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Abstract
State-of-the-art Learning-to-Rank algorithms, e.g., � MART , rely on univariate scoring functions to score a list of items. 
Univariate scoring functions score each item independently, i.e., without considering the other available items in the list. 
Nevertheless, ranking deals with producing an effective ordering of the items and comparisons between items are helpful 
to achieve this task. Bivariate scoring functions allow the model to exploit dependencies between the items in the list 
as they work by scoring pairs of items. In this paper, we exploit item dependencies in a novel framework—we call it the 
Lambda Bivariate (LB) framework—that allows to learn effective bivariate scoring functions for ranking using gradient 
boosting trees. We discuss the three main ingredients of LB: (i) the invariance to permutations property, (ii) the function 
aggregating the scores of all pairs into the per-item scores, and (iii) the optimization process to learn bivariate scoring 
functions for ranking using any differentiable loss functions. We apply LB to the � RAnk loss and we show that it results in 
learning a bivariate version of � MART —we call it Bi- � MART —that significantly outperforms all neural-network-based 
and tree-based state-of-the-art algorithms for Learning-to-Rank. To show the generality of LB with respect to other loss 
functions, we also discuss its application to the SofTMAx loss.

Keywords Learning-to-Rank · Bivariate scoring functions · Pairwise scoring

1 Introduction

Ranking is a challenging machine learning task that aims to produce an ordering of a list of items that maximize a listwise 
utility metric. Differently from classification and regression, ranking focuses on the ordering of the items rather than on a 
specific class or value predicted for each item. In the last years, the ranking problem has been addressed using machine 
learning, in the field known as Learning-to-Rank (LtR), and several approaches for solving this task have been devised [1]. 
Most of the existing LtR approaches rely on univariate scoring functions that estimate the ranking score of one item 
at a time in isolation, i.e., without considering the other available items in the list. Although this approach is proven to 
be effective, it is intrinsically limited as univariate scoring functions cannot compare the available items in the list to 
exploit their dependencies, which may be very helpful to rank them. For this reason, multivariate scoring functions that 
estimate the ranking score of each item as a function of multiple items of the list can effectively take into account the 
items dependencies when scoring.

Recently, several works employ neural networks to learn multivariate scoring functions to effectively exploit the item 
dependencies for ranking. Ai et al. and Bello et al. use recurrent neural networks for re-ranking to exploit contextual 
information available in the list of results [2, 3]. Similarly, Ai et al. propose Groupwise Scoring Functions (GSf), a new 

 * Roberto Trani, roberto.trani@isti.cnr.it; Franco Maria Nardini, francomaria.nardini@isti.cnr.it; Rossano Venturini, rossano.venturini@
unipi.it | 1ISTI-CNR, Pisa, Italy. 2University of Pisa, Pisa, Italy.



Vol:.(1234567890)

Research Discover Computing           (2024) 27:33  | https://doi.org/10.1007/s10791-024-09444-7

framework to learn multivariate scoring functions for ranking using deep neural networks [4]. More recently, Pasumarthi 
et al. and Pang et al. propose the application of attention [5] to learn neural networks for ranking. The two methods, 
called ATTn-Din  [6] and SeTRAnk  [7], respectively, are able to effectively capture contextual information and cross-item 
interactions from the list of items to rank. However, all the proposed contributions towards multivariate scoring func-
tions are limited to neural network models and cannot be directly exploited to learn gradient boosting trees [8]. This is 
an important limitation as gradient boosting trees models, e.g., � MART   [9, 10], achieve state-of-the-art performance on 
Learning-to-Rank reference datasets.

Novel contributions To overcome the limitations discussed above, we propose the Lambda1 Bivariate (LB) framework, a 
novel framework for learning bivariate scoring functions for ranking using gradient boosting trees. LB works by scoring 
all pairs of items in the list. Differently from existing solutions based on multivariate scoring functions, LB can be used 
with any loss function. Moreover, LB defines three requirements to learn effective bivariate scoring functions: (i) the 
invariance to permutations property, (ii) the function aggregating the scores of all pairs into the per-item scores, (iii) the 
optimization process to learn the bivariate scoring function that optimizes a target utility function. First, the invariance 
to permutations guarantees the independence of the scores of the items from their input order. We formally introduce 
it in LB because, since we use tree-based models, we cannot rely on a specific model architecture, e.g., symmetric neural 
networks, to learn such property [6, 7]. Second, the aggregation function is required to produce a final score for an item 
given the outcomes of the bivariate scoring function providing scores for pairs of items. Third, given an arbitrary loss 
function, we discuss how to optimize it in a pairwise fashion by exploiting gradient boosting trees.

We apply LB to the � RAnk loss [9, 11] and we show that it results in learning a bivariate version of � MART —we call 
it Bi- � MART —that significantly outperforms all neural-network-based and tree-based state-of-the-art algorithms for 
Learning-to-Rank. To show the generality of LB to other loss functions, we also discuss its application to the SofTMAx 
loss [12], which is a popular and effective listwise loss for neural networks [4, 6, 13].

To summarize, the novel and unpublished contributions presented in this paper are:

• We introduce LB, a novel framework for learning bivariate scoring functions for ranking using gradient boosting trees. 
We first discuss the main requirements that allow LB to effectively learn bivariate scoring functions. We then show 
that it can be easily employed with any loss function;

• We apply LB to the � RAnk loss [9, 11] and we define the resulting model as Bi- � MART , which represents a bivariate 
version of the state-of-the-art � MART  algorithm [10];

• We present a comprehensive experimental evaluation of Bi- � MART  on three public Learning-to-Rank datasets. Results 
show that Bi- � MART  outperforms all state-of-the-art neural-network-based models by a large margin and also out-
performs � MART  with a relative improvement in terms of NDCG@5 ranging from 0.5% to 1.2%. To show the generality 
of the proposed framework, we also assess LB with the SofTMAx loss;

• To allow the reproducibility of the results, we release our implementation of LB as open source upon acceptance of 
the paper.

Paper structure Section 2 discusses related work. Section 3 formalizes the problem while Sect. 4 introduces our proposed 
LB framework for learning bivariate scoring functions. We then discuss the experimental setup in Sect. 5 and we propose 
a comprehensive experimental evaluation of LB against state-of-the-art competitors in Sect. 6. Finally, Sect. 7 concludes 
the work and discusses future directions.

