
The δ-ALE-SPH model: an arbitrary

Lagrangian-Eulerian framework for the δ-SPH

model with Particle Shifting Technique

M. Antuono a, P. N. Sun b,c, S. Marrone a, A.-M. Zhang d,
A. Colagrossi a,c,∗,

aCNR-INM, INstitute of Marine engineering, Rome, Italy
bSchool of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai,

519000, China
cEcole Centrale Nantes, LHEEA res. dept. (ECN and CNRS), Nantes, France
dCollege of Shipbuilding Engineering, Harbin Engineering University, Harbin,

China

Abstract

In the present work we study the behaviour of a weakly-compressible SPH scheme
obtained by rewriting the Navier-Stokes equations in an arbitrary Lagrangian-
Eulerian (ALE) format. Conversely to previous theoretical works the proposed
SPH model is expressed in terms of primitive variables (i.e. density and velocity)
instead of conservative ones. Differently from the classical approach to ALE, which
is based on the use of Riemann solvers inside the spatial operators , the present
model is written by using the standard differential formulations of the weakly-
compressible SPH schemes. As other ALE-SPH models, the arbitrary velocity field
is obtained by modifying the pure Lagrangian velocity of the material point through
a velocity δu given by a Particle Shifting Technique (PST). We show that the above-
mentioned ALE-SPH equations are, however, unstable when they are integrated in
time. The instability appears in the form of large volume variations in those fluid
regions characterised by high velocity strain rates. Nonetheless, the scheme can be
stabilised if appropriate diffusion terms are included in both the equations of density
and mass. This latter scheme, hereinafter called δ-ALE-SPH scheme, is validated
against reference benchmark test-cases: the viscous flow around an inclined elliptical
cylinder, the lid-driven cavity and a dam-break flow impacting a vertical wall.
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1 Introduction

The Smoothed Particle Hydrodynamics (SPH) is a meshless particle method,

initially conceived in the context of astrophysics and subsequently applied

to different fields of physics (as, for example, fluid dynamics and solid

mechanics). Over the years, several variants of the original Lagrangian scheme

have been proposed. Among these, the δ-SPH has proved to be a robust

and reliable method in solving several hydrodynamic problems, (see e.g.

[1, 2, 6, 7, 21, 22, 30, 35, 36, 37]). Nevertheless, there are still some drawbacks

that limit its application in some areas where traditional CFD methods

perform well, such as the modelling of shear flows at high Reynolds numbers,

vortical flow evolutions characterized by large negative pressure values or

viscous flows inside confined domains.

To solve these problems, Sun et al. [28] combined the Particle Shifting

Technique (PST) within the δ-SPH scheme, obtaining the δ+-SPH scheme.

It was shown that the use of the PST allows to get regular particle spatial

distribution, a condition necessary to reduce errors in the SPH differential

operators and to guarantee a convergence order larger than unity (see e.g. [5]).

It was also shown that PST helps obtaining a smoother velocity distribution

and, consequently, improves the field of vorticity. Unfortunately, despite these

strong points, δ+-SPH still presents some drawbacks, especially when body

forces are present. In these circumstances the shifting velocity yields non-

physical changes on the potential energy of the particles which can accumulate

∗ Corresponding author: Tel.: +39 06 50 299 343; Fax: +39 06 50 70 619.
Email address: andrea.colagrossi@cnr.it (A. Colagrossi).

2



errors in time. Recently, Sun et al. [29] proposed a different derivation of the

δ+-SPH that allows for a convincing inclusion of PST in the δ-SPH scheme

and, at the same time, overcomes the above-mentioned issues.

The present work is dedicated to a further extension of the δ+-SPH scheme

within the framework of the Arbitrary Lagrangian Eulerian (ALE) formulation

recently proposed in Oger et al. [24]. Thanks to the latter approach, the

shifting velocity can be added in a consistent way and the overall scheme can

be regarded as a generalization of that derived in Sun et al. [29]. In fact, the δ+-

SPH scheme of [29] can be obtained back as a simplified version of the proposed

model. This, hereinafter denoted δ-ALE-SPH, shares some similarities with the

ALE scheme described in Oger et al. [24]. The main difference is that, in the

latter scheme, Riemann solvers are used for the particle mass and momentum

exchanges and are responsible for the generation of an implicit numerical

diffusion. On the contrary, in the δ-ALE-SPH the numerical diffusion terms

are added explicitly and can be controlled straightforwardly. In particular,

the diffusion is added both in the continuity equation (written in terms of the

density field) and in the equation for the particle mass. We show that both the

above models, namely the ALE and the δ-ALE-SPH schemes, are unstable if

the diffusive terms (implicit or explicit) are not included.

In the δ-ALE-SPH the shifting velocity introduces changes for both volumes

and masses of the particles. However, thanks to the PST structure, the

relative variations of the particle volumes and masses are limited to few

percent. Furthermore, those variations decrease with the particle’s size, since

the magnitude of the shifting velocity term decreases accordingly.
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Differently from the standard ALE approach (see, for example, [24]), we

show that the δ-ALE-SPH can be derived by rearranging the Lagrangian

time derivatives in the Navier-Stokes equation through the actual velocity

field (that is, fluid velocity plus shifted velocity) and by adding the Reynolds

Transport Theorem to the derived set of equations. In particular, the latter

equation is required to ensure a consistent modelling of the time evolution of

elementary masses and volumes.

Then, the conservation properties of the δ-ALE-SPH are described and

discussed in detail. Furthermore, two simplified variants of the proposed

δ-ALE-SPH model are derived, showing, at least heuristically, only minor

differences in the results among them.

