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Daniel Clewley h, Victor Martinez-Vicente h, Pierre Gernez a, Laurent Barillé a
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A B S T R A C T

Intertidal areas, which emerge during low tide, form a vital link between terrestrial and marine environments.
Seagrasses, a well-studied intertidal habitat, provide a multitude of different ecosystem goods and services.
However, owing to their relatively high exposure to anthropogenic impacts, seagrasss meadows and other
intertidal habitats have seen extensive declines. Remote sensing methods that can capture the spatial and
temporal variation of marine habitats are essential to best assess the trajectories of seagrass ecosystems. An
advanced machine learning method has been developed to map intertidal vegetation from satellite-derived
surface reflectance at a 12-band multispectral resolution and distinguish between similarly pigmented inter-
tidal macrophytes, such as seagrass and green algae. The Intertidal Classification of Europe: Categorising
Reflectance of Emerged Areas of Marine vegetation with Sentinel-2 (ICE CREAMS v1.0), a neural network model
trained on over 300,000 Sentinel-2 pixels to identify different intertidal habitats, was applied to the open-access
long term archive of systematically collected Sentinel-2 imagery to provide 7 years (2017–2023) worth of
intertidal seagrass dynamics in 6 sites across Western Europe (471 Sentinel-2 Images). A combination of inde-
pendently collected visually inspected Uncrewed Aerial Vehicle imagery and in situ quadrat images were used to
validate ICE CREAMS. Having achieved a high seagrass classification accuracy (0.82 over 12,000 pixels) and
consistent conversion into cover (19% RMSD), the ICE CREAMS model outputs provided evidence of site specific
variation in trajectories of seagrass extent, when appropriate consideration of intra-annual variation has been
considered. Inter-annual dynamics of sites showed some instances of consistent change, some indicated stability,
while others indicated instability over time, characterised by increases and decreases across the time-series in
seagrass coverage. This methological pipeline has helped to create up-to-date monitoring data that, with the
planned continuation of the Sentinel missions, will allow almost real-time monitoring of these habitats into the
future. This process, and the data it provides, could aid management practitioners from regional to international
levels, with the ability to monitor intertidal seagrass meadows at both high spatial and temporal resolution, over
continental scales. The implementation of Earth Observation for high-resolution monitoring of intertidal sea-
grasses could therefore allow for gap-filling seagrass datasets, and sustain specific and rapid management
measures.
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1. Introduction

1.1. Seagrass

Seagrasses, the only group of truly marine flowering plants, form
extensive meadows around coastal and intertidal areas across the ma-
jority of the globe. Through provisioning of many socio-economic and
ecological benefits, seagrasses are highly valued marine ecosystems (e.g.
climate regulation through carbon sequestration, coastal stabilisation,
habitat provisioning, water quality mediation, fisheries production:
Devoy, 2008; Hillebrand et al., 2018; Jackson et al., 2015; Lamb et al.,
2017; Paul and Amos, 2011; Sousa et al., 2019; Unsworth et al., 2019;
Zoffoli et al., 2022). Yet, these habitats, which are sensitive to human
disturbance, eutrophication, marine heat waves and ocean acidification,
have been shown to be globally threatened (Losciale et al., 2024). This
led to the European Union (EU) including seagrasses within the Water
Framework Directive (WFD) as a biological quality element alongside
phytoplankton, macroalgae, benthic invertebrate fauna and fish (Foden
and Brazier, 2007; Krause-Jensen et al., 2005), with member states
needing to make sure these biological quality elements are in ‘good
ecological status’. The WFD requirements have increased efforts to
monitor, conserve and restore coastal habitats and species. To establish
a baseline of reference for setting a ‘good ecological status’, historic data
were used with best available contemporary data as a comparison. This
type of trend analysis is often fraught with data availability issues with
consistency, repetition of sampling and comparability of methods
increasing uncertainty, as well as inter-comparison of habitat ecological
status between regions.

