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Abstract. Recent progress in pose-estimation methods enables the
extraction of sufficiently-precise 3D human skeleton data from ordinary
videos, which offers great opportunities for a wide range of applications.
However, such spatio-temporal data are typically extracted in the form
of a continuous skeleton sequence without any information about seman-
tic segmentation or annotation. To make the extracted data reusable for
further processing, there is a need to access them based on their content.
In this paper, we introduce a universal retrieval approach that compares
any two skeleton sequences based on temporal order and similarities
of their underlying segments. The similarity of segments is determined
by their content-preserving low-dimensional code representation that is
learned using the Variational AutoEncoder principle in an unsupervised
way. The quality of the proposed representation is validated in retrieval
and classification scenarios; our proposal outperforms the state-of-the-art
approaches in effectiveness and reaches speed-ups up to 64x on common
skeleton sequence datasets.

Keywords: 3D skeleton sequence · Segment similarity · Unsupervised
feature learning · Variational AutoEncoder · Segment code list · Action
retrieval

1 Introduction

The rapid development of pose-estimation methods [6] enables more and more
precise detection of human body keypoints (2D or even 3D) in individual frames
of a standard video-camera recording. The detected keypoints are then used to
simplify human motion using the spatio-temporal skeleton sequence represen-
tation. Since such skeleton sequences can nowadays be extracted from a com-
mon video, the analysis of human motion is becoming very popular in a broad
spectrum of application domains, ranging from computer animation through
robotics, security, autonomous driving, to healthcare and sports [25].
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The skeleton sequences may generally appear in different forms – short
or long, segmented or continuous, labeled or unlabeled. Current research in
skeleton-data processing mainly focuses on recognizing classes of short and
labeled actions [5,19,22] or detecting such actions [21,27] or anomalies [1] in
continuous sequences. These tasks require examples of actions to be defined
in advance, so that action classifiers or detectors can be trained in a super-
vised way. However, supervised training is not applicable to environments where
examples of actions are not known in advance. In environments where skeleton
data are extracted as long continuous sequences without any information about
their annotation or semantic partitioning, unsupervised content-based processing
methods are the only possibility to make the recorded data searchable and thus
reusable. One of the most general principles is to partition continuous sequences
into short segments and access the data based on similarities of the underlying
segments.

In this paper, we adopt such general segment-based processing principle by
partitioning a continuous sequence into fixed-size segments and extracting the
content-preserving segment representation – in the form of a low-dimensional
code – in an unsupervised way. The most desirable property is that two codes
are similar in terms of the cosine distance if their corresponding segments exhibit
similar movement characteristics and vice-versa. In this way, we can represent
a skeleton sequence of any length by the list of codes and determine the simi-
larity of any two code lists based on the time-warping principle. This allows the
proposed approach to be integrated within any retrieval-based operation.

2 Related Work and Our Contributions

Related works almost exclusively learn a skeleton-data representation on the level
of pre-segmented actions, that are commonly provided by benchmark datasets
[16,17,20]. Since the individual actions constitute standalone semantic units,
the action representation can be straightforwardly learned in a supervised or
self-supervised way. However, representation learning is not an easy task for the
continuous (unsegmented) sequences whose content is generally unpredictable.

Approaches for Pre-segmented Actions. Plenty of papers propose various
architectures of supervised neural-network classifiers that trade between classi-
fication accuracy and the number of network parameters, pretty much influenc-
ing the training time. Such approaches are usually based on transformers [5],
convolutional [19], recurrent [27], graph-convolutional [22] networks, or their
combinations including attention-based mechanisms. However, they are limited
to scenarios where both segmented actions and their labeling are provided in
advance. Recently, self-supervised learning, where action labeling is not known,
has become increasingly popular. In such cases, the action representation can be
learned using reconstruction-based or contrastive-learning-based methods. The
former group applies the encoder-decoder principle to reconstruct the original
skeleton data of an action and uses the learned intermediate representation as the
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action feature. The latter group [12,14,29] aims at learning a meaningful metric
that sufficiently reflects semantic similarity to discriminate actions belonging to
different classes in the validation step. Still, all these methods are applied to
scenarios where the actions are pre-segmented (known) in advance.