2 The Navier-Stokes Equations for weakly-compressible flows in

an ALE framework

In the present section we consider the Navier-Stokes (N.S.) equations for a

weakly-compressible, barotropic fluid. We first consider a pure Lagrangian

framework and, successively, we introduce an arbitrary transport velocity and

rewrite the equation in an Arbitrary Lagrangian-Eulerian (ALE) framework.
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2.1 Navier-Stokes equation: Lagrangian formulation

The N.S. equations for a weakly-compressible fluid in a Lagrangian framework

read as:

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




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




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



Dρ

Dt
= −ρ div(u) ,

Du

Dt
= −

∇p

ρ
+

divV

ρ
+ g ,

Dr

Dt
= u , p = c20 (ρ− ρ0) .

(1)

where ρ ,u are the primitive variables, namely the density and the velocity,

g represents a generic volume force, while V is the viscous stress tensor. The

pressure p is linked to the density field with a simple linear state equation

where the density ρ0 is the density at rest condition. In order to limit the

variations of the density below 1%, the speed of sound c0 needs to be chosen

suitably (for more details see e.g. [23]). The last equation of (1) describes the

trajectory of a generic material point at the position r.

The derivative Df/Dt is the Lagrangian derivative of a generic fluid variable

f , namely:

Df

Dt
:=

∂f

∂t
+ ∇f · u (2)

The ratio between the infinitesimal mass, m, and volume, V , of the material

point r is finite and equal, by definition, to the density field ρ = m/V . In

particular, the mass of the material point is conserved along the Lagrangian

trajectory, i.e.Dm/Dt = 0. Combining the above relations with the continuity
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equation in (1), we obtain the Volumetric Strain Rate equation (see e.g. [17]):

Dm

Dt
=

D(ρ V )

Dt
= 0 ⇒

DV

Dt
= V div(u) . (3)

2.2 Navier-Stokes equations using a modified advection velocity (u+ δu)

We introduce now an arbitrary velocity deviation δu and define a second

Lagrangian derivative with respect to the modified advection velocity (u +

δu):

df

dt
:=

∂f

∂t
+ ∇f · (u + δu) =

Df

Dt
+ ∇f · δu . (4)

The last term on the right-hand side can be rewritten for generic scalar, f ,

and vector, v, functions as follows:


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
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



∇f · δu = div(f δu) − f div(δu) ,

∇v · δu = div(v ⊗ δu) −v div(δu) .

(5)

Using the above notation, we can rewrite the Navier-Stokes equations using

the modified time derivatives d/dt with the advection velocity (u+ δu):


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
















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






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







dρ

dt
= −ρ div(u+ δu) + div(ρ δu) ,

du

dt
= −

∇p

ρ
+

divV

ρ
+ g + div(u ⊗ δu) − u div(δu) ,

dr

dt
= u + δu , p = c20 (ρ− ρ0) .

(6)
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The equation (6) becomes purely Lagrangian if δu is null (i.e. df/dt =

Df/Dt), or pure Eulerian is δu = −u (i.e. df/dt = ∂f/∂t). Incidentally,

we note that system (6) corresponds to the one adopted for the derivation of

the consistent δ+-SPH described in Sun et al. [29].

2.3 Navier-Stokes equations in an ALE formulation

To obtain the ALE formulation for the Navier-Stokes equations, we need to

rewrite the relations for V through the time derivative d/dt. In any case,

differently from the approach shown in the previous section, it is not possible

to apply the formula (4) to the equations (3) straightforwardly. Indeed, in

the ALE framework the volumes move with the modified velocity u + δu

and, consequently, the evolution equation is derived by using the Leibniz–

Reynolds transport theorem. In particular, this leads to the following integral

expressions:

dV

dt
=

∫

S(t)
(u+ δu) · n dS . (7)

Using the divergence theorem on the surface integral and collapsing the finite

volume V (t) to an infinitesimal volume, we obtain

dV

dt
= V div(u + δu) . (8)

When δu = 0, the above relation turns into Eq. (3). Conversely, for δu = −u,

in the Eulerian framework the elementary portions of fluid will remain fixed

in space (i.e. dr/dt = 0) with a given fixed volume i.e. ∂V/∂t = 0.

Finally, the equation (8) is included in the system (6) maintaining the usual
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algebraic relation between mass, volume and density (namely m = ρ V ). By

rewriting the whole system in conservative variables (namely volume, mass

and linear momentum), we obtain back the scheme described in Oger et al.

[24], that is:


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




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









dV

dt
= V div(u + δu) ,

dm

dt
= V div(ρ δu) ,

d(mu)

dt
= −V ∇p+ V divV+m g + V div(ρu ⊗ δu) ,

dr

dt
= u + δu , ρ = m

/

V , p = c20 (ρ− ρ0) .

(9)

In [24] the above set of equation was derived by using a Leibniz-Reynolds

transport theorem applied to an elementary portion of fluid moving with an

arbitrary velocity u0, which in the present work corresponds to the velocity

(u+ δu). Finally, a Riemann SPH scheme was selected to model the particle

interaction of the discrete system.

On the contrary, in the present work we model the spatial differential operators

following the standard SPH framework and use a diffusive approach in analogy

to the δ-SPH scheme. Specifically, the system (6) is rewritten in terms of mass

and density and numerical diffusive terms are added in both the continuity
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and mass equations, as follows:


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





































dρ

dt
= −ρ div(u+ δu) + div(ρ δu) + Dρ ,

dm

dt
= m

div(ρ δu)

ρ
+ Dm ,

d(mu)

dt
= m

[

−
∇p

ρ
+

divV

ρ
+ g +

div(ρu ⊗ δu)

ρ

]

,

dr

dt
= u + δu , V = m

/

ρ , p = c20 (ρ− ρ0) .

