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Abstract

In financial literature many have been the attempts to overcome the option
pricing drawbacks that affect the Black and Scholes model. Starting from the
Tsallis deformation of the usual exponential function, this paper presents, in
a complete market setup, a class of deformed geometric Brownian motions
flexible enough to reproduce fat tails and to capture the volatility behavior
observed in models that consider both stochastic volatility and jumps.
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1. Introduction

In this paper, we present a family of complete market option pricing mod-
els with stochastic volatility in which the underlying asset exhibits heavier
tails than those of a log-normal distribution. More precisely, the rate of re-
turn of this asset follows a diffusion process in the usual form of a geometric
Brownian motion but whose source of uncertainty is played by a power-tailed
continuous Markov process. Further, the distribution of this process is, at
each time t, related to the Tsallis [1] deformation of the exponential function
and reduces, as a particular case, to the standard Gaussian distribution.
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It is well known that Black and Scholes [2] (B&S thereafter) and Merton
[3] proposed a path-breaking model in modern finance when they derived a
closed form formula to price European options under the assumption that
the dynamics of the underlying asset follows a standard geometric Brownian
motion. This pricing expression is a simple pricing tool for both practitioners
and researchers.

If the B&S formula is used to determine the underlying asset implied
volatility, it turns out that such volatility is not constant (as instead as-
sumed by the model), being dependent on both the moneyness (i.e. the ratio
between the price of the underlying asset and the option strike price) as well
as the time to maturity of the option.

The fact that the distribution of the random rate of return of the un-
derlying asset is normal is, unfortunately, a major drawback for the B&S
model. Different approaches, that exhibit heavier tails than those obtained
with the log-normal distribution, provide a better fit for the observed returns
for many equities as well as stock indices (see, for instance, Platen and Ren-
dek [4]). To mention just a few, local volatility models (for instance Derman
and Kani [5]), stochastic volatility models (see, amongst others, Heston [6]),
and stochastic volatility models with jumps either only in the dynamics of
the underlying asset (Bates [7]) or in the dynamics of both underlying asset
and its stochastic volatility (Eraker et al. [8], D’Ippoliti et al. [9]).

Any model with more than one source of uncertainty leads to an incom-
plete market (Bjork [10]) in which, unless a sensible function expressing the
market price of risk is exogenously introduced, it would be impossible to
price derivatives. This is not the case with the present article that follows
the approach of Hobson and Rogers [11]; in their work these authors deal
with stochastic volatility in a complete market framework. Borland [12] and
[13], Borland and Bouchaud [14], and Vellekoop and Nieuwenhuis [15] also
follow this vein.

In Borland, [12] and [13], the author proposed a model for stock prices
log-returns in the form of

d ln(St) = µ dt+ σSdΩt,

where µ and σS are constants and the source of uncertainty, Ωt, is no longer a
Wiener process as in the B&S model but, rather, a continuous Markov process
evolving in time according to the stochastic differential equation (SDE)

dΩt = gα(t,Ωt) dWt, (1)
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where α ≤ 1 is a given parameter, Wt is a Wiener process, gα(t,Ωt) =
f(t,Ωt)

α/2, and the probability distribution f(t, x) satisfies the purely sub-
diffusive Fokker-Planck (FP) equation

∂f(t, x)

∂t
=

1

2

∂2

∂x2
f(t, x)1+α. (2)

It is well known (see e.g. Plastino and Plastino [16], Tsallis and Bukman [17])

that the solution of (2) is in the form of f(t, x) ∝ expα

(

− 1
2σ2(t)

x2
)

, where

σ2(t) ∝ t2/(2+α) and expα(x) = (1 + αx)1/α is the deformation of the usual
exponential function introduced by Tsallis [1] in Statistical Mechanics. As in
Hobson and Rogers [11], the Borland approach [12] and [13] leads to a pricing
model that lies between the Heston model, because of a stochastic volatility
behaviour, and the B&S model, because of its completeness due to the use of
the same Wiener process that drives both the price of the underlying asset
and its volatility processes. Unfortunately, as observed in Vellekoop and
Nieuwenhuis [15], this approach admits arbitrage. These authors, instead,
proposed to use the following “deformed” Geometric Brownian Motion

dSt = µSt dt+ σSStdΩt,

or equivalently

d ln(St) =

(

µ− 1

2
σ2
Sg

2
α(t,Ωt)

)

dt + σSdΩt,

thereby keeping the original idea to replace the usual Wiener process with
a heavier tailed process. However, as all improvements come with a cost, in
all those models, unlike B&S and Heston, it is no longer possible to derive
closed or semi-closed formulæ for European option prices. Therefore, some
numerical methods have to be used.