Approaches for Unsegmented Sequences. Compared to the previous
research, a limited number of approaches provide content-based access to unseg-
mented skeleton data. In [26], the continuous sequences are synthetically parti-
tioned into many overlapping and variable-size segments that are represented by
4, 096D deep features. However, such features are learned in a supervised way
by exploiting supplementary knowledge about labeled actions, and indexing is
very difficult due to both high feature dimensionality and a large number of
segments. To move towards more efficient processing, the approaches in [2,18]
quantize high-dimensional segment features into low-dimensional codes using
k-means clustering. However, it is not generally possible to partition a given
segment-feature space in such way that all pairs of similar segments are in the
same partition. Some pairs of similar segments thus get separated by partition
borders and become non-matching, which decreases the effectiveness of applica-
tions with an increasing number of clusters (i.e., the vocabulary size). This prob-
lem is partly solved in [4,24] by applying soft quantization; nevertheless, limited
effectiveness is still achieved as the quantization process employs a numerical
distance function for comparison of segments. Such function can not principally
partition segment data based on their semantics.

Contributions of This Paper

We propose an effective representation of unsegmented and unlabeled skeleton
sequences using a list of compact codes learned in an unsupervised way. Com-
pared to existing methods, the proposed codes are very compact (in contrast to
high-dimensional features in [2]) and preserve motion semantics (in contrast to
hand-crafted segment features in [18,24]). Specifically,

– we propose a lightweight residual neural-network architecture to effectively
process short segments of spatio-temporal skeleton data;

– we apply the reconstruction-based Variational AutoEncoder approach in com-
bination with the proposed architecture to learn semantic information of seg-
ment data in the form of a compact code;

– we propose to adopt the time-warping principle to determine a similarity
between two code lists representing pairs of motions of any lengths;

– we verify the effectiveness and efficiency of the proposed code lists in the
context of two retrieval-based application scenarios.

3 Code List Representation

In this section, we describe the whole process of transformation of a continu-
ous skeleton sequence into a list of codes. In particular, we formally define the
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skeleton data domain together with the retrieval-based principle using k-nearest
neighbor queries. Then, we present how continuous sequences are partitioned
and how semantic codes are learned from such unlabeled segment data. Finally,
we propose how to compare any two sequences represented by the lists of codes.

3.1 Problem Definition

We represent skeleton data as a continuous sequence (P1, . . . , Pn) of n consecu-
tive 3D poses Pi, where the i-th pose Pi ∈ R

j·3 is captured at time moment i
(1 ≤ i ≤ n) and consists of xyz-coordinates of j tracked joints. In this paper,
we use two different body models with j = 31 joints for the HDM05 dataset [20]
and j = 25 joints for the PKU-MMD dataset [15]. The sequence of n poses
is then partitioned into a list of segments (S1, . . . , Sm), where m � n. Each
segment Si = (P1, . . . , Pf ) consists of a fixed number of f poses and is further
transformed using the codeTrans(Si) function into a low-dimensional code rep-
resentation Ci ∈ R

d. The appropriate code dimensionality d typically ranges
between d ∈ 2[3..6]. Thus, the original high-dimensional skeleton-data sequence
(P1, . . . , Pn) is transformed into a short code list (C1, . . . , Cm), so-called Seg-
mentCodeList (SCL), consisting of m low-dimensional codes (e.g., on the HDM05
dataset, a 744-dimensional segment – consisting of eight 93D poses – is trans-
formed into a 32D code). The whole transformation process is schematically
illustrated in Fig. 1.