(10)

Once again we stress that the above equations are derived through a re-shape

of the equations (6) and (8). The additional terms Dρ and Dm represent

diffusive contributions and allow to stabilize the numerical scheme when the

system (10) is discretized in the SPH fashion. We underline that, without

such diffusive terms, we were not able to obtain a stable scheme. Finally, we

highlight that the scheme in conservative variables [that is system (9)] and

that in primitive variables without diffusive terms [namely system (10) with

Dρ = 0 and Dm = 0] are equivalent for continuous solutions of Navier-Stokes

equations. The formulation in conservative variables is, however, mandatory if

Riemann solvers are used to model the particle interactions (see, for example,

Vila [33]).

As discussed above, within the ALE framework δu is arbitrary and this can

induce large variations on V and m. In fact, while the weakly-compressible

assumption implies a constraint on the density field, large variations of δu can

induce large changes on elementary masses and volumes. To avoid instabilities

and inaccuracies, δu has therefore to be small in comparison to u and,
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similarly to [24], it is only used to regularise the particle distributions. In

particular, it is sufficient that δu is small in an average sense, i.e. it is allowed

to be of order of u locally and in small time intervals but its mean value has

to be small in comparison to the actual fluid velocity.

Here, the velocity δu is given by a Particle Shifting Technique (hereinafter

PST, see [16, 19, 20, 24]) that is conceived to reduce the disorder in the particle

distribution and, thus, to improve the accuracy of the discrete differential

operators. The velocity δu has been made proportional to the smoothing

length h so that its magnitude reduces as the spatial resolutions increases.

In any case, since δu is directly related to the irregularity of the particle

distribution, in some conditions its intensity may locally increase in space

and time, as better clarified in the next sections. Figure 1 sketches out a

description of the above concept. There, the Lagrangian particle trajectory is

compared with other three modified trajectories under the action of the PST

for three different smoothing lengths. When the smoothing length decreases,

the trajectories tends to the Lagrangian one, although there can be significant

local deflections. Incidentally, we observe that in some applications purely

Lagrangian trajectories may be a drawback of particle methods, since they

induce particle clustering along the streamlines and a consequent reduction

of accuracy (see [18]). In this case, the shifting algorithm prevents this

issue and deviates particles from their Lagrangian paths leading to a regular

distribution.

Under the hypothesis that δu is small in comparison to the actual velocity

field, it is possible to assume that the mass and volume variations remain
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Fig. 1. Sketch of the deviated particles trajectory under the action of a PST using
three different smoothing lengths h1 > h2 > h3.

small along the modified trajectories (induced by δu) and the concept of

“fluid particle” can be still considered valid. Accordingly, the system (6) can

be seen as a “quasi”-Lagrangian formulation. In Section 5 this concept is

further exploited.

3 Smoothed differential operators

Before describing the ODEs for the particle system, we briefly introduce the

smoothed differential operators used to approximate the right-hand side of

equation (10).

In the SPH context the differential operators on the right-hand side of equation

(1) are mollified through a suitable convolution integral in the space r
∗ with

a kernel function Wh(r, r
∗). The function Wh is assumed to be a positive

radial function with a compact support characterized by a reference length h,

hereinafter called smoothing length.

Regarding the divergence of the velocity field, the pressure gradient and the
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divergence of the viscous stress tensor, they are approximated, for a generic

particle i, through the formulas below (see [9, 10]):




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
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
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




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
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

〈div(u)〉i =
∑

j (uj − ui) · ∇iWij Vj ,

〈∇p〉i =
∑

j ( pj + pi )∇iWij Vj ,

〈div(V)〉i = µ
∑

j πij ∇iWij Vj ,

πij = K
(uj − ui) · rji

‖rji‖
2 ,

(11)

where rji = rj − ri, µ denotes the dynamic viscosity while K = 2 (n+ 2)

and n is the number of spatial dimensions. About the kernel function, namely

Wij := Wh(‖rj−ri‖), in this work a C2-Wendland kernel is used and about 50

neighbour particles (in a 2D framework) are considered in the kernel support,

which corresponds to h = 2∆x where ∆x indicates the initial particle distance.

In particular, the packing algorithm developed in [11] is used to fill the fluid

domain with particles placed in an almost equispaced configuration. The

smoothing length h is considered constant in time and space and, therefore,

the dependency of W on h is understood in the rest of the work.

As discussed in [9, 10, 25], the smoothed operators in equation (11)

approximate the differential operator of equation (1) when both h and ∆x/h

are small. In addition, they allow the conservation of the linear and angular

momenta of the discrete particle system as well as the implicitly (in a weak-

sense) fulfilment of the dynamic boundary condition at the free-surface.

12



As discussed in [31], the argument (pj + pi) in the pressure term leads to the

so-called tensile instability when the pressure field becomes negative. In such

a condition the formula can be modified locally by using the term (pj − pi).

This strategy helps removing the tensile instability but introduces an error

on the conservation of momenta, which, in any case, can be controlled and

limited thanks to the use of the PST.

Finally, the approximation of the terms depending on δu (see the system (6))

is performed through the following convolution sums:

δu-terms




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


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






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









〈div(δu)〉i =
∑

j

(δuj − δui) · ∇iWijVj ,

〈div(ρδu)〉i =
∑

j

(ρj δuj + ρiδui) · ∇iWijVj ,

〈div(u⊗ δu)〉i =
∑

j

(uj ⊗ δuj + ui ⊗ δui) · ∇iWijVj ,

〈div(ρu⊗ δu)〉i =
∑

j

(ρjuj ⊗ δuj + ρiui ⊗ δui) · ∇iWijVj .

(12)

To be consistent, the divergence of δu is evaluated by using the same

formula adopted for the divergence of the velocity (11). Conversely, the other

divergence operators are expressed through a sum instead of a difference.