The above mentioned results is the motivation for this article: we intend
to shed some light into how to depart from the standard rate of return process
by introducing a broad range of Tsallis deformations. In fact, unlike earlier
papers, to derive the “generalized Gaussian” process having, at time t, the

Tsallis distribution f(t, x) ∝ expα

(

− 1
2σ2(t)

x2
)

we do not require σ(t) to be

an a priori specified function. In other words, f(t, x) satisfies a nonlinear
Fokker-Planck equation which is time-dependent through the function σ(t).
A positive consequence of this is that our models are suitable to describe
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different types of (possibly non-linear) variance changes with time. However,
the flexibility in the choice of σ(t) requires to guarantee that the process
Ωt is well defined; the proof of this result is one of the main theoretical
contribution of the present work.

Another interesting feature we show is that in our framework we can
derive an expression that resembles the market price of risk. This formula
obviously depends on the choice made for σ(t) so that our model reveals
to be very flexible in terms of capturing and representing a large class of
volatility surfaces. What in incomplete markets is a necessary input, namely
some functions describing the market price of risk, becomes in our approach
an output that depends on σ(t).

Unlike the papers by Borland, [12] and [13], Borland and Bouchaud [14]
and Vellekoop and Nieuwenhuis [15], here we also explicitly derive the dy-
namics of the variance process that shows a mean-reverting pattern with both
long-term mean and speed reversion that are function of time. This result
clearly indicates that the deformed Gaussian approach leads to a sensible
representation of the volatility process. A detailed analysis of the behavior
of log return mean and variance is relegated in Appendix A.

Remarkably, once prices of European call options obtained with our ap-
proach have been numerically determined, the resulting implied volatilities
show a smile that captures both the short and long-term features present in
jump-diffusion stochastic volatility models. Further, a comparison between
our model and the Heston model is achieved by choosing σ(t) so that the
mean value of the squared volatility process in both models are equal.

The paper is organized as follows. In Section 2, we recall the definition
of ϕ-deformed exponential and logarithm as given by Naudts [18] and, as
an example, we introduce the Tsallis deformed exponential and logarithm.
In Section 3, we define the t-Gaussian distribution, while in Section 4 we
define the class of t-Gaussian processes, whose heavy-tailed distributions
solve a suitable nonlinear time-dependent FP equation. These processes can
be viewed as a generalization of the Wiener process, since their law is an
extension of the Gaussian law based on the Tsallis exponential. In Sections
5 and 6 we discuss the use of t-Gaussian processes in modeling prices for
underlying assets under different choices of σ(t), pointing out how these non-
Gaussian deformations differ from the standard geometric Brownian motion.
A Monte Carlo method is used to price European options from which we
finally obtain their implied volatilities. Section 7 concludes.
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2. Deformed exponentials

Naudts [18] (Chapter 10) gives a general definition of ϕ-deformed exponen-
tial. The author firstly defines the ϕ-deformed logarithm as

lnϕ(x) =

∫ x

1

dt

ϕ(t)
, x > 0, (3)

where ϕ : R+ → R+ is a strictly positive, nondecreasing and continuous
function. As a consequence, the ϕ-logarithm

lnϕ : R+ →
(

−
∫ 1

0

dt

ϕ(t)
,

∫ +∞

1

dt

ϕ(t)

)

= (−m,+M)

is a strictly increasing and concave function, satisfying lnϕ(1) = 0 and
(d/dx) lnϕ(x) = 1/ϕ(x). In particular, lnϕ(x) is negative on (0, 1) and posi-
tive on (1,+∞). The natural logarithm is obtained for ϕ(t) = t.

The ϕ-exponential is then defined as the inverse function of lnϕ:

expϕ = ln−1
ϕ : (−m,+M) → R+.

This is a positive, increasing and convex function, satisfying expϕ(0) = 1 and
(d/dx) expϕ(x) = ϕ(expϕ(x)).

Until now, the ϕ-exponential has mainly been used in physics literature to
explain, for suitable choices of the deformation function ϕ, a very large class
of experimentally observed phenomena which are described by distribution
functions that exhibit power law tails. In finance and related fields, deformed
exponentials, in the form presented in Tsallis [1] and Kaniadakis [19], were
used by, e.g., Trivellato [20], [21], Imparato and Trivellato [22], Popescu et
al. [23], and Preda et al. [24] and [25] to define new families of relative
ϕ-entropies which are closely related to the relative Shannon entropy.
We focus our attention on the Tsallis logarithm with parameter α ≤ 1 that
is a deformed logarithm with ϕ(t) = t1−α and

m =

{

1
α
, if 0 < α ≤ 1,

+∞, if α ≤ 0,
M =

{

+∞, if 0 ≤ α ≤ 1,
− 1

α
, if α < 0,

and is defined by

lnα(x) =

{

xα−1
α

, if α ≤ 1, α 6= 0,
ln x, if α = 0.

(4)
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Its inverse is defined by

expα(x) =

{

(1 + αx)
1
α , if (0 < α ≤ 1, x > −1/α) or (α < 0, x < −1/α)

exp x, if α = 0, (x ∈ R).