1.2. Trends in seagrass

Many studies have aimed at assessing or estimating trends in sea-
grasses at global or continental scales, seeking to catalogue historic
literature records of seagrass and using historic data to assess trends in
the available time-series (Dunic et al., 2021; Los Santos et al., 2019;
McKenzie et al., 2020). However, temporal assessments come up against
many inherent practical issues or biases associated with the scales and
resolutions of the data available: spatial, temporal, bioregional, taxo-
nomic and ecological. Los Santos et al. (2019) assessed taxonomically
explicit data across Europe from 1986 to 2016, yet reported lacking
temporal regularity, especially before 1950. Alternatively, in a global
assessment, McKenzie et al. (2020) found limitations in the distribution
of data across bioregions, with vast areas of the globe with no or limited
observations. Dunic et al. (2021), updating previously catalogued data
(Waycott et al., 2009), assessed trends by bioregions, but also high-
lighted biases in these historic data, such as selection bias where easy to
access sites are more studied, or sites that showed stable meadows were
not published. While taxonomic consistencies are not common across
continental spatial scales, with different species occupying similar
habitats across ecoregions, distinct divisions in ecology of seagrasses can
be seen globally, the most obvious of which is the split between inter-
tidal and subtidal seagrasses. Yet, none of the above studies have taken
the inherent differences, such as their resilience to regular aerial expo-
sure and desiccation that requires high levels of temperature plasticity,
between these two ecological subsets of seagrasses into account. While
some of the issues, such as availability of historic data, are impossible to
remedy, others, such as temporal consistency, bioregional bias and
ecological distinctions, can be addressed by combining historic data and
local knowledge with novel techniques for seagrass monitoring.

1.3. Remote sensing

Through the use of Remote Sensing (RS) in the form of Uncrewed
Aerial Vehicle (UAV) and satellite derived Earth Observation (EO)

imagery, issues relating to temporal, regional and spatial consistency
can be suitably addressed. Satellite RS imagery utilises multi- or hyper-
spectral imagery to observe specific phenomena and can cover vast areas
(global), provide consistent repeat measurements (days) and/or return
high spatial resolution imagery (30 cm). However, increases in spatial,
temporal or spectral resolution is often balanced by decreases in the
other factors (Veettil et al., 2020). Satellite RS has been used at the
global scale to map trends in terrestrial habitats, such as crops, rain
forest or desert extent (Caparros-Santiago et al., 2021; Guan et al., 2014;
Rankine et al., 2017; Zhong et al., 2016). In coastal and open oceans,
Satellite RS has been used to study habitats and natural phenomena,
such as subtidal seagrasses, phytoplankton blooms or floating macro-
algae (Dai et al., 2023; Dierssen et al., 2015; Gernez et al., 2023; Kutser
et al., 2020; Lee et al., 2023; Traganos et al., 2022; Traganos and
Reinartz, 2018). Intertidal areas have rarely been assessed globally using
RS, yet some notable examples exist, where authors have leveraged
state-of-the-art machine learning alongside geo-spatial techniques to
map intertidal habitats, such as saltmarsh, tidal flats, kelp andmangrove
forests (Campbell et al., 2022; Jia et al., 2023; Mora-Soto et al., 2020;
Murray et al., 2019). On smaller scales monospecific intertidal seagrass
meadows have been assessed with RS (Zoffoli et al., 2022; Zoffoli et al.,
2020), yet some issues have been highlighted with using multispectral
imagery to distinguish between similarly pigmented green macroalgae
and seagrasses in mixed assemblages (Phinn et al., 2018; Veettil et al.,
2020), thus challenging large-scale assessments.

1.4. Neural networking with RS

As the observational methods have developed so have the methods
used to analyse them. Machine learning techniques for regression or
classification have become commonplace in remote sensing tasks with
many open access data products being the output of machine learning
methods, such as terrestrial land use, global surface temperature,
weather forecasting, urban mapping, oceanic chlorophyl concentration,
water depth in shallow seas, surface and subsurface marine temperature,
and oil spill prediction (Ai et al., 2020; Hoang and Tran, 2021; Li et al.,
2020; Shamsudeen, 2020; Su et al., 2021; Vilas et al., 2011). These
machine learning methods allow, and are even improved by having,
large numbers of model parameters, regardless of collinearity. There-
fore, classification predictions are able to utilise all bands of multi-
spectral data to improve predictive capability. Using a comprehensive in
situ spectral library, a previous study demonstrated that machine
learning algorithms can discriminate soft-bottom intertidal vegetation
classes at high accuracy from reflectance measurements; in particular,
we showed that a multispectral sensor with at least 8 spectral bands in
the visible and near-infrared spectral ranges had the potential to sepa-
rate seagrass from red, brown and green macroalgae (Davies et al.,
2023a). Building on such promising results, the objective of the present
work was to upscale the approach to satellite imagery across several
intertidal seagrass sites in Europe.

1.5. Summary of approach

Here we built a machine learning neural network to predict intertidal
seagrass habitat from 10 m resolution Sentinel-2 imagery to assess
recent trajectories (2017–2023) in intertidal seagrass extent across six
sites in Western Europe, some of which have previously been assessed
for long-term trends (Los Santos et al., 2019). Using the 7 years of long-
term archive satellite imagery, made publicly available on the Coper-
nicus database, we display an almost real-time method for assessing
intertidal seagrass extent observed during low tide (i.e. emerged sea-
grass), update the current trajectories of these sites in relation to pre-
vious publications and highlight how the relatively low spectral
resolution Sentinel-2 satellite mission, alongside modern machine
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learning techniques, can distinguish mixed intertidal habitats with high
levels of accuracy over large spatial and geographical ranges.

