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ABSTRACT
We report extensive numerical simulations of different models of 2D polymer rings with internal elasticity. We monitor the dynamical
behavior of the rings as a function of the packing fraction to address the effects of particle deformation on the collective response of the
system. In particular, we compare three different models: (i) a recently investigated model [N. Gnan and E. Zaccarelli, Nat. Phys. 15, 683
(2019)] where an inner Hertzian field providing the internal elasticity acts on the monomers of the ring, (ii) the same model where the effect
of such a field on the center of mass is balanced by opposite forces, and (iii) a semi-flexible model where an angular potential between adjacent
monomers induces strong particle deformations. By analyzing the dynamics of the three models, we find that in all cases, there exists a direct
link between the system fragility and particle asphericity. Among the three, only the first model displays anomalous dynamics in the form
of a super-diffusive behavior of the mean-squared displacement and of a compressed exponential relaxation of the density auto-correlation
function. We show that this is due to the combination of internal elasticity and the out-of-equilibrium force self-generated by each ring, both
of which are necessary ingredients to induce such a peculiar behavior often observed in experiments of colloidal gels. These findings reinforce
the role of particle deformation, connected to internal elasticity, in driving the dynamical response of dense soft particles.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041264., s

I. INTRODUCTION

Unlike hard spheres, several colloidal particles employed in soft
matter physics, such as microgels, micelles, emulsions, and star poly-
mers, possess complex internal degrees of freedom, which provide
them with an internal “softness.”1 This property can be defined as
the ratio between the single-particle elastic energy and the thermal
energy,2 and it manifests as the ability of soft particles to change both
their volume and shape, by shrinking/swelling and deforming, thus
affecting the mechanical and dynamical response as well as the phase
behavior of the bulk suspensions they form. These effects become
more and more important at high enough packing fractions where
particles come into contact with each other.2,3

Softness was also shown to have a prominent influence on
effective interactions, both in microgels4–7 and in star polymers.8,9

From a dynamical perspective, the presence of an inverse correlation
between softness and dynamical fragility in the supercooled regime
was put forward some years ago,10,11 and it is still a very debated
issue both in experiments12,13 and in simulations.14,15 In addition,
soft colloids can explore a variety of high density states, above the
so-called jamming point,16–18 loosely defined here as the limit condi-
tion in which particles can fill the available space without deforming.
Under these conditions, the internal degrees of freedom of the par-
ticles give rise to effects such as interpenetration,19 shrinking, and
faceting,20–22 which dominate the unusual dynamics and rheological
behavior of these particles.2
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To model soft objects, one usually relies on the use of sim-
ple coarse-grained models; for instance, in the case of microgels, a
widely employed model is the Hertz potential,5,16,23,24 although it
was recently shown that this can be considered to be valid only in
the fluid regime.6 Indeed, such simple models obviously neglect the
polymeric nature of particles, and some studies have started to con-
sider modifications that allow to model some of the specific degrees
of freedom of the particles.25–28 In particular, Urich and Denton29

proposed to use a generalized Hertzian model that accounts for an
isotropic change in particle volume, thus being able to model shrink-
ing effects. An extension of this model, incorporating dynamical
behavior and particle polydispersity, has been recently investigated
by Baul and Dzubiella.30 A notable effort was also carried out by
Higler and Sprakel, who investigated the dynamics of isotropically
deswelling particles, finding no dependence of the fragility on their
internal softness.15 In the need to go one step further and to explic-
itly introduce particle deformation, some of us recently proposed a
new model of the so-called Elastic Polymer Rings (EPRs) in 2D,31

which incorporates both the polymeric and elastic features typical
of soft spheres in 3D but, at the same time, allows for a more effi-
cient exploration, in terms of computing time, of the high density
regime. This simple model was shown to capture shrinking, defor-
mation, and faceting at high densities. It was further characterized by
the emergence of anomalous dynamics in the form of a compressed
exponential behavior of the density auto-correlation function and
of a super-diffusive behavior of the mean-squared displacement.
In that case, one of the main findings was the identification of a
clear link in simulations between particle deformation and fragility
(which characterizes how fast the dynamics changes on increasing
the packing fraction), with softer rings displaying a small fragility
(strong systems) compared to stiffer rings (known as fragile sys-
tems), reinforcing the hypothesis that single-particle elasticity may
dictate the collective behavior at large concentrations.10,14

In the original EPR model of Ref. 31, each ring was modeled
as a bead-spring polymer connected in a circular shape, and the
internal elasticity was provided by an inner Hertzian field. The lat-
ter term represents, in a coarse-grained fashion, the elasticity of an
underlying network in good solvent conditions to mimic, for exam-
ple, microgels, dendrimers, or similar soft colloids. The Hertzian
field was chosen to act between each monomer of the ring and a
reference point coinciding with the ring’s center of mass, which
amounts to consider the inner part of the ring as a coarse-grained
object, including network and solvent degrees of freedom. This
inner field acts against the shrinking or the compression of the
ring and tends to restore the maximally swollen condition. When
the ring is symmetric (with at least 2-fold rotational symmetries)
the inner field is strictly 0. However, as soon as the ring is slightly
deformed, becoming asymmetric, for example, in the presence of
thermal fluctuations, a non-zero net force, called Hertzian force
F⃗H , acts on its center of mass. To restore a zero net force on the
center of mass (force conservation), a contribution equal and oppo-
site to F⃗H should be redistributed on all the monomers of the ring.
This effectively leads to a reduction in the overall tendency of the
system to deform at high densities. In Ref. 31, such a restoring
force was not employed so that we can consider the original EPR
model to be off-equilibrium and under the influence of the Hertzian
force that depends on the degrees of freedom of the deformed
ring. Thus, F⃗H is self-generated in the system and increases with

particle density. For this reason, contrarily to what stated in Ref. 31,
such an EPR model cannot be considered as an “equilibrium” sys-
tem due to this unbalanced force.32 To dissipate such a force, the use
of a Langevin thermostat is thus necessary because, on one hand, it
mimics more realistically the microscopic dynamics of soft colloidal
suspensions and, on the other hand, it ensures the dissipation of the
center-of-mass force through the surrounding implicit solvent.