An interesting property of the Tsallis exponential function is the asymp-
totic behavior of its power law:

expα(x)∼ |αx|±1/|α| as |x| → +∞. (5)
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Figure 1: Plot of the function expα(−x) for different values of α.

In Figure 1, function expα(−x) is plotted for different values of α. We note
that, for x > 0, expα(−x) ≥ exp(−x) and, as α → 0, the Tsallis exponential
approaches the ordinary one.
In the next section, we use the Tsallis exponential to generalize the Gaussian
distribution.

3. Tsallis distribution

The (centered) t-Gaussian probability density of parameters1 α ∈ (−2, 0)
and σ > 0 is defined as

1For α ≤ −2 the distribution cannot be normalized, while for α > 0 it vanishes outside

the interval
(

−
√
2

α
σ,

√
2

α
σ
)

.
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ft

α(x) = Z−1
α expα

(

− 1

2σ2
x2

)

, x ∈ R, (6)

where

Z−1
α =

1√
2πσ

√
−α

Γ
(

− 1
α

)

Γ
(

− 1
α
− 1

2

) . (7)

It can be checked that a random variable X with a t-Gaussian distribution
can be written as

X =

√

− 2

αν
σ Tν =

√

2

2 + α
σ Tν , (8)

where Tν is a random variable having a Student t-distribution with ν =
− 2

α
− 1 > 0 (real) degrees of freedom. Since

E[T n
ν ] =

{

νn/2
∏n/2

i=1
2i−1
ν−2i

, if n even, 0 < n < ν

0, if n odd, 0 < n < ν,
(9)

the t-Gaussian has finite moments only under some suitable choices of the
parameter α.
In general, from (8) and (9) it follows that, if −2/(2n + 1) < α < 0 (n =
1, 2, . . . ) then E[X2n] is finite and proportional to σ2n. Specifically, if −2/3 <
α < 0, the variance of the t-Gaussian distribution is finite and equals

∫

R

x2ft

α(t, x) dx = Γα σ
2, (10)

where

Γα =
2

3α+ 2
. (11)

Moreover, if −2/5 < α < 0, the fourth moment of the t-Gaussian is also
finite and equals

∫

R

x4ft

α(t, x) dx = Cα σ
4, (12)

where

Cα =
12

(5α + 2)(3α+ 2)
. (13)

When α goes to zero, the t-Gaussian distribution approaches the usual
centered Gaussian distribution with variance σ2, while for larger |α| it shows
fat tails which vanish according to a power law.
The t-Gaussian distribution for σ2 = 1 and different values of α is plotted
in Figure 2.
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Figure 2: Comparison between different Tsallis distributions and a standard normal
distribution.

4. Tsallis deformed Gaussian processes

In this section, we define stochastic processes which can be viewed as a
generalization of the Wiener process since their law is an extension of the
Gaussian law based on the Tsallis exponential.

Let σ(t) be a C1 function from R+ to R+, possibly depending on α, and
assume σ(0) = 0.
Define

ft

α(t, x) = (Zα(t))
−1 expα

(

− 1

2σ2(t)
x2

)

, for t > 0, x ∈ R (14)

where (Zα(t))
−1 is given by (7) after replacing σ with σ(t).

Proposition 1. ft

α(t, x) given by (14) solves the nonlinear time-dependent
Fokker-Planck equation:

∂f(t, x)

∂t
= σ(t)σ̇(t)

∂

∂x

[

(

Zα(t)f(t, x)
)α∂f(t, x)

∂x

]

= σ(t)σ̇(t)
∂2

∂x2

[

(Zα(t))
α

1 + α
f(t, x)1+α

]

For the proof refer to Trivellato [21].
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Remark 1. Solving the equation

σ(t)σ̇(t)
(Zα(t))

α

1 + α
=

1

2
(15)

leads to σ(t) ∝ t1/(2+α) and therefore to the purely sub-diffusive FP equation
(2).

Let us now introduce the process

dΩt = gα(t,Ωt)dWt, t > 0 (16)

described by the time-dependent nonlinear FP equation of Proposition 1,
where Wt is the Wiener process and

gα(t, x) =

√

2σ(t)σ̇(t)
(Zα(t)ft

α(t, x))
α

1 + α
=

√

2σ(t)σ̇(t)
φα(t, x)

1 + α
,

with φα(t, x) = 1− αx2

2σ2(t)
going to 1 as α goes to zero.

Letting Ω0 = 0 and σ2(t) ≡ σ2
α(t) → t as α goes to zero, (16) defines a

“generalized Wiener process” with a Tsallis distribution at each time t > 0.
In particular, from (10), we deduce that E [Ω2

t ] = Γα σ
2(t).

Let us observe that, if ft

α(t,Ωt) is small, then gα(t,Ωt) is large. Consequently,
an unlikely step for Ωt tends to be followed by a large “jump”.

Since gα(t, x) is not uniformly Lipschitz in x, standard results on the
existence of strong solutions to stochastic differential equations do not apply.
Therefore, we prove the following proposition which represents our main
theoretical result.