We evaluate the SCL representation on classification and retrieval scenarios
using the k-nearest neighbor approach. Having a set {D1,D2, . . .} of database
sequences Di = (P1, . . . , Pni

) and a query sequence Q = (P1, . . . , Pn), the objec-
tive is to find such k database sequences that are the most similar to the query
sequence Q. The similarity between the query Q and any database sequence
Di is quantified using a distance function dist(Q,Di) that operates over their
corresponding SCLs. Our approach does not anyhow limit the length of query
or database sequences, so they can correspond to long skeleton recordings, short
pre-segmented actions, or their combinations.

3.2 Partitioning Skeleton Sequences

For efficient content-based management of especially longer skeleton sequences,
it is necessary to partition them into meaningfully-sized segments. The segment-
level representation constitutes the smallest processing unit that preserves a
reasonable volume of spatio-temporal information and is much better manage-
able in comparison with either many only-spatial poses, or hardly-processable
continuous sequences. In addition, processing on the level of segments can be
utilized in a broad variety of tasks.

The most straightforward way is to apply a mechanical slicing of a skeleton
sequence into fixed-size segments. There is no optimal length of segments, but
the rule of thumb suggests that such length should be upper-bounded by the
length of the shortest retrievable query. Besides the segment length, the problem
is that the segments originating from the query need not be perfectly aligned
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Fig. 1. A schematic illustration of the proposed transformation process of a continuous
3D skeleton sequence into the SCL representation.

with the segments covering query-relevant parts within database sequences –
thus, such relevant database sub-sequences can become unfindable. To overcome
this problem, we apply the overlapping segment principle, which balances the
trade-off between data findability at the price of increased data redundancy. The
appropriate overlap between two consecutive segments is often set to between
50–80 %. For example, the 50 % segment overlap is illustrated in Fig. 1.

Formally, we partition a continuous skeleton sequence (P1, . . . , Pn) into a list
of segments (S1, . . . , Sm). The i-th segment Si (i ∈ [1,m]) is represented by the
following sub-sequence of f poses:

Si = (P(i−1)·ss+1, . . . , P(i−1)·ss+f ),

where f ∈ N is the fixed segment length and ss ∈ N (1 ≤ ss ≤ f) is the fixed
segment shift (in number of poses), determining that two consecutive segments
overlap in (1 − ss

f ) · 100% frames. For the skeleton sequence of n poses, this
segmentation policy generates �n−f

ss � = m segments in total.

3.3 Learning Codes for Segment Data

Given a set {Si} of unlabelled segments Si ∈ R
f×j·3 that are extracted from

training sequences, we want to learn an encoding function codeTrans : Rf×j·3 →
R

d that maps segments {Si} to small semantic codes {Ci} , Ci ∈ R
d. The sim-

ilarity between codes (e.g., their cosine similarity) should reflect the semantic
similarity between the original segment data. To learn codeTrans(·) in an unsu-
pervised way, we apply the reconstruction-based principle by adopting a deep
generative model; specifically a Variational AutoEncoder (VAE) [13].
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VAE Formulation. We assume that the segment space S ⊂ R
f×j·3 is induced

by a latent code space C ⊂ R
d. Following the commonly used VAE terminology,

in our formulation, the encoder network Encφ takes as input a segment S ∈ S
and produces a distribution qφ(C|S) over the latent code space C describing the
codes that could have generated S. Specifically,

(
μC , σ2

C

)
= Encφ(S) (1)

qφ(C|S) ∼ N (μC , σ2
CI) , (2)

where qφ(C|S) is defined as a Gaussian distribution whose parameters (the mean
μC ∈ R

d and diagonal covariance matrix whose diagonal values are σ2
C ∈ R

d) are
produced by Encφ(S). Similarly, the decoder network Decθ takes a code C and
defines pθ(S|C) (the distribution of sequences in S corresponding to the latent
code C) by providing μS , σ2

S ∈ R
f×j·3:

(
μS , σ2

S

)
= Decφ(C) (3)

pθ(S|C) ∼ N (μS , σ2
SI) . (4)

The parameters of the encoder and decoder networks φ, θ are jointly opti-
mized via mini-batch gradient descent by maximizing the evidence lower bound
(ELBO):