2  Related work

In the last years, the ranking problem has been extensively studied [1, 14] and several effective machine learning algo-
rithms have been introduced [15, 16]. Learning-to-Rank algorithms are usually categorized by the loss function they 
employ, i.e., pointwise, pairwise, and listwise approaches.

Pointwise approaches aim to directly estimate the ground truth label of a single item, i.e., its relevance score, by 
employing a loss function defined on a per-item basis [17–20]. Therefore, pointwise approaches do not focus on directly 
optimizing the order of the items in the list.

1 “Lambda” here origins from the lambda notation in mathematics and computer programming.
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Pairwise approaches, instead, employ a loss function defined on pairs of items, exploiting the information of two 
items at a time, to learn the relative ordering of the items in the list [21–25]. Pairwise approaches can be further divided 
into approaches that employ bivariate scoring functions and approaches that employ univariate scoring functions. The 
approaches in the former category learn preferences, i.e., order relationships between pairs of items [26]. A recent work 
in this direction is the one by Dehghani et al. [27], where authors employ a bivariate neural network model, RAnkPRoB, 
that estimates the probability that one item is more relevant than the other. RAnkPRoB estimates the probability that one 
item is more likely being relevant than the other one. This problem is addressed as a binary classification task and the 
ranking score of an item is computed by averaging its pairwise preference scores. However, RAnkPRoB does not directly 
deal with the ranking task as it aims to learn a pairwise classifier separating the pairs, instead of optimizing the induced 
ranking. Moreover, the approaches falling in this category may lead to conflicts during the final sorting of the items as 
the learned preferences could not be transitive, e.g., a circular dependency among three or more items may exist and 
any possible ranking would break at least one preference. This problem can be addressed by finding an ordering of the 
items that minimizes the number of broken preferences, which is known to be NP-Hard [28], or that approximates it [29]. 
Nevertheless, well-known pairwise approaches employ a univariate scoring function. This means that the algorithm learns 
a univariate function that scores one item at a time and the function is learned by optimizing a pairwise loss function 
defined over pairs of items, e.g., RAnkBooST [24] and RAnkneT [23]. Pairwise approaches solve some of the issues of pointwise 
approaches. However, learning the relative ordering of the items is a more complex task than ranking the items. Indeed, 
the optimization of the relative order of the majority of the pairs of items of the list does not guarantee that the most 
relevant items would be ranked higher, i.e,. we may improve the ranking by focusing more on the most relevant items.

Listwise approaches overcome these limitations by employing a loss function defined on the list of items to directly 
optimize a given ranking metric [10–12, 30–32]. Since the rank is not a continuous and differentiable function, it cannot 
be optimized using classical gradient-based machine learning algorithms. To overcome this limitation, several continu-
ous and differentiable approximations of listwise ranking metrics have been proposed [11, 33, 34]. The state-of-the-art 
listwise algorithm is � MART   [9], which won the “Yahoo! Learning to Rank Challenge” [35]. � MART  exploits a combination 
of � RAnk loss [11, 36] and gradient boosting trees [8].

Neural networks for ranking Most of the existing Learning-to-Rank algorithms share a common limitation: they learn 
univariate scoring functions that score each item independently from the other items of the list. Some recent approaches 
overcome this limitation. A first contribution in this line is by Ai et al., where authors propose to learn a Deep Listwise 
Context Model (DLCM) to be used for ranking a list of candidate items [2]. Authors employ a recurrent neural network 
(RNN) to sequentially encode a list of items and learn a local context model representing the list, then use it to re-rank 
the items. Authors show that DLCM can effectively capture the local ranking context based on the complex interactions 
between the items. The application of a sequence-to-sequence recurrent neural network for ranking is also proposed 
by Bello et al. [3]. The authors employ a RNN to predict the next “best” item to select, given the items already selected. 
Recently, Ai et al. propose GSf, a new framework for learning groupwise scoring functions [4]. The framework relies on 
neural networks to jointly learn the relevance scores of groups of items at a time, thus exploiting cross-item dependen-
cies when scoring the groups. The GSf framework exploits the ability of neural networks to model multivariate scoring 
functions.

More recent approaches exploit attention [5] to learn effective neural networks for ranking. In this line, Pasumarthi et al. 
propose ATTn-Din, a new approach that exploits self-attention item interaction networks for ranking under the multivari-
ate scoring paradigm [6]. Authors show that ATTn-Din can automatically learn permutation-equivariant representations, 
i.e., the scores it produces do not depend from the position of the items in the input, to capture item interactions without 
any auxiliary information. A second contribution exploiting neural networks and attention is SeTRAnk by Pang et al. [7]. 
SeTRAnk is a self-attention network that satisfies the permutation-equivariant requirement. Authors show that the self-
attention mechanism allows SeTRAnk to capture both the local context information from the cross-item interactions and 
to learn permutation-equivariant representations for the items.

The methods above exploit neural networks with “complex” architectures to learn multivariate scoring functions. This 
peculiarity limits the applicability of these techniques to gradient boosting trees, which still achieve state-of-the-art 
performance on public LtR datasets. We overcome this limitation by proposing LB, a new framework to learn bivariate 
scoring functions with gradient boosting trees and by showing that LB can be applied to learn effective bivariate scor-
ing functions.
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3  Problem formulation

This section provides a formulation of the ranking problem in the Learning-to-Rank (LtR) setting. In LtR, a list of items is 
associated to a query and each item, represented through a vector of m features, is labeled with its relevance score for the 
query. Let Q be the set of queries and nq be the number of items of the query q ∈ Q . We can associate each query q to a 
matrix X (q) ∈ ℝ

nq ,m and a vector y(q) ∈ ℝ
nq composed of all feature vectors and relevance labels of the items of q, respectively.

A Learning-to-Rank algorithm learns a ranking model Φ ∶ ℝ
n,m

→ ℝ
n that produces a score for each item of a query q, 

i.e., s(q) = Φ(X (q)) . The ranking model is learned by optimizing a given loss function L , which is defined in terms of the loss 
function 𝓁(⋅) of the relevance labels and the estimated scores on a per-query basis

Learning-to-Rank algorithms are characterized mainly by the ranking model Φ learned and the loss function � exploited. 
For instance, RAnkinGSVM employs a linear model and a hinge loss [22], RAnkneT applies a neural network model and a 
cross entropy loss [23], while � MART  uses a gradient boosting trees model with a weighted cross entropy loss [10].