Proposition 2. The stochastic differential equation (16) admits a strong
solution on the finite time interval [0, T ].

For the proof see Appendix B.

5. Deformed geometric Brownian motion

Here, Ωt is used as the driving noise in the dynamics of the asset price
process S (under the historical probability measure P)

dSt = µSt dt+ σSSt dΩt (17)
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where µ and σS are constant parameters. Since

d(lnSt) =

(

µ− 1

2
σ2
Sg

2
α(t,Ωt)

)

dt+ σS dΩt, (18)

the solution is given by

St = S0 e
∫

t

0 (µ−
1
2
σ2
S
g2α(s,Ωs)) ds+σS Ωt. (19)

Let us observe that, by Hölder inequality and by the definition of g2α(t, x), we
deduce that if E[Ω4

t ] < +∞ (and thus E[Ω4
t ] = Cασ

4(t)), then Var(ln (St/S0)) <
+∞. In fact, we get that

E[(ln (St/S0))
2] ≤ C(t)

(

1 + E[Ω2
t ] +

∫ t

0

E[Ω4
s ] ds

)

,

for a suitable positive function C(t).
In particular, it is

Ωt =

√

2

2 + α
σ(t) Tν(t), (20)

where Tν(t) is, for any t, a random variable having a Student distribution
with ν = − 2

α
− 1 > 0 (real) degrees of freedom. As a consequence,

St = S0 e
µt− 1

2
σ2
S

∫

t

0 (gα(s,Ωs))
2 ds+σS Ωt

= S0 e
µt− σ

2
S

2(1+α)
σ2(t)+

ασ
2
S

(1+α)(2+α)

∫

t

0 σ(s)σ̇(s)T 2
ν (s) ds+σS

√
2

2+α
σ(t) Tν(t). (21)

If σ2(t) = t, we deduce in particular that

St = S0 e

(

µ− σ
2
S

2(1+α)

)

t+
ασ

2
S

2(1+α)(2+α)

∫

t

0
T 2
ν (s) ds+σS

√
2 t

2+α
Tν(t)

. (22)

This formula immediately shows the difference between our t-deformed pric-
ing and the B&S models: the role of the standard normal distribution is
played by the Student distribution with ν = − 2

α
− 1 degrees of freedom,

and the two terms similar to those of the B&S stock price are affected by α.
Furthermore, there is an additional (negative) term related to the history of
T 2
ν (s) up to t, which vanishes as α goes to zero.
Figure 3 shows a box-plot in which 100,000 values of the t-deformed

geometric Brownian motion, simulated using formula (21), are compared with
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those obtained from a geometric Brownian motion. It results that the first
shows a larger dispersion than the latter. This behavior is further confirmed
by fat tails displayed by Tsallis densities (when compared with the B&S
ones) as depicted in Figure 4, where their normalized log-returns, for different
choices of σ(t) and α = −0.2, are compared. In Appendix A, the first and
second moments of the log-return process, used to achieve normalization, are
mathematically derived.
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Figure 3: Boxplot of St in the Tsallis model for different choices of σ2(t) with
α = −0.2, for maturity 0.5 years (left) and 2 years (right). Models are denoted

with numbers (1: B&S, 2: σ2(t) = t, 3: σ2(t) = t
2

2+α , 4: σ2(t) = t
2

2−α ).

The role of the squared volatility in stochastic volatility models is played
here by the process g2α(t,Ωt). Its mean is given by

E [g2α(t,Ωt) ] = 2Γα σ(t)σ̇(t).

Since Ωt =
∫ t

0
gα(s,Ωs) dWs, by assuming the variance of Ωt to be finite,

we in fact have that Γασ
2(t) = E [Ω2

t ] =
∫ t

0
E [g2α(s,Ωs) ] ds. Furthermore,

the variance of g2α(t,Ωt) results to be, up to a constant depending on α,
proportional to (σ(t)σ̇(t))2, i.e. Var(g2α(t,Ωt)) ∝ (σ(t)σ̇(t))2 .
The flexibility in the choice of σ2(t) allows us to reproduce different behaviors
for g2α(t,Ωt) which, in turn, generate different implied volatilities, as we will
see later. If σ2(t) ∝ t then both the mean and the variance of g2α(t,Ωt) are
constant. If σ2(t) ∝ tγ , with γ > 1, then σ(t)σ̇(t) ∝ tγ−1, and therefore both
the mean and the variance of g2α(t,Ωt) tend to 0 as t → 0 and to +∞ as
t → +∞, while the converse is true when σ2(t) ∝ tβ, with 0 < β < 1.
In the sequel, as examples of possible choices for σ2(t), we let σ2(t) ≡ σ2

α(t) =
t, tγ(α), tβ(α), where γ(α) = 2/(2 + α) and β(α) = 2/(2 − α) and α varies
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Figure 4: Tsallis density log-return for maturities 0.5 years (top left) and 2 years
(bottom left) for different choices of σ(t) and α = −0.2. In the right graphs, the
left tails of the respective densities are magnified. Probability densities have been
normalized to have zero mean and unit variance.

in (−2/5, 0) in order to guarantee the finiteness of the mean and variance
of g2α(t,Ωt) (which, in turn, means the finiteness of the second and forth
moments of Ωt).