In this work, we compare the EPR model with its equilib-
rium version, here named equilibrium EPR (eq-EPR), where, at each
instant, the center-of-mass force acting on each ring is balanced by
imposing an opposite force to all monomers constituting the ring.
Under these conditions, the rings lose most of their ability to deform
at high densities and are subjected to a dramatic slowdown without
displaying an anomalous behavior of the dynamics. Since in Ref. 31 a
crucial effect of the deformation on the dynamics was demonstrated,
we now take into account an additional model where particle defor-
mation is enhanced in equilibrium. To this aim, we consider 2D
semi-flexible polymer rings (SFPRs), where the bead-spring model
is complemented by an angular function, which favors the elongated
arrangement of consecutive monomers, the latter playing the role
of an effective elasticity. Similar models are commonly used in the
literature to study ring polymers in 3D,33–36 while our model is con-
ceived to be a 2D schematic version of complex, polymeric particles.
We show that this system, although having only pairwise and three-
body interactions, preserves much of the features of the original EPR
model, including a reentrant dynamics and a strong tendency to
deform. We investigate the dynamical behavior of the three mod-
els and, in particular, analyze the high density reentrant behavior
that we observe. Similarly to what was done in Ref. 31, we build a
modified Angell plot for the different models and extract an effec-
tive fragility. We then find that a linear relation between fragility
and particle asphericity holds for all investigated models, spanning a
wide range of fragilities.

Surprisingly, we find that the SFPR model displays a much
greater tendency to shape fluctuations with respect to the EPR sys-
tem, thus continuously releasing the stress. This is, however, not
sufficient to generate a super-diffusive dynamics or a compressed
relaxation, against the common assumption that stress release is
responsible for such fast dynamics. It appears that the stress must
be propagated, involving a collective response of the system that
is found in the EPR model and not in the other models. To shed
light on whether the out-of-equilibrium Hertzian force is the only
cause of the super-diffusive behavior, we additionally investigate the
dynamics of a modified, non-equilibrium version of Hertzian disks,
where a force acting on the center of mass is added through the
overlap between neighboring particles. Thus, this model can be con-
sidered conceptually analogous to the EPR model, but without the
inclusion of particle elasticity, since disks lack internal degrees of
freedom. We find that such out-of-equilibrium Hertzian disks also
do not display a super-diffusive behavior. This suggests that elas-
ticity and off-equilibrium behavior are both necessary conditions to
observe anomalous dynamics in soft systems.

This paper is organized as follows: in Sec. II, we define the
different models and describe the numerical methods and the cal-
culated observables. Next, in Sec. III, we investigate the role played
by the Hertzian force and how it influences the dynamical response
of the system compared to the equilibrium models. We also report
an analysis of particle deformation, focusing on the asphericity
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distributions and on the link with dynamical response, finding a
direct relation between deformation and fragility, thus generalizing
the results of Ref. 31 for soft particles with internal elasticity. Finally,
we discuss the role played by the out-of-equilibrium Hertzian force
in the emergence of the super-diffusive motion, and to this aim,
we compare the results with the out-of-equilibrium Hertzian disks,
showing that an interplay between elasticity and non-equilibrium
is mandatory in these models for observing the super-diffusive
dynamics.

II. MODELS AND METHODS
We investigate via extensive Langevin dynamics simulations

three different models of elastic polymer rings in 2D, which are
based on the classical bead-spring model for polymers.37 Specifically,
we consider N = 1000 rings, each composed of Nm = 10 monomers,
interacting among themselves via a Weeks–Chandler–Andersen
(WCA) repulsive term plus a Finitely Extensible-Nonlinear-Elastic
(FENE) potential acting only among connected monomers, as

VWCA(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4ϵ[( σmr )
12 − ( σmr )

6] + ϵ if r ≤ 21/6σm

0 if r > 21/6σm
(1)

and

VFENE(r) = −ϵkF l02 log[1 − ( r
l0σm
)

2
], r < l0σm. (2)

Here, ϵ sets the energy scale and σm is the single monomer diameter,
while kF = 15, l0 = 1.5 are constants, indicating the bond stiffness and
the maximum extension of the polymer bond, respectively.

We employ a size polydispersity δ = 12% both for the monomer
and for the ring size, according to a log-normal distribution, to avoid
crystallization at high packing fractions. The radius of each ring at
infinite dilution, defined as the distance between each monomer and
the center of mass in a circular shape, is RH = 1.554σm. We work
at different nominal packing (area) fractions ζ = π

4 ∑
N
i=1 σ

2
i,ring/L2,

where L is the size of the box side and σi ,ring is the total diameter
of the ith ring, i.e., σi ,ring = 2Ri ,H + σi ,m, with Ri ,H and σi ,m being
the radius of the ith ring and the diameter of each of its monomers,
respectively, due to the polydisperse ring/monomer distributions.

To provide the rings with internal elasticity, different additional
interactions are considered in each model. In the EPR model intro-
duced in Ref. 31, monomers belonging to each ring also interact
with an internal elastic repulsion that is modeled for simplicity by a

Hertzian field38 of strength U that acts between each monomer and
the center of mass of the ring. The Hertzian field is defined as

VH(r) = U(1 − r
RH
)

5/2
Θ(1 − r

RH
), (3)

where Θ is the Heaviside step function. The effect of the field on
the monomers belonging to the same ring is to maintain its circu-
lar shape; therefore, the variation of the value of U gives rise to a
different ability of the particle to deform and hence to a different
softness. The presence of the Hertzian field originates a net resultant
force acting on the ring center-of-mass F⃗H that is strictly 0 only for
purely symmetric rings, as shown in Fig. 1(a). However, the net force
is non-zero for non-symmetric configurations [see Fig. 1(b)] as a
consequence of thermal fluctuations and/or of the excluded volume
interactions with neighboring particles.

In the equilibrium version of the EPR model, i.e., the eq-EPR
model, we balance the force F⃗H acting on the center of mass by redis-
tributing its opposite onto each monomer belonging to the same
ring, i.e., f⃗cm = −F⃗H/Nm, as illustrated in Fig. 1(c). Since f⃗cm depends
on ring deformation, monomers of different rings are subjected to
different f⃗cm. The presence of such a force inevitably influences inter-
ring interactions, thus affecting ring deformation at high densities.
As we show below, the net effect of this restoring force is to reduce
the ability of the particles to deform at high packing fractions.

