
Vol.:(0123456789)

 Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

Discover Computing

Research

Learning bivariate scoring functions for ranking

Franco Maria Nardini1 · Roberto Trani1 · Rossano Venturini2

Received: 29 July 2022 / Accepted: 24 May 2024

© The Author(s) 2024 OPEN

Abstract
State-of-the-art Learning-to-Rank algorithms, e.g., � MART , rely on univariate scoring functions to score a list of items.
Univariate scoring functions score each item independently, i.e., without considering the other available items in the list.
Nevertheless, ranking deals with producing an effective ordering of the items and comparisons between items are helpful
to achieve this task. Bivariate scoring functions allow the model to exploit dependencies between the items in the list
as they work by scoring pairs of items. In this paper, we exploit item dependencies in a novel framework—we call it the
Lambda Bivariate (LB) framework—that allows to learn effective bivariate scoring functions for ranking using gradient
boosting trees. We discuss the three main ingredients of LB: (i) the invariance to permutations property, (ii) the function
aggregating the scores of all pairs into the per-item scores, and (iii) the optimization process to learn bivariate scoring
functions for ranking using any differentiable loss functions. We apply LB to the � RAnk loss and we show that it results in
learning a bivariate version of � MART —we call it Bi- � MART —that significantly outperforms all neural-network-based
and tree-based state-of-the-art algorithms for Learning-to-Rank. To show the generality of LB with respect to other loss
functions, we also discuss its application to the SofTMAx loss.

Keywords Learning-to-Rank · Bivariate scoring functions · Pairwise scoring

1 Introduction

Ranking is a challenging machine learning task that aims to produce an ordering of a list of items that maximize a listwise
utility metric. Differently from classification and regression, ranking focuses on the ordering of the items rather than on a
specific class or value predicted for each item. In the last years, the ranking problem has been addressed using machine
learning, in the field known as Learning-to-Rank (LtR), and several approaches for solving this task have been devised [1].
Most of the existing LtR approaches rely on univariate scoring functions that estimate the ranking score of one item
at a time in isolation, i.e., without considering the other available items in the list. Although this approach is proven to
be effective, it is intrinsically limited as univariate scoring functions cannot compare the available items in the list to
exploit their dependencies, which may be very helpful to rank them. For this reason, multivariate scoring functions that
estimate the ranking score of each item as a function of multiple items of the list can effectively take into account the
items dependencies when scoring.

Recently, several works employ neural networks to learn multivariate scoring functions to effectively exploit the item
dependencies for ranking. Ai et al. and Bello et al. use recurrent neural networks for re-ranking to exploit contextual
information available in the list of results [2, 3]. Similarly, Ai et al. propose Groupwise Scoring Functions (GSf), a new

 * Roberto Trani, roberto.trani@isti.cnr.it; Franco Maria Nardini, francomaria.nardini@isti.cnr.it; Rossano Venturini, rossano.venturini@
unipi.it | 1ISTI-CNR, Pisa, Italy. 2University of Pisa, Pisa, Italy.

Vol:.(1234567890)

Research Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

framework to learn multivariate scoring functions for ranking using deep neural networks [4]. More recently, Pasumarthi
et al. and Pang et al. propose the application of attention [5] to learn neural networks for ranking. The two methods,
called ATTn-Din [6] and SeTRAnk [7], respectively, are able to effectively capture contextual information and cross-item
interactions from the list of items to rank. However, all the proposed contributions towards multivariate scoring func-
tions are limited to neural network models and cannot be directly exploited to learn gradient boosting trees [8]. This is
an important limitation as gradient boosting trees models, e.g., � MART [9, 10], achieve state-of-the-art performance on
Learning-to-Rank reference datasets.

Novel contributions To overcome the limitations discussed above, we propose the Lambda1 Bivariate (LB) framework, a
novel framework for learning bivariate scoring functions for ranking using gradient boosting trees. LB works by scoring
all pairs of items in the list. Differently from existing solutions based on multivariate scoring functions, LB can be used
with any loss function. Moreover, LB defines three requirements to learn effective bivariate scoring functions: (i) the
invariance to permutations property, (ii) the function aggregating the scores of all pairs into the per-item scores, (iii) the
optimization process to learn the bivariate scoring function that optimizes a target utility function. First, the invariance
to permutations guarantees the independence of the scores of the items from their input order. We formally introduce
it in LB because, since we use tree-based models, we cannot rely on a specific model architecture, e.g., symmetric neural
networks, to learn such property [6, 7]. Second, the aggregation function is required to produce a final score for an item
given the outcomes of the bivariate scoring function providing scores for pairs of items. Third, given an arbitrary loss
function, we discuss how to optimize it in a pairwise fashion by exploiting gradient boosting trees.

We apply LB to the � RAnk loss [9, 11] and we show that it results in learning a bivariate version of � MART —we call
it Bi- � MART —that significantly outperforms all neural-network-based and tree-based state-of-the-art algorithms for
Learning-to-Rank. To show the generality of LB to other loss functions, we also discuss its application to the SofTMAx
loss [12], which is a popular and effective listwise loss for neural networks [4, 6, 13].

To summarize, the novel and unpublished contributions presented in this paper are:

• We introduce LB, a novel framework for learning bivariate scoring functions for ranking using gradient boosting trees.
We first discuss the main requirements that allow LB to effectively learn bivariate scoring functions. We then show
that it can be easily employed with any loss function;

• We apply LB to the � RAnk loss [9, 11] and we define the resulting model as Bi- � MART , which represents a bivariate
version of the state-of-the-art � MART algorithm [10];

• We present a comprehensive experimental evaluation of Bi- � MART on three public Learning-to-Rank datasets. Results
show that Bi- � MART outperforms all state-of-the-art neural-network-based models by a large margin and also out-
performs � MART with a relative improvement in terms of NDCG@5 ranging from 0.5% to 1.2%. To show the generality
of the proposed framework, we also assess LB with the SofTMAx loss;

• To allow the reproducibility of the results, we release our implementation of LB as open source upon acceptance of
the paper.

Paper structure Section 2 discusses related work. Section 3 formalizes the problem while Sect. 4 introduces our proposed
LB framework for learning bivariate scoring functions. We then discuss the experimental setup in Sect. 5 and we propose
a comprehensive experimental evaluation of LB against state-of-the-art competitors in Sect. 6. Finally, Sect. 7 concludes
the work and discusses future directions.

2 Related work

In the last years, the ranking problem has been extensively studied [1, 14] and several effective machine learning algo-
rithms have been introduced [15, 16]. Learning-to-Rank algorithms are usually categorized by the loss function they
employ, i.e., pointwise, pairwise, and listwise approaches.

Pointwise approaches aim to directly estimate the ground truth label of a single item, i.e., its relevance score, by
employing a loss function defined on a per-item basis [17–20]. Therefore, pointwise approaches do not focus on directly
optimizing the order of the items in the list.

1 “Lambda” here origins from the lambda notation in mathematics and computer programming.

Vol.:(0123456789)

Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7 Research

Pairwise approaches, instead, employ a loss function defined on pairs of items, exploiting the information of two
items at a time, to learn the relative ordering of the items in the list [21–25]. Pairwise approaches can be further divided
into approaches that employ bivariate scoring functions and approaches that employ univariate scoring functions. The
approaches in the former category learn preferences, i.e., order relationships between pairs of items [26]. A recent work
in this direction is the one by Dehghani et al. [27], where authors employ a bivariate neural network model, RAnkPRoB,
that estimates the probability that one item is more relevant than the other. RAnkPRoB estimates the probability that one
item is more likely being relevant than the other one. This problem is addressed as a binary classification task and the
ranking score of an item is computed by averaging its pairwise preference scores. However, RAnkPRoB does not directly
deal with the ranking task as it aims to learn a pairwise classifier separating the pairs, instead of optimizing the induced
ranking. Moreover, the approaches falling in this category may lead to conflicts during the final sorting of the items as
the learned preferences could not be transitive, e.g., a circular dependency among three or more items may exist and
any possible ranking would break at least one preference. This problem can be addressed by finding an ordering of the
items that minimizes the number of broken preferences, which is known to be NP-Hard [28], or that approximates it [29].
Nevertheless, well-known pairwise approaches employ a univariate scoring function. This means that the algorithm learns
a univariate function that scores one item at a time and the function is learned by optimizing a pairwise loss function
defined over pairs of items, e.g., RAnkBooST [24] and RAnkneT [23]. Pairwise approaches solve some of the issues of pointwise
approaches. However, learning the relative ordering of the items is a more complex task than ranking the items. Indeed,
the optimization of the relative order of the majority of the pairs of items of the list does not guarantee that the most
relevant items would be ranked higher, i.e,. we may improve the ranking by focusing more on the most relevant items.