We recall that, as noted in Remark 1, γ(α) = 2/(2+α) leads to the purely
sub-diffusive FP equation (2). To the best of our knowledge, this choice is
(up to a constant) the only one used in the existing literature related to this
topic.
Applying Ito’s formula to g2α(t,Ωt), we obtain the following dynamics:

dg2α(t,Ωt) = κ(t)
(

θ(t)− g2α(t,Ωt)
)

dt+ 2a(t)b(t) Ωtgα(t,Ωt) dWt, (23)

where

a(t) =
2σ(t)σ̇(t)

1 + α
, b(t) = − α

2σ2(t)
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κ(t) = −
(

ȧ(t)

a(t)
+ a(t)b(t) +

ḃ(t)

b(t)

)

, θ(t) =
−a(t)ḃ(t)

b(t)

κ(t)
.

Since b(t) > 0, and since ḃ(t) = α σ̇(t)
σ3(t)

and a(t) have opposite sign, we deduce

that κ(t)θ(t) > 0. It is worth stressing that Equation (23) is a very general
way to express a mean-reverting variance process with time-dependent long-
term mean, reversion speed and volatility. This result clearly shows that
the deformed Gaussian approach leads to a sensible representation of the
volatility process.

As a peculiar case, if σ2(t) = t, we get

a(t) =
1

1 + α
, b(t) = − α

2t
, κ(t) =

1

(1 + α)Γα t
, θ(t) = Γα,

where

Γα =
2

3α+ 2
= E [g2α(t,Ωt) ],

so that equation (23) boils down to a mean-reverting dynamics with constant
mean and time-decaying speed reversion.

If, instead, σ2(t) = t
2

2+α we obtain

a(t) =
2

(1 + α)(2 + α)
t

−α

2+α , b(t) = −α

2
t

−2
2+α ,

κ(t) =
α2 + 4α+ 2

(1 + α)(2 + α) t
, θ(t) =

3α + 2

α2 + 4α + 2
E [g2α(t,Ωt) ],

where

E [g2α(t,Ωt) ] =
4

(2 + α)(3α+ 2)
t

−α

2+α .

Similarly, if σ2(t) = t
2

2−α , we obtain

a(t) =
2

(1 + α)(2− α)
t

α

2−α , b(t) = −α

2
t

−2
2−α ,

κ(t) =
−α2 + 2α+ 2

(1 + α)(2− α) t
, θ(t) =

3α+ 2

−α2 + 2α+ 2
E [g2α(t,Ωt) ],

where

E [g2α(t,Ωt) ] =
4

(2− α)(3α+ 2)
t

α

2−α .

As can be seen, in all cases the speed reversion κ(t) decays as 1/t, while
θ(t) is proportional to E [g2α(t,Ωt) ].
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6. Option pricing and numerical results

In this section, we start by finding conditions on σ(t) which ensure the
existence of an equivalent martingale measure. We use the standard tool of
Girsanov theorem which we can apply due to the particular shape of gα(t,Ωt).
Let

ut =
µ− r

σSgα(t,Ωt)
, (24)

where r is the risk free rate of return, with 0 < r < µ. Process ut can be seen
as the ‘price-of-risk’ process. It explicitly shows the impact of the choice of
σ(t) in the pricing model. If α → 0 then the B&S case is recovered.
Define the measure Q as

dQ

dP
= exp

(

−
∫ T

0

utdWt −
1

2

∫ T

0

u2
tdt

)

. (25)

The Girsanov Theorem states that WQ
t = Wt +

∫ t

0
usdWs is a Q-Wiener

process if E [dQ
dP

] = 1. A sufficient condition which guarantees the validity of
this equality is the Novikov condition:

E [e
1
2

∫

T

0
u2
t
dt ] < ∞. (26)

Proposition 3. If
∫ T

0

1

σ(t)σ̇(t)
dt < ∞, (27)

the Novikov condition (26) is satisfied for the model introduced by (16), (17).

For the proof see Appendix B.
Let us note that condition (27) is rather mild and allows a vast range of

functions σ(t) to fulfil it.
Under the martingale measure Q, we get

dSt = rStdt+ σSStgα(t,Ωt)dW
Q
t ,

dΩt = −λ dt+ gα(t,Ωt)dW
Q
t ,

where λ = (µ− r)/σS.
The following proposition gives two conditions under which the discounted
asset price is a (true) Q-martingale. One of these conditions ensures the
finiteness of the variance of the log-return process.
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Proposition 4. If condition (27) holds true and if E [Ω4
t ] is finite, the stochas-

tic integral process
∫ t

0

gα(s,Ωs)dW
Q
s (28)

is a (true) Q-martingale.