Finally, we examine a third model of semi-flexible rings, where
there is no Hertzian field, but instead, we consider an angular har-
monic potential acting between three consecutive monomers, shown
in Fig. 1(d). This reads as

Vθ(r) = kθ(θ − θ0)2, (4)

where the equilibrium angle θ0 is chosen to be π, similarly to other
models for semi-flexible polymers,39–42 while kθ is varied to change
the internal elasticity, i.e., the softness, of the particles.

For the three models, we perform Langevin dynamics simu-
lations at constant temperature with kBT/ϵ = 1. Length and time
are given in units of the average ring diameter ⟨σring⟩ and of
t0 = ⟨σring⟩

√
mring/ϵ, where mring = m ⋅Nm and m is the

monomer mass which is set to unity. A velocity Verlet integra-
tor is used to integrate the equations of motion with a time
step dt = 10−3. For EPR and eq-EPR simulations, we model
Brownian diffusion following Ref. 43 by defining the probabil-
ity p that a particle undergoes a random collision every Y time
steps for each particle. By tuning p, it is possible to obtain the

FIG. 1. (a) Zero-stress polymer ring with no force acting on the center of mass as no deformation occurs. (b) Elastic Polymer Ring (EPR) deformed by thermal fluctuations
or neighboring rings generating a net non-zero force F⃗H on its center of mass (cm). (c) equilibrium Elastic Polymer Ring (eq-EPR) where −F⃗H is re-distributed among all
monomers and (d) semi-flexible polymer ring (SFPR) where an angular harmonic potential among particles introduces stiffness in the ring.
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desired free monomer diffusion coefficient D0 = (kBTYdt/m)(1/p
− 1/2). It can be shown that, in the low-density limit, the free dif-
fusion coefficient of a ring is Nm times smaller than D0. Since by
changing D0 there is no influence on the long-time behavior, we fix
D0 = 0.008 for EPRs and D0 = 0.08 for eq-EPRs. For the SFPR model,
we perform Langevin dynamics simulations with D0 = 0.1 using the
LAMMPS simulation package.44

We investigate the static and dynamic properties as a function
of ζ for EPRs with U = 100, 200, 500, and 1000. We also study stan-
dard bead-spring rings, corresponding to the caseU = 0, for compar-
ison. In addition, we investigate the eq-EPR model with U = 30, 50,
80, and 100 and the SFPR models with kθ = 4, 5, 6, 7. For all the mod-
els, parameters have been chosen in order to observe the onset of a
reentrant transition.31 A detailed discussion of the choice of param-
eters is provided in the supplementary material. For the dynamic
features, we study the mean-squared displacement (MSD) of the
center of mass of each ring defined as ⟨Δr2⟩ = ⟨[⃗rcm(t) − r⃗cm(0)]2⟩,
where (⋯) = (1/N)∑N

i=1(⋯) is the system average and ⟨⋯⟩ is
the time average. Moreover, we investigate the evolution of the
relaxation time τα extracted from the self-intermediate scattering
function Fs(q∗, t) = ⟨exp [q⃗∗ ⋅ (r⃗cm(t) − r⃗cm(0))]⟩, where q⃗∗ is the
wavevector at which relevant interactions take place. τα is defined
as the time at which Fs(q∗., t) = 1/e (where e is Euler’s number).
Finally, we study the temporal self-correlation function for a number
of quantities defined as follows: given an observable O, the corre-

lation function employed is defined as CO(t) = ⟨O(t)O(0)−⟨O⟩
2

O2
(t)−⟨O⟩2 ⟩.

Regarding the static quantities, we show the distribution func-
tion and the fluctuations of the asphericity parameter defined as
a = [(λ2 − λ1)2]/[(λ1 + λ2)2],45 where λ1 and λ2 are the eigenvalues
of the gyration tensor of the ring.

Additionally, to gain more insights into the anomalous dynam-
ics of EPR, we introduce a modified, Hertzian model, which con-
sists of polydisperse disks with the same polydispersity as the EPRs
undergoing Langevin dynamics with D0 = 0.008. The disks interact
both with the standard Hertzian potential V(rij) = UH(1 − rij/σij)2.5

with UH = 150 and with an additional term resulting from the
so-called overlap force acting on their centers of mass, defined as
Fi
A(r⃗ij) = −K(Aij

ov/Ai) ⋅ r⃗ij, where r⃗ij is the vector distance between
disks i and j, σij = 1

2(σi + σj) is the average size of the two parti-
cles, Ai is the area of disk i, Aij

ov is the overlap area between two
disks i and j, and K is the amplitude of the force. In the case
of monodisperse particles, the overlap force would be symmetric,
i.e., Fi

A(r⃗ij) = −Fj
A(r⃗ij). However, due to the polydispersity of the

system, we have that Ai ≠Aj, which results in a non-symmetric force.
This generates an out-of-equilibrium dynamics in analogy with the
Hertzian force that is present in the EPR system. The different nature
of the two models is accounted by the way in which such a force is
originated: through ring deformation for EPRs and through particle
overlaps for modified Hertzian disks.