Most of the existing LtR algorithms score all items independently, i.e., the algorithm finds a ranking model ΦU that applies 
the same univariate scoring function �U ∶ ℝ

m
→ ℝ to each feature vector representing a single item:

A consequence of the application of univariate scoring functions is that an item will always get the same score/rank 
regardless of the other items available for the query. Instead, a ranking model ΦM that relies on a multivariate scoring func-
tion �M ∶ ℝ

n,m
→ ℝ

n can produce more precise scores as it can ideally take into account all the items of the same query 
when scoring, i.e., ΦM(X

(q)) = �M(X
(q)) . For this reason, multivariate scoring functions are theoretically more effective than 

univariate ones as they can compare items and capture cross-item dependencies when scoring. Ideally, a multivariate 
scoring function should be: i) invariant to permutations of the items, i.e., the score assigned by �M to an item should not 
depend on its position in the vector X (q) , and ii) able to score a variable number of items.

In this paper, we explore ranking models based on bivariate scoring functions. Formally, a ranking model ΦB based on a 
bivariate scoring function �B ∶ ℝ

2,m
→ ℝ

2 applies �B to all possible pair of items, then it aggregates all pairwise scores using 
an aggregation function f (q):

The definition of bivariate scoring functions requires to answer three questions. The first question regards how to learn 
a bivariate ranking model that is invariant to permutations. Indeed, this is a strong requirement as the model must be 
invariant to permutations to avoid being dependent on the order of the items given as input. The second question regards 
how to rank the items starting from the pairwise scores. For instance, if the bivariate ranking model assesses who wins 
each comparison, we can either build a rank of the items that minimizes the number of mis-ordered pairs [29], or we 
can rank the items according to the number of comparisons won by each item [37]. The third question regards how to 
learn bivariate scoring functions that optimize the ranking. For example, a pairwise model optimizing a classification loss 
function, e.g., cross entropy, is very accurate in deciding the outcomes of the comparisons but inaccurate in assigning 
higher scores to the most relevant items. Indeed, classification loss functions focus on all pairs equally, while not all pairs 
affect the final ranking in the same way, e.g., pairs of relevant items need more effort than pairs of non-relevant items.

In the following section, we answer the three questions above by proposing a novel LtR framework for learning bivariate 
scoring functions for ranking.

4  The lambda bivariate framework

We now present the Lambda Bivariate (LB) framework, a new Learning-to-Rank framework for learning bivariate scoring 
functions using gradient boosting trees. As previously introduced, a bivariate scoring function �B ∶ ℝ

2,⋅
→ ℝ

2 score pairs of 
items and produce pairs of scores. Let x (q)

i,j
 be the vectorial representation, of size mpair , of the pair of items ⟨i, j⟩ of the query 

(1)L(Φ) =
1

|Q|
∑

q∈Q

�
(
y(q),Φ(X (q))

)
.

(2)ΦU(X
(q)) =

⟨
�U(X

(q)

1
),… ,�U(X

(q)
nq
)
⟩
.

(3)ΦB(X
(q)) = f (q)

(
�B(X

(q)

1
,X

(q)

2
),… ,�B(X

(q)

nq−1
,X (q)

nq
)
)
.
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q. Without loss of generality, in the following discussion we drop the superscript q from the notation. In addition, we do not 
assume any specific loss function as the LB framework can be instantiated with any loss function. Our interest in gradient 
boosting trees stems from the fact that they achieve state-of-the-art performance on public Learning-to-Rank datasets [9, 
35]. Therefore, we want to rely on generic yet powerful machine learning algorithms to learn bivariate scoring functions. 
Nevertheless, the LB framework could be employed also with generic gradient-based models.

To formally define our ranking model, we need to: (i) learn a bivariate scoring function �B , invariant to permutations, using 
a gradient boosting trees model � , (ii) define an aggregation function f aggregating all pairwise scores into per-item scores, 
and (iii) describe the optimization process to learn the model � . Figure 1 shows all components of the LB framework and 
their interactions on a list of three items. The components are described in the next subsections.

4.1  Invariance to permutations

The invariance to permutations property aims to guarantee the independence of the scores of the items from their input 
order, i.e., the order in which the items are presented does not affect the final scores and, thus, the final ranking. While learn-
ing bivariate scoring functions respecting this property can actually be achieved using neural networks with a “symmetric” 
architecture, e.g., attention layers [5], we need to define how to learn them with a gradient boosting trees model.

Let � ∶ ℝ
mpair → ℝ be the gradient boosting trees model used to implement the bivariate scoring function �B . � assigns a 

single score si,j = �(x i,j) to any pair of items ⟨i, j⟩ . In general, si,j cannot be expressed as a function of sj,i , thus we cannot infer 
one score from the other. For instance, if we consider a binary classifier over pairs of items estimating whether the first item is 
more relevant than the second one, the output si,j is generally different from 1 − sj,i . By using only one of the outputs to infer 
the other one, e.g., s0,1 to infer s1,0 ≈ 1 − s0,1 , we may assign different scores to the two pairs ⟨0, 1⟩ and ⟨1, 0⟩ if the input order 
of the two items is different. As a consequence, we exploit both si,j and sj,i at the same time to guarantee the invariance to 
permutations property, which in turn implies that we must score all pairs ⟨i, j⟩ and ⟨j, i⟩ to implement the independence from 
the input order of the two items. In detail, we associate to each pair of items ⟨i, j⟩ the pairwise invariant score s̄i,j = si,j − sj,i to 
guarantee the property and we define �B as follows:

(4)𝜙B(X i ,X j) =

[
s̄i,j
s̄j,i

]
=

[
si,j − sj,i
sj,i − si,j

]

Fig. 1  An instantiation of the Lambda Bivariate framework on a list of 3 items. Bottom-up, all 6 permutations of 2 items are (i) fed to the 
gradient boosting trees model � , (ii) paired and made invariant to permutations [output of the bivariate scoring function �B , Eq. (4)], and (iii) 
aggregated to form the per-item scores [output of the ranking model ΦB , Eq. (5)]. The model � is thus optimized using the derivatives of the 
loss function � , defined in terms of the per-item scores, with respect to all pairwise scores si,j [Eqs. (6) and (7)]. Symbols � , �B and ΦB are in 
correspondence of the outputs
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Note that this is not the only possible solution that guarantees the invariance property. However, this is the one we 
selected to model also the symmetry of the scores s̄i,j . Thus, s̄i,j = −s̄j,i always holds independently of the algorithm used 
to learn the model �.