2. Materials and methods

2.1. General methodological workflow

To create data that would allow a high resolution analysis of recent
trends in intertidal seagrass cover, a workflowwith three main steps was
created (Fig. 1). Temporally and spatially explicit UAV-derived habitat
data were assigned to concurrent Sentinel-2 multispectral bottom-of-
atmosphere (BOA) reflectance, standardised reflectance (Eq. 1), Nor-
malised Difference Vegetation Index (NDVI: Eq. 2) and Normalised
Difference Water Index (NDWI: Eq. 3), which was then used to train and
build a neural network classificationmodel to identify intertidal habitats
from Sentinel-2 imagery, with independent auxiliary in situ data used to
validate. Finally, each pixel classified as seagrass was converted to
seagrass cover (%: Eq. 4) derived from its NDVI.

3. Neural network intertidal classifier

3.1. Training data

3.1.1. Habitat labelling
Training data were collated across a range of methods. The vast

majority of the training dataset was collected through the use of a
multispectral UAV to provide both geographically and temporally
explicit delineation of known intertidal habitats. All UAV flights were
performed during low tide and during favourable (low cloud cover)
atmospheric conditions, meaning that the intertidal habitats were
observed during emersion. The UAV-derived habitat data mostly
covered vegetated soft-bottom intertidal areas and seagrass was identi-
fied from aerial imagery using visual inspection, as the high spatial
resolution of pixels (from 8 mm to 80 mm) allowed for accurate iden-
tification. From the high resolution UAV imagery, resampled 10 m
macro-pixels, characterised by the dominant habitat class (modal class),
were used to train the Sentinel-2 classifier. Then, Sentinel-2 pixels of

Fig. 1. Workflow showing process for neural network classification model building and seagrass cover (%) from this classification, with example images showing
process from Sentinel-2 Data to Habitat Classification to Seagrass Cover (%).
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some classes such as bare sediments (mud and sand), sediments con-
taining high abundances of microphytobenthos, as well as hard sub-
strates covered by vegetation, were added to the training dataset to
increase the balance between classes (i.e. Bay of Veys, Jersey, Penzé and
Aiguillon Bay: Fig. 2). These additional pixels were selected through
visual inspection of Sentinel-2 imagery.

3.1.2. Alignment with Sentinel-2 imagery
Geolocated Level-2 A (L2A) Sentinel-2 A/B images that coincided

spatially and temporally (+/− 15 days) with these UAV acquisitions
were downloaded from the European Space Agency (ESA) data portal.
L2A data have already been atmospherically corrected using the Sen2-
Cor processing algorithm (Main-Knorn et al., 2017), and are distributed
as BOA reflectance. Visual inspection was used to select cloud free and
low tide Sentinel-2 images. To avoid the effect of submerged pixels being
misclassified, a class of water pixels was also included within the model.
All 12 bands of Sentinel-2 were resampled to 10 m resolution (20 and 60
m band values being repeated 4 and 36 times), labelled and standardised
following a Min-Max Standardisation (Davies et al., 2023a; Douay et al.,
2022).

R*
i (λ) =

Ri(λ) − min(Ri)

max(Ri) − min(Ri)
(1)

where Ri(λ) is the BOA reflectance at a specific band (λ) for a specific
pixel (i), where min(Ri) and max(Ri) are the corresponding minimum
and maximum values across the bands for that pixel. Furthermore, NDVI
and NDWI were calculated for each pixel from the BOA Sentinel-2
reflectance values:

NDVI =
R(832) − R(664)
R(832) + R(664)

(2)

NDWI =
R(560) − R(832)
R(560) + R(832)

(3)

with R(560), R(664) and R(832) being the green (Sentinel-2 band cen-
tred on 560 nm), red (Sentinel-2 band centred on 664 nm) and near-
infrared (Sentinel-2 band centred on 832 nm) spectral domains
respectively.

Pixels were labelled into 9 classes: Bare Sand, Bare Mud, Ulvophy-
ceae (green macroalgae), Magnoliopsida (seagrass), Microphytobenthos
(unicellular photosyntheic eukaryotes and cyanobacteria), Mixed-Rocks
and Phaeophyceae (brown macroalgae), Rhodophyceae (red macro-
algae), Xanthophyceae (yellow-green macroalgae) and Water. Within
the Magnoliopsida class, there is a maximum diversity of three species
(Nanozostera noltei, Zostera marina and Cymodocea nodosa), although
Nanozostera noltei was the dominant species across most intertidal sites
assessed.