III. RESULTS
A. Effects of the Hertzian field on the dynamics
of EPR: Equilibrium vs non-equilibrium behavior

In this section, we analyze the influence of the out-of-
equilibrium features generated by the Hertzian force in the EPR

model by comparing its dynamical behavior and its ability to deform
with that of the eq-EPR model and of the SFPR model. The pres-
ence of the Hertzian field in the EPR model generates an unbalanced
internal force F⃗H that acts on the center of mass whenever the ring is
deformed. We can consider F⃗H in all respects as an active force that,
contrarily to standard active systems,46,47 depends on the degrees of
freedom of the deformed ring. Ring deformation can occur for two
main reasons: due to thermal effects or due to the mechanical action
of neighboring particles that via the excluded volume interactions
(i.e., WCA interactions) deform the ring. The first scenario domi-
nates at low ζ, while the second one occurs at high ζ, beyond the jam-
ming volume fraction, when the rings can fill the available space only
by deforming. In the dilute regime, the tiny deformations induced
by thermal fluctuations are so small that the generated force acting
on a single monomer does not effectively contribute to the dynam-
ics as compared to the deterministic forces (originated by FENE and
WCA contributions) so that the system behaves as in equilibrium.
This is illustrated in Fig. 2 (inset), where we compare the MSD of
the EPR model for different types of rings and values of the elastic
strength, including U = 0, i.e., in the absence of the Hertzian field at
a low packing fraction (ζ = 0.46). We also report in Fig. 2 the com-
parison between EPRs and eq-EPRs at the same U as a function of
ζ but still below the jamming point. On increasing ζ, rings’ colli-
sions increase, causing larger shape fluctuations in the EPRs, which
slightly enhance their diffusion with respect to the eq-EPRs. As a
consequence, F⃗H starts to play a role in the dynamics. However, it
is at high ζ that excluded volume interactions, which continuously
deform EPRs, give rise to large contributions of F⃗H . To clarify this
point, we now compare the dynamics of the EPR system with that
of different models of polymer rings for selected values of softness
(U=200 for EPRs, U=100 for eq-EPRs, and kθ = 5 for SFPRs). Such a
selection is based on the fact that the fragility parameter, which will
be introduced later on in the text, is roughly the same for the three
models.

Figure 3 shows the MSDs for EPRs, eq-EPRs, and SFPRs,
respectively, at different ζ values from low densities up to and above
close contact. The first important finding of our analysis is that a

FIG. 2. Mean-squared displacement (MSD) of EPR and eq-EPR model with U =
1000 as a function of ζ. Inset: MSD of different ring models at ζ = 0.46. Here, D0
= 0.008 for all models.
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FIG. 3. Mean-squared displacement as a function of reduced time t/t0 at different packing fractions ζ for the three different models: (a) EPR with U = 200, (b) eq-EPR with U
= 100, and (c) SFPR with kθ = 5.

reentrant dynamics, albeit much less pronounced, also takes place
for eq-EPRs and SFPRs, as for the EPR model. This implies that
the system initially gets slower with an increasing packing frac-
tion, and then, it speeds up again roughly above ζ ∼ 0.9, which
signals the packing fraction where the rings are still largely unde-
formed and in close contact with each other (a loose jamming
definition).48 Above this value, the internal degrees of freedom
of the rings start to play an important role and, through shrink-
ing and deformation, the dynamics gets faster. However, in con-
trast to the EPR model, such a reentrance occurs in a limited ζ
window for eq-EPR and SFPR models because, at large enough
ζ, a new slowing down mechanism takes place, finally leading to
an arrested state for both models. Such an arrest is instead not
found for EPRs in the whole investigated ζ-region. In addition,
while the super-diffusive regime is clearly observed in the EPR sys-
tem at large ζ, no sign of super-diffusion is present in the MSDs
of the other two systems, independently of the employed model
parameters.

With the aim of identifying the differences among the three
models, we also compare them in terms of particle asphericity a, in

order to understand how different types of rings respond to large
mechanical compressions. Figure 4 reports the asphericity distribu-
tion P(a) for the three models and different packing fractions. We
first note that, as expected, eq-EPRs have a much reduced tendency
to deform at high ζ as compared to EPRs. On the other hand, when
looking at the asphericity distribution of the SFPRs, we note that
rings are able to achieve very large asphericity values at high ζ. This
leads to the emergence of a double-peak distribution at low and high
asphericity, respectively, which indicates that there are two popula-
tions of particles, one which is almost undeformed and the other that
is highly deformed. Representative snapshots of the three systems
at low and high ζ are shown in Fig. 5, where particles are colored
according to their asphericity, clarifying the differences between the
models. While at ζ = 0.78, the three systems look rather similar, we
find that at ζ = 1.07, the SFPR model displays many more rings that
are largely deformed with respect to the EPR system. Figure 6 shows
the normalized average asphericity for the three models at several ζ
for different parameters. The normalization consists in dividing ⟨a⟩
by a0; that is the low-density value of the average asphericity. There
is a striking difference between the behavior of eq-EPRs in Fig. 6(b)

FIG. 4. Asphericity distribution for the three different models at different packing fractions ζ: (a) EPRs with U = 200, (b) eq-EPRs with U = 100, and (c) SFPRs with kθ = 5.
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FIG. 5. Simulation snapshots displaying the three models analyzed at two representative packing fractions, namely, ζ = 0.78 and 1.07: for EPRs,
U = 200, for eq-EPRs, U = 100, and for SFPRs, kθ = 5. Color-coding reflects the asphericity of each ring in the different models.

as compared to EPRs and SFPRs, respectively, in Figs. 6(a) and 6(c).
Indeed, the poor ability of the equilibrium rings to deform strongly
limits the change in asphericity, not only upon increasing ζ but also
on changing U.

B. Link between deformation and fragility

We now discuss more in detail the reentrant dynamics
mentioned in the previous paragraph for the three models.

FIG. 6. Average asphericity normalized by its low-ζ average value, ⟨a⟩/a0, as a function of the packing fraction ζ for (a) EPRs with U = 100, 200, 500, 1000 and D0 = 0.008,
(b) eq-EPRs with U = 30, 50, 80, 100 and D0 = 0.08, and (c) SFPRs with kθ = 4, 5, 6, 7 and D0 = 0.08. Insets: the same data without the low-density normalization.
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FIG. 7. Rescaled relaxation time as a function of the packing fraction ζ for (a) EPRs with U = 100, 200, 500, 1000 and D0 = DEPR
0 = 0.008, (b) eq-EPRs with U = 30, 50, 80,

100 and D0 = 0.08, and (c) SFPRs with kθ = 4, 5, 6, 7 and D0 = 0.1.