Indeed, the symmetric behaviour when swapping the indexes i and j allows to

derive terms which conserve the mass and the linear momentum of the particle

system, as shown in the next section.
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4 The discrete particle system

Using the SPH approximation introduced in Section 3, the differential equation

for the particle system can be derived by approximating the right-hand side

of the equation (10) as follows:

δ-ALE-SPH


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
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




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








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























dρi
dt

= −ρi〈div(u+ δu)〉i + 〈div(ρδu)〉i +Dρ
i ,

dmi

dt
= mi

〈div(ρ δu)〉i
ρi

+Dm
i ,

d(mi ui)

dt
= −mi

〈∇p〉i
ρi

+mi
〈div(V)〉i

ρi
+

+mi
〈div(ρu ⊗ δu)〉i

ρi
+mig ,

dri
dt

= ui + δui, Vi = mi

/

ρi, p = c20(ρ− ρ0),

(13)

where Dρ
i is the numerical diffusive term introduced by [4] to filter-out the spurious

high-frequency noise in the pressure field. Conversely, Dm
i is the diffusive term in

the mass equation. These terms are modelled as follow:


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
















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







































Dm
i = 2δhc0

∑

j

(mj −mi)Fij

√

Vi Vj ,

Dρ
i = 2δhc0

∑

j

ψjiFij Vj ,

ψji = (ρj − ρi)−
1
2

[

〈∇ρ〉Li + 〈∇ρ〉Lj

]

· rji ,

Fij =
rji · ∇iWij

‖rji‖
2 ,

(14)
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where δ is set equal to 0.1 (see, for example, [6]) and the superscript L indicates

that the gradient is evaluated through the renormalized gradient equation, i.e.:

〈∇ρ〉Li =
∑

j

(ρj − ρi)L
−1
i ∇iWij Vj , Li :=

[

∑

k

(rj − rk) ⊗ ∇iWik Vk

]

(15)

where Li is the renormalization matrix (see e.g [2]).

The initial mass distribution is obtained from the initial density (pressure) field

and the initial volume distribution, namely mi(t0) = ρi(t0)Vi(t0). Then, the masses

evolve with their own equation.

Differently from [28] where the Particle Shifting Technique (PST) was implemented

as a particle shifting displacement (namely δr), in the present work the PST is

written in terms of velocity deviation δu, that is:

δui = min

(

‖δu∗
i ‖ ,

Umax

2

)

δu∗
i

‖δu∗
i ‖

(16)

where Umax is the maximum expected velocity and δu∗
i is given below:

δu∗
i = −Ma (2h) c0

∑

j

[

1 +R

(

Wij

W (∆x)

)n ]

∇iWijVj . (17)

Here, Ma = Umax/c0 and the constants R and n are respectively set to 0.2 and

4 as in [28, 32]. Incidentally, we highlight that the proposed model is only weakly

influenced by variations of the parameters R and n. Equation (16) is introduced to

limit the magnitude of the shifting velocity. Since formula (17) is proportional to the

smoothing length, the intensity of δu reduces as the spatial resolution increases and

this guarantees that the hypothesis made in the previous section (i.e., δui induces

small deviations with respect to the physical particle trajectory) is valid.
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As documented in [28], the use of the PST leads to regular particle distributions and

increases the accuracy and the robustness of the scheme. In turn, a direct inclusion

of the PST causes the loss of the conservation of linear and angular momenta

(even though the discrepancies from the exact conservation remain small during the

evolution). Differently from the scheme proposed in [28], in the following section we

prove that the additional terms depending on δu allow for a better conservation

of total volume and reduce those inconsistencies that can lead to wrong solutions,

especially in presence of confined domains.

4.1 Mass, momenta and volume conservation for the δ-ALE-SPH scheme

In the present section we show how the use of a velocity deviation δu influences the

main conservation properties of the scheme. To this purpose, we consider a particle

system consisting of only fluid particles (no solid boundaries).

If we apply the summation all over the particles to the second equation of system

(13), we obtain the following time derivative of the total mass:

d

dt

∑

i

mi =
∑

i

[

Vi 〈div(ρ δu)〉i + Dm
i

]

. (18)

Let us focus on the right-hand side. Since the inner arguments of Vi 〈div(ρ δu)〉

and Dm are antisymmetric with respect the swapping of the indices i-j, the

double summations contain contributions equal in magnitude and opposite in sign

that cancel out exactly. Consequently, the right-hand side of the equation (18) is

identically null and this implies the conservation of the global mass of the fluid

system.

A similar procedure can be applied to the continuity equation, namely the first

16



equation of the system (13), showing that the terms 〈div(ρ δu)〉 and Dρ
i give a null

contribution to the global fluid system thanks to their symmetric structure. This

proves that the discrete equation is consistent with the global continuity equation

without diffusion and velocity deviations.

As already explained above, the pressure and the viscous forces [namely, the second

and third equation of equation (11)] conserve both linear and angular momenta.

Then, for the linear momentum, we obtain:

d

dt

∑

i

(mi ui) =
∑

i

[

migi + 〈div(ρu⊗ δu)〉iVi

]

. (19)

Again, thanks to the symmetric structure of 〈div(ρu⊗ δu)〉, this term gives a

null contribution and, consequently, the linear momentum of the particle system

is preserved.

On the contrary, if we consider the angular momentum of the particles system, we

obtain:

d

dt

∑

i

(ri ×miui) =
∑

i

[

ri ×migi + ri × 〈div(ρu⊗ δu)〉iVi

]

(20)

and the summation of the last term on the right-hand side is not identically zero.

This is caused by the fact that the argument of 〈div(ρu⊗ δu)〉iVi is not radial (i.e.

proportional to rji). This implies that within the ALE framework the conservation

of the angular momentum is lost. In any case, as shown in [28], the benefits of the

PST on the solution accuracy are higher than this drawback, and, moreover, the

error on the angular momentum conservation reduces when the smoothing length

h decreases.