3.1.3. Model building
373,814 labelled pixels consisting of 26 features (12 BOA re-

flectances, 12 standardised reflectances, NDVI and NDWI), were used to
train a deep learning, neural network, tabular learner from the FastAI
framework in Python v3 (Howard and Gugger, 2020; Van Rossum and
Drake, 2009). The model consisted of 2 hidden layers with 26,761
trainable parameters and was fine-tuned across 20 epochs to minimise
cross entropy loss using the ADAptive Moment estimation (ADAM)
optimiser. The final within-sample error rate was 0.0365. The model,
named the Intertidal Classification of Europe: Categorising Reflectance
of Emerged Areas of Marine vegetation with Sentinel-2 (ICE CREAMS
v1.0), provided a classification for each pixel, based on the greatest
probability class. For every pixel where seagrass was predicted, the
Seagrass Cover (SC: %) was calculated as in Zoffoli et al. (2020):

SC = 172.06*NDVI − 22.18 (4)

Following this method only SC values above 20% were selected.

3.1.4. Validation data
To ensure validation of the ICE CREAMS model was independent of

model building, several methods were employed to generate validation
data. Field campaigns were carried out by taking geo-located photo
quadrats (Davies et al., 2023b). In situ photo quadrats were taken within
the Tagus Estuary and Ria de Aveiro Coastal Lagoon (Portugal), as well
as in Bourgneuf Bay (France). Further validation data were collected
through Red Green Blue (RGB) UAV imagery, taken within two estuaries
in the UK (Tamar and Kingsbridge) and a bay in Spain (Cádiz) as well as
in situ samples collected within Ria D’Etel in France (Fig. 2). Global

Fig. 2. Training and Validation data collection sites across Europe.
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accuracy (Ga: Eq. 5), specificity (Gspe: Eq. 6) and sensitivity (Gsen: Eq. 7)
of the ICE CREAMS model were calculated across all validation data as
binary presence (positive) or absence (negative) of seagrass across
~12,000 Sentinel-2 pixels: ~5000 Seagrass Pixels and ~ 7000 Non-
Seagrass Pixels. Non-Seagrass pixels contained a range of the non-
seagrass classes with ~1000 green macroalgae, ~3000 bare sand and
mud, ~2000 microphytobenthos and ~ 1000 Mixed-Rocks with asso-
ciated brown macroalgae.

Ga =
TP+ TN

TP+ TN+ FP+ FN
(5)

Gspe =
TN

TN+ FP
(6)

Gsen =
TP

TP+ FN
(7)

for the number of Sentinel-2 satellite pixels categorised as true positive
(TP), true negative (TN), false positive (FP) and false negative (FN). To
assess agreement of NDVI-derived seagrass cover (SCNDVI : %), Root
Mean Squared Difference (RMSD: Eq. 8) was calculated comparing all
quadrat-derived seagrass cover, taken from in situ field work (SCQuadrat:
%):

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

Σn
i=1

(
SCQuadrati − SCNDVIi

σi

)2
√

(8)

3.2. Trend assessment

3.2.1. Sites selected for intertidal seagrass extent assessment
Six sites were selected along the Western Atlantic Coast of Europe

(Fig. 3). Sites were selected where known intertidal seagrass meadows
were present and consistent imagery was available across the Sentinel-2
time series, unlike the training and validation data these sites could be

Fig. 3. Sites selected to analyse the interannual variability of intertidal seagrass across the North-East Atlantic.

B.F.R. Davies et al.



Remote Sensing of Environment 312 (2024) 114340

6

situated in less accessible areas. For each site, all cloud free, low tide
Sentinel-2 L2A images were selected from the Sentinel-2 Long Term
Archive (LTA: Davies et al., 2024). Amask was used to isolate only pixels
within the intertidal area (Murray et al., 2019). The ICE CREAMS Neural
Network model was applied to classify intertidal habitats, and SC was
computed within each seagrass pixel. As each pixel is 100 m2 the sum-
med SC within each site could be considered the total area covered by
seagrass in m2 per image. The uncertainty for each image (τ: Eq. 9) was
calculated as the inverse of the mean of the per pixel probabilities from
the ICES CREAMSmodel divided by the global accuracy when applied to
validation data (Ga):

τ =
1 − p
Ga

(9)

3.2.2. Statistical analysis
A General Additive Model (GAM) (Wood, 2017) was used to assess

trends of seagrass extent from all available seagrass extent maps across
our sites; model parameters were estimated within a bayesian frame-
work using the ‘brms’ and ‘RStan’ packages in R to leverage the Stan
language (Bürkner, 2021; Carpenter et al., 2017; R Core Team, 2023;
Stan Development Team, 2018). Observed total seagrass cover (E*i) and
its uncertainty (τi) were modelled (Eq. 10) as a function of Time with a
basis spline (f(ti)) across Locations (ρ) and Day of the Year with a cyclic
basis spline (f(DOYi)) across Locations (ρ). The response variable was
modelled assuming a Student-t distribution, with weakly informative
priors (Student-T(3,0,2.5)). Model parameters were estimated using
Markov Chain Monte Carlo (MCMC) sampling, with 4 chains of 5000
iterations and a warm-up of 200.