To better understand the extent of such a phenomenon for the dif-
ferent ring models, we have performed simulations at several ζ val-
ues for different parameters of the eq-EPR and SFPR models to com-
pare them with the EPR system. For each state point, we have calcu-
lated the self-intermediate scattering function Fs(q∗, t) from which
we have extracted the relaxation time τα (in reduced units). The
relaxation times for the three models of polymer rings and varying
softness, as a function of ζ, are shown in Fig. 7. τα has been rescaled
for D0/DEPR

0 in order to have comparable relaxation times for the
three models at low packing fractions. For all cases, we observe an
initial increase in τα from low ζ up to the jamming point, followed
by a sudden decrease that signals a speed-up of the dynamics, whose
variation depends on the model of the ring employed and on its
softness. The main difference between the EPRs and the other two
models is that in eq-EPRs and SFPRs, the reentrance is limited to
a finite region of packing fractions whose width again depends on
the specific system and the employed softness parameter. Hence,
although both eq-EPRs and SFPRs display a reentrant transition,
at higher packing fractions, the relaxation time increases again, sig-
naling the onset of the dynamical arrest. These results show that,
for all the studied ring models, the dynamics speeds up because
of ring deformation. We can thus ultimately answer the question
on whether the dependence of the dynamics on softness is a gen-
eral feature of elastic particles, as hypothesized in Ref. 10, or it is
just a peculiar property of the EPRs. In Ref. 31, some of us have
addressed this problem by studying the relation between fragility49

defined as

m = [d(ln τα)/d(ζ/ζ∗)]∣ζ=ζ∗, (5)

and deformation described in terms of the asphericity variation,

α = (1/a0)[d⟨a⟩/dζ]∣ζ=ζ∗. (6)

In both definitions, ζ∗ is the (U-dependent) value of the pack-
ing fraction at which τα is the same for all U just after the reen-
trant regime. For the eq-EPR model, it is immediately evident from
Fig. 7(b) that it is not possible to find a common time τα among the
different curves since they are well separated for ζ > ζR. For the SFPR
system in Fig. 7(c), a common time for some of the curves can still

be found, but this would allow us to determine the fragility for only
two values of kθ. In order to circumvent this problem, we employ
an alternative procedure where we calculate the fragility from the
behavior of the relaxation time for ζ∗ ≡ ζR. By applying this strategy
also in the analysis of the EPRs, we find that the newly calculated val-
ues of m and α do not change significantly as compared to previous
findings in Ref. 31. Analogously to Fig. 6, we extract α with a linear
fit of the curves for ζ > ζR. Our aim is to verify that a linear relation
exists between m and α, independently of the model. The results are
shown in Fig. 8, where it is evident that, for all investigated models,
a linear relation between fragility and elasticity is always valid. Thus,
this is not just a feature of the EPR model. Interestingly, the different
slopes of the linear relations between |m| and α highlight the differ-
ent ways in which the rings are able to respond both in terms of
deformation and of dynamical properties to a change in ζ. In par-
ticular, considering Fig. 6, we expect eq-EPRs to be those with the
smaller α vs |m| slope due to the minimal change in α upon varying

FIG. 8. Asphericity variation α as a function of the absolute value of the fragility
m for the three models of polymer rings. Dashed lines are the linear fit used as
guides to the eye.
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the system parameters. This is indeed consistent with the findings in
Fig. 8.

C. Anomalous dynamics
In Sec. III A, we have shown that SFPRs are able to deform even

more than EPRs, while the asphericity of eq-EPRs is small if com-
pared to the other two models. The ability to deform is a necessary,
but not sufficient condition for the uptake and release of the stress,
which has been proven to be the key ingredient for the observa-
tion of an anomalous dynamics. In this context, several experimental
studies, mainly on colloidal gels, have shown that the dynamics is
sometimes faster than exponential,50–55 i.e., it was observed that the
intermediate scattering function F(q⃗, t) at a typical wavevector q⃗ can
be described by a generalized exponential decay F(q⃗, t) ∼ exp(t/τ)β
(where τ is the relaxation time) with an exponent β greater than 1.0.
At the microscopic level, β > 1.0 implies that particles move faster
compared to standard diffusion, i.e., the motion is super-diffusive
at the investigated length scale. These experimental evidences led
to the formulation of some hypothesis on the microscopic mech-
anism that generates the occurrence of a super-diffusive behavior
and that involves stress propagation in colloidal gels. In particular, it
has been argued that in these systems, the reorganization of the net-
work follows some micro-collapses, in which bonds among particles
are broken, thus releasing stress into the network and triggering a
super-diffusive motion of neighboring particles.50 The possibility to
achieve a faster than exponential dynamics has been established in
mean-field models of elastic materials where the disruption of the
network has been modeled as a number of Poissonian events that
act as dipole forces with long-range elastic effects.56 More recently,
numerical simulations have shown that a compressed exponential
decay of the density correlators is possible if single bonds are selected
and artificially broken in order to observe stress propagation within
local environment.57 Hence, it follows that stress propagation seems
to be the key ingredient that is needed to observe a super-diffusive
dynamics. For the EPR particles, super-diffusion is observed at inter-
mediate timescales in the mean-squared displacement, accompanied
by a compressed exponential relaxation in the self-intermediate scat-
tering function, as a result of the superposition of regions, which are
dynamically heterogenous, among which clusters of particles that
move ballistically.31 It has thus been argued that the microscopic
mechanism responsible for this anomalous dynamics is the ability
of the rings to deform that allows the release and the accumulation
of the stress, triggering the super-diffusive dynamics at intermedi-
ate timescales. More than ring deformation, what should matter is
the ability of the ring to vary its shape, i.e., to exhibit shape fluc-
tuations. Hence, even if SFPRs deform more than EPRs, it is inter-
esting to understand whether such very deformed rings are able to
change their shape for the uptake and release of the stress or, instead,
whether they always remain deformed. It is then important to con-
sider the fluctuations of the asphericity in order to assess whether a
ring is able to release the stress accumulated through deformation
within a certain time.

To this aim, we compare the time evolution of the fluctuations
of the asphericity of a single, representative ring for the three mod-
els in Fig. 9. We find that the SFPR model fluctuates much more
than EPRs and eq-EPRs whose fluctuations are instead compara-
ble. Thus, the semi-flexible rings not only display the most extreme

FIG. 9. Fluctuations of the asphericity (a− ⟨a⟩) for a single ring in the three models
in the reentrant region: EPR with U = 200 and ζ = 1.26, eq-EPR with U = 100 and
ζ = 1.09, and SFPR with kθ = 5 and ζ = 1.14. For the three models, the monomer
free diffusion coefficient was set to D0 = 0.08.

deformations among the three investigated systems but also their
asphericity fluctuations are the largest, which implies that their abil-
ity to release the stress is greater as compared to the EPR sys-
tem. However, no sign of super-diffusion is detected in the SFPR
model.