For the proof see Appendix B.
The aim of the rest of this section is to price a European call option with

exercise date T and strike price K. Since, by Proposition 4, the price process
e−rtSt is a Q-martingale, and since the couple (St,Ωt) is a strong Markov
process, adapted to the filtration Ft of WQ

t , we can apply the martingale
pricing theory to conclude that the call option price can be written as

C(t, St,Ωt) = e−r(T−t)EQ
[

(ST −K)+ |Ft

]

= e−r(T−t) (29)

EQ

[

(

St e
r(T−t)+σSλ(T−t)+σS (ΩT−Ωt)− 1

2
σ2
S

∫

T

t
g2α(s,Ωs) ds −K

)+

|St, Ωt

]

.

Because of the presence of the quadratic variation integral in the exponent,
there is no closed formula for (29). However, to compute the call price
we can use a Monte Carlo simulation method or a finite difference method
to discretize the nonlinear, time-inhomogeneous partial differential equation
associated to (29),

1

2
σ2
Ss

2g2α(t, w)
∂2C

∂s2
+ σSsg

2
α(t, w)

∂2C

∂s∂w
+

1

2
g2α(t, w)

∂2C

∂w2
+ rs

∂C

∂s

−λ
∂C

∂w
− rC +

∂C

∂t
= 0,

with boundary condition C(T, s, w) = (s−K)+.
In Figures 5-7 some volatility surfaces are plotted for σ2(t) = t, σ2(t) =

t2/(2−α) and σ2(t) = t2/(2+α) and different values of α. Volatilities are obtained
from option prices using the standard computation of the implied volatility
in the B&S model through the MATLAB function calcBSImpVol.m. Prices
for European call options are obtained using Monte Carlo simulations with
S0 = 100, σs = 0.3, r = 0.03 and λ = 0. To reduce variance, a control
variate method has been applied choosing as control variate the underlying
asset. We have obtained 100,000 option prices in 106 seconds running a
FORTRAN program on a AMD Opteron Processor 6328, 3.2 Ghz.
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We can notice that the surfaces exhibit a clear volatility smile, which
is more pronounced for shorter maturities and greater values of |α|. This
important feature of our models is not performed, at short maturities, by
diffusion stochastic volatility models, unless they either encompass jumps or
perform a change of time driven by a Lèvy process.

The fact that we get different curves for different choices of σ2(t) pro-
vides an interesting opportunity to use a rich class of volatility surfaces. As
mentioned earlier, the different choices of σ2(t) determine the different be-
haviors of the volatility surfaces for short and long maturities. We recall
that σ2(t) = t (Figure 5) implies that both the mean and the variance of
(gα(t,Ωt))

2 are constant; σ2(t) = t2/(2+α) (Figure 6) implies that both the
mean and the variance of (gα(t,Ωt))

2 tend to 0 as t → 0 and tend to +∞
as t → +∞, while the converse is true when σ2(t) = t2/(2−α) (Figure 7).
This justifies why in Figure 6 the surfaces tend to increase in time, mainly
for larger values of |α|, while the converse is true in Figure 7. In Figure 8

the volatility surfaces are obtained combining σ2(t) = t
2

2−α , for t less than 1,

with σ2(t) = t
2

2+α , for t greater than 1. As we can see, the resultant surfaces
present a smile with respect to both time to maturity and strike variables.

In order to compare our model with the Heston model, another interesting
choice for σ2(t) could be the one that matches E [g2α(t,Ωt) ] with E [vt ], where
vt is the squared volatility in the Heston model. With this choice, we obtain

σ2(t) =
3α + 2

2
θ∗
(

t+
e−k∗t

k∗ − 1

k∗

)

(30)

where k∗ and θ∗ are, respectively, the speed reversion and the long-run mean
of the squared volatility in the Heston model.
In Figure 9, the volatility surface obtained for σ2(t) defined in equation (30)
is compared with the Heston volatility surface. The parameter values con-
sidered for the comparison are the same used in Heston: S0 = 100, r = 0,
ρ = 0, σ = 0.1, and v0 = 0. Moreover, for the Tsallis model we consider
σS = 1 and α = −0.3.

The two volatility surfaces share the same shape in the sense that the
smiles have a very closed behavior. The only minor difference shows up for
very short times to maturity; such gap vanishes for maturities just below one
year.
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Figure 5: Tsallis with σ2(t) = t and different values of α.

7. Concluding remarks

The main aim of this paper is to present a pricing methodology, based on
the Tsallis deformation of the Gaussian distribution, that is able to describe
different types of variance changes of the underlying asset with respect to
time.

Adopting some notions from physics literature into a financial context
has allowed us to obtain, in a Black and Scholes complete market setting, re-
sults comparable with more complex models that encompass various sources
of uncertainty such as stochastic volatility, jump processes or time-changed
Lèvy processes.