E*i ∼ Student(Ei, τi)
Ei ∼ Student(μi, σi)

μi = f(DOYi) : ρ + f(ti) : ρ
f(DOYi) : ρ ∼ Student(3, 0,2.5)
f(ti) : ρ ∼ Student(3, 0, 2.5)

σi ∼ Student(3,0, 2.5)

(10)

3.2.3. Trend metrics
Rate of change in seagrass extent was taken as the first derivative of

the model, using a sliding window of 365 days and reported as km2 per
year (km2 y− 1).

4. Results

4.1. Agreement assessment of ICE CREAMS model

Global accuracy of the ICE CREAMS model v1.0 across ~12,000
Sentinel-2 pixels was 0.815 showing a high confidence in the ability of
the model to predict seagrass. Around 7000 of the validation pixels were
non-seagrass, while around 5000 were seagrass, showing the agreement
is based fairly evenly across both true-positives and true-negatives
(Fig. 4 a). The model achieved a total sensitivity of 0.864 and a speci-
ficity of 0.742. Comparison of quadrat-derived with NDVI-derived sea-
grass cover (%) showed high agreement across quadrats, but with a
small underestimation of NDVI-derived cover compared to quadrat
compared cover (RMSD: 19%; Fig. 4 b).

4.2. Interannual trends

In all sites assessed, seagrass beds occupied areas of at least 2 km2 at
their maximum cumulative extent (Fig. 5). However, the distribution
within the meadows was not consistent, with some beds showing large
areas of relatively sparse seagrass cover (e.g. Strangford Lough), while
others showed smaller areas of dense seagrass cover (e.g. Bourgneuf
Bay), resulting in similar maximum cumulative extents (Fig. 5). Across
some of the sites we can see consistent patterns of increase in intertidal
seagrass extent from 2018 to late 2023, such as Santander and Cádiz
Bay, while others, such as Ria de Aveiro Coastal Lagoon, showed a
higher inter-annual variability in its maximum extent, with an initial
decrease in 2019–2020 followed by an increase to initial levels (Fig. 6).
No apparent change in intertidal seagrass was seen for Strangford Lough

Fig. 4. Binary Validation of ICE CREAMS Neural Network model (a) and Comparison of in situ quadrat-derived with Sentinel-2 NDVI-derived seagrass cover (%) (b).
Solid and dashed lines show 1:1 relationship with ±20% ranges. Confusion Matrix (a) shows proportion of Total Samples in agreement between Truth and Predicted
Seagrass and Non-Seagrass pixels, with number of total pixels within each grid cell. External labels with numbers show within-class sensitivity and specificity in green
and the Positive Predicted Value (PPV) and Negative Predicted Value (NPV) in gold. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

B.F.R. Davies et al.



Remote Sensing of Environment 312 (2024) 114340

7

Fig. 5. Maximum Seagrass Cover images shown for all sites going from the north to the south Strangford Lough (a), Beltringharder Koog (b), Bourgneuf Bay (c),
Santander Bay (d), Ria de Aveiro Coastal Lagoon (e & f) and Cádiz Bay (g).

B.F.R. Davies et al.
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or Beltringharder Koog. While Bourgneuf Bay consistently showed a
seasonal decrease to a near-zero extent each winter until 2021 and 2022,
Cádiz and Santander showed increases in the minimum yearly extent, as
well as an increase in their maximum extent from the beginning of the
time series. Modelled cumulative extent for the three increasing sites
(Bourgneuf, Santander and Cádiz bay) showed percentage increases in
the yearly maximums of 25%, 30% and 23.1%, respectively, between
their peaks in 2018 and 2023. Relatively small peaks were seen in be-
tween yearly maxima in the twomost northern sites Strangford Lough or
Beltringharder Koog. Yet, these occurred during winter when the num-
ber of useable cloud free images were lower, which is indicated by the
modelled uncertainty that is larger than the apparent peak, making any
conclusions on the origin of this pattern problematic and requiring
further investigation.

In terms of rate of change, the six sites showed distinct trajectories
(Fig. 7), with Strangford Lough and Beltringharder Koog showing stable
meadows surfaces across the time series. Significant rates of change in
cumulative intertidal seagrass extent were observed for the other sites.
Bourgneuf and Santander showed similar patterns, with consistent in-
creases from 2020 to late 2021 and mid 2019 to mid 2021 respectively.
Ria de Aveiro showed a significant decrease from 2018 to 2019 while a
significant increase from 2019 to 2021. Cádiz bay showed significant
growth for two periods, 2018 to 2019 and 2020 to 2021. Both Santander
and Cádiz bay showed significant but small decreases in mid 2022.