A hint to better understand this result comes from the compar-
ison of the total pressure P of the three models, shown in Fig. 10,
where we observe that, for large ζ, the pressure in the SFPR model
is always smaller than that of the EPR and eq-EPR systems. Impor-
tantly, the difference in pressure increases if different values of the
parameters are chosen both for the EPR and for the SFPR models

FIG. 10. Main panel: total pressure P as a function of ζ for EPRs with U = 200,
eq-EPRs with U = 100, and SFPRs with kθ = 5. Inset: total pressure P as a func-
tion of ζ for EPRs with U = 1000 and SFPRs with kθ = 7. As for the systems in
the main panel, the parameters of the EPR and the SFPR models have been cho-
sen to provide similar fragility values. Gray curves are pressures for EPRs with
U = 200 and SFPRs with kθ = 5, which are displayed for comparison.
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(see the inset of Fig. 10). This implies that, despite larger fluctu-
ations, the amount of stress that is relaxed by the SFPR model is
overall smaller than for the other two. This feature, combined with
the greater ability of SFPRs to deform and fluctuate in shape, is prob-
ably enough to allow each ring to relax the stress by itself, without
triggering collective phenomena and the associated super-diffusion.
On the contrary, in the EPR model, there is a force that continu-
ously pumps energy into the system, giving rise to a much higher
total pressure. Since for EPRs shape deformation is large but shape
fluctuations are small compared to SFPRs, we are left to speculate
that the EPR system needs an extra mechanism that allows an effec-
tive way to propagate stress among neighbor rings, which eventually
results in the observed anomalous dynamics. Regarding the eq-EPR
system, there is small ring deformation and no stress relaxation, so
it is legitimate to expect the absence of anomalous dynamics in this
case.

From the above considerations, we learned that stress
relaxation alone is not sufficient to trigger the occurrence of
super-diffusion. Therefore, it may be a matter either of the total
amount of stress in the system or of the effective propagation of
this stress, which leads to the onset of a collective effect as the one
observed in Ref. 31. While we cannot definitely exclude the former
hypothesis, given that the stress intensity for SFPR is always sig-
nificantly smaller than for EPR, even for high values of kθ (see the
inset of Fig. 10), we can examine in more detail the latter aspect.
Indeed, we know that collective motion is often associated with
active, non-equilibrium systems, seeming to imply that the pres-
ence of the unbalanced force in the center of mass of the rings
could be the only cause of the occurrence of this additional mech-
anism leading to the anomalous dynamics. For instance, super-
diffusion can occur if there exists a persistent force that drives
collectively particles toward the same direction. To quantify the
persistence of F⃗H , we evaluate the self-correlation function CFH(t)
of such a force at different packing fractions. The results for the
x-component of F⃗H are shown in Fig. 11, confirming that for

FIG. 11. Autocorrelation of the x-component of the Hertzian force CFxH (t) at dif-
ferent packing fractions ζ for EPRs with U = 1000. Inset: The same as in the main
panel for ζ = 1.26 compared to the correlation function of the x-component of
F̂H = F⃗H/∣F⃗H ∣, i.e., unit vector of the Hertzian force.

ζ ≲ 0.85, i.e., above the loosely defined jamming point, the corre-
lation function of the Hertzian force quickly decreases, while, for
larger values of ζ, CFH(t) displays a two-step decay, with a plateau
that extends over several decades in time and whose height increases
on increasing ζ. In addition, we find that the relaxation time of
CFH(t) has a little dependence on ζ and roughly coincides with the
time regime in which the system is characterized by long-time diffu-
sion [i.e., t/t0 ≳ 102 to be compared with MSDs shown in Fig. 3(a)].
Figure 11 shows that a persistent force builds up for each ring
pointing toward a given direction for several decades (the plateau
length) and then slowly decorrelates. The decorrelation of F⃗H could
result either from a change in the intensity or from a reorientation
of the force. To disentangle the two contributions, we also eval-
uate the self-correlation of the x-component of F̂H , i.e., the unit
vector of the Hertzian force, which gives information on the ori-
entation of the vector force. The inset in Fig. 11 shows that the
latter correlation function is quite similar to CFxH(t), meaning that
most of the decorrelation occurs due to a change in the orientation
of F⃗H .

Therefore, if the out-of-equilibrium force were the only respon-
sible for the anomalous dynamics, then systems with a simi-
lar behavior to the EPR one could dissipate the stress with the
same mechanism and display super-diffusive behavior. Here, we
show that this is not necessarily true by examining a simple
soft system, very similar in spirit to the EPR model, which also
self-generates an out-of-equilibrium force at high density, even
though lacking the internal polymeric degrees of the rings. To
this aim, we employ the modified Hertzian model introduced in
Sec. II, for which we study the dynamics at different packing
fractions in order to identify whether the presence of the extra
force gives rise to super-diffusion. We stress that the standard
Hertzian disks with the interaction strength employed here and in
the absence of the extra force generated by the overlaps already
display a reentrant behavior at high ζ, as reported in our previous
work.31

Figure 12 shows the MSD of the modified Hertzian disks at
a high packing fraction upon increasing the amplitude K of the

FIG. 12. Main panel: MSD for modified Hertzian disks with UH = 150 at ζ = 0.83
as a function of the overlap force with different K. Inset: MSD as in the main panel
but for ζ = 2.53 (reentrant point).
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overlap force: we see that the system becomes slightly faster for larger
values of K. This is due to the fact that the force generated on disk i
due to the overlap with disk j points toward j (and vice versa for the
force acting on i), which pushes disks to stay closer on increasing
K, thus leaving more available space for rearranging and diffusing.
This is also what happens in the EPR model when two rings i and j
deform pushing one against the other: the resulting Hertzian force
that acts on the center of mass of ring i points with good approxi-
mation toward the center of j and vice versa. However, despite the
analogies between the two systems, for the modified Hertzian disks,
the dynamics always remains diffusive, even if the auto-correlation
force of the modified Hertzian model also persists up to long times in
analogy to the EPR model, as shown in the supplementary material.
This behavior holds at all investigated ζ, even above the reentrant
point, as shown in the inset of Fig. 12.