Under the assumption of weak-compressibility, the volume of the fluid domain is

allowed to change by 1%. However, if we consider hydrodynamic problems where the
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fluid is confined by non-moving solid boundaries and/or periodic boundaries, the

volume domain Ω remains constant, that is
∫

Ω div(u)dV =
∫

∂Ω u·n = 0. Combining

the first two equations of system (13), we obtain the time derivative of the global

volume of the particle system:

d

dt

∑

i

Vi =
∑

i

[

Vi 〈div(u+ δu)〉i +
Dm

i

ρi
−
ViD

ρ
i

ρi

]

. (21)

Since the right-hand side is generally different from zero (even in the absence of

diffusive terms and of the δu-term), the conservation of the total volume of Ω is not

guaranteed. In particular, this occurs in all the weakly compressible SPH models

(i.e. the mass conservation is ensured but not the volume one, see for example

[15]). About the present scheme, the smoothed operators in Eq. (21) imply that the

contributions generated by the addition of the δu-terms and by the diffusive terms

reduce as h decreases (namely, as the spatial discretization becomes finer).

5 Two alternative variants: particles with constant mass or

constant volumes

Since the shifting velocity is proportional to h, we can simplify the system of

equations by assuming that the particle mass does not change along the path

(u+ δu). The error induced by such an approximation is expected to be small and

to reduce when increasing the spatial resolution (i.e. h→ 0), as already explained in

Section 2.3. Under this hypothesis the particle volumes are directly linked to their

densities through the relation:

Vi(t) = mi/ρi(t) (22)
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and the mass conservation is intrinsically satisfied as in the standard SPH model.

Because of the above link between volume, mass and density, the ALE framework

is not more necessary and we can directly discretize the system (6). Then, the

equations for this first variant becomes:

Scheme with constant masses































































dρi
dt

= −ρi〈div(u+ δu)〉i + 〈div(ρδu)〉i +Dρ
i

dui

dt
= −

〈∇p〉i
ρi

+
〈divV〉i
ρi

+ g + 〈div(u ⊗ δu)〉i − ui 〈div(δu)〉i

dri
dt

= ui + δui , Vi(t) = m0i

/

ρi(t), p = c20 (ρ− ρ0) .

(23)

which coincides with the consistent derivation of the δ+-SPH model described in

Sun et al. [29]. In that work it is underlined that the action of the δu-terms is

problem dependent and that the terms in the continuity equation are more relevant

than those in the momentum equation which play a negligible role. In particular, in

the first benchmark of Section 6 all the δu-terms have irrelevant effects, while in the

remaining benchmarks they are of fundamental importance to avoid a non-physical

drift on the volume conservation.

A second possible variant is obtained by enforcing that the particle volumes do not

change. Indeed the PST guarantees an ordered spatial particle distribution during

all the time evolution and, therefore, we can assume that the particle volumes remain

close to the initial ones, i.e dVi/dt = 0. Following this second approximation, the

conservation of total volume is intrinsically enforced, while the particle masses are

given by:

mi(t) = V0i ρi(t) (24)
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The equations for the density and the momentum are derived by discretizing the

system (6) through the smoothing procedure described in Section 3:

Scheme with constant volumes































































dρi
dt

= −ρi ≺div(u+ δu)≻i + ≺div(ρδu)≻i +Dρ
i

dui

dt
= −

≺∇p≻i

ρi
+

≺divV≻i

ρi
+ g+ ≺div(u ⊗ δu)≻i −ui ≺div(δu)≻i

dri
dt

= ui + δui , mi(t) = V0i ρi(t), p = c20 (ρ− ρ0) .

(25)

It this worth noting that, differently from the scheme (23), the smoothed operators

in (25) are evaluated by using the volumes V0j during all the simulation. The same

procedure is used for the shifting velocity defined in equation (17). For the above

reason, the smoothed operators in (25) are indicated through the symbol ≺≻ and,

for example, the divergence operator is rewritten as:

≺div(u)≻i=
∑

j

(uj − ui) · ∇iWij V0j . (26)

In the next section we will show that the results given by these two variants are

practically the same and very close to those obtained though the δ-ALE-SPH. We

stress that, strictly speaking, the above variants cannot be regarded as ALE schemes

on their own.
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6 Numerical results

In order to validate the δ-ALE-SPH model, namely the system (13), we consider the

same benchmark used in the works [12] and [28], concerning the viscous flow past

an inclined elliptical cylinder in subsection 6.1, and the lid-driven cavity problem

for two Reynolds numbers in subsection 6.2. Finally, in subsection 6.3 we consider

the evolution of a dam-break flow impacting a vertical wall.

6.1 The flow past an inclined elliptical cylinder with an angle of attack of

20◦ at Re = 500

In this subsection the viscous flow past an inclined elliptical cylinder is considered.

The chord length of the profile is the major axis of the ellipse and it is indicated in

the following text with the letter a. The ratio between the axes is equal to b/a = 0.4

and the angle of attack is α = 20◦. The Reynolds number is Re = aU/ν = 500,

where U is the upstream horizontal velocity and ν the kinematic viscosity.

Colagrossi et al.[12] showed that δ-SPH model is able to evaluate the forces acting

on the inclined ellipse in a good accordance with a reference solution obtained with a

vortex method, i.e. the Diffusive Vortex Hydrodynamic (DVH) model [26]. Despite

this, the vorticity field was affected by numerical noise induced by the particles’

spatial disorder. In [27, 28] it was shown that the use of the PST allows for a better

evaluation of the vorticity field, also improving the accuracy on the global force

evaluation.