4.3. Timing of maximal extent

There were differences in peak timing of maximum intertidal sea-
grass extent for all the sites (Fig. 8), from no changes in northern sites to
variations across time in the most southern sites, ranging by up to 2
weeks. There are two clear groupings, with the most southern sites
having peaks from mid/late October until late November. Further
northern sites peaked in extent from late August to mid September. The
earliest timing of maximal seagrass extent was seen in Beltringharder
Koog, followed by Bourgneuf Bay then Strangford lough. Santander Bay
showed the earliest maximum of the southern sites, followed by Cádiz
Bay and Ria de Aveiro.

5. Discussion

Using an up-to-date time-series of Sentinel-2 imagery and a state of
the art neural network algorithm (ICE CREAMS v1.0) we were able to
assess inter-annual variation in intertidal seagrass extent across 6 sites in
Western Europe. This algorithm and its conversion to seagrass cover
allowed high confidence in the outputs (Fig. 4). Across the 7 years
assessed (2017–2023), some sites showed increases in extent (e.g.
Bourgneuf, Santander and Cádiz Bays), some sites showed consistency
over time (e.g. Strangford Lough and Beltringhard Koog) and others (e.g.
Ria de Aveiro Coastal Lagoon) showed early decreases followed by
steady increase over time (Fig. 6). Generally, the sites further north
showed consistency in extent and timing of maximum extent, while sites
further south tended to show higher variation in extent and timing of
maximum extent (Fig. 7& Fig. 8). Timings of maximums were relatively
consistent within the northern sites, while more southerly sites showed
interannual variations.

5.1. A neural network classifier

One of the main barriers of RS for mapping intertidal habitats has
been the heterogeneous nature of intertidal habitats, both spatially and
temporally, but also in terms of biodiversity. Monospecific intertidal
seagrass meadows have been mapped effectively using vegetation
indices such as NDVI (Barillé et al., 2010; Lizcano-Sandoval et al., 2022;
Zoffoli et al., 2022; Zoffoli et al., 2021; Zoffoli et al., 2020). However,
when seagrasses are mixed with other intertidal macrophytes this
approach is ineffective. The main challenge being the discrimination

between seagrasses and green macroalgae sharing the same pigmentary
composition (Oiry and Barillé, 2021; Phinn et al., 2018). This potential
confusion has decreased the accuracy of seagrass mapping (Veettil et al.,
2020). Using a spectral library, Davies et al. (2023a) showed that ma-
chine learning could help discriminate green macrophytes at the mul-
tispectral resolution of Sentinel-2. The current study demonstrated that
this remains true when applied to Sentinel-2 images. This highlighted
that advanced algorithms are needed to classify accurately and effec-
tively soft-bottom intertidal habitats, as these habitats exhibit high
spatial and temporal variability. As discussed, the Intertidal Classifica-
tion of Europe: Categorising Reflectance of Emerged Areas of Marine
vegetation with Sentinel-2 (ICE CREAMS) model, used here, was highly
accurate for identifying seagrass pixels in relation to other vegetated and
non-vegetated classes (Fig. 4). The ICE CREAMS model required a large
quantity of training pixels (~375,000) to build a classifier that could
achieve such accuracy across the 9 categories. These data covered 37.5
km2 combining BOA and standardised reflectances alongside vegetation
and water indices, the vast majority of which was provided by the use of
multispectral UAV imagery from across the Atlantic coastline of Europe.
The quantity and coverage of these data could not have been accom-
plished by in situ methods alone. Likewise, independent validation data
(~ 12,000 pixels: 1.2 km2) also relied upon multispectral UAV imagery
from different areas of Europe than the training data. The importance of
independence of validation is greatly emphasised for machine learning
approaches (Maxwell et al., 2018; Murray et al., 2019); the agreement
achieved from these independent data provides further proof of the
applicability of the ICE CREAMS model when applied across Europe.