A comparison of the MSDs for the non-equilibrium Hertzian
disks at different values ζ is reported in the supplementary material.
Our results for the modified Hertzian disks demonstrate that the
Hertzian force of the EPRs alone cannot generate super-diffusion,
while the findings for SFPRs show that stress propagation alone is
also not responsible for that. Thus, it is the combination of the two
effects, i.e., the simultaneous presence of the extra force and of the
internal elasticity, which gives rise to the anomalous dynamics in the
EPRs, as discussed in Sec. III D.

D. Effects of the Hertzian field and of the elasticity
on the dynamics of EPRs: Collective motion

To corroborate the fact that the persistent Hertzian force
alone cannot generate super-diffusion, we investigate the correlation
between this force and the displacement of the rings. This analysis
is motivated by previous observations of strong spatial correlation
among EPRs, which were found to move ballistically in clusters on
intermediate timescales, before that diffusion took place.31 This sug-
gests that there might be a characteristic size of clusters over which
the force is correlated with the displacement.

To this aim, we divide the simulation box into nb sub-boxes and
identify all the particles that, in the initial time, belong to that box.
An illustration of the procedure is shown in Fig. 13. Within each sub-
box i, we calculate the instantaneous total force F⃗tot

i (t) = ∑Ni
j=1 F⃗

tot
j (t)

and the center of mass R⃗CM
i (t) = ∑Ni

j=1 r⃗
CM
j (t), where index j runs

over the N i rings belonging to the sub-box. Then, we average the
force over Mt configurations corresponding to a time window Δt,
i.e., F⃗tot

i (Δt) = 1
Mt
∑Mt

t=1 F⃗
tot
i (t) and calculate the displacement of the

center of mass within the same time window ΔR⃗CM
i (Δt) = R⃗CM

i (t
+ Δt) − R⃗CM

i (t), where we indicate the (x, y) components of
the vector as ΔR⃗CM

i = (ΔxCMi ,ΔyCMi ). We then repeat the
analysis for several box sizes, aiming to identify the emer-
gence of a characteristic box size. Figure 14 (left panel)
shows the components of F⃗H

i (Δt) of EPRs as a function of
the corresponding components of ΔR⃗CM

i (Δt) for several time
windows of length Δt/t0 = 7.89, roughly coinciding with the char-
acteristic time of super-diffusion.31 To obtain the data shown in
Fig. 14, the simulation box was divided into 5 × 5 boxes, each of
which contains a number of rings compatible with the size of clusters
of super-diffusive EPRs observed in Ref. 31 for the same state point.
Figure 14 shows that there is a tiny correlation between the force

FIG. 13. Illustration of the box method described in the text. Initially, at t0, the
simulation box is divided into sub-boxes. Rings in each sub-box are identified (e.g.,
orange rings in the upper left sub-box), and the center of mass (black dot) and
other quantities of the sub-box are evaluated. Although at longer times some of
the rings could move outside the initial box and some other could enter in it, all
the quantities evaluated with the method, such as the center of mass, are still
calculated considering only the rings belonging to the box at t0.

and the displacement. The same small correlation is found (with no
specific trend) for different numbers of sub-boxes, down to the limit
case in which the force–displacement correlation is investigated at
the single-particle level. F⃗H is not the only force that acts on the cen-
ter of mass of a single ring. In fact, there is also the contribution
of the WCA force FWCA arising from the interaction with neighbor
rings. Figure 14 (right panel) shows that this force, averaged within
boxes, is also not correlated with the displacement (as it is expected
to be). A similar analysis for SFPR is reported in the supplemen-
tary material, showing that, for that model, a correlation between the
force acting on the center of mass of the box and its displacement is
never found.

However, we find that if the contribution F⃗tot = FWCA + FH is
taken into account, then a strong correlation between the force and
the displacement is found.

FIG. 14. Left panel: x and y components of FH
i (Δt) as a function of the displace-

ment of the center of mass ΔxCM (Δt) and ΔyCM (Δt) of each sub-box i for ten
windows of length Δt/t0 = 7.89. Right panel: The same as the left panel but for
FWCA
i (Δt). The system has been divided into 25 sub-boxes. Black lines are fits

using as slope m = c ⋅ σFzz /σΔzz , where c is the correlation coefficient from
linear regression and σFzz and σΔzz are standard deviations of FH,WCA

i,x (Δt) and
ΔxCMi (Δt). Data are for EPRs with U = 1000 at ζ = 1.26.
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FIG. 15. Components (x, y) of F⃗tot
i (Δt) as a function of the respective compo-

nents of the displacement of the center of mass ΔR⃗CM
i (Δt) of each sub-box i.

Data are taken from trajectories of EPRs with U = 1000 at ζ = 1.26 over 49 time
intervals, each of length Δt/t0 = 7.89, which is the characteristic time of super-
diffusion.31 The analysis is repeated for different sub-box sizes: the simulation
box (of total length ∼ 123σm × 123σm) is divided into a decreasing number of
boxes nb from top left to bottom right, namely, nb = 400, 144, 64, 25, 9, and 4.
From a linear regression of the data, the correlation coefficient c between the
force and the displacement components is estimated. Black lines are fits using
as slope m = c ⋅ σFzz /σΔzz , where σFzz , σΔzz are standard deviations of Ftot

i,x(Δt)
and ΔxCMi (Δt).

Figure 15 shows the components of F⃗tot
i (Δt) as a function of

the corresponding components of ΔR⃗CM
i (Δt) for several time win-

dows of length Δt/t0 = 7.89 and for different sizes of the sub-boxes.
We note that there is a characteristic size of the sub-boxes, corre-
sponding to a number of boxes nb = 25, for which the correlation
between the force and the displacement is maximum. Again, such
a characteristic size contains a number of rings, which is consistent
with the size of clusters that move collectively at the considered ζ
and U described in Ref. 31. Such results highlight the importance
of the interplay between the two forces in generating the collec-
tive dynamics. In the supplementary material, we also show that,
in the case of the modified Hertzian disks, the correlation between
F⃗tot and F⃗H with the displacement does not exist at any sub-box
subdivision.