Figure 2 shows the pressure and vorticity fields evaluated with the δ-ALE-SPH

model at the final time of the simulation, namely tU/a = 50, when a periodic

21



regime of the solution is attained. Figure 3 depicts the time histories of the viscous

component in drag force obtained for three different spatial resolutions, namely

a/∆x = 25, 50, 100. These results are compared with the reference solution given by

the DVH model, showing that the δ-ALE-SPH converges to the DVH output and

proving that the boundary layer is correctly resolved by this SPH variant.

Figure 4 depicts the volume distribution given by the δ-ALE-SPH model by using

three different spatial resolutions, that is a/∆x = 25, 50, 100. The contour plots

refer to the field of relative volume variations, i.e. ǫV i = (Vi/V0−1), where V0 is the

initial particle volume. Since for this problem the initial configuration is a uniform

Cartesian lattice, the initial volumes are all equal to V0 = ∆x2. The relative volume

variations are of the order of few percentage and, furthermore, they reduce when

a/∆x increases. This is due to the fact that the shifting velocity δu becomes smaller

Fig. 2. The flow past an inclined elliptical cylinder at tU/a = 50 for a/∆x = 100.
The pressure (top) and vorticity (bottom) fields predicted by the δ-ALE-SPH.
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when h decreases (note that h/∆x = 2 for all the simulations). On the other hand,

the field ǫV i becomes more and more irregular when a/∆x increases.

The above results indirectly show that the hypothesis on the behaviour of δu done in

the previous sections are basically satisfied. The shifting velocity can present local

irregularities caused by the particles’ disorder, but, in any case, their magnitude

tends to reduce with the particle sizes.

In Figure 5 the particle mass distribution is shown for the highest resolution, that

is a/∆x = 100. The contour plot refers to field of the relative mass variations,

i,e, ǫmi = (mi/m0 − 1), where m0 are the initial particle masses evaluated as

m0 = ρ0∆x
2. The mass variations ǫmi present a pattern which is essentially similar

to the ǫV i distribution. This behaviour is likely due to the fact that the density

field is much more regular than both Vi and mi and, consequently, ǫmi and ǫV i are

closely related.

The left plot of Figure 6 reproduces an enlarged view of the field ǫV i for a/∆x = 25,

while the right plot displays the simulation with Dm set to zero. When the mass

diffusion is inhibited, the scheme becomes unstable, leading to large variations of ǫV i

Fig. 3. The flow past an inclined elliptical cylinder. Time histories of the viscous
drag component predicted by the δ-ALE-SPH for three different resolutions:
a/∆x = 25, 50, 100. The dashed black line is the solution given by the DVH model
(see [26]).
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Fig. 4. The flow past an inclined elliptical cylinder. Particle volume distributions
predicted through the δ-ALE-SPH for three spatial resolutions, namely
a/∆x = 25, 50, 100.

(up to 50%). After that, the mass and volume variations continue to increase because

the errors induced on the smoothed operators are enlarged by the inhomogeneous

particle distribution. For this reason the simulation is stopped at time tU/c = 2.5.

From a theoretical point of view, the cause of this instability is still unknown and

deserves a future investigation.

For the test-case selected in this work, the volume of the fluid domain is constant
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Fig. 5. The flow past an inclined elliptical cylinder. Particle mass distributions
predicted by δ-ALE-SPH for a/∆x = 100.

Fig. 6. The flow past an inclined elliptical cylinder for a/∆x = 25. Contour plots
of the relative variation of the particle volumes with respect to their initial value,
namely ǫV i. Left: a regular particle distribution obtained through the δ-ALE-SPH.
Right: numerical instability using the δ-ALE-SPH without the diffusion term Dm.

Fig. 7. The flow past an inclined elliptical cylinder for a/∆x = 25, 50, 100. Time
history of the relative variation of the total particle volume, namely ǫV in Eq. (27),
predicted by the δ-ALE-SPH.
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and equal to 14c× 10c = 140c2. Figure 7 shows the time history of ǫV defined as:

ǫV =

∑

i Vi
∑

i V0i
− 1 (27)

evaluated by the δ-ALE-SPH model for three spatial resolutions, i.e. a/∆x =

25, 50, 100. As expected, ǫV reduces when resolution increases and, consequently,

∑

i Vi converges to the geometrical volume of the fluid domain.

Benchmark N◦1 solved with constraints on particle masses and volumes

In this section we consider the two variants of the δ-ALE-SPH described in Section 5,

namely the constant-mass scheme in equation (23) and the constant-volume model

in (25). Figure 8 displays the time history of the drag coefficient evaluated by the

different models (the results from the complete δ-ALE-SPH are also displayed).

These models yield practically the same results which are all in a good agreement

with the reference solution reported in [12] for the same test-case. The same

behaviour is observed for the other force components (the velocity and the pressure

field are not shown here for the sake of brevity).

Fig. 8. The flow past an inclined elliptical cylinder for a/∆x = 100. Time histories
of the drag coefficient using the δ-ALE-SPH scheme and the simplified versions
described in equations (23) and (25).
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Fig. 9. The flow past an inclined elliptical cylinder for a/∆x = 100. Contour plot of
the relative volume variations ǫV i as predicted by the scheme with constant masses
[see equation (23)].

Fig. 10. The flow past an inclined elliptical cylinder for a/∆x = 100. Contour plot of
the relative mass variations ǫmi as predicted by the scheme with constant volumes
[see equation (25)].

Even though both the variants have not large effects on forces, velocity and pressure

fields, the mass and volume distributions are different with respect to those given by

the δ-ALE-SPH. The volume distribution for the SPH variant where the masses are

forced to be constant in time is shown in Figure 9. As already commented above,

the constraint on the masses implies that the volumes share the same pattern of

the pressure/density field. A similar behaviour is observed when the volumes are

enforced to be constant in time: indeed, in a such condition, the mass distribution

follows the pressure/density field (see Figure 10). For this reason and because of the

weakly-compressibility assumption, the variations on the masses are limited within
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the 1%, i.e.