ELBO(θ, φ, Si) = ECi∼qφ(C|Si) [log pθ(Si|Ci)] − β · DKL (qφ(C|Si) || p(C)) , (5)

where β is a hyperparameter that controls the trade-off between reconstruction
accuracy and latent code disentanglement [9]. When assuming a normal prior for
p(C) (i.e., C ∼ N (0, I)), maximizing Eq. 5 reduces to minimizing the following
loss function for a sample sequence S:

L(θ, φ, S) =
f×j·3∑

k=1

⎛

⎜
⎝

(
S(k) − μ

(k)
S

)2

2σ
2(k)
S

+ log σ
(k)
S

⎞

⎟
⎠

+
β

2

d∑

k=1

(
μ
(k)
C + σ

2(k)
C − 1 − log σ

(k)
C

)
,

(6)

where the notation (k) indicates the k-th component of a vector. The first term in
Eq. 6 represents the negative log-likelihood of the sample S given the reconstruc-
tion mean μS and variance σ2

S produced by the decoder. The variance σ2
S can be

interpreted as the uncertainty of the reconstruction [11]; the decoder is pushed
to minimize uncertainty (via the log σ

2(j)
S term) but is discouraged to output a

low uncertainty when the predicted mean μS deviates too much from the orig-
inal sample S (via the (S(j) − μ

(j)
S )2/2σ

2(j)
S term). The second term of Eq. 6 is a

regularization term that pushes codes produced by the encoder to be normally
distributed, thus reducing code overfitting.
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Encoder and Decoder Architectures. The encoder and decoder networks are
implemented as residual 1D convolutional networks [8]. The encoder is comprised
of a single-layer 64-channels convolutional stem followed by three residual blocks
and a last fully connected layer. In the second and third residual blocks, the time
dimension is halved by 2-stride convolutions, while channels are doubled. The
decoder network is comprised of four residual blocks and a final convolutional
layer; before each residual block, the input is upsampled by a factor 2 in the time
dimension until it matches the correct segment size, while the channel dimension
is halved by each block. A residual block is implemented as BN-ReLU-Conv-BN-
ReLU-Conv, where BN and Conv are 1-dimensional batch normalization and
convolutional layers, respectively. A convolutional layer is added in the shortcut
path of the residual block when output and input dimensionalities do not match.

Segment Encoding. Once trained, we adopt the encoder network to transform
the skeleton data of each segment into a code. Specifically, for each segment Si,
we take the mean parameter μC produced by Encφ(Si) as code Ci:

Ci = codeTrans(Si) = Encφ(Si)[0] , (7)

where [0], with abuse of notation, indicates the selection of only the first output of
the encoder. The similarity between codes is quantified using the cosine distance.
The code for the extraction of segment features is available at: https://github.
com/fabiocarrara/mocap-vae-features.

3.4 Determining Similarity of SCL Representations

For the purpose of k-nearest neighbor retrieval, there is a need to determine
a similarity between the query Q and any database sequence Di. Let us recall
that the query and database sequences have to be first transformed into the SCL
representation by partitioning a given sequence into segments and transforming
each segment into the code using the codeTrans(·) function. Thus, the query Q
is then represented by its SCL as (C1, . . . , Cm) and the database sequence Di

as (C ′
1, . . . , C

′
m′). Since the lengths of SCLs can be generally different, i.e., m 
=

m′, the time-warping or bag-of-words principle constitutes possible candidates
for similarity-based comparison. To respect the temporal order of codes, we
have decided to apply the Dynamic Time Warping (DTW) distance function to
compare two SCLs, where the similarity of two particular codes Ci and C ′

j inside
DTW is quantified using the cosine distance (as stated in Sect. 3.3):

codeDist(Q,Di) =
1
m

· DTW ((C1, . . . , Cm) , (C ′
1, . . . , C

′
m′)) . (8)

We further normalize the DTW distance by the length of the warping path m
(max{m,m′} ≤ m ≤ m + m′) inside the DTW matrix (i.e., by the number of
identified mappings between pairs of codes) so that shorter sequences are not
favored at the expense of longer ones with respect to the same query.

https://github.com/fabiocarrara/mocap-vae-features
https://github.com/fabiocarrara/mocap-vae-features
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The disadvantage of DTW is its quadratic time complexity. On the other
hand, the SCLs are typically quite short. In case long SCLs are needed to be
compared, several DTW enhancements can possibly be applied to decrease pro-
cessing time up to linear complexity [23].