Figure 1 depicts the above dependence relation between the outcomes of the bivariate scoring function �B and the 
estimations of the gradient boosting trees model � given the pair representations x i,j . In detail, the pair representations x i,j 
and x j,i (gray squares) are built from the item representations X i and X j (green squares). The pair representations are fed, 
separately, to the gradient boosting tree model � , which produces two scores si,j and sj,i for the two pairs (gray circles). Then, 
the bivariate scoring function �B (dashed rectangles) makes these pairwise scores invariant to permutations and produces 
the pairwise invariant scores s̄i,j and s̄j,i.

4.2  Aggregation function

The aggregation function aims to produce a final score for any item aggregating all pairwise invariant scores provided by the 
bivariate scoring function �B . Therefore, to outline the ranking model ΦB , which assigns a ranking score to all items starting 
from the pairwise invariant scores provided by the bivariate scoring function �B , we need to define the aggregation function 
f. In fact, the aggregation function is in charge of producing the vector of the item scores (violet circles in Fig. 1) by aggregat-
ing the pairwise invariant scores s̄i,j of all items.

As discussed in the previous section, several alternative definitions are possible [29, 37, 38]. However, not all alternatives 
fit our needs as we aim to learn a gradient boosting trees model � that optimizes the ranking of the items by looking at the 
scores s of all items. As a consequence, to learn the model � , the aggregation function must be differentiable as we need to 
derive the error with respect to the model predictions. Moreover, as the number of items often varies across queries, we also 
want that the scores s to be independent of the number of pairs of items in a query so to make it uniform across different 
queries.

For this purpose, we define an aggregation function f that defines the score of each item i to be the average pairwise 
invariant score of all pairs ⟨i, j⟩ of the same query:

4.3  Optimization process

The optimization process aims to learn the bivariate scoring function �B – through gradient-boosting trees working on pair 
of items. The target of the optimization is to maximize the quality of the final ranking. To this end, we now show that, given 
an arbitrary loss function � , we can optimize it in a pairwise fashion by exploiting a gradient boosting trees model � . As most 
of the existing LtR algorithms exploit univariate scoring functions, in the following we assume to know the derivatives of the 
loss function � with respect to the per-item scores si . We can thus employ Gradient Descent [23] or Expectation Maximiza-
tion [39] techniques to learn the model �.

To optimize the model � , we need to compute the derivative of the loss function � with respect to the outputs si,j of the 
model � . We can express these derivatives in terms of the previous known derivatives, i.e., ��∕�si:

where the second equality follows from the fact that the score si,j affects only the pairwise invariant scores si and sj of 
the items i and j. The equation above shows that the optimization of the pairwise score si,j in the LB framework naturally 
follows from the optimization of the pairwise invariant scores si and sj.

As many recent implementations of gradient boosting trees, e.g., LightGBM [40], rely on quasi newton methods for opti-
mizing non-linear functions [41], we also need to compute the second order derivatives of the loss function, i.e.,

(5)si =
1

n − 1

∑

j∈q∕i

s̄i,j =
1

n − 1

∑

j∈q∕i

si,j − sj,i .

(6)
��

�si,j
=
∑
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��

�sk

�sk

�si,j
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Thanks to previous derivatives we can thus optimize existing loss functions using gradient boosting trees to solve rank-
ing problems in a pairwise fashion.

4.4  Bivariate � Mart 

We now describe the application of the LB framework to the � RAnk loss, which results in a bivariate version of � 
MART   [9] that we call Bi- � MART .

� MART  combines the gradient boosting trees model [8] and the � RAnk loss [9, 11] to optimize the NDCG ranking 
metric [42]. The output of a gradient boosting trees model is a linear combination of the outputs of a set of regression 
trees. It is a boosting algorithm optimizing a general loss function and it can be seen as an algorithm performing 
gradient descent using regression trees. Trees are built incrementally, i.e., one by one, using gradient descent so that 
each new tree fits the derivatives of the loss function with respect to the scores achieved by the previous trees. By 
doing so, each new regression tree models a descent step decreasing the loss achieved by the previous trees. The 
second component of � MART  is the � RAnk loss [11, 36]. � RAnk is a listwise loss function defined as a weighted logistic 
function over the pairs of items of a query so to improve the NDCG metric. NDCG is a widely used performance metric 
which exploits multi-graded relevances [42]. It is defined as the ratio between DCG and Ideal DCG, where DCG is the 
Discounted Cumulative Gain of a ranked list of results, and Ideal DCG is the DCG of the same list sorted by relevance 
label. In detail, the loss function aims to separate all pair of items having different relevance by weighting each pair 
according to the delta of NDCG caused by a swap of the two items in the ranking:

Since gradient boosting trees algorithms exploit derivatives to train tree-based models and � RAnk works by specify-
ing the derivatives at any point during training, the combination of the two algorithms results in � MART   [9]. Similarly, 
the application of LB to the � RAnk loss exploits the two derivatives introduced in previous subsection, i.e., eqs. (6) and 
(7). This leads to the definition of Bi- � MART , a pairwise version of � MART . Note that the above derivatives now reflect 
the application of � RAnk in a pairwise scenario, as illustrated in Fig. 1. Such derivatives are the result of the three main 
components introduced in the previous section, i.e., the invariance to permutations property, the aggregation function, 
and the optimization process. Note that, while Bi- � MART  is the result of the application of LB to � RAnk, the framework 
is general and it can be applied also to other loss functions, as shown in Sect. 6.2 where we apply LB to the SofTMAx loss.

5  Experimental setup

In this section, we provide a detailed description of our experimental setup. In details, we describe the Learning-to-
Rank datasets employed, the ranking architecture used for the assessment, the state-of-the-art competitors used for 
comparisons, the hyper-parameter tuning, and the feature sets used to represent the items.
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5.1  Datasets

We conduct experiments on three public datasets for Learning-to-Rank, i.e., the two LETOR datasets [43] and the “Yahoo! 
Learning to Rank Challenge” [35] dataset. The three datasets have been created for assessing LtR algorithms in a Web 
search scenario. The datasets consist of query-document pairs. Each query-document pair is labeled by humans with a 
graded relevance ranging from 0 to 4, where larger values of the label indicate a higher relevance of the document with 
respect to the query. The two LETOR datasets, i.e., WeB10k and WeB30k, have been released by Microsoft [43] and contain 
10,000 and 30,000 queries, respectively. They both provide an average of 120 documents per query and each query-
document pair is represented by 136 features. Moreover, they both come divided in five folds, where each fold is divided 
in three partitions for training, validation, and test. In our experiments, we report the results achieved on the first fold of 
the two datasets. The third dataset we employ is the YAhoo! LTRC [35]. It contains 30,000 queries, with an average of 24 
documents per query and each query-document pair is represented by 699 features. The YAhoo! dataset comes divided 
in two sets, each one splitted in three partitions for training, validation, and test, respectively. In our experiments, we 
report the results achieved on the first set of this dataset.