∆mi

m0
=

∆ρi
ρ0

≤ 0.01 (28)

The same applies to volumes when the constraint on the masses is used.

6.2 Lid-driven cavity at Re = 100 and Re=1000

As a second benchmark we consider the lid-driven cavity problem. This consists

of a two-dimensional squared domain with fixed solid walls along three sides and

a wall moving tangentially at constant velocity U on the top side. As usual, the

Reynolds number is given by Re = UL/ν where L is the square side and ν is the

kinematic viscosity of the fluid. In particular, we consider the motion at Re = 100

and Re = 1000. In both the cases, the dynamics reach a steady state after a transient

whose duration depends on the specific Reynolds number.

Being the domain a simple square the ghost-particle approach [8] is chosen to enforce

the no-slip condition. It worth to note that within this technique it is important to

mirror also the δu field along with the velocity and pressure fields, in order to impose

the condition δu · n = 0 on the solid surfaces. For the velocity field, as explained

in [13] and further in [7], a different mirroring is required for the continuity and

momentum equations.

Figure 11 shows the steady state solutions obtained through the proposed δ-ALE-

SPH model for both the Reynolds numbers. In particular, the left panels display

the pressure field and the streamlines while the right panels show the vorticity

field. The main difference between Re = 100 and Re = 1000 is represented by the

generation in the latter case of a large central vortex and of larger re-circulations

regions close to the bottom corners. In both the cases the use of the PST allows for
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Fig. 11. Lid-driven cavity at Re = 100 (top panels) and Re = 1000 (bottom panels).
Left: pressure field and streamlines. Right: vorticity field.

very regular solutions and avoids the onset of any spurious numerical noise, which,

on the contrary, affects SPH models where PST are not used.

In order to validate the proposed method on this second benchmark, Figure 12

displays the comparisons between the results of δ-ALE-SPH model, the results

described in Xu et al. [34] and the solution obtained through the consistent δ+-

SPH model of Sun et al. [29] (that is, the mass-constant variant of the δ-ALE-SPH

model in Section 5) when the steady state is attained. In particular, the left panels

provide the solutions for the horizontal velocity component u at x = 0.5L, the

middle panels the vertical velocity component v at y = 0.5L and the right panels
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Fig. 12. Lid-driven cavity at Re = 100 (left panels) and Re = 1000 (right
panels). Comparisons between the results of δ-ALE-SPH model, the reference results
described in Xu et al. [34] and the solution obtained through the consistent δ+-SPH
model of Sun et al. [29]. Top: the horizontal velocity component u along x = 0.5L.
Middle: the vertical velocity component v along y = 0.5L. Bottom: the pressure
along the axis x = y. 30



Fig. 13. Lid-driven cavity at Re = 1000. Comparisons between the results of
δ-ALE-SPH model and the reference results described in [14]. Left: vorticity ω along
x = 0.5L. Right: vorticity ω along y = 0.5L

display the pressure along the diagonal x = y. The spatial resolutions are the same

indicated in Figure 11. For both the Reynolds numbers the agreement between the

different solvers is very good, confirming the accuracy of the proposed model as

well as the fact that the equation of the particle’s mass variations in Eq. (13) is not

crucial in terms of the obtained results.

A further validation is depicted in Figure 13 where the comparisons between δ-

ALE-SPH model and the results presented in Erturk et al. [14] are shown in terms

of the vorticity field evaluated along the line x = 0.5L and y = 0.5L at the steady

condition.

The most challenging issue related to the numerical solution of the lid-driven cavity

is represented by the singularities that occur at the top-right and top-left corners

of the squared domain. There, the no-slip condition is ill-defined since u = 0 along

the side wall and u = Ue1 along the top wall, introducing a discontinuity on the

domain boundary. In the numerical simulation this twofold assignment is the cause

of errors in the particle volume evolution. With respect to this, Figure 14 displays
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Fig. 14. Lid-driven cavity at Re = 100 (top panels) and Re = 1000 (bottom panels).
Snapshots of the evolution of |ǫV i| at different spatial resolutions for the δ-ALE-SPH
model.

Fig. 15. Lid-driven cavity at Re = 100 (top panels) and Re = 1000 (bottom panels).
Time histories of ǫV for different spatial resolutions for the δ-ALE-SPH model.
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a snapshot of the absolute relative error |ǫV i| at different spatial resolutions.

For Re = 100 (top panels), the sources of errors close to the top corners are rather

clear even though they rapidly reduce as the resolution increases (from left to right).

The relative errors reduce in space but not in intensity because of the singularities

on the boundary conditions at the upper corners. For Re = 1000 (bottom panels)

these reductions in space of |ǫV i| are less evident and the errors levels are smaller

with respect to the more viscous case. The global convergence analysis is depicted

in Figure 15 where the time history of the global error ǫV is displayed. For both

Reynolds numbers ǫV decreases as the spatial resolution increases even if the rate

of convergence is larger for Re = 100. This figure also shows that the error on the

global volume tends to increase during the simulation even though it maintains very

small. The change on the convergence rates of ǫV deserve a more in-depth numerical

analysis which is left for future works.

Finally, because of the conservation properties discussed in Section 4.1 and thanks

to the mirroring of the field (u+ δu) ·n on the ghost particles, the recorded global

mass variations are at the machine precision for all the cases presented.

6.3 Dam-break flow impacting a vertical wall

This final benchmark is conceived to prove the reliability of the proposed scheme

for free-surface problems. The initial configuration is described, for example, in [38]

and reproduces the experimental campaign of [39].

In particular the fluid is initially confined in a reservoir on the left side of a

rectangular tank and its right wall is suddenly removed to generate a fluid wedge

as in Figure 16. The initial water heigh is H, the length of the reservoir is B = 2H
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and the tank length is L = 5.367H.