5.2. Technical limitations

While EO has many advantages over traditional in situ measure-
ments, especially when trying to map large or inaccessible areas, there
are also trade-offs to be considered. EO can cover vast areas, yet relies
upon cloud free, and for intertidal assessments, low tide imagery.
Furthermore, EO often has a balance of spectral, spatial and temporal
resolution, with hyperspectral sensors providing lower spatial and
temporal resolution (e.g. PRISMA: 240 spectral bands, 30 m spatial
resolution and 7 days with off-nadir view but image acquisition
depending on tasking request), and multi or lower spectral sensors
providing higher spatial and temporal resolution (e.g. Sentinel-2: 10
Bands, 10m spatial resolution and< 5 days, systematic worldwide cover
of inland and coastal areas). EO also has the issue of only ‘seeing’ the top
layers of vegetation when assessing the intertidal area specifically.
Therefore, if one vegetation is covering another the satellite will only
‘see’ the topmost vegetation. This could cause under-prediction of sea-
grass, especially in situations where green algae or brown algae cover
large areas of seagrass meadows. Likewise, while satellites such as
Sentinel-2 have relatively small revisit times, the need for cloud free,
low-tide imagery significantly decreases the number of useful images.
Yet, here relatively high numbers of images were found for the sites
selected. The site with the lowest number of images in a single year was
4 images in 2021 and 2022 for Santander Bay, while the greatest number
of images in a single year was 24 in 2022 in Ria de Aveiro Coastal
Lagoon. Over the whole time series Ria de Aveiro Coastal Lagoon had
the greatest number of images (N = 129); while Santander Bay was the
lowest 39 images were still utilised. This number of images covers areas
far greater than an equivalent in situmethod and costs significantly less,
as they are effectively free to the end user.

5.3. Importance of trend analyses

As highly important providers of ecosystem services, global seagrass
habitats are being increasingly assessed for health, loss, recovery and
stability (Los Santos et al., 2019; Zoffoli et al., 2021). These assessments
of status are frequently used as environmental monitoring tools assessed

B.F.R. Davies et al.
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Fig. 6. Trend in intertidal seagrass extent (km2) across six sites. Points with error bars show neural network estimated cumulative cover and average uncertainty per
satellite image, while the dark line and shading show median and 89% confidence intervals across 2000 posterior predictive samples from a General Additive Model.
Plot labels show the site and its latitude and longitude (in degrees) for a Strangford Lough, b Beltringharder Koog, c Bourgneuf Bay, d Santander Bay, e Ria de Aveiro
Lagoon and f Cádiz Bay.

B.F.R. Davies et al.
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at local, national or international scales to aid wider environmental and
ecosystem management. One of the most well known examples of this is
the EU Water Framework Directive (Foden and Brazier, 2007; WFD:
Krause-Jensen et al., 2005), where seagrass is amongst other biological
quality elements to assess the waters ecological status. However, to be
able to assess the status of a wide-ranging habitat, such as seagrass, high
levels of temporal and spatial data are needed (Papathanasopoulou
et al., 2019; Zoffoli et al., 2021). Temporal span is arguably as important

as temporal resolution; having an understanding of inter and intra-
annual variation can aid more effective assessment of long-term trends
and pave the way for more accurate future predictions (Dunic et al.,
2021; Los Santos et al., 2019; McKenzie et al., 2020). The intertidal
classifier developed in this work could help provide pan-European
intertidal seagrass status, promoting the uptake of EO by future Euro-
pean Directives (Papathanasopoulou et al., 2019; Zoffoli et al., 2021).
Climate change will affect all ecosystems on the planet in a myriad of

Fig. 7. Rate of change in cumulative seagrass extent in km2 y − 1 derived from a General Additive Model. Lines show the median first derivative, while shaded areas
show the 89% confidence intervals across 2000 posterior predictive samples from a General Additive Model. Plot labels show the site and its latitude and longitude
(in degrees) for a Strangford Lough, b Beltringharder Koog, c Bourgneuf Bay, d Santander Bay, e Ria de Aveiro Lagoon and f Cádiz Bay.

B.F.R. Davies et al.



Remote Sensing of Environment 312 (2024) 114340

11

ways, many of which are currently unknown or poorly understood; thus,
our understanding of how these essential habitats change over time is a
prerequisite for effective prediction of future dynamics, especially in
intertidal habitats directly threatened by sea level rise. Tools, such as the
presented RS approach, are therefore highly important for building
invaluable datasets to aid effective and reliable predictive models, but
also to allow finer-scale assessments of current management strategies.
However, to maximise the available data for these approaches, the
outputs from models, such as ICE CREAMS, need to be either directly or
indirectly comparable to historic and in situ collected data.