In summary, we observe a strong interplay between excluded
volume interactions and the Hertzian force, which gives rise to a
motion that is spatially correlated. Recent works have shown that
simple models of active particles, in which the alignment of the
velocity is not introduced ad hoc in the interaction rules, can also
display a coherent motion due to the action of elastic interactions.58

Our system at a high packing fraction also displays an alignment of
the displacement, and the underlying elastic interactions are con-
nected to such a coherent motion. However, differently from sim-
ple active models, the force generated by the Hertzian field in our
model does not follow its own independent evolution, but it is self-
generated through the mechanical stress that arises within each EPR;
therefore, it is difficult to predict what would be its effect on the
dynamics of the system. Further work on this issue will be needed
in the future, which should aim at the development of simpler

models with features similar to the present EPRs as well as clearer
connections to existing active models.

IV. DISCUSSION AND CONCLUSIONS
In the present work, we compared three different models of

polymer rings in order to understand what are the general features
in the dynamical behavior of a simple model of particles with an
internal elasticity. This work largely extends our previous study31

where the EPR system was investigated and a reentrant dynam-
ics was detected, being characterized by a peculiar super-diffusive
behavior over intermediate timescales. In such a work, the non-
equilibrium features of the EPR model, which arise due to the pres-
ence of the inner Hertzian field, were overlooked.32 Here, we fully
unveil these non-equilibrium features, by explicitly discussing the
role played by the Hertzian field, which can be considered equiv-
alent to an active force, self-generating due to the deformation of
polymer rings. The contribution of such a force is negligible when
particle deformation occurs due to thermal fluctuations and the sys-
tem behaves as if it were in equilibrium. However, at higher packing
fractions, excluded volume effects give rise to asymmetric deforma-
tions, which generate a non-zero persistent force acting on each
ring. By investigating the dynamical behavior of three models of
polymer rings, we establish a clear link between deformation and
fragility, as previously determined in Ref. 31 for the EPR system
only. To this aim, we investigated the dependence of the fragility on
the softness of rings, quantified by the average asphericity, finding
that, indeed, the link between these two quantities is a generic fea-
ture of elastic, deformable particles. These results show that there
exists a direct connection between the microscopic elastic proper-
ties of the particles and their dynamical behavior, which is expected
to hold also in 3D and for more refined models. We aim to fur-
ther elucidate this aspect with more realistic models in the near
future.

Regarding the super-diffusive dynamics, we attempted to pro-
vide a direct evidence of the hypothesized connection between the
release of stress within the system and the occurrence of the anoma-
lous dynamics. To this aim, we compared the MSDs of the three dif-
ferent models of polymer rings, finding that super-diffusion at inter-
mediate timescales only occurs for EPRs, but not for eq-EPRs and
SFPRs. By analyzing the ability of the three kinds of rings, not only
to deform but also to fluctuate in shape over time, we also provided
evidence that the semi-flexible model has the greatest ability to both
deform and fluctuate, but again without showing super-diffusion.
However, the stress to be released in the SFPR model is significantly
smaller than the corresponding one for the EPRs, where the active
force pumps energy into the system at all times for high ζ. We there-
fore speculate that another mechanism is at work in the EPR system,
which is able to induce stress propagation among neighbor rings,
giving rise to a (coherent) super-diffusive dynamics. This mecha-
nism does not owe only to the presence of the out-of-equilibrium
force but is also related to the presence of internal elasticity. In fact,
we find that the out-of-equilibrium force is not directly correlated
with rings’ displacement as one could initially guess. Instead, we
find that the activity is mediated by excluded volume interactions,
originating a motion that is spatially correlated over specific length
scales that depend on ζ and on the model parameters (i.e., ring soft-
ness). The displacement of the regions of coherent rings turns out to

J. Chem. Phys. 154, 154901 (2021); doi: 10.1063/5.0041264 154, 154901-11

© Author(s) 2021

 26 M
arch 2024 09:56:34

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0041264


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

be highly correlated with the total force, i.e., the sum of the WCA
force and the inner Hertzian force, but not with the two contri-
butions separately. This strongly suggests that ring elasticity plays
a crucial role for the emergence of such coherent motion, as also
observed in simple active models.58 The fact that the latter is a key
ingredient to obtain super-diffusion was directly proven by build-
ing an alternative system, the so-called modified Hertzian disks,
where a self-generated persistent force based on the overlap among
particles was introduced. Despite this force being highly correlated
in time as in the case of EPRs, no super-diffusion was obtained
because of the lack of internal elasticity of the particles. Our work
thus suggests that anomalous dynamics must be linked to out-of-
equilibrium features, which act in combination with other micro-
scopic ingredients, such as internal elasticity of soft particles. Hence,
within the present study, it appears that for purely equilibrium
systems, a faster than-diffusive (or exponential) dynamics cannot
be observed. These findings are in agreement with recent exper-
imental results,52 which showed that a faster than exponential
relaxation in colloidal glasses was related to the existence of a
pre-stress condition in the samples. This, in turn, originates the
out-of-equilibrium dynamics that is necessary for the occurrence
of the anomalous dynamics. Notwithstanding this, several ques-
tions remain open related to stress relaxation and stress propaga-
tion in these systems at high densities. In particular, the present
results do not allow us to relate the onset of the anomalous dynam-
ics to the intensity of the released stress because the SFPR model
never reaches values of total stress as high as those of the EPRs.
In the future, it would be interesting to study some similar mod-
els, where this aspect could be tested in more detail. In addition,
it would be important to design simpler non-equilibrium mod-
els, possibly amenable of theoretical treatment, that could help us
to shed light on the exact mechanism occurring in EPR, lead-
ing to stress propagation and to the emergence of anomalous
dynamics.

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion on the choice of
parameters for the EPRs and the eq-EPRs, and for additional results
on the modified Hertzian disks and on the SFPRs.
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