity 270 | 19,000
Average trips per hour 32 1120
Approximate area (km?) | 15 90
Average stations (km~2) | 1 8
Cycling > 30 min (%) 6.0 | 7.7

Table 1: London and Pisa bike-sharing systems

And yet, the cycling time distributions in these cities bear distinctive similarities, as shown by
the filled areas in Fig. [I] shared also by other cities [BAFT11]. It is tempting to consider them as
members of a family of distributions, characterised by a major mode at about 10 minutes, algebraic
tails of the distributions with exponent a ~ 2, containing about 7% of trips longer than 30 minutes,
and a minor mode close to 0 minutes (the latter is absent in the London data).
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Figure 11: Spatial set-up to simulate the Pisa data-set. Left panel: The map of stations and a random
snapshot of their filling (circle size « ¢, shade « n). Middle, right: distributions of the origin and
destination locations, respectively.

4.1 Model setup

It was suggested that at least three kinds of agents would be required to model similar distribu-
tions ﬂm In the following we show that a single type of agent is sufficient to generate qual-
itatively correct distributions with all aforementioned characteristics. This can be achieved without
sophisticated parameter fitting, by using only some qualitative arguments. We emphasise that the
objective of this study is not a model that copies a real system in question; rather, it is geared towards
a model that incorporates quantitatively correct features of user behaviour, with the aim of provid-
ing insights into the plausible underlying reasons for the observed data. In fact, the simple models
discussed section [3] already contain many of the salient features, although they are not sufficiently
accurate for what concerns some quantitative aspects.

The curves for the uniform models, shown in Fig. [} correspond to a multi-agent model (see Table
2) with uniformly distributed agent locations. Such distributions generate statistical self-redistribution
of bicycles. As such, it is a statistically optimal system.

The single necessary additional feature to obtain good quantitative agreement between collected
data and model results such as those in Fig. [1, are the agent flows. Their introduction lead to some
areas being consistently short of bicycles, and others runing out of available parking slots. Such
flows can be easily constructed using inhomogeneous spatial distributions, and they may be given an
additional temporal dimension, for example by requiring agents to honour synchronised appointments.
Such temporal ‘tidal flows’ are present in real systems in the form of morning and afternoon commutes
in opposing directions, often with a clear spatial separation. It was found by experimentation that
temporal features accentuate the effects of scarce resources and that this effect is quantitatively similar
to the static flows.

The model of Pisa represents a relatively small system with a 4x4 array of stations (see Table .
Calibration with a single-agent model, as in Fig. [6] yields 7° ~ 3.5 (min), which is quite large as a
result of sparsely distributed stations. To introduce flows, it is sufficient to sample the origin locations
from a uniform distribution, and the destinations from a Gaussian distribution, concentrated in the
centreﬂ In this way, the periphery is tendentially lacking bicycles, most of which have been moved
towards the centre (see Fig. [L1)).

The model of London covers a larger area with a 19x38 array of stations (see Table[2)). Calibration
as above yields 7° = 1.8 reflecting a denser network. Introduction of multiple centres of hiring and
returning, approximately the size as in Pisa and of counter-current flows for the balancing, achieves

9The discrepancy between these trial and actual distributions visible in Fig. are the result of rejected trips, see

sections @ and @
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Model T° Area + stations Capacity Bikes | Trips
(min) | (km?) | S min/max | C N (h=1)
Pisa 3.5 3x3 16 10/25 170 304 35
London | 1.8 <13 | 722 15/40 19,652 | 10,000 | 823

Table 2: Model parameters
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Figure 12: Spatial set-up to simulate the London data-set. Left panel: The map of stations and a
random snapshot of their filling (circle size o ¢, shade o< n). Middle, right: distributions of the origin
and destination locations, respectively.

the result shown in Fig.

The simulation results for both models are presented in Fig. [1| (the ‘low model’). Note that there
are trips lasting longer than 30 minutes. Since agents use bike sharing with an a-priori expectation
that their trip should be shorter than a certain ty,x, with sup tmax being the aforementioned figure, we
know that all trips ‘in the tail’ were not intended to be so long. This is a first qualitative indication of
possible dissatisfaction on the user side. Comparing the uniform vs. flow models: The number of trips
in which agents do not find a bike is 10% (Pisa) and about 1% (London). Trips in the tail make up 2
vs. 5 % (Pisa) and 2 vs. 7.7% (London). The completely full stations are 12 vs. 25% (Pisa) and 10
vs. 20% (London). Clearly, longer trips are positively correlated with full stations. This suggests that
full stations are indeed a plausible cause of the occurrence of most likely undesired longer trips, and
thus a source of concern for user satisfaction. Such concerns have also been expressed in an on-line
survey conducted in 2009 among users of the bicycle sharing system in Barcelona [FNOQ09|. Of the 212
respondents 76% mentioned finding an available bicycle as an important problem in their experience
and 66% mentioned finding an available parking slot.