Listwise approaches overcome these limitations by employing a loss function defined on the list of items to directly
optimize a given ranking metric [10–12, 30–32]. Since the rank is not a continuous and differentiable function, it cannot
be optimized using classical gradient-based machine learning algorithms. To overcome this limitation, several continu-
ous and differentiable approximations of listwise ranking metrics have been proposed [11, 33, 34]. The state-of-the-art
listwise algorithm is � MART [9], which won the “Yahoo! Learning to Rank Challenge” [35]. � MART exploits a combination
of � RAnk loss [11, 36] and gradient boosting trees [8].

Neural networks for ranking Most of the existing Learning-to-Rank algorithms share a common limitation: they learn
univariate scoring functions that score each item independently from the other items of the list. Some recent approaches
overcome this limitation. A first contribution in this line is by Ai et al., where authors propose to learn a Deep Listwise
Context Model (DLCM) to be used for ranking a list of candidate items [2]. Authors employ a recurrent neural network
(RNN) to sequentially encode a list of items and learn a local context model representing the list, then use it to re-rank
the items. Authors show that DLCM can effectively capture the local ranking context based on the complex interactions
between the items. The application of a sequence-to-sequence recurrent neural network for ranking is also proposed
by Bello et al. [3]. The authors employ a RNN to predict the next “best” item to select, given the items already selected.
Recently, Ai et al. propose GSf, a new framework for learning groupwise scoring functions [4]. The framework relies on
neural networks to jointly learn the relevance scores of groups of items at a time, thus exploiting cross-item dependen-
cies when scoring the groups. The GSf framework exploits the ability of neural networks to model multivariate scoring
functions.

More recent approaches exploit attention [5] to learn effective neural networks for ranking. In this line, Pasumarthi et al.
propose ATTn-Din, a new approach that exploits self-attention item interaction networks for ranking under the multivari-
ate scoring paradigm [6]. Authors show that ATTn-Din can automatically learn permutation-equivariant representations,
i.e., the scores it produces do not depend from the position of the items in the input, to capture item interactions without
any auxiliary information. A second contribution exploiting neural networks and attention is SeTRAnk by Pang et al. [7].
SeTRAnk is a self-attention network that satisfies the permutation-equivariant requirement. Authors show that the self-
attention mechanism allows SeTRAnk to capture both the local context information from the cross-item interactions and
to learn permutation-equivariant representations for the items.

The methods above exploit neural networks with “complex” architectures to learn multivariate scoring functions. This
peculiarity limits the applicability of these techniques to gradient boosting trees, which still achieve state-of-the-art
performance on public LtR datasets. We overcome this limitation by proposing LB, a new framework to learn bivariate
scoring functions with gradient boosting trees and by showing that LB can be applied to learn effective bivariate scor-
ing functions.

Vol:.(1234567890)

Research Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

3 Problem formulation

This section provides a formulation of the ranking problem in the Learning-to-Rank (LtR) setting. In LtR, a list of items is
associated to a query and each item, represented through a vector of m features, is labeled with its relevance score for the
query. Let Q be the set of queries and nq be the number of items of the query q ∈ Q . We can associate each query q to a
matrix X (q) ∈ ℝ

nq ,m and a vector y(q) ∈ ℝ
nq composed of all feature vectors and relevance labels of the items of q, respectively.

A Learning-to-Rank algorithm learns a ranking model Φ ∶ ℝ
n,m

→ ℝ
n that produces a score for each item of a query q,

i.e., s(q) = Φ(X (q)) . The ranking model is learned by optimizing a given loss function L , which is defined in terms of the loss
function 𝓁(⋅) of the relevance labels and the estimated scores on a per-query basis

Learning-to-Rank algorithms are characterized mainly by the ranking model Φ learned and the loss function � exploited.
For instance, RAnkinGSVM employs a linear model and a hinge loss [22], RAnkneT applies a neural network model and a
cross entropy loss [23], while � MART uses a gradient boosting trees model with a weighted cross entropy loss [10].

Most of the existing LtR algorithms score all items independently, i.e., the algorithm finds a ranking model ΦU that applies
the same univariate scoring function �U ∶ ℝ

m
→ ℝ to each feature vector representing a single item:

A consequence of the application of univariate scoring functions is that an item will always get the same score/rank
regardless of the other items available for the query. Instead, a ranking model ΦM that relies on a multivariate scoring func-
tion �M ∶ ℝ

n,m
→ ℝ

n can produce more precise scores as it can ideally take into account all the items of the same query
when scoring, i.e., ΦM(X

(q)) = �M(X
(q)) . For this reason, multivariate scoring functions are theoretically more effective than

univariate ones as they can compare items and capture cross-item dependencies when scoring. Ideally, a multivariate
scoring function should be: i) invariant to permutations of the items, i.e., the score assigned by �M to an item should not
depend on its position in the vector X (q) , and ii) able to score a variable number of items.

In this paper, we explore ranking models based on bivariate scoring functions. Formally, a ranking model ΦB based on a
bivariate scoring function �B ∶ ℝ

2,m
→ ℝ

2 applies �B to all possible pair of items, then it aggregates all pairwise scores using
an aggregation function f (q):

The definition of bivariate scoring functions requires to answer three questions. The first question regards how to learn
a bivariate ranking model that is invariant to permutations. Indeed, this is a strong requirement as the model must be
invariant to permutations to avoid being dependent on the order of the items given as input. The second question regards
how to rank the items starting from the pairwise scores. For instance, if the bivariate ranking model assesses who wins
each comparison, we can either build a rank of the items that minimizes the number of mis-ordered pairs [29], or we
can rank the items according to the number of comparisons won by each item [37]. The third question regards how to
learn bivariate scoring functions that optimize the ranking. For example, a pairwise model optimizing a classification loss
function, e.g., cross entropy, is very accurate in deciding the outcomes of the comparisons but inaccurate in assigning
higher scores to the most relevant items. Indeed, classification loss functions focus on all pairs equally, while not all pairs
affect the final ranking in the same way, e.g., pairs of relevant items need more effort than pairs of non-relevant items.

In the following section, we answer the three questions above by proposing a novel LtR framework for learning bivariate
scoring functions for ranking.

4 The lambda bivariate framework

We now present the Lambda Bivariate (LB) framework, a new Learning-to-Rank framework for learning bivariate scoring
functions using gradient boosting trees. As previously introduced, a bivariate scoring function �B ∶ ℝ

2,⋅
→ ℝ

2 score pairs of
items and produce pairs of scores. Let x (q)

i,j
 be the vectorial representation, of size mpair , of the pair of items ⟨i, j⟩ of the query

(1)L(Φ) =
1

|Q|
∑

q∈Q

�
(
y(q),Φ(X (q))

)
.

(2)ΦU(X
(q)) =

⟨
�U(X

(q)

1
),… ,�U(X

(q)
nq
)
⟩
.

(3)ΦB(X
(q)) = f (q)

(
�B(X

(q)

1
,X

(q)

2
),… ,�B(X

(q)

nq−1
,X (q)

nq
)
)
.

Vol.:(0123456789)

Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7 Research

q. Without loss of generality, in the following discussion we drop the superscript q from the notation. In addition, we do not
assume any specific loss function as the LB framework can be instantiated with any loss function. Our interest in gradient
boosting trees stems from the fact that they achieve state-of-the-art performance on public Learning-to-Rank datasets [9,
35]. Therefore, we want to rely on generic yet powerful machine learning algorithms to learn bivariate scoring functions.
Nevertheless, the LB framework could be employed also with generic gradient-based models.

To formally define our ranking model, we need to: (i) learn a bivariate scoring function �B , invariant to permutations, using
a gradient boosting trees model � , (ii) define an aggregation function f aggregating all pairwise scores into per-item scores,
and (iii) describe the optimization process to learn the model � . Figure 1 shows all components of the LB framework and
their interactions on a list of three items. The components are described in the next subsections.