5.2  Two‑stage ranking architecture

We evaluate the performance of LB and state-of-the-art competitors in a standard two-stage architecture of a Web search 
engine query processor [44]. The pipeline consists of a first stage that is in charge of producing a list of candidate results 
that are then re-ranked by a second stage that produces the final list of results to return to the user. Similarly to previous 
work [44], we experiment our proposals in the second-stage of the query processor by re-ranking the top-20 documents 
provided by a first-stage ranker. We measure the performance of the methods tested by reporting the mean Normalized 
Discounted Cumulative Gain (NDCG) [42] at rank k, i.e., NDCG@k.

The performance of the second stage strictly depends on the model used in the first stage to select the top-20 results. 
To this end, we define a robust methodology based on cross validation to build the second-stage datasets so to break 
any dependency due to stacking the first and second stage rankers. A similar approach has been used by previous work 
using public LtR datasets [2, 7]. For each dataset, we perform bayesian hyper-parameter optimization to find the best 
set of hyper-parameters of the first stage ranker that maximize NDCG@20 on the validation set2. In detail, we randomly 
split the queries of the training, validation and test partitions into 10 folds to train and validate 10 � MART  models using 
the same set of hyper-parameters. During the i-th iteration of the cross validation, we train a � MART  model on all except 
the i-th fold of the training partition and by using all except the i-th fold of the validation partition for early stopping. We 
then evaluate the learned model by using all queries of the i-th fold of the training, validation and test partitions. There-
fore, each � MART  model act as first-stage ranker for a separate fold of the dataset, e.g., the model trained on all except 
the i-th fold of the training partition rank the queries of the i-th fold of the three partitions, i.e., training, validation and 
test. For each query, we use the top-20 documents provided by the first-stage ranker as second-stage dataset, which is 
then used to evaluate LB and all state-of-the-art competitors. Table 1 reports the main statistics of the three datasets for 

Table 1  Statistics of all 
datasets for each ranking 
stage

Dataset Queries Stage 1 Stage 2 Stage 2 pairwise

Docs Feat. Docs Feat. Pairs Feat.

WeB10k Train 6000 723,412 136 117,686 685 2,220,174 1507
Valid 2000 235,259 39,273 740,838
Test 2000 241,521 39,205 739,312

WeB30k Train 18,919 2,270,296 136 369,804 685 6,970,110 1507
Valid 6306 747,218 123,415 2,328,250
Test 6306 753,611 123,519 2,329,648

YAhoo! Train 19,944 473,134 699 294,365 3500 4,754,252 7700
Valid 2944 71,083 43,802 704,534
Test 6983 165,660 103,395 1,672,484

2 We employ the Python library hyperopt [45], https:// github. com/ hyper opt/ hyper opt.

https://github.com/hyperopt/hyperopt
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the different ranking stages. Note that the cross validation is used only to create the second stage datasets. Then, the 
second stage rankers are trained using the new training, validation, and test partitions (which contains the same queries 
of the first stage partitions, but with fewer results per query) for training, model selection, and evaluation, respectively.

5.3  Competitors

We perform a comparison of the performance of LB against several state-of-the-art competitors for Learning-to-Rank.

• DNN [46]: A deep feed-forward neural network model to learn univariate scoring functions, which employs batch 
normalization and dropout after each layer.

• GSF [4]: A groupwise scoring model based on neural networks that ranks documents based on group comparisons. 
In our experiments, we report the results for groups of size 2 and 20, i.e., GSf(2 ) and GSf(20 ), which are equivalent to 
bivariate scoring functions and multivariate scoring functions (scoring all results of a query together), respectively.

• attN-DIN [6]: A neural model using self-attention to encode the entire list followed by multiple feed-forward layers 
to jointly score all results.

• SetRaNk [7]: A neural models based on self-attention to jointly score the entire list of results. Differently from ATTn-Din, 
SeTRAnk uses a variant of the attention layers and does not employ feed-forward layers on top of that. The authors of 
SeTRAnk also proposed a version of the model for re-ranking, which extends the set of features of each result with the 
positional encoding of the first stage rank. We did not observe any real advantage in using it, mainly because, in our 
setting, the score and the rank in the first stage are already in the feature set (see Sect. 5.5), so we do not report the 
results of this version of SeTRAnk.

• GBt [8]: A gradient boosting trees model learning univariate scoring functions, which employs first and second order 
derivatives to build the trees.

We evaluate LB and the competitors above by using the � Rank and the Softmax loss. In particular, GSF , attn-DIN , and 
SetRank model multivariate scoring functions using neural networks and already exploit the three components that 
we are using in our framework for gradient boosting trees. For what regards GBT, its instantiation with the � Rank loss 
is known as � MART [9, 10]. Moreover, we call GBT_Softmax its instantiation with the Softmax loss. We also experiment 
a variation of the � MART algorithm – we call it � MART* – that takes into account the bias introduced by working in a 
two-stage ranking architecture. The bias origins from the fact that, when � MART  is trained on the second stage of the 
architecture, it only exploits the training data of the current stage, i.e., a subset of the available data for each query. 
Therefore, the learning algorithm may ignore some of the relevant results available for some queries when computing 
the Ideal DCG used to normalize the weights associated to each query in equation (8). � MART* fixes this behavior using 
the Ideal DCG of the first stage which considers all results.

We employed the original implementations of Dnn, GSf, and ATTn-Din available in the TFRanking3 library [46], while 
for SeTRAnk we used the original implementation4 released by the authors, which is based on the TensorFlow library [47] 
as the previous ones. All gradient boosting trees models, including LB, are implemented in the LightGBM [40] library.5 
Similarly to � MART*, our implementation of Bi- � MART  uses the Ideal DCG of the first stage during training as � MART*.