Fig. 16. Dam-break flow: early stages of the evolution of the pressure field as
predicted by the δ-ALE-SPH model. Here α denotes the coefficient of the artificial
viscosity while the symbol P1 indicates the position of the pressure probe.

Both the standard SPH and the present δ-ALE-SPH are compared for this problem.

In both the schemes the spatial resolution is H/∆x = 400 and the artificial viscosity

is implemented (see, for example, [4]). Following [29] the shifting velocity of the δ-

ALE-SPH model is modified to satisfy δu · n = 0 close to the free-surface and

preserve the free-surface kinematic boundary condition.

For what concerns the diffusive terms, this are switched off when the minimum

eigenvalue of the Libersky renormalization matrix (15) is smaller than 0.2 (for more

details see, for example, [29]). This avoids the use of diffusion in small jets and

droplets where the renormalization matrices Li may be ill-conditioned introducing

numerical errors and instabilities with a possible reduction of the scheme robustness.

Figure 17 shows the instant of generation of the plunging wave and its reconnection

with the underlying flow. Thanks to the action of the diffusive terms, the pressure

field predicted by the δ-ALE-SPH model is much more regular than that obtained

by using the standard SPH.

A substantial discrepancy between the Standard SPH and the δ-ALE-SPH schemes

34



Fig. 17. Dam-break flow: pressure field as predicted by the standard SPH (top) and
by the δ-ALE-SPH model (bottom). In both the models the spatial resolution is
H/∆x = 400.

arises during the long-time evolution, that is when the fluid has already dissipated

the largest part of its kinetic energy and is going to attain the final hydrostatic

solution. In particular Figure 18 compares the pressure field as predicted by the

standard SPH (top) and by the δ-ALE-SPH model (bottom) at t
√

g/H = 30. In

the side panels the detailed views of the numerical solutions highlight that the

pressure field of the standard SPH is affected by a sort of spot-like spurious noise.

This kind of disturbance is also observed for the volume variations (see the top

panels of figure 19) and, more evidently, for the mass distribution (bottom panels of

the same figure). In the latter case ǫmi is evaluated by using the mass of the particles

that are initially along the free surface as reference value (namely, m0 = ρ0∆x
2).

Since the standard SPH the particles masses are advected Lagrangianly, their are

transported without any time variation during the fluid evolution. Then, the field
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Fig. 18. Dam-break flow: long-time evolution of the pressure field as predicted by
the standard SPH (top) and by the δ-ALE-SPH model (bottom). Side panels display
a detail of the flow close to the left wall.

displayed in the bottom left panel of figure 19 is a consequence of the particle mixing

occurred after several splash-up events. This noisy distributions on masses and

volumes heavily affects the density and the pressure fields because of the algebraic

relation m = ρV and the state equation p = f(ρ). On the contrary, the proposed

δ-ALE-SPH model, thanks to the diffusion on the particle masses and densities,

is completely free from this spot-like disturbance as shown on the right column of

figure 19.

7 Conclusion and Perspectives

In the present work we described a general way to obtain an Arbitrary-Lagrangian-

Eulerian framework for the δ-SPH scheme with the Particle Shifting Technique.
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Fig. 19. Dam-break flow: details of the volume (top) and mass (bottom) variations
close to the left wall at t

√

g/H = 30, as predicted by the standard SPH (left column)
and the δ-ALE-SPH (right column).

The proposed model, named δ-ALE-SPH scheme, has been derived by rewriting the

Navier-Stokes equations in the ALE formalism and, then, including the diffusive

terms of the δ-SPH scheme in both the equations of density and mass. Finally, the

arbitrary velocity field has been represented as the sum of the actual fluid velocity

u and of a deviation field δu, and the latter has been modelled through the Particle

Shifting Technique described in Sun et al. [29]. It was shown that the above approach

is, in fact, equivalent to the weak formulation proposed by Vila [33].
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Three benchmark cases have been considered to test the δ-ALE-SPH scheme, namely

the flow past an inclined elliptical cylinder with an angle of attack of 20◦ at

Re = 500, the lid-driven cavity at Re = 100 and Re = 1000 and a dam-break flow.

Two variants of the principal scheme have also been proposed, namely a scheme

with constant volumes and a scheme with constant masses.

The first test case showed that the three models provide similar results in terms of

forces, vorticity and pressure/density field while the mass and volume distributions

display different behaviours because of their direct relation with the density field.

Further, the use of the diffusive terms in the mass and density equations revealed of

fundamental importance for the stability of the scheme. The second benchmark

confirmed the robustness and accuracy of the δ-ALE-SPH scheme, providing a

good agreement with the numerical solutions obtained through the models of Xu

et al. [34] and Erturk et al. [14]. The presence of singularities at the cavity top

corners was shown to influence the error on the total volume conservation though

the latter remains limited. Conversely, the mass conservation for this confined test

case was preserved by the δ-ALE-SPH scheme. Finally, the dam-break flow proved

the reliability of the proposed scheme in simulating free-surface problems and its

ability in overcoming some of the drawback of the standard Lagrangian SPH model.

The overall investigation highlighted that the ALE-SPH schemes, whose differential

operators are usually represented by using Riemann solvers (Vila [33]), can be

alternatively implemented by adding suitable diffusive terms. This latter approach

leads to the definition of an ALE-SPH schemes with properties of stability and

accuracy comparable to the Riemann-based models.

Remarkably, the variant of the δ-ALE-SPH with constant masses coincides with

the δ+-SPH scheme described in Sun et al. [29], bridging the gap between the
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weak formulation of Vila [33] and the standard approach from Lagrangian Navier-

Stokes equations. In fact, the numerical simulations showed that the general δ-ALE-

SPH and the δ+-SPH scheme are practically equivalent in terms of accuracy and

conservation properties.
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