4.1 Invariance to permutations

The invariance to permutations property aims to guarantee the independence of the scores of the items from their input
order, i.e., the order in which the items are presented does not affect the final scores and, thus, the final ranking. While learn-
ing bivariate scoring functions respecting this property can actually be achieved using neural networks with a “symmetric”
architecture, e.g., attention layers [5], we need to define how to learn them with a gradient boosting trees model.

Let � ∶ ℝ
mpair → ℝ be the gradient boosting trees model used to implement the bivariate scoring function �B . � assigns a

single score si,j = �(x i,j) to any pair of items ⟨i, j⟩ . In general, si,j cannot be expressed as a function of sj,i , thus we cannot infer
one score from the other. For instance, if we consider a binary classifier over pairs of items estimating whether the first item is
more relevant than the second one, the output si,j is generally different from 1 − sj,i . By using only one of the outputs to infer
the other one, e.g., s0,1 to infer s1,0 ≈ 1 − s0,1 , we may assign different scores to the two pairs ⟨0, 1⟩ and ⟨1, 0⟩ if the input order
of the two items is different. As a consequence, we exploit both si,j and sj,i at the same time to guarantee the invariance to
permutations property, which in turn implies that we must score all pairs ⟨i, j⟩ and ⟨j, i⟩ to implement the independence from
the input order of the two items. In detail, we associate to each pair of items ⟨i, j⟩ the pairwise invariant score s̄i,j = si,j − sj,i to
guarantee the property and we define �B as follows:

(4)𝜙B(X i ,X j) =

[
s̄i,j
s̄j,i

]
=

[
si,j − sj,i
sj,i − si,j

]

Fig. 1 An instantiation of the Lambda Bivariate framework on a list of 3 items. Bottom-up, all 6 permutations of 2 items are (i) fed to the
gradient boosting trees model � , (ii) paired and made invariant to permutations [output of the bivariate scoring function �B , Eq. (4)], and (iii)
aggregated to form the per-item scores [output of the ranking model ΦB , Eq. (5)]. The model � is thus optimized using the derivatives of the
loss function � , defined in terms of the per-item scores, with respect to all pairwise scores si,j [Eqs. (6) and (7)]. Symbols � , �B and ΦB are in
correspondence of the outputs

Vol:.(1234567890)

Research Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

Note that this is not the only possible solution that guarantees the invariance property. However, this is the one we
selected to model also the symmetry of the scores s̄i,j . Thus, s̄i,j = −s̄j,i always holds independently of the algorithm used
to learn the model �.

Figure 1 depicts the above dependence relation between the outcomes of the bivariate scoring function �B and the
estimations of the gradient boosting trees model � given the pair representations x i,j . In detail, the pair representations x i,j
and x j,i (gray squares) are built from the item representations X i and X j (green squares). The pair representations are fed,
separately, to the gradient boosting tree model � , which produces two scores si,j and sj,i for the two pairs (gray circles). Then,
the bivariate scoring function �B (dashed rectangles) makes these pairwise scores invariant to permutations and produces
the pairwise invariant scores s̄i,j and s̄j,i.

4.2 Aggregation function

The aggregation function aims to produce a final score for any item aggregating all pairwise invariant scores provided by the
bivariate scoring function �B . Therefore, to outline the ranking model ΦB , which assigns a ranking score to all items starting
from the pairwise invariant scores provided by the bivariate scoring function �B , we need to define the aggregation function
f. In fact, the aggregation function is in charge of producing the vector of the item scores (violet circles in Fig. 1) by aggregat-
ing the pairwise invariant scores s̄i,j of all items.

As discussed in the previous section, several alternative definitions are possible [29, 37, 38]. However, not all alternatives
fit our needs as we aim to learn a gradient boosting trees model � that optimizes the ranking of the items by looking at the
scores s of all items. As a consequence, to learn the model � , the aggregation function must be differentiable as we need to
derive the error with respect to the model predictions. Moreover, as the number of items often varies across queries, we also
want that the scores s to be independent of the number of pairs of items in a query so to make it uniform across different
queries.

For this purpose, we define an aggregation function f that defines the score of each item i to be the average pairwise
invariant score of all pairs ⟨i, j⟩ of the same query:

4.3 Optimization process

The optimization process aims to learn the bivariate scoring function �B – through gradient-boosting trees working on pair
of items. The target of the optimization is to maximize the quality of the final ranking. To this end, we now show that, given
an arbitrary loss function � , we can optimize it in a pairwise fashion by exploiting a gradient boosting trees model � . As most
of the existing LtR algorithms exploit univariate scoring functions, in the following we assume to know the derivatives of the
loss function � with respect to the per-item scores si . We can thus employ Gradient Descent [23] or Expectation Maximiza-
tion [39] techniques to learn the model �.

To optimize the model � , we need to compute the derivative of the loss function � with respect to the outputs si,j of the
model � . We can express these derivatives in terms of the previous known derivatives, i.e., ��∕�si:

where the second equality follows from the fact that the score si,j affects only the pairwise invariant scores si and sj of
the items i and j. The equation above shows that the optimization of the pairwise score si,j in the LB framework naturally
follows from the optimization of the pairwise invariant scores si and sj.

As many recent implementations of gradient boosting trees, e.g., LightGBM [40], rely on quasi newton methods for opti-
mizing non-linear functions [41], we also need to compute the second order derivatives of the loss function, i.e.,

(5)si =
1

n − 1

∑

j∈q∕i

s̄i,j =
1

n − 1

∑

j∈q∕i

si,j − sj,i .

(6)
��

�si,j
=
∑

k∈q

��

�sk

�sk

�si,j
=

∑

k∈{i,j}

��

�sk

�sk

�si,j
=

1

n − 1

(
��

�si
−

��

�sj

)
,

Vol.:(0123456789)

Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7 Research

Thanks to previous derivatives we can thus optimize existing loss functions using gradient boosting trees to solve rank-
ing problems in a pairwise fashion.

4.4 Bivariate � Mart

We now describe the application of the LB framework to the � RAnk loss, which results in a bivariate version of �
MART [9] that we call Bi- � MART .

� MART combines the gradient boosting trees model [8] and the � RAnk loss [9, 11] to optimize the NDCG ranking
metric [42]. The output of a gradient boosting trees model is a linear combination of the outputs of a set of regression
trees. It is a boosting algorithm optimizing a general loss function and it can be seen as an algorithm performing
gradient descent using regression trees. Trees are built incrementally, i.e., one by one, using gradient descent so that
each new tree fits the derivatives of the loss function with respect to the scores achieved by the previous trees. By
doing so, each new regression tree models a descent step decreasing the loss achieved by the previous trees. The
second component of � MART is the � RAnk loss [11, 36]. � RAnk is a listwise loss function defined as a weighted logistic
function over the pairs of items of a query so to improve the NDCG metric. NDCG is a widely used performance metric
which exploits multi-graded relevances [42]. It is defined as the ratio between DCG and Ideal DCG, where DCG is the
Discounted Cumulative Gain of a ranked list of results, and Ideal DCG is the DCG of the same list sorted by relevance
label. In detail, the loss function aims to separate all pair of items having different relevance by weighting each pair
according to the delta of NDCG caused by a swap of the two items in the ranking:

Since gradient boosting trees algorithms exploit derivatives to train tree-based models and � RAnk works by specify-
ing the derivatives at any point during training, the combination of the two algorithms results in � MART [9]. Similarly,
the application of LB to the � RAnk loss exploits the two derivatives introduced in previous subsection, i.e., eqs. (6) and
(7). This leads to the definition of Bi- � MART , a pairwise version of � MART . Note that the above derivatives now reflect
the application of � RAnk in a pairwise scenario, as illustrated in Fig. 1. Such derivatives are the result of the three main
components introduced in the previous section, i.e., the invariance to permutations property, the aggregation function,
and the optimization process. Note that, while Bi- � MART is the result of the application of LB to � RAnk, the framework
is general and it can be applied also to other loss functions, as shown in Sect. 6.2 where we apply LB to the SofTMAx loss.

5 Experimental setup

In this section, we provide a detailed description of our experimental setup. In details, we describe the Learning-to-
Rank datasets employed, the ranking architecture used for the assessment, the state-of-the-art competitors used for
comparisons, the hyper-parameter tuning, and the feature sets used to represent the items.