5.4  Hyper‑parameter tuning

The hyper-parameters of all models are tuned to optimal on the validation set according to the NDCG@5 metric. The 
neural network models use up to 150,000 epochs of training and employ early stopping to stop the training when there 
is no improvement on the validation set for 10,000 consecutive epochs. We used a batch size of 32 and the Adagrad [45] 
optimizer. The tuning included learning rate, dropout, number of layers, their size, and number of attention layers/heads/
size. The gradient boosting trees models exploit up to 2000 trees and employ early stopping to stop the training when 
there is no improvement on the validation set for 30 consecutive iterations. The tuning included learning rate, minimum 

3 https:// github. com/ tenso rflow/ ranki ng.
4 https:// github. com/ pl8787/ SetRa nk.
5 To ease the reproducibility of the results we will release our implementations of � MART* and Bi- � MART  upon acceptance of the paper.

https://github.com/tensorflow/ranking
https://github.com/pl8787/SetRank
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data in leaf, number of leaves and minimum hessian. We use the python library hyperopt to perform Bayesian Hyper-
parameter Optimization [45] to find the best set of hyper-parameters of each model.

5.5  Feature expansion

To allow the fairest possible evaluation of the algorithms that learn univariate scoring functions, i.e., Dnn, � MART , and 
� MART*, we expand the feature representation of the items in the second-stage datasets with listwise features. These 
additional features, built by considering the whole list of results on a per-query basis, allow the three competitors to 
exploit query-level information. By doing so, we partially overcome their limitations of considering a single item at a 
time. Indeed, several work show that by adding features that captures contextual information of the entire list of results 
turns out to improve the ranking performance [44, 48]. We perform this expansion by adding to the representation of 
each item in the second stage its score achieved in the first stage. This score is computed by using the � MART  model 
learned with the methodology described in Sect. 5.2. Then, for each feature f (including the first stage score) and query 
q, we add four new listwise features: (i) the mean and (ii) the standard deviation of the values assumed by f in the list 
of q, (iii) the rank of each item when ranking the items of q according to f, and (iv) the standardization of f according to 
the values assumed in q. In our experiments, all second-stage models are learnt by using this extended set of features.

For Bi- � MART , we represent each pair of items ⟨i, j⟩ with the concatenation of the extended set of listwise features of 
i, j, and their feature-wise difference. Note that, while the extended set of listwise features of an item can be effectively 
exploited by univariate scoring functions, the latter set, i.e., the concatenation of the features of the two items of the pair 
and their feature-wise difference, can be exploited only by bivariate scoring functions as they work on pair of items. The 
reason behind explicitly adding features modeling feature-wise differences relies in the fact that tree-based approaches 
do not easily capture the difference between two features. This is due to the learning algorithm that, for each split node, 
greedily chooses one feature and threshold at a time, thus missing a multi-feature view when deciding the split nodes. 
The total number of features used by the different approaches on the three datasets is reported in Table 1. In Sect. 6.1, 
we experimentally show the benefits obtained by using these features by performing an ablation study.

6  Experimental results

We now report the results of our experimental evaluation when using the � RAnk loss [11, 36]. We performed an extensive 
hyper-parameter tuning process for each model and dataset. Details of hyper-parameters used can be found in Appen-
dix A. We show in Tables 2 and 3 the performance of tree-based and neural-network-based algorithms, respectively, 

Table 2  NDCG@k of tree-
based models optimizing 
the � RAnk loss on the three 
datasets

Best results are highlighted in bold

Superscript letters a,b,c denote statistically significant improvements using a paired t-test ( p < 0.01 ) 
with respect to the first, second, and third row of each dataset, respectively

Dataset Stage - Model NDCG

@1 @3 @5 @10 @20

WeB10k 1 - � MART 0.4848 0.4805 0.4874 0.5082 0.5383
2 - � MART 0.4985 0.4901a 0.4968a 0.5143a 0.5417
2 - � MART* 0.5061a 0.4927a 0.4975a 0.5155a 0.5428a

2 - Bi- � MART 0.5202abc 0.5014abc 0.5029abc 0.5195abc 0.5465abc

WeB30k 1 - � MART 0.5253 0.5058 0.5110 0.5289 0.5596
2 - � MART 0.5340 0.5194a 0.5244a 0.5409 a 0.5661a

2 - � MART* 0.5369a 0.5217a 0.5248a 0.5414a 0.5666a

2 - Bi- � MART 0.5386a 0.5272abc 0.5291abc 0.5449abc 0.5690abc

YAhoo! 1 - � MART 0.7227 0.7350 0.7549 0.7957 0.8342
2 - � MART 0.8451a 0.8390a 0.8421a 0.8546a 0.8834a

2 - � MART* 0.8449a 0.8382a 0.8409a 0.8541a 0.8831a

2 - Bi- � MART 0.8494a 0.8430abc 0.8466abc 0.8593abc 0.8857abc
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where the evaluation is done by computing the NDCG@k on the test queries of the three datasets, taking into account 
also the relevant results discarded between the first and second stage of the ranking pipeline.

The first row of each dataset in Table 2 reports the performance of the � MART  algorithm when employed as a single 
stage ranking pipeline. The effectiveness of the � MART  baseline on the three datasets is comparable with results reported 
in early work employing LightGBM [49] and better than those employing the RankLib library, e.g., [4, 7]. The reason is that 
LightGBM provides a much more effective implementation of � MART  than RankLib. The remaining rows of each dataset 
in Table 2 show the performance of the tested Learning-to-Rank models when employed as a second-stage rankers, in a 
ranking architecture where the first stage employs a � MART  model providing the list of the first 20 result of each query, 
as described in Sect. 5.2. First of all, experimental results show that a two-stage ranking pipeline exploiting only � MART  
models (second row of each dataset in Table 2) always achieve a higher NDGG@k than a single-stage pipeline (first row 
of each dataset in Table 2). Indeed, the improvement given by the two-stage architecture is statistically significant with 
respect to the single-stage one most of the times. Our proposed variant � MART*, which fixes the computation of the 
Ideal DCG of the � MART  algorithm when employed in the second stage of the ranking pipeline, always outperforms the 
single-stage � MART  counterpart. Indeed, it outperforms the single-stage � MART  model on all datasets with statistically 
significant improvements for all tested NDCG cutoffs.

Table 2 also shows that Bi- � MART  achieves the best results with statistically significant improvements with respect 
to all tested competitors in almost all configurations. When considering NDCG@5, i.e., the metric used for training and 
tuning all models, Bi- � MART  always outperform the competitors with statistically significant improvements. In particular, 
Bi- � MART  achieves a NDCG@5 from 3.2% to 12.2% higher than � MART  in the first stage, from 0.5% to 1.2% higher than � 
MART  in the second stage, and from 0.7% to 1.1% higher than our variant � MART*. Since all tested models optimize the 
same � RAnk loss using gradient boosting trees, the experimental results confirm that the greater expressive power of 
Bi- � MART  comes from the use of bivariate scoring functions.