Based on the estimated value of the exponent a for both data-sets (a ~ 2.1 for Pisa and 1.9 for
London), the performance of the two systems in this respect is similar. However, comparison between
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Figure 13: Bicycles in circulation for the uniform flow model (left), the reference flow model (middle)
and the alternative flow model (right).

the data and the corresponding uniform model (optimal in a sense described before) shows only a
small difference between the two distributions for Pisa, and a bigger difference for London (a 5 times
smaller PDF in the tail compared to the data). This suggests that the performance in Pisa cannot
be improved much unless more stations are added. However, in London, which has an 8 times higher
density of stations, the situation is not significantly better. The model suggests that there are areas
with predominantly full stations (somewhat like those in Fig. rather than isolated full stations.
This is most likely the main explanation for the number of unintentionally long trips.

4.2 Time scale(s) of bicycle circulation

The aggregate number of bicycles in circulation in a system is a fluctuating quantity. There two types
of fluctuations: stochastic and tidal.

4.2.1 Stochastic fluctuations

Even when the distribution of agent objectives is stationary, the number of bicycles in circulation
fluctuates because the agent behaviour is probabilistic. The parameters of fluctuation amplitude or
the variance are to be reckoned with: an operator may get more repositioning requests if the variance
is larger or if the fluctuations lead to long-time trends, or large and unexpected excursions from the
mean. Simulations, extending to very long times are useful in that respect, since they give an idea
about the statistics of fluctuations.

Simulations of the London setup demonstrate that there is a significant dependence of fluctuations
on the spatial distributions of agents. Figure shows the number of bicycles in circulation for
the London model that is parameterised by different spatial distributions of agents returning bikes.
The uniform model, the reference flow model, and the alternative flow model generate quite different
fluctuation magnitudes, discernible in Fig. These fluctuations appear qualitatively similar on
a three-hour scale (insets) but are strikingly different on a ten-day scale: from stationary-appearing
fluctuations in the uniform model, to non-stationary for the reference flow model used in Fig. [1} to even
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Figure 14: Uniform London model with and without cyclic synchronous appointments.

more volatile case of the alternative flow model (Fig. left, middle, and right panels, respectively)m
Similarities on a three-hourly scale and differences on a ten-day scales suggest that spontaneous vehicle
fluctuations contain a significant multi scale component. Moreover, even the three-hourly insets show
some evidence of sub-hourly trends which is surprising given that most trips are less than 30 minutes
long. Note that the term ‘multi scale’ here does not refer to the organisational multiple scales (such
as various temporal horizons of planning activities) but to ‘fluctuational” multiple scales. Examples
of systems with multiple time scales abound in the literature, showing that even a relatively simple
model structure can yield a complicated structure of fluctuations such as, for example, intermittency.
Generically, the manifestations of multi scale behaviour should be considered as contingencies of
additional higher ‘risk’. In the case of bike-sharing model these risks are embodied by areas with
limited vehicle availability which are larger than what could be expected from the uniform model.

4.2.2 Cyclic fluctuations

Because people in real cities are engaged in activities with similar schedule times, such as the beginning,
or the ending of a working day or studies, their activies are synchronous to some extent. Such
behaviour causes spikes in the traffic lows and can be thought of as the result of certain cyclic ‘tidal
flows’ in the form of morning or afternoon commutes in opposing directions, often with a clear spatial
separation. They induce large and quite predictable temporal variation in the circulation, described
as cyclostationarity [GNP06]. Cyclic flows can be included in the model. For example, Fig. [14] shows
the number of bicycles in circulation on a smaller scale for the uniform London model. In the first
model all agents have randomly distributed appointments (as previously). The second model has two
groups of agents. The first group has random appointments, whereas the second group must honour
appointments, set at two hour intervals apart. Relatively large populations rushing to their targets
at the same time causes visible peaks in Fig. [14] (left), whereas the cycling time distribution for both
groups, shown in Fig. [14] (right), are essentially the same.

5 Conclusion

The inclusion of minimal, but plausible, user behaviour and flows in a general bike-sharing model
based on MRPs is shown to be sufficient to explain some of the main features of the distributions
of actually observed data. The approach provides complementary insight into the attractiveness of
bike-sharing from a user’s perspective, including that of potential users not captured by data sets.
Future work will address its use for the evaluation of the effects of alternative configurations and

10The last setup is similar to the reference flow model, except that the areas of arrival requests have been enlarged
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user incentives. Furthermore, we plan to compare our results with approximate mean-field models of
bike-sharing [LLMI5].
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