(7)

�
2
�

�s2
i,j

=
∑

k∈q

�

�sk

(
��

�si,j

)
�sk

�si,j
=

∑

k∈{i,j}

�

�sk

(
��

�si,j

)
�sk

�si,j

=
1

n − 1

∑

k∈{i,j}

�

�sk

(
��

�si
−

��

�sj

)
�sk

�si,j

=
1

n − 1

(
�
2
�

�s2
i

�si

�si,j
+

�
2
�

�si�sj

(
�sj

�si,j
−

�si

�si,j

)
−

�
2
�

�s2
j

�sj

�si,j

)

=
1

(n − 1)2

(
�
2
�

�s2
i

− 2
�
2
�

�si�sj
−

�
2
�

�s2
j

)
.

(8)�
𝜆RANK

(y, s) = −
∑

yi>yj

ΔDCG(i, j)

Ideal DCG
log

(
1

1 + e−(si−sj)

)
.

Vol:.(1234567890)

Research Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

5.1 Datasets

We conduct experiments on three public datasets for Learning-to-Rank, i.e., the two LETOR datasets [43] and the “Yahoo!
Learning to Rank Challenge” [35] dataset. The three datasets have been created for assessing LtR algorithms in a Web
search scenario. The datasets consist of query-document pairs. Each query-document pair is labeled by humans with a
graded relevance ranging from 0 to 4, where larger values of the label indicate a higher relevance of the document with
respect to the query. The two LETOR datasets, i.e., WeB10k and WeB30k, have been released by Microsoft [43] and contain
10,000 and 30,000 queries, respectively. They both provide an average of 120 documents per query and each query-
document pair is represented by 136 features. Moreover, they both come divided in five folds, where each fold is divided
in three partitions for training, validation, and test. In our experiments, we report the results achieved on the first fold of
the two datasets. The third dataset we employ is the YAhoo! LTRC [35]. It contains 30,000 queries, with an average of 24
documents per query and each query-document pair is represented by 699 features. The YAhoo! dataset comes divided
in two sets, each one splitted in three partitions for training, validation, and test, respectively. In our experiments, we
report the results achieved on the first set of this dataset.

5.2 Two‑stage ranking architecture

We evaluate the performance of LB and state-of-the-art competitors in a standard two-stage architecture of a Web search
engine query processor [44]. The pipeline consists of a first stage that is in charge of producing a list of candidate results
that are then re-ranked by a second stage that produces the final list of results to return to the user. Similarly to previous
work [44], we experiment our proposals in the second-stage of the query processor by re-ranking the top-20 documents
provided by a first-stage ranker. We measure the performance of the methods tested by reporting the mean Normalized
Discounted Cumulative Gain (NDCG) [42] at rank k, i.e., NDCG@k.

The performance of the second stage strictly depends on the model used in the first stage to select the top-20 results.
To this end, we define a robust methodology based on cross validation to build the second-stage datasets so to break
any dependency due to stacking the first and second stage rankers. A similar approach has been used by previous work
using public LtR datasets [2, 7]. For each dataset, we perform bayesian hyper-parameter optimization to find the best
set of hyper-parameters of the first stage ranker that maximize NDCG@20 on the validation set2. In detail, we randomly
split the queries of the training, validation and test partitions into 10 folds to train and validate 10 � MART models using
the same set of hyper-parameters. During the i-th iteration of the cross validation, we train a � MART model on all except
the i-th fold of the training partition and by using all except the i-th fold of the validation partition for early stopping. We
then evaluate the learned model by using all queries of the i-th fold of the training, validation and test partitions. There-
fore, each � MART model act as first-stage ranker for a separate fold of the dataset, e.g., the model trained on all except
the i-th fold of the training partition rank the queries of the i-th fold of the three partitions, i.e., training, validation and
test. For each query, we use the top-20 documents provided by the first-stage ranker as second-stage dataset, which is
then used to evaluate LB and all state-of-the-art competitors. Table 1 reports the main statistics of the three datasets for

Table 1 Statistics of all
datasets for each ranking
stage

Dataset Queries Stage 1 Stage 2 Stage 2 pairwise

Docs Feat. Docs Feat. Pairs Feat.

WeB10k Train 6000 723,412 136 117,686 685 2,220,174 1507
Valid 2000 235,259 39,273 740,838
Test 2000 241,521 39,205 739,312

WeB30k Train 18,919 2,270,296 136 369,804 685 6,970,110 1507
Valid 6306 747,218 123,415 2,328,250
Test 6306 753,611 123,519 2,329,648

YAhoo! Train 19,944 473,134 699 294,365 3500 4,754,252 7700
Valid 2944 71,083 43,802 704,534
Test 6983 165,660 103,395 1,672,484

2 We employ the Python library hyperopt [45], https:// github. com/ hyper opt/ hyper opt.

https://github.com/hyperopt/hyperopt

Vol.:(0123456789)

Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7 Research

the different ranking stages. Note that the cross validation is used only to create the second stage datasets. Then, the
second stage rankers are trained using the new training, validation, and test partitions (which contains the same queries
of the first stage partitions, but with fewer results per query) for training, model selection, and evaluation, respectively.

5.3 Competitors

We perform a comparison of the performance of LB against several state-of-the-art competitors for Learning-to-Rank.

• DNN [46]: A deep feed-forward neural network model to learn univariate scoring functions, which employs batch
normalization and dropout after each layer.

• GSF [4]: A groupwise scoring model based on neural networks that ranks documents based on group comparisons.
In our experiments, we report the results for groups of size 2 and 20, i.e., GSf(2) and GSf(20), which are equivalent to
bivariate scoring functions and multivariate scoring functions (scoring all results of a query together), respectively.

• attN-DIN [6]: A neural model using self-attention to encode the entire list followed by multiple feed-forward layers
to jointly score all results.

• SetRaNk [7]: A neural models based on self-attention to jointly score the entire list of results. Differently from ATTn-Din,
SeTRAnk uses a variant of the attention layers and does not employ feed-forward layers on top of that. The authors of
SeTRAnk also proposed a version of the model for re-ranking, which extends the set of features of each result with the
positional encoding of the first stage rank. We did not observe any real advantage in using it, mainly because, in our
setting, the score and the rank in the first stage are already in the feature set (see Sect. 5.5), so we do not report the
results of this version of SeTRAnk.

• GBt [8]: A gradient boosting trees model learning univariate scoring functions, which employs first and second order
derivatives to build the trees.

We evaluate LB and the competitors above by using the � Rank and the Softmax loss. In particular, GSF , attn-DIN , and
SetRank model multivariate scoring functions using neural networks and already exploit the three components that
we are using in our framework for gradient boosting trees. For what regards GBT, its instantiation with the � Rank loss
is known as � MART [9, 10]. Moreover, we call GBT_Softmax its instantiation with the Softmax loss. We also experiment
a variation of the � MART algorithm – we call it � MART* – that takes into account the bias introduced by working in a
two-stage ranking architecture. The bias origins from the fact that, when � MART is trained on the second stage of the
architecture, it only exploits the training data of the current stage, i.e., a subset of the available data for each query.
Therefore, the learning algorithm may ignore some of the relevant results available for some queries when computing
the Ideal DCG used to normalize the weights associated to each query in equation (8). � MART* fixes this behavior using
the Ideal DCG of the first stage which considers all results.

We employed the original implementations of Dnn, GSf, and ATTn-Din available in the TFRanking3 library [46], while
for SeTRAnk we used the original implementation4 released by the authors, which is based on the TensorFlow library [47]
as the previous ones. All gradient boosting trees models, including LB, are implemented in the LightGBM [40] library.5
Similarly to � MART*, our implementation of Bi- � MART uses the Ideal DCG of the first stage during training as � MART*.