4 SCL in Retrieval Applications

We experimentally verify that the SCL representation preserves important char-
acteristics of 3D skeleton segment data in the context of two popular applica-
tions: action retrieval and action classification. The evaluation on the level of
pre-segmented actions allows us to demonstrate that the SCL approach trained
without the information about pre-segmented actions or their labels can achieve
high effectiveness even when compared to the purposely trained classifiers.

4.1 Datasets

Even though there is a variety of 3D skeleton datasets, they usually provide
only pre-segmented actions used for supervised or self-supervised learning tasks
(such as NTU RGB+D 60/120 [17] or Kinetics 400 [10]). To properly evaluate
our approach, which does not assume anything about pre-segmentation, we need
datasets that provide continuous (unsegmented) skeleton sequences. The suitable
possibilities are the following two datasets.

– HDM05 dataset [20] is captured by a marker-based motion capture technol-
ogy with a 31-joint body model. The dataset contains up to 324 continuous
skeleton sequences with the total length of about 3.5 h, which corresponds to
1.5 M frames with the frame-per-second rate (FPS) of 120 Hz. The dataset also
provides a fine-grained annotation of 241 (out of 324) continuous sequences
in which 2,345 actions belonging to 130 classes are labeled.

– PKU-MMD dataset [15] is captured by Kinect with a 25-joint body model.
The dataset provides 860 single-subject continuous sequences with the total
length of 20 h captured with the FPS rate of 30 Hz. Such sequences contain
almost 20 K labeled single-subject actions that are categorized in 43 classes.
The dataset defines the cross-view (CV) and cross-subject (CS) evaluation
scenarios that specifically divide the actions as well as sequences into training
and test batches.

As recommended in most of the papers, we also pre-process the datasets by
downsampling the skeleton data (downsampling HDM05 10 times from 120 to
12 and PKU-MMD 3 times from 30 to 10) and applying the position, orientation,
and skeleton-size normalization.

4.2 Evaluation Methodology of Retrieval Applications

To support unsupervised segment-code learning, we use only continuous (unseg-
mented) skeleton sequences without any information about pre-segmented
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actions or their labels. We train one model for the whole HDM05 dataset and
two models for the PKU-MMD dataset corresponding to the CV and CS scenar-
ios. As discussed in Sect. 3.2, we synthetically partition each skeleton sequence
into a series of fixed-size overlapping segments. As recommended in [2,24], we
fix the segment length to 0.666 s with the segment shift of 0.133 s, which cor-
responds before downsampling to 80 and 24 frames with the segment shift of
16 and 5 frames for the HDM05 and PKU-MMD dataset, respectively. After
downsampling, this results in 8-frame segments for both datasets. In total, 70 K
segments were generated from the 241 HDM05 sequences and 1.2 M from the 860
PKU-MMD sequences. All the HDM05 segments were used to train the HDM05
model, while the subsets of PKU-MMD segments originating from the training
sequences specified for the CV/CS evaluation scenarios were only used to train
the models for the CV and CS scenarios. For training purposes, such segments
were randomly split in the 80:20 manner to define the sets for the training and
validation phases of each model.

To study the effectiveness of the proposed approach, we need a ground truth
that is, however, defined only on the level of actions. Therefore, we focus on
traditional action-retrieval and action-classification applications which we eval-
uate on the skeleton-based modality using k-nearest neighbor (kNN) queries.
In both applications, the model trained on unsegmented skeleton sequences is
used to extract the SCL representation for each dataset action. Then, each kNN
query is evaluated in a sequential way by computing the normalized DTW dis-
tance between the specific query-action SCL and each database-action SCL (see
Eq. 8). In particular, on the PKU-MMD dataset, the queries correspond to the
test actions and the database actions to the training actions defined on the
CS/CV scenarios. On the HDM05 dataset, there is no standard evaluation pro-
tocol, so the leave-one-out approach is applied over all the 2,345 actions.