The examples we have developed have primarily an illustrative purpose:
finding the appropriate volatility shapes for different financial markets (FX,
commodities and term structure, just to mention a few) is a challenging task
that is left for further research.

A final remark for future research is due: to reproduce skew effects in

17



120

Strike

100

80

α = -0.1

0.5

1

Time to maturity

1.5

0.34

0.35

0.3

0.31

0.32

0.33

2

V
ol

at
ili

ty

120

Strike

100

80

α = -0.2

0.5

1

Time to maturity

1.5

0.32

0.33

0.34

0.35

0.36

0.37

2

V
ol

at
ili

ty

120

Strike

100

80

α = -0.3

0.5

1

Time to maturity

1.5

0.36

0.38

0.4

2

V
ol

at
ili

ty

Figure 6: Tsallis with σ2(t) = t2/(2+α) and different values of α.

the implied volatility, Borland and Bouchaud [14] proposed the following
deformed constant elasticity of variance (CEV) model:

dSt = µSt dt+ σSγ
t dΩt,

with γ a parameter that introduces skew into the distribution of log stock
returns. Alternatively, as in Hobson and Rogers [11] and Vellekoop and
Nieuwenhuis [15], skew effects in the implied volatility could be also obtained
if we consider the initial value Ω0 as a parameter which can range from
negative to positive values. Taking Ω0 = 0, as we have done here, gives
symmetric smile curves. Left or right asymmetries in the volatility surfaces
could be reproduced by taking Ω0 negative or positive. This fact could be
roughly explained by observing that the sign of the instantaneous correlation
between stock log returns and the variance process g2α(t,Ωt), whose dynamics
is given by (23), essentially depends on the sign of Ωt.

For sake of brevity we postpone this analysis to future research.
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Figure 7: Tsallis with σ2(t) = t2/(2−α) and different values of α.

Appendix A. First and second moments of the Tsallis log-return
process ln(St/S0)

In this appendix, we show that if −2/3 < α < 0, the mean of the log-return
process Yt = ln(St/S0) is finite and equals

m(t) = E[Yt] = µt− σ2
S

2 + 3α
σ2(t). (A.1)

Moreover, if −2/9 < α < 0, the second moment of Yt is also finite and equals

E(Y 2
t ) = 2µ

∫ t

0

m(s) ds+
2 σ2

S

2 + 3α
σ2(t)

− σ2
S

1 + α

(
∫ t

0

2σ(s)σ̇(s)m(s) ds− α

∫ t

0

σ̇(s)

σ(s)
v(s) ds

)

, (A.2)
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Figure 8: Tsallis with σ2(t) = t2/(2+α) (for t ≥ 1) combined with σ2(t) = t2/(2−α)

(for t < 1) and different values of α.

where v(t) = E[YtΩ
2
t ], v(0) = 0, satisfies for t > 0

v̇(t) = µΓασ
2(t)− σ2

S

1 + α

(

Γα − α

2
Cα

)

σ3(t)σ̇(t)

+
2

1 + α
σ(t)σ̇(t)m(t)− α

1 + α

σ̇(t)

σ(t)
v(t), (A.3)

with Γα and Cα given by (11) and (13), respectively.

Let us assume that −2/9 < α < 0, which implies that, for n ≤ 4, it is
E(Ω2n

t ) < +∞ and proportional to σ2n(t).
Consider the process

Yt =

∫ t

0

(

µ− 1

2
σ2
Sg

2
α(s,Ωs)

)

ds+ σSΩt,
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Figure 9: Volatility surfaces for the model presented in Section 5 with σ2(t) defined
in (30) and α = −0.3 (left), and for the Heston model (right).

where

g2α (t,Ωt)) =
2σ(t)σ̇(t)

1 + α

(

1− α
Ω2

t

2σ2(t)

)

. (A.4)

Since Ωt is a square-integrable martingale with a Tsallis distribution at each
time t such that E(Ω2

t ) = Γασ
2(t), with Γα = 2/(2 + 3α), we deduce that

E[g2α (t,Ωt))] =
2σ(t)σ̇(t)

1 + α

(

1− α

2
Γα

)

=
4σ(t)σ̇(t)

2 + 3α
(A.5)

and therefore

m(t) = E[Yt] = µt− σ2
S

2(1 + α)

(

1− α

2
Γα

)

σ2(t)

= µt− σ2
S

2 + 3α
σ2(t). (A.6)

We now compute the second moment of Yt. Applying the Ito formula to Y 2
t ,

we obtain

dY 2
t = 2Yt dYt + d < Y >t=

(

2Yt

(

µ− 1

2
σ2
Sg

2
α(t,Ωt)

)

+ σ2
Sg

2
α(t,Ωt)

)

dt

+2σSYt dΩt, (A.7)

where the stochastic integral in (A.7) is a martingale since

E

∫ t

0

Y 2
s g

2
α(s,Ωs) ds < +∞. (A.8)
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Using the definition of Yt and g2α(t,Ωt), we in fact get that