5.4 Hyper‑parameter tuning

The hyper-parameters of all models are tuned to optimal on the validation set according to the NDCG@5 metric. The
neural network models use up to 150,000 epochs of training and employ early stopping to stop the training when there
is no improvement on the validation set for 10,000 consecutive epochs. We used a batch size of 32 and the Adagrad [45]
optimizer. The tuning included learning rate, dropout, number of layers, their size, and number of attention layers/heads/
size. The gradient boosting trees models exploit up to 2000 trees and employ early stopping to stop the training when
there is no improvement on the validation set for 30 consecutive iterations. The tuning included learning rate, minimum

3 https:// github. com/ tenso rflow/ ranki ng.
4 https:// github. com/ pl8787/ SetRa nk.
5 To ease the reproducibility of the results we will release our implementations of � MART* and Bi- � MART upon acceptance of the paper.

https://github.com/tensorflow/ranking
https://github.com/pl8787/SetRank

Vol:.(1234567890)

Research Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

data in leaf, number of leaves and minimum hessian. We use the python library hyperopt to perform Bayesian Hyper-
parameter Optimization [45] to find the best set of hyper-parameters of each model.

5.5 Feature expansion

To allow the fairest possible evaluation of the algorithms that learn univariate scoring functions, i.e., Dnn, � MART , and
� MART*, we expand the feature representation of the items in the second-stage datasets with listwise features. These
additional features, built by considering the whole list of results on a per-query basis, allow the three competitors to
exploit query-level information. By doing so, we partially overcome their limitations of considering a single item at a
time. Indeed, several work show that by adding features that captures contextual information of the entire list of results
turns out to improve the ranking performance [44, 48]. We perform this expansion by adding to the representation of
each item in the second stage its score achieved in the first stage. This score is computed by using the � MART model
learned with the methodology described in Sect. 5.2. Then, for each feature f (including the first stage score) and query
q, we add four new listwise features: (i) the mean and (ii) the standard deviation of the values assumed by f in the list
of q, (iii) the rank of each item when ranking the items of q according to f, and (iv) the standardization of f according to
the values assumed in q. In our experiments, all second-stage models are learnt by using this extended set of features.

For Bi- � MART , we represent each pair of items ⟨i, j⟩ with the concatenation of the extended set of listwise features of
i, j, and their feature-wise difference. Note that, while the extended set of listwise features of an item can be effectively
exploited by univariate scoring functions, the latter set, i.e., the concatenation of the features of the two items of the pair
and their feature-wise difference, can be exploited only by bivariate scoring functions as they work on pair of items. The
reason behind explicitly adding features modeling feature-wise differences relies in the fact that tree-based approaches
do not easily capture the difference between two features. This is due to the learning algorithm that, for each split node,
greedily chooses one feature and threshold at a time, thus missing a multi-feature view when deciding the split nodes.
The total number of features used by the different approaches on the three datasets is reported in Table 1. In Sect. 6.1,
we experimentally show the benefits obtained by using these features by performing an ablation study.

6 Experimental results

We now report the results of our experimental evaluation when using the � RAnk loss [11, 36]. We performed an extensive
hyper-parameter tuning process for each model and dataset. Details of hyper-parameters used can be found in Appen-
dix A. We show in Tables 2 and 3 the performance of tree-based and neural-network-based algorithms, respectively,

Table 2 NDCG@k of tree-
based models optimizing
the � RAnk loss on the three
datasets

Best results are highlighted in bold

Superscript letters a,b,c denote statistically significant improvements using a paired t-test (p < 0.01)
with respect to the first, second, and third row of each dataset, respectively

Dataset Stage - Model NDCG

@1 @3 @5 @10 @20

WeB10k 1 - � MART 0.4848 0.4805 0.4874 0.5082 0.5383
2 - � MART 0.4985 0.4901a 0.4968a 0.5143a 0.5417
2 - � MART* 0.5061a 0.4927a 0.4975a 0.5155a 0.5428a

2 - Bi- � MART 0.5202abc 0.5014abc 0.5029abc 0.5195abc 0.5465abc

WeB30k 1 - � MART 0.5253 0.5058 0.5110 0.5289 0.5596
2 - � MART 0.5340 0.5194a 0.5244a 0.5409 a 0.5661a

2 - � MART* 0.5369a 0.5217a 0.5248a 0.5414a 0.5666a

2 - Bi- � MART 0.5386a 0.5272abc 0.5291abc 0.5449abc 0.5690abc

YAhoo! 1 - � MART 0.7227 0.7350 0.7549 0.7957 0.8342
2 - � MART 0.8451a 0.8390a 0.8421a 0.8546a 0.8834a

2 - � MART* 0.8449a 0.8382a 0.8409a 0.8541a 0.8831a

2 - Bi- � MART 0.8494a 0.8430abc 0.8466abc 0.8593abc 0.8857abc

Vol.:(0123456789)

Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7 Research

where the evaluation is done by computing the NDCG@k on the test queries of the three datasets, taking into account
also the relevant results discarded between the first and second stage of the ranking pipeline.

The first row of each dataset in Table 2 reports the performance of the � MART algorithm when employed as a single
stage ranking pipeline. The effectiveness of the � MART baseline on the three datasets is comparable with results reported
in early work employing LightGBM [49] and better than those employing the RankLib library, e.g., [4, 7]. The reason is that
LightGBM provides a much more effective implementation of � MART than RankLib. The remaining rows of each dataset
in Table 2 show the performance of the tested Learning-to-Rank models when employed as a second-stage rankers, in a
ranking architecture where the first stage employs a � MART model providing the list of the first 20 result of each query,
as described in Sect. 5.2. First of all, experimental results show that a two-stage ranking pipeline exploiting only � MART
models (second row of each dataset in Table 2) always achieve a higher NDGG@k than a single-stage pipeline (first row
of each dataset in Table 2). Indeed, the improvement given by the two-stage architecture is statistically significant with
respect to the single-stage one most of the times. Our proposed variant � MART*, which fixes the computation of the
Ideal DCG of the � MART algorithm when employed in the second stage of the ranking pipeline, always outperforms the
single-stage � MART counterpart. Indeed, it outperforms the single-stage � MART model on all datasets with statistically
significant improvements for all tested NDCG cutoffs.

Table 2 also shows that Bi- � MART achieves the best results with statistically significant improvements with respect
to all tested competitors in almost all configurations. When considering NDCG@5, i.e., the metric used for training and
tuning all models, Bi- � MART always outperform the competitors with statistically significant improvements. In particular,
Bi- � MART achieves a NDCG@5 from 3.2% to 12.2% higher than � MART in the first stage, from 0.5% to 1.2% higher than �
MART in the second stage, and from 0.7% to 1.1% higher than our variant � MART*. Since all tested models optimize the
same � RAnk loss using gradient boosting trees, the experimental results confirm that the greater expressive power of
Bi- � MART comes from the use of bivariate scoring functions.

Table 3 reports the performance of the several neural-network-based competitors introduced in the previous section
when optimizing the � RAnk loss. Experimental results show that NNs learning multivariate scoring functions are more
effective than Dnn, which is the only univariate one, on WeB30k and YAhoo!. In details, SeTRAnk and ATTn-Din achieve the
best results on all datasets among the neural network models for all tested NDCG cutoffs. The improved effectiveness
achieved by SeTRAnk and ATTn-Din, with respect to all other neural network models, relies in the fact that the attention
layers [5] allow them to exploit the interactions among all documents of the list. Indeed, they effectively exploit the
information available in the list of documents to achieve a better ranking. Nevertheless, experimental results show that
tree-based models outperform neural network models by a large margin.

To conclude, results show that Bi- � MART , which instantiate LB using the � RAnk loss, outperforms all state-of-the-
art tree-based and neural-network-based competitors optimizing the same loss function, with statistically significant
improvements for almost all tested NDCG cutoffs and datasets.