Table 3 reports the performance of the several neural-network-based competitors introduced in the previous section 
when optimizing the � RAnk loss. Experimental results show that NNs learning multivariate scoring functions are more 
effective than Dnn, which is the only univariate one, on WeB30k and YAhoo!. In details, SeTRAnk and ATTn-Din achieve the 
best results on all datasets among the neural network models for all tested NDCG cutoffs. The improved effectiveness 
achieved by SeTRAnk and ATTn-Din, with respect to all other neural network models, relies in the fact that the attention 
layers [5] allow them to exploit the interactions among all documents of the list. Indeed, they effectively exploit the 
information available in the list of documents to achieve a better ranking. Nevertheless, experimental results show that 
tree-based models outperform neural network models by a large margin.

To conclude, results show that Bi- � MART , which instantiate LB using the � RAnk loss, outperforms all state-of-the-
art tree-based and neural-network-based competitors optimizing the same loss function, with statistically significant 
improvements for almost all tested NDCG cutoffs and datasets.

Table 3  NDCG@k of neural 
network models optimizing 
the � RAnk loss when applied 
as second stage rankers to the 
three datasets

Dataset Model NDCG

@1 @3 @5 @10 @20

WeB10k Dnn 0.4670 0.4537 0.4590 0.4772 0.5056
GSf(2) 0.4680 0.4546 0.4587 0.4759 0.5053
GSf(20) 0.4694 0.4528 0.4569 0.4724 0.5039
ATTn-Din 0.4639 0.4537 0.4607 0.4765 0.5053
SeTRAnk 0.4786 0.4616 0.4653 0.4810 0.5091

WeB30k Dnn 0.5018 0.4840 0.4880 0.5049 0.5330
GSf(2) 0.4993 0.4842 0.4881 0.5047 0.5328
GSf(20) 0.5007 0.4846 0.4895 0.5050 0.5329
ATTn-Din 0.5030 0.4898 0.4929 0.5083 0.5356
SeTRAnk 0.5037 0.4895 0.4938 0.5095 0.5362

YAhoo! Dnn 0.7965 0.7912 0.7960 0.8119 0.8425
GSf(2) 0.8010 0.7938 0.7987 0.8137 0.8438
GSf(20) 0.8032 0.7946 0.7993 0.8138 0.8445
ATTn-Din 0.8073 0.7990 0.8026 0.8167 0.8464
SeTRAnk 0.8061 0.7975 0.8017 0.8159 0.8459
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6.1  Role of feature‑wise difference features

In Sect. 5.5, we described the set of expanded features employed to allow the fairest evaluation possible against 
the models learning univariate scoring functions, i.e., � MART , � MART*, and Dnn. We also detailed the additional 
set of features used by Bi- � MART . This latter model exploits the extended sets of features of items i and j plus their 
feature-wise difference. While univariate scoring functions and attention-based multivariate scoring functions can 
access only the features of one item at a time when scoring, these additional features can be exploited by bivariate 
scoring functions, i.e., GSf(2 ) and Bi- � MART , as they score a pair of items at a time. We now assess the importance of 
the feature-wise difference features in the performance of Bi- � MART . We aim to show that, the feature-wise differ-
ences are marginally relevant for neural-network-based models and essential for tree-based models. The reason is 
that the greedy learning algorithm used to build the trees lacks a multi-feature view when building the split-nodes 
as each split node is decided greedily by looking at one feature and threshold at a time.

Table 4 reports the results of this investigation, where we compare, on the WeB30k dataset, the performance of both 
GSf and Bi- � MART  when trained without or with the additional set of feature-wise difference features. Experiments 
show that GSf(2 ) slightly benefits from the feature-wise difference features as its performance are always very close 
to its counterpart that does not exploit them ( +0.29 % in terms of NDCG@5). The small difference between the two 
versions of GSf(2 ) is more evident at small cutoffs of the NDCG metric while it thins for larger values of the cutoff.

We also perform the same investigation for Bi- � MART . Experiments show that it achieves much better results in 
terms of NDCG@k than its counterpart that does not employ the feature-wise difference features ( +0.67 % in terms 
of NDCG@5). Moreover, without these features, the performance of Bi- � MART  are very close to those of � MART*, 
which exploits univariate scoring functions. In general, results show that the set of feature-wise difference features 
are crucial to the effectiveness of Bi- � MART .

Experimental results confirm that deep neural network models are already able to capture this type of multi-feature 
aspects, while tree-based models are not. To conclude, experiments support our initial hypothesis that feature-wise 
difference features provide an essential representation of the pairs of items for tree-based models.

6.2  Assessing LB with the SoftMax loss

To show the generality of the LB framework, here we present an analysis of the performance of neural networks and 
tree-based models when using the SofTMAx loss [12]. This is a popular and effective listwise loss for neural networks [4, 
6, 13] and is defined as �

SOFTMAX
(y, s) = −

∑
i yi log

esi∑
j e

sj
 . We perform this analysis on the second stage of the WeB30k 

dataset. The hyper-parameters of all models have been tuned using this new loss.
We report the results of the comparison in Table 5. First of all, we note that all neural network models achieve a bet-

ter performance using the SofTMAx loss than using the � RAnk loss (Table 3), with improvements up to 1.27% in terms 
of NDCG@5. As in the previous analysis, SeTRAnk and ATTn-Din achieve the best results among the neural networks for 
all tested NDCG cutoffs thus confirming the effectiveness of the attention mechanism for ranking.

We implemented the SofTMAx loss in LightGBM to assess the performance of the tree-based competitor based on 
univariate scoring functions. The GBT model optimizing the SofTMAx loss – we call it GBT

SOFTMAX
 – outperforms all 

neural network models by a large margin with statistically significant improvements. However, we highlight that, GBT 
achieves a lower performance when optimizing SofTMAx than when optimizing the � RAnk loss, i.e., −0.27 % in terms 
of NDCG@5 w.r.t. � MART  (see Table 2).