5.4. Consistency of areal extent estimation

While trends found elsewhere seem to concur with the current work,
the difference in areas are not fully comparable, as different methods
have been used across the literature. Here, Strangford Lough was found
to maintain a consistent maximum area (~ 4.5 km2) over the 7 years of
Sentinel-2, yet the previous trends associated with the lough showed a
decreasing trend of 15 to 9 km2 from 1970 to 2003 (summarised by Los
Santos et al., 2019). The values in the current survey are half those found
by Los Santos et al. (2019), but a closer value was found in October 1991
of 6.2 km2 (Portig et al., 1994), yet this method used belt transects of
cores and extrapolated areas from cores to intertidal area. Likewise,

there was strong corroboration to previous literature in Bourgneuf Bay
where consistent increases have been quantified of 2 to 5.8 km2 for 1991
to 2005 and 3 to 5.8 km2 for 1985 to 2020 (Barillé et al., 2010; Zoffoli
et al., 2021), which generally concurs with the estimated maximum
extent of 4.9 km2 found here, though these studies used a combination of
different satellites and summed all pixels for ranges of specific NDVI
values. Santander Bay was documented to increase from 0.2 to 0.6 km2

but only within a total potential area of 1 km2 from 1984 to 2015
(Calleja et al., 2017). In addition, in Ria de Aveiro Coastal Lagoon,
intertidal seagrass mapped areas were estimated as ~2,3 km2 in 2014
and ~ 1,2 km2 in 2005 (Sousa et al., 2019), while the current study
estimates a maximum extent of ~3.5 km2 in 2017. All these estimates of
extent and trends in intertidal seagrass extent utilised different sampling
techniques with similarly different methods to quantify the total extent.
These differences in methodology make exact comparisons impractical.
Therefore, we suggest that a uniform approach to incorporating remote
sensing assessments of intertidal seagrasses should be adopted. The
summation of all cover (percentage) multiplied by their area, used here,
could be used consistently across sensors and different spatial scales, but
relies on the comparability of NDVI values across those sensors.

Fig. 8. Timing of maximum intertidal seagrass extent for each location from 2018 to 2023. Lines show median day of the year for modelled peak intertidal seagrass
extent, shading shows 89% confidence intervals. Solid black horizontal lines show the first day of each month.

B.F.R. Davies et al.
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5.5. Utility for management

Total seagrass extent is generally one of the most common metrics of
seagrass meadow health (Los Santos et al., 2019; Marbà et al., 2013;
Romero et al., 2007). Yet, the method described here could be used to
assess more finer scale, within-meadow fluctuations over time, thus
allowing assessments of local trophic interactions (Chand and Bollard,
2022). For example, Bourgneuf Bay is mostly concentrated in one large
meadow with very high density, whereas Strangford Lough is distrib-
uted in more disparate lower density patches (Fig. 5). The morphology
and distribution of the intertidal seagrass beds may influence their re-
action to impacts, with larger dense seagrass meadows providing higher
survival rates, due to wave attenuation and resistance to sediment
deposition (Inglis, 1999).

Likewise, location of the meadow in the intertidal area will be highly
important, with greater vulnerability to sea-level rise if the vast majority
of a meadow is closer to the lower edge of the intertidal area (Poppe and
Rybczyk, 2022). Patterns of anthropogenic activity will also be localised
to certain regions of the intertidal area, depending on the activity, and
will thus influence different areas of the seagrass meadows (Turschwell
et al., 2021). Fine scale dynamics of seagrass meadows, with potential to
assess the recent past, would provide valuable insight to local managers
in many different situations, with the ability to quantify local anthro-
pogenic activities, such as aquaculture, channel dredging and boat
anchoring (Barillé et al., 2010). Across the sites assessed here, the hy-
drological and bathymetric characteristics share a pattern of enclosed
intertidal areas, yet they will vary in the level of exposure to wave ac-
tion, nutrient flow, tidal regime and anthropogenic impacts. These dif-
ferences will undoubtedly have a strong influence on the long-term
trends in these meadows.

Furthermore, these data highlight the differences in phenological
patterns, which will be equally important for management. The timing
of seagrass maximum extent varied across sites, with generally a later
maximum timing in the year the further south. This apparent latitudi-
nally driven seasonal variation will be vital for the success of restoration
efforts. The underlying mechanism that drives this change has not been
assessed here, yet it is likely that a complex interaction of many abiotic
factors may drive this change in phenology, such as, but not limited to,
the air and sea temperature, the amount of incident solar radiation, the
availability of nutrients, the tidal regime and the amount of suspended
particulate matter at high tide.

6. Conclusions

Here, we demonstrate the utility of Sentinel-2 imagery alongside a
neural network model to provide up-to-date high spatial resolution
intertidal seagrass extent assessments. We found patterns of progressive
increase across 7 years in seagrass meadow extent in sites that have
previously been assessed for long term trends, while other sites showed
no increase. These results provide an update to previous decadal ana-
lyses, as well as providing a process pipeline to create up-to-date
monitoring data. The planned continuation of the Sentinel missions
will allow continued almost real-time monitoring of these habitats. This
process, and the data it provides, could be highly beneficial to both
regional and international managers, with the ability to describe sea-
grass meadows at high spatial resolution, as well as high spatial scales.
The importance of monitoring intertidal seagrasses at greater spatial and
temporal resolution will allow for much more specific and rapid man-
agement measures.
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