Table 3 NDCG@k of neural
network models optimizing
the � RAnk loss when applied
as second stage rankers to the
three datasets

Dataset Model NDCG

@1 @3 @5 @10 @20

WeB10k Dnn 0.4670 0.4537 0.4590 0.4772 0.5056
GSf(2) 0.4680 0.4546 0.4587 0.4759 0.5053
GSf(20) 0.4694 0.4528 0.4569 0.4724 0.5039
ATTn-Din 0.4639 0.4537 0.4607 0.4765 0.5053
SeTRAnk 0.4786 0.4616 0.4653 0.4810 0.5091

WeB30k Dnn 0.5018 0.4840 0.4880 0.5049 0.5330
GSf(2) 0.4993 0.4842 0.4881 0.5047 0.5328
GSf(20) 0.5007 0.4846 0.4895 0.5050 0.5329
ATTn-Din 0.5030 0.4898 0.4929 0.5083 0.5356
SeTRAnk 0.5037 0.4895 0.4938 0.5095 0.5362

YAhoo! Dnn 0.7965 0.7912 0.7960 0.8119 0.8425
GSf(2) 0.8010 0.7938 0.7987 0.8137 0.8438
GSf(20) 0.8032 0.7946 0.7993 0.8138 0.8445
ATTn-Din 0.8073 0.7990 0.8026 0.8167 0.8464
SeTRAnk 0.8061 0.7975 0.8017 0.8159 0.8459

Vol:.(1234567890)

Research Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

6.1 Role of feature‑wise difference features

In Sect. 5.5, we described the set of expanded features employed to allow the fairest evaluation possible against
the models learning univariate scoring functions, i.e., � MART , � MART*, and Dnn. We also detailed the additional
set of features used by Bi- � MART . This latter model exploits the extended sets of features of items i and j plus their
feature-wise difference. While univariate scoring functions and attention-based multivariate scoring functions can
access only the features of one item at a time when scoring, these additional features can be exploited by bivariate
scoring functions, i.e., GSf(2) and Bi- � MART , as they score a pair of items at a time. We now assess the importance of
the feature-wise difference features in the performance of Bi- � MART . We aim to show that, the feature-wise differ-
ences are marginally relevant for neural-network-based models and essential for tree-based models. The reason is
that the greedy learning algorithm used to build the trees lacks a multi-feature view when building the split-nodes
as each split node is decided greedily by looking at one feature and threshold at a time.

Table 4 reports the results of this investigation, where we compare, on the WeB30k dataset, the performance of both
GSf and Bi- � MART when trained without or with the additional set of feature-wise difference features. Experiments
show that GSf(2) slightly benefits from the feature-wise difference features as its performance are always very close
to its counterpart that does not exploit them (+0.29 % in terms of NDCG@5). The small difference between the two
versions of GSf(2) is more evident at small cutoffs of the NDCG metric while it thins for larger values of the cutoff.

We also perform the same investigation for Bi- � MART . Experiments show that it achieves much better results in
terms of NDCG@k than its counterpart that does not employ the feature-wise difference features (+0.67 % in terms
of NDCG@5). Moreover, without these features, the performance of Bi- � MART are very close to those of � MART*,
which exploits univariate scoring functions. In general, results show that the set of feature-wise difference features
are crucial to the effectiveness of Bi- � MART .

Experimental results confirm that deep neural network models are already able to capture this type of multi-feature
aspects, while tree-based models are not. To conclude, experiments support our initial hypothesis that feature-wise
difference features provide an essential representation of the pairs of items for tree-based models.

6.2 Assessing LB with the SoftMax loss

To show the generality of the LB framework, here we present an analysis of the performance of neural networks and
tree-based models when using the SofTMAx loss [12]. This is a popular and effective listwise loss for neural networks [4,
6, 13] and is defined as �

SOFTMAX
(y, s) = −

∑
i yi log

esi∑
j e

sj
 . We perform this analysis on the second stage of the WeB30k

dataset. The hyper-parameters of all models have been tuned using this new loss.
We report the results of the comparison in Table 5. First of all, we note that all neural network models achieve a bet-

ter performance using the SofTMAx loss than using the � RAnk loss (Table 3), with improvements up to 1.27% in terms
of NDCG@5. As in the previous analysis, SeTRAnk and ATTn-Din achieve the best results among the neural networks for
all tested NDCG cutoffs thus confirming the effectiveness of the attention mechanism for ranking.

We implemented the SofTMAx loss in LightGBM to assess the performance of the tree-based competitor based on
univariate scoring functions. The GBT model optimizing the SofTMAx loss – we call it GBT

SOFTMAX
 – outperforms all

neural network models by a large margin with statistically significant improvements. However, we highlight that, GBT
achieves a lower performance when optimizing SofTMAx than when optimizing the � RAnk loss, i.e., −0.27 % in terms
of NDCG@5 w.r.t. � MART (see Table 2).

Table 4 NDCG@k of bivariate
models optimizing the � RAnk
loss when trained without
or with the additional set
of feature-wise difference
features and applied as
second stage rankers to
WeB30k

Model NDCG

@1 @3 @5 @10 @20

GSf(2) without 0.4993 0.4842 0.4881 0.5047 0.5328
GSf(2) with 0.5007 0.4846 0.4895 0.5050 0.5329
Bi- � MART without 0.5390 0.5237 0.5256 0.5409 0.5669
Bi- � MART with 0.5386 0.5272 0.5291 0.5449 0.5690

Vol.:(0123456789)

Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7 Research

In this experimental evaluation, we call BI-GBT
SOFTMAX

 the application of the LB framework to the SofTMAx loss.
BI-GBT

SOFTMAX
 achieves better results than GBT

SOFTMAX
 for all tested NDCG cutoffs, showing the effectiveness of the

bivariate scoring functions for ranking. In particular, it improves over GBT
SOFTMAX

 by 1.3% of NDCG@5 and all the
improvements reported are statistically significant. Moreover, BI-GBT

SOFTMAX
 achieves a slightly better performance

than Bi- � MART , showing that it is more robust to changes of the loss function with respect to the univariate counter-
part GBT, which performs worse with SofTMAx than with � RAnk. Therefore, � RAnk is a strong loss function for ranking
when using univariate scoring functions based on gradient boosting trees. However, the SofTMAx loss can further
improve the effectiveness of the bivariate scoring functions counterpart. BI-GBT

SOFTMAX
 outperforms all neural net-

work models based on SofTMAx by a large margin. In particular, it improves over the best-performing neural network,
i.e., SeTRAnk, by 6.0% in terms of NDCG@5.

Results thus show that the proposed LB framework outperforms all state-of-the-art neural-network-based and tree-
based competitors using different loss functions.

7 Conclusions and future work

Our work stems from the fact that most of the state-of-the-art Learning-to-Rank algorithms learn univariate scoring
functions that score each item independently, i.e., without taking into account the other items in the list. To overcome
this limitation, we presented a novel Learning-to-Rank framework – the Lambda Bivariate framework – to learn ranking
models based on bivariate scoring functions, i.e., functions scoring pairs of items so to effectively capture the depend-
encies between items in the list. We showed that LB can be used with any loss function to train gradient boosting trees.
Moreover, we discussed an application of LB to the � RAnk loss, which resulted in Bi- � MART , a pairwise version of � MART .

We proposed a comprehensive experimental evaluation of Bi- � MART and several state-of-the-art tree-based and
neural-network-based competitors over three public Learning-to-Rank datasets. Results show that Bi- � MART outper-
forms neural network models by a significant margin and also outperforms � MART with a relative improvement in terms
of NDCG@5 ranging from 0.5% to 1.2%. Moreover, we also experimented LB with the softmax loss function and showed
that it outperforms in terms of NDCG@5 the tree-based competitor by 1.3% and the best-performing neural-network-
based competitor by 6.0%. As future work, we aim to extend the LB framework to learn multivariate scoring functions
for ranking to jointly score multiple items at a time.

Author contributions All authors contributed equally to the design of the Lambda Bivariate framework and to the experimental evaluation
presented in this manuscript. All authors wrote the first draft of the manuscript and approved its final version.

Funding This work was supported by: MUR-PRIN 2022 “Algorithmic Problems and Machine Learning”; PNRR - M4C2 - Investimento 1.3, Parte-
nariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-centered AI” funded by the European Union (EU)
under the NextGeneration EU programme; the EU’s Horizon Europe research and innovation programme EFRA (Grant Agreement Number
101093026). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European
Commission-EU. Neither the EU nor the granting authority can be held responsible for them.