For the action-retrieval application, we quantify effectiveness as the average
precision (Precision@k) of all the kNN queries, where the query precision is
computed as a ratio of correctly retrieved actions. An action is considered as
correctly identified if it belongs to the same class as the query action. For the
action-classification application, we evaluate different values of k and apply the
kNN classifier as adopted in [24]. We measure the application effectiveness as
the average classification accuracy (Accuracy@k) over all the queries. For both
scenarios, we measure efficiency as the average time (in milliseconds) needed to
evaluate a single query on the collection of database actions.

4.3 Effectiveness and Efficiency Results

We evaluate effectiveness and efficiency results for varying the SCL dimension-
ality d, which is experimentally set to d ∈ {8, 16, 32, 64, 128, 256}. Thus, the
original segment dimensionality – 744/600-dimensional segment data consist-
ing of eight 93D/75D poses for the HDM05/PKU-MMD datasets – is decreased
roughly from 2 times (for d = 256) to 75 times (for d = 8). Figure 2 reports
the effectiveness-efficiency trade-off when varying such SCL dimensionality d
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(blue lines) in both action-retrieval and action-classification scenarios. As a ref-
erence, we also report the results of the baseline configuration (green cross)
that uses DTW to determine the similarity of actions on the level of individual
poses; the distance between poses inside DTW is implemented as the sum of the
Euclidean distances between corresponding raw joint coordinates. SCL represen-
tations deliver a much improved effectiveness in both scenarios (with d = 256, a
Precision@1 of 87.42% vs 75.22% on HDM05, 90.03% vs 83.58% on PKU-MMD
(CV), 74.41% vs 62.34% on PKU-MMD (CS), and an Accuracy@5 of 87.59% vs
77.31% on HDM05, 90.44% vs 81.19% on PKU-MMD (CV), 77.80% vs 59.43%
on PKU-MMD (CS)). These results indicate that the learned SCL represen-
tations preserve semantic information. From the efficiency point of view, the
comparison is quite fast as the DTW function is applied to relatively short SCLs
– a single action contains 12 and 24 codes on average for the HDM05 and PKU-
MMD datasets, respectively. As a result, we reduce the average query processing
time by more than an order of magnitude with respect to operating on raw joint
coordinates.

Fig. 2. Effectiveness-Efficiency trade-off of SCL. Effectiveness is measured in the kNN-
based retrieval and classification scenarios as Precision@1 and Accuracy@5, respec-
tively. Efficiency is measured as the average query-processing time needed to evaluate
a single kNN query, and plotted on a logarithmic scale. (Color figure online)

Figure 3 shows the effectiveness in both scenarios when considering different
numbers k of nearest neighbors during query processing. The best effectiveness
is often reached when k ∈ [3, 10], with SCL representations being more robust to
the choice of k in the classification scenario with respect to the baseline. A very
high effectiveness is already achieved when the code dimensionality d equals to
64 (red line), which means that the dimensionality of original segment data (i.e.,
744/600 dimensions for the HDM05/PKU-MMD) is reduced by about ten times.

Regarding the training phase of SCL representations, a coarse grid search
over the parameter β (see Table 1) showed that β = 1 delivers an optimal or
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Fig. 3. kNN effectiveness of SCL for both retrieval and classification scenarios, when
varying the number k of nearest neighbors during query processing. Dashed lines rep-
resent the baseline effectiveness. (Color figure online)

comparable effectiveness most of the time. There is an exception for small SCL
dimensionalities (d = 8) where tuning β led to slight improvements. Besides
evaluation of effectiveness and efficiency, we also employed the trained VAE
decoder to reconstruct original skeleton data of a segment purely from its latent
code representation. In Fig. 4, we illustrate examples of reconstructed segment
data for two specific HDM05 segments.