Table 4  NDCG@k of bivariate 
models optimizing the � RAnk 
loss when trained without 
or with the additional set 
of feature-wise difference 
features and applied as 
second stage rankers to 
WeB30k 

Model NDCG

@1 @3 @5 @10 @20

GSf(2 ) without 0.4993 0.4842 0.4881 0.5047 0.5328
GSf(2 ) with 0.5007 0.4846 0.4895 0.5050 0.5329
Bi- � MART  without 0.5390 0.5237 0.5256 0.5409 0.5669
Bi- � MART  with 0.5386 0.5272 0.5291 0.5449 0.5690
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In this experimental evaluation, we call BI-GBT
SOFTMAX

 the application of the LB framework to the SofTMAx loss. 
BI-GBT

SOFTMAX
 achieves better results than GBT

SOFTMAX
 for all tested NDCG cutoffs, showing the effectiveness of the 

bivariate scoring functions for ranking. In particular, it improves over GBT
SOFTMAX

 by 1.3% of NDCG@5 and all the 
improvements reported are statistically significant. Moreover, BI-GBT

SOFTMAX
 achieves a slightly better performance 

than Bi- � MART , showing that it is more robust to changes of the loss function with respect to the univariate counter-
part GBT, which performs worse with SofTMAx than with � RAnk. Therefore, � RAnk is a strong loss function for ranking 
when using univariate scoring functions based on gradient boosting trees. However, the SofTMAx loss can further 
improve the effectiveness of the bivariate scoring functions counterpart. BI-GBT

SOFTMAX
 outperforms all neural net-

work models based on SofTMAx by a large margin. In particular, it improves over the best-performing neural network, 
i.e., SeTRAnk, by 6.0% in terms of NDCG@5.

Results thus show that the proposed LB framework outperforms all state-of-the-art neural-network-based and tree-
based competitors using different loss functions.

7  Conclusions and future work

Our work stems from the fact that most of the state-of-the-art Learning-to-Rank algorithms learn univariate scoring 
functions that score each item independently, i.e., without taking into account the other items in the list. To overcome 
this limitation, we presented a novel Learning-to-Rank framework – the Lambda Bivariate framework – to learn ranking 
models based on bivariate scoring functions, i.e., functions scoring pairs of items so to effectively capture the depend-
encies between items in the list. We showed that LB can be used with any loss function to train gradient boosting trees. 
Moreover, we discussed an application of LB to the � RAnk loss, which resulted in Bi- � MART , a pairwise version of � MART .

We proposed a comprehensive experimental evaluation of Bi- � MART  and several state-of-the-art tree-based and 
neural-network-based competitors over three public Learning-to-Rank datasets. Results show that Bi- � MART  outper-
forms neural network models by a significant margin and also outperforms � MART  with a relative improvement in terms 
of NDCG@5 ranging from 0.5% to 1.2%. Moreover, we also experimented LB with the softmax loss function and showed 
that it outperforms in terms of NDCG@5 the tree-based competitor by 1.3% and the best-performing neural-network-
based competitor by 6.0%. As future work, we aim to extend the LB framework to learn multivariate scoring functions 
for ranking to jointly score multiple items at a time.

Author contributions All authors contributed equally to the design of the Lambda Bivariate framework and to the experimental evaluation 
presented in this manuscript. All authors wrote the first draft of the manuscript and approved its final version.

Funding This work was supported by: MUR-PRIN 2022 “Algorithmic Problems and Machine Learning”; PNRR - M4C2 - Investimento 1.3, Parte-
nariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-centered AI” funded by the European Union (EU) 
under the NextGeneration EU programme; the EU’s Horizon Europe research and innovation programme EFRA (Grant Agreement Number 
101093026). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European 
Commission-EU. Neither the EU nor the granting authority can be held responsible for them.

Table 5  NDCG@k of models 
optimizing the SofTMAx loss 
when applied as second stage 
rankers to WeB30k 

Superscripts † and * denote statistically significant improvements using a paired t-test ( p < 0.01 ) with 
respect to neural network competitors  (DNN, GSF(2), GSF(20), ATTN-DIN, SetRank) and tree-based com-
petitors (GBT

SOFTMAX
 ), respectively

Model NDCG

@1 @3 @5 @10 @20

Dnn 0.5021 0.4868 0.4910 0.5078 0.5339
GSf(2) 0.4989 0.4873 0.4916 0.5082 0.5341
GSf(20) 0.5016 0.4883 0.4928 0.5092 0.5348
ATTn-Din 0.5049 0.4933 0.4991 0.5127 0.5377
SeTRAnk 0.5055 0.4963 0.4998 0.5145 0.5385
GBT

SOFTMAX 0.5320† 0.5181† 0.5230† 0.5391† 0.5649†

BI-GBT
SOFTMAX 0.5389†∗ 0.5267†∗ 0.5299†∗ 0.5451†∗ 0.5682†∗
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need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Appendix A

A Experimental details
To ease the reproducibility of the results, tables below report the hyper-parameters used for all models of Tables 2 

and 3. The methodology used to tune the hyper-parameters of all second-stage models is described in Sect. 5.4. Tables 6 
and 7 reports the non-default parameters of neural network models, while Table 8 reports the ones of tree-based models.

Table 6  Hyper-parameters of 
TensorFlow neural network 
models

Dataset Model Learning Hidden layer Dropout
Rate Sizes

WeB10k Dnn 0.010 1024,256,64 0.5
GSf(2) 0.005 1024,512,256,128 0.5
GSf(20) 0.050 512,256,128,64 0.50
ATTn-Din 0.005 512,256,128,64 0.25
SeTRAnk 0.050 – –

WeB30k Dnn 0.050 512,256,128,64 0.5
GSf(2) 0.010 4096,1024,256,64 0.5
GSf(20) 0.050 1024,512,256,128 0.5
ATTn-Din 0.050 512,128,32 0.5
SeTRAnk 0.050 – –

YAhoo! Dnn 0.050 1024,512,256 0.5
GSf(2) 0.050 2048,1024,512,256 0.5
GSf(20) 0.050 1024,512,256 0.25
ATTn-Din 0.050 2048,1024,512,256 0.25
SeTRAnk 0.050 – –

Table 7  Hyper-parameters 
of the attention layers of 
attention-based neural 
network models

Dataset Model Num layers Num heads Size Dropout

WeB10k ATTn-Din 4 6 256 0.25
SeTRAnk 5 2 256 0.50

WeB30k ATTn-Din 1 4 256 0.50
SeTRAnk 4 2 256 0.50

YAhoo! ATTn-Din 6 1 128 0.25
SeTRAnk 4 2 512 0.25
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