Table 5 NDCG@k of models
optimizing the SofTMAx loss
when applied as second stage
rankers to WeB30k

Superscripts † and * denote statistically significant improvements using a paired t-test (p < 0.01) with
respect to neural network competitors (DNN, GSF(2), GSF(20), ATTN-DIN, SetRank) and tree-based com-
petitors (GBT

SOFTMAX
), respectively

Model NDCG

@1 @3 @5 @10 @20

Dnn 0.5021 0.4868 0.4910 0.5078 0.5339
GSf(2) 0.4989 0.4873 0.4916 0.5082 0.5341
GSf(20) 0.5016 0.4883 0.4928 0.5092 0.5348
ATTn-Din 0.5049 0.4933 0.4991 0.5127 0.5377
SeTRAnk 0.5055 0.4963 0.4998 0.5145 0.5385
GBT

SOFTMAX 0.5320† 0.5181† 0.5230† 0.5391† 0.5649†

BI-GBT
SOFTMAX 0.5389†∗ 0.5267†∗ 0.5299†∗ 0.5451†∗ 0.5682†∗

Vol:.(1234567890)

Research Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

Data availability The experimental evaluation has been conducted by employing three public datasets for Learning-to-Rank, i.e., the two
LETOR datasets [43] and the “Yahoo! Learning to Rank Challenge” [35] dataset.

Declarations

Ethics approval and consent to participate Not applicable.

Competing interests The authors declare a potential Conflict of interest (COI) with Michael Bendersky and Nicola Tonellotto (previous co-
authors).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Appendix A

A Experimental details
To ease the reproducibility of the results, tables below report the hyper-parameters used for all models of Tables 2

and 3. The methodology used to tune the hyper-parameters of all second-stage models is described in Sect. 5.4. Tables 6
and 7 reports the non-default parameters of neural network models, while Table 8 reports the ones of tree-based models.

Table 6 Hyper-parameters of
TensorFlow neural network
models

Dataset Model Learning Hidden layer Dropout
Rate Sizes

WeB10k Dnn 0.010 1024,256,64 0.5
GSf(2) 0.005 1024,512,256,128 0.5
GSf(20) 0.050 512,256,128,64 0.50
ATTn-Din 0.005 512,256,128,64 0.25
SeTRAnk 0.050 – –

WeB30k Dnn 0.050 512,256,128,64 0.5
GSf(2) 0.010 4096,1024,256,64 0.5
GSf(20) 0.050 1024,512,256,128 0.5
ATTn-Din 0.050 512,128,32 0.5
SeTRAnk 0.050 – –

YAhoo! Dnn 0.050 1024,512,256 0.5
GSf(2) 0.050 2048,1024,512,256 0.5
GSf(20) 0.050 1024,512,256 0.25
ATTn-Din 0.050 2048,1024,512,256 0.25
SeTRAnk 0.050 – –

Table 7 Hyper-parameters
of the attention layers of
attention-based neural
network models

Dataset Model Num layers Num heads Size Dropout

WeB10k ATTn-Din 4 6 256 0.25
SeTRAnk 5 2 256 0.50

WeB30k ATTn-Din 1 4 256 0.50
SeTRAnk 4 2 256 0.50

YAhoo! ATTn-Din 6 1 128 0.25
SeTRAnk 4 2 512 0.25

http://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7 Research

References

 1. Liu T. Learning to rank for information retrieval. Found Trends Inf Retr. 2009;3(3):225–331. https:// doi. org/ 10. 1561/ 15000 00016.
 2. Ai Q, Bi K, Guo J, Croft WB. Learning a deep listwise context model for ranking refinement. In: Proceedings of the 41st International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR), ACM; 2018. p. 135–44. https:// doi. org/ 10. 1145/ 32099
78. 32099 85.

 3. Bello I, Kulkarni S, Jain S, Boutilier C, Chi EH, Eban E, Luo X, Mackey A, Meshi O. Seq2Slate: re-ranking and slate optimization with RNNs.
CoRR. abs/1810.02019. 2018

 4. Ai Q, Wang X, Bruch S, Golbandi N, Bendersky M, Najork M. Learning groupwise multivariate scoring functions using deep neural networks.
In: Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR), ACM; 2019. p. 85–92. https://
doi. org/ 10. 1145/ 33419 81. 33442 18.

 5. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Lu, Polosukhin I. Attention is all you need. In: Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS), Curran Associates, Inc.; 2017;30:5998–6008.

 6. Pasumarthi RK, Zhuang H, Wang X, Bendersky M, Najork M. Permutation equivariant document interaction network for neural learning
to rank. In: Proceedings of the 2020 ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR), ACM; 2020. p.
145–8.

 7. Pang L, Xu J, Ai Q, Lan Y, Cheng X, Wen J. SetRank: Learning a permutation-invariant ranking model for information retrieval. In: Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), ACM; 2020. p. 499–508.
https:// doi. org/ 10. 1145/ 33972 71. 34011 04.

 8. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.
 9. Burges CJ. From RankNet to LambdaRank to LambdaMART: an overview. Learning. 2010;11(23–581):81.
 10. Wu Q, Burges CJC, Svore KM, Gao J. Adapting boosting for information retrieval measures. Inf Retr. 2010;13(3):254–70. https:// doi. org/

10. 1007/ s10791- 009- 9112-1.
 11. Burges CJC, Ragno R, Le QV. Learning to rank with nonsmooth cost functions. In: Proceedings of the Annual Conference on Neural Infor-

mation Processing Systems (NeurIPS), MIT Press; 2006. p. 193–200.
 12. Cao Z, Qin T, Liu T, Tsai M, Li H. Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the Twenty-Fourth

International Conference on Machine Learning (ICML). ACM; 2007. https:// doi. org/ 10. 1145/ 12734 96. 12735 13.
 13. Bruch S, Wang X, Bendersky M, Najork M. An analysis of the softmax cross entropy loss for learning-to-rank with binary relevance. In:

Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR), ACM; 2019. p. 75–8. https:// doi.
org/ 10. 1145/ 33419 81. 33442 21.

 14. Capannini G, Lucchese C, Nardini FM, Orlando S, Perego R, Tonellotto N. Quality versus efficiency in document scoring with learning-to-
rank models. Inf Process Manag. 2016;52(6):1161–77. https:// doi. org/ 10. 1016/j. ipm. 2016. 05. 004.

 15. Tax N, Bockting S, Hiemstra D. A cross-benchmark comparison of 87 learning to rank methods. Inf Process Manag. 2015;51(6):757–72.
 16. Macdonald C, Santos RL, Ounis I. The whens and hows of learning to rank for web search. Inf Retr. 2013;16(5):584–628.
 17. Li P, Burges CJC, Wu Q. McRank: learning to rank using multiple classification and gradient boosting. In: Proceedings of the Annual Confer-

ence on Neural Information Processing Systems (NeurIPS), 2007. p. 897–904.
 18. Cossock D, Zhang T. Subset ranking using regression. In: Proceedings of the 19th Annual Conference on Learning Theory (COLT), vol.

4005. Springer; 2006. p. 605–19. https:// doi. org/ 10. 1007/ 11776 420_ 44.
 19. Shashua A, Levin A. Ranking with large margin principle: two approaches. In: Proceedings of the Annual Conference on Neural Informa-

tion Processing Systems (NeurIPS), MIT Press; 2002. 937–44.
 20. Crammer K, Singer Y. Pranking with ranking. In: Proceedings of the Annual Conference on Neural Information Processing Systems (Neu-

rIPS), MIT Press; 2001. p. 641–7.
 21. Zheng Z, Zha H, Zhang T, Chapelle O, Chen K, Sun G. A general boosting method and its application to learning ranking functions for web

search. In: Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), Curran Associates, Inc.; 2007. p.
1697–704.

Table 8 Hyper-parameters of
LightGBM tree-based models

Dataset Stage - Model Learning rate Min data Num leaves Min hessian

WeB10k 1 - � MART 0.050 200 115 0
2 - � MART 0.080 2680 230 20
2 - � MART* 0.045 1910 245 80
2 - Bi- � MART 0.005 5640 300 0

WeB30k 1 - � MART 0.080 190 365 195
2 - � MART 0.040 460 500 240
2 - � MART* 0.045 40 75 50
2 - Bi- � MART 0.001 7150 1530 0

YAhoo! 1 - � MART 0.050 500 425 10
2 - � MART 0.105 170 445 170
2 - � MART* 0.075 170 490 5
2 - Bi- � MART 0.005 1790 1100 0

https://doi.org/10.1561/1500000016
https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3341981.3344218
https://doi.org/10.1145/3341981.3344218
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/3341981.3344221
https://doi.org/10.1145/3341981.3344221
https://doi.org/10.1016/j.ipm.2016.05.004
https://doi.org/10.1007/11776420_44

Vol:.(1234567890)

Research Discover Computing (2024) 27:33 | https://doi.org/10.1007/s10791-024-09444-7

 22. Cao Y, Xu J, Liu T, Li H, Huang Y, Hon H. Adapting ranking SVM to document retrieval. In: Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), ACM; 2006. p. 186–93. https:// doi. org/ 10. 1145/
11481 70. 11482 05.