Table 1. Precision@1 (%) of SCL representations for different settings of latent code
dimensionality d and hyperparameter β controlling the trade-off between segment-
reconstruction accuracy and latent-code disentanglement.

(a) HDM05

β

d 0 .01 .1 1 10

8 75.1 77.0 74.4 75.8 77.4

16 80.6 81.2 81.1 82.2 82.2

32 85.1 84.4 85.5 86.7 82.1

64 87.2 87.5 87.6 87.8 80.9

128 86.8 87.6 87.9 87.3 83.1

256 87.5 87.2 87.9 87.4 82.8

(b) PKU-MMD (CV)

β

0 .01 .1 1 10

61.6 62.5 63.2 61.3 63.7

74.1 75.6 78.4 84.8 74.5

78.7 78.5 80.8 89.4 74.7

82.7 81.3 83.9 90.3 73.0

85.5 85.2 88.0 90.0 69.7

84.5 84.2 88.6 90.0 79.0

(c) PKU-MMD (CS)

β

0 .01 .1 1 10

55.0 58.6 60.3 59.3 55.4

63.1 62.8 65.1 66.2 56.0

65.4 66.6 68.3 69.0 53.9

67.9 68.1 70.0 72.1 51.5

71.7 70.9 72.3 73.5 56.6

70.4 69.4 72.4 74.4 58.5
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Fig. 4. Examples of original (blue) and reconstructed (red) segment poses from the
HDM05 and PKU-MMD datasets. In each panel, the top (bottom) row depicts a success
(failure) example of reconstruction. (Color figure online)
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4.4 State-of-the-Art Comparison

The state-of-the-art skeleton-data processing primarily focuses on classifying
pre-segmented and labeled actions. For this reason, we compare the results of
our classification approach to the results of existing classifiers evaluated on the
HDM05 and PKU-MMD datasets. Specifically, we adopt our kNN retrieval app-
roach by fixing k to 4 as this setting reaches high classification accuracy. In
Table 2, we demonstrate that our approach achieves superior accuracy on both
datasets compared to existing unsupervised classifiers. Let us also emphasize
that our solution is approaching the accuracy of supervised classifiers, even if
no information about the pre-segmentation nor labels of actions was available in
the training phase.

Table 2. Comparison of our approach with the existing supervised/unsupervised clas-
sifiers trained on the pre-segmented actions. The values of classification accuracy are
taken from the referenced papers.

HDM05 PKU (CV) PKU (CS)

Supervised approaches

Activity images + CNN [28] – 92.00 85.00

DSwarm-Net [3] 90.67 – –

BiLSTM [7] 89.26 92.11 84.73

Unsupervised approaches

Baseline: raw skeleton data + DTW 75.22 83.58 62.34

Motion words + DTW [24] 80.30 – –

LSTM + triplet-loss [12] 83.76 – –

MS2L [14] – – 64.86

Our approach (β = 1, d = 256, k = 4) 87.80 90.53 77.20

5 Conclusions

We have proposed a new skeleton-data representation that is learned using a
unique combination of the β-VAE approach and a lightweight convolutional neu-
ral network. Such representation has several advantages in contrast to related
approaches. First, the representation can be extracted for skeleton sequences
of any length on the level of short segments. Second, the segment feature is
learned from continuous skeleton sequences completely in an unsupervised way,
without the requirement of knowledge of pre-segmented actions or their labels.
Third, the learned segment feature preserves semantic information of the under-
lying skeleton data, which is confirmed by reaching much higher effectiveness
in retrieval-based scenarios compared to the baseline approach. Fourth, the seg-
ment feature is very compact and efficiently comparable with the cosine distance,
which supports indexing possibilities for the future. In addition, the universality
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of the proposed approach enables its high applicability in many tasks, e.g., not
only for action recognition or detection but also for sub-sequence search.
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