 23. Burges CJC, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender GN. Learning to rank using gradient descent. In: Proceedings
of the Twenty-Second International Conference on Machine Learning (ICML). ACM; 2005. https:// doi. org/ 10. 1145/ 11023 51. 11023 63.

 24. Freund Y, Iyer RD, Schapire RE, Singer Y. An efficient boosting algorithm for combining preferences. J Mach Learn Res. 2003;4:933–69.
 25. Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression. In: Smola AJ, Bartlett P, Schölkopf B, Schuurmans

D, editors. Advances in large-margin classifiers. Cambridge: The MIT Press; 2000. https:// doi. org/ 10. 7551/ mitpr ess/ 1113. 003. 0010.
 26. Fürnkranz J, Hüllermeier E. Preference learning and ranking by pairwise comparison. In: Fürnkranz J, Hüllermeier E, editors. Preference

learning. Berlin: Springer; 2010. p. 65–82. https:// doi. org/ 10. 1007/ 978-3- 642- 14125-6_4.
 27. Dehghani M, Zamani H, Severyn A, Kamps J, Croft WB. Neural ranking models with weak supervision. In: Proceedings of the 40th Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), ACM; 2017. p. 65–74. https:// doi. org/ 10.
1145/ 30771 36. 30808 32.

 28. Cohen WW, Schapire RE, Singer Y. Learning to order things. J Artif Intell Res. 1999;10:243–70. https:// doi. org/ 10. 1613/ jair. 587.
 29. Ailon N, Mohri M. Preference-based learning to rank. Mach Learn. 2010;80(2–3):189–211. https:// doi. org/ 10. 1007/ s10994- 010- 5176-9.
 30. Bruch S, Han S, Bendersky M, Najork M. A stochastic treatment of learning to rank scoring functions. In: Proceedings of the 13th Interna-

tional Conference on Web Search and Data Mining (WSDM), ACM; 2020. p. 61–9. https:// doi. org/ 10. 1145/ 33361 91. 33718 44.
 31. Xia F, Liu T, Wang J, Zhang W, Li H. Listwise approach to learning to rank: theory and algorithm. In: Proceedings of the Twenty-Fifth Inter-

national Conference Machine Learning (ICML), vol. 307. ACM; 2008. p. 1192–9. https:// doi. org/ 10. 1145/ 13901 56. 13903 06.
 32. Xu J, Li H. AdaRank: a boosting algorithm for information retrieval. In: Roceedings of the 30th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR), ACM; 2007. p. 391–8. https:// doi. org/ 10. 1145/ 12777 41. 12778 09.
 33. Bruch S, Zoghi M, Bendersky M, Najork M. Revisiting approximate metric optimization in the age of Deep Neural Networks. In: Proceedings

of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), ACM; 2019. p. 1241–4.
https:// doi. org/ 10. 1145/ 33311 84. 33313 47.

 34. Pobrotyn P, Bialobrzeski R. Neuralndcg: direct optimisation of a ranking metric via differentiable relaxation of sorting. CoRR.
abs/2102.07831. 2021.

 35. Chapelle O, Chang Y. Yahoo! learning to rank challenge overview. In: Proceedings of the Yahoo! Learning to Rank Challenge, Held at ICML,
vol. 14. JMLR.org; 2011. p. 1–24.

 36. Donmez P, Svore KM, Burges CJC. On the local optimality of LambdaRank. In: Proceedings of the 32nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR), ACM; 2009. p. 460–7. https:// doi. org/ 10. 1145/ 15719 41. 15720 21.

 37. Beretta L, Nardini FM, Trani R, Venturini R. An optimal algorithm to find champions of tournament graphs. In: Proceedings of the 26th
International Symposium String Processing and Information Retrieval—(SPIRE), Springer; 2019. p. 267–73. https:// doi. org/ 10. 1007/ 978-
3- 030- 32686-9_ 19.

 38. Nogueira R, Yang W, Cho K, Lin J. Multi-stage document ranking with BERT. CoRR. abs/1910.14424. 2019.
 39. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc: Ser B. 1977;39(1):1–22.
 40. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T. LightGBM: a highly efficient gradient boosting decision tree. In: Proceedings of

the Annual Conference on Neural Information Processing Systems (NeurIPS). 2017. p. 3146–54.
 41. Leong WJ, Hassan MA, Yusuf MW. A matrix-free quasi-newton method for solving large-scale nonlinear systems. Comput Math Appl.

2011;62(5):2354–63. https:// doi. org/ 10. 1016/j. camwa. 2011. 07. 023.
 42. Järvelin K, Kekäläinen J. Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst. 2002;20(4):422–46. https:// doi. org/ 10.

1145/ 582415. 582418.
 43. Qin T, Liu T. Introducing LETOR 4.0 datasets. CoRR. abs/1306.2597. 2013.
 44. Yin D, Hu Y, Tang J Jr, Daly T, Zhou M, Ouyang H, Chen J, Kang C, Deng H, Nobata C, Langlois J, Chang Y. Ranking relevance in Yahoo Search.

In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. p. 323–32. ACM.
https:// doi. org/ 10. 1145/ 29396 72. 29396 77.

 45. Bergstra J, Yamins D, Cox DD. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision
architectures. In: Proceedings of the 30th International Conference on Machine Learning, (ICML). JMLR Workshop and Conference Pro-
ceedings, vol. 28. JMLR.org; 2013. p. 115–23.

 46. Pasumarthi RK, Bruch S, Wang X, Li C, Bendersky M, Najork M, Pfeifer J, Golbandi N, Anil R, Wolf S. Tf-Ranking: Scalable tensorflow library
for learning-to-rank. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD),
ACM. 2019. p. 2970–8. https:// doi. org/ 10. 1145/ 32925 00. 33306 77.

 47. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M. TensorFlow: a system for large-scale machine
learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation, ({OSDI}). USENIX Association. 2016. https://
www. usenix. org/ confe rence/ osdi16/ techn ical- sessi ons/ prese ntati on/ abadi.

 48. Lucchese C, Nardini FM, Orlando S, Perego R, Tonellotto N. Speeding-up document ranking with rank-based features. In: Proceedings of
the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), ACM; 2015. p. 895–8. https://
doi. org/ 10. 1145/ 27664 62. 27677 76.

 49. Wang X, Li C, Golbandi N, Bendersky M, Najork M. The LambdaLoss framework for ranking metric optimization. In: Proceedings of the
27th ACM International Conference on Information and Knowledge Management (CIKM), ACM; 2018. p. 1313–22. https:// doi. org/ 10.
1145/ 32692 06. 32717 84.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/1148170.1148205
https://doi.org/10.1145/1148170.1148205
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.7551/mitpress/1113.003.0010
https://doi.org/10.1007/978-3-642-14125-6_4
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1613/jair.587
https://doi.org/10.1007/s10994-010-5176-9
https://doi.org/10.1145/3336191.3371844
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/3331184.3331347
https://doi.org/10.1145/1571941.1572021
https://doi.org/10.1007/978-3-030-32686-9_19
https://doi.org/10.1007/978-3-030-32686-9_19
https://doi.org/10.1016/j.camwa.2011.07.023
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/2939672.2939677
https://doi.org/10.1145/3292500.3330677
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/2766462.2767776
https://doi.org/10.1145/2766462.2767776
https://doi.org/10.1145/3269206.3271784
https://doi.org/10.1145/3269206.3271784

	Learning bivariate scoring functions for ranking
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 The lambda bivariate framework
	4.1 Invariance to permutations
	4.2 Aggregation function
	4.3 Optimization process
	4.4 Bivariate MART

	5 Experimental setup
	5.1 Datasets
	5.2 Two-stage ranking architecture
	5.3 Competitors
	5.4 Hyper-parameter tuning
	5.5 Feature expansion

	6 Experimental results
	6.1 Role of feature-wise difference features
	6.2 Assessing LB with the Softmax loss

	7 Conclusions and future work
	Appendix A
	References