Y 2
s g

2
α(s,Ωs) ≤

C(s)

(

1 + Ω2
s + Ω4

s + Ω6
s +

(
∫ s

0

Ω2
τ dτ

)2

+ Ω2
s

(
∫ s

0

Ω2
τ dτ

)2
)

(A.9)

where, from now on, C(t) denotes different integrable functions whose specific
values are irrelevant. By Hölder and Schwarz inequalities, we deduce that

E[Y 2
s g

2
α(s,Ωs)] ≤ C(s)

(

1 + E[Ω2
s] + E[Ω4

s ] + E[Ω6
s] +

∫ s

0

E[Ω4
τ ] dτ +

(

E[Ω4
s ]
)1/2

(
∫ s

0

E[Ω8
τ ] dτ

)1/2
)

.

Since we have assumed that, for n = 1, 2, 3, 4, E[Ω2n
t ] is finite, and thus

proportional to σ2n(t), (A.8) follows.
Taking the expectation of (A.7), from (A.5) we deduce that

E(Y 2
t ) = 2µ

∫ t

0

m(s) ds+ σ2
S

∫ t

0

E(g2α(s,Ωs)) ds− σ2
S

∫ t

0

E
(

Ysg
2
α(s,Ωs)

)

ds

= 2µ

∫ t

0

m(s) ds+
2 σ2

S

2 + 3α
σ2(t)− σ2

S

∫ t

0

E
(

g2α(s,Ωs)Ys

)

ds. (A.10)

Since

g2α(t,Ωt)Yt =
2σ(t)σ̇(t)

1 + α
Yt −

α

1 + α

σ̇(t)

σ(t)
Ω2

tYt,

we get that

E
(

g2α(t,Ωt)Yt

)

=
2σ(t)σ̇(t)

1 + α
m(t)− α

1 + α

σ̇(t)

σ(t)
E
(

Ω2
tYt

)

. (A.11)

Define v(t) = E (Ω2
tYt). From (A.10) and (A.11), we deduce that

E(Y 2
t ) = 2µ

∫ t

0

m(s) ds+
2 σ2

S

2 + 3α
σ2(t)

− σ2
S

1 + α

(
∫ t

0

2σ(s)σ̇(s)m(s) ds− α

∫ t

0

σ̇(s)

σ(s)
v(s) ds

)

(A.12)
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We are left with the task of computing v(t). Using the Ito formula, we get

d
(

Ω2
tYt

)

= Ω2
t dYt + Yt d (2Ωt dΩt + d < Ω >t) + d < Y,Ω2 >t

=

((

µ− 1

2
σ2
Sg

2
α(t,Ωt)

)

Ω2
t + Ytg

2
α(t,Ωt) + 2σSΩtg

2
α(t,Ωt)

)

dt

+σSΩ
2
t dΩt + 2YtΩt dΩt (A.13)

where the stochastic integrals in (A.13) are martingales since, similarly to
(A.9), one can check that

E[g2α(s,Ωs)Ω
4
s] ≤ C(s)

(

E[Ω4
s] + E[Ω6

s]
)

and

E[Y 2
s g

2
α(s,Ωs)Ω

2
s] ≤ C(s)

(

E[Ω2
s ] + E[Ω4

s] + E[Ω6
s] + E[Ω8

s ]

+
(

E[Ω4
s ]
)1/2

(
∫ s

0

E[Ω8
τ ] dτ

)1/2

+
(

E[Ω8
s]
)1/2

(
∫ s

0

E[Ω8
τ ] dτ

)1/2
)

,

which imply

E

∫ t

0

g2α(s,Ωs)Ω
2
s ds < +∞ and E

∫ t

0

Y 2
s g

2
α(s,Ωs)Ω

2
s ds < +∞. (A.14)

Taking the expectation of (A.13), we deduce that

E
(

Ω2
tYt

)

=

∫ t

0

E

(

Ω2
s

(

µ− 1

2
σ2
Sg

2
α(s,Ωs)

))

ds+

∫ t

0

E
(

g2α(s,Ωs)Ys

)

ds

+2σS

∫ t

0

E
(

g2α(s,Ωs)Ωs

)

ds. (A.15)

Let us now observe that E (g2α(s,Ωs)Ωs) = 0 and

E
(

g2α(t,Ωt)Ω
2
t

)

=
2σ(t)σ̇(t)

1 + α
E

(

Ω2
t −

α

2σ2(t)
Ω4

t

)

=
2σ3(t)σ̇(t)

1 + α

(

Γα − α

2
Cα

)

=
8

(2 + 3α)(2 + 5α)
σ3(t)σ̇(t). (A.16)

From (A.11)-(A.16), we deduce that v(t) solves, for t > 0, the differential
equation

v̇(t) =
2µ

2 + 3α
σ2(t)− 4σ2

S

(2 + 3α)(2 + 5α)
σ3(t)σ̇(t)

+
2

1 + α
σ(t)σ̇(t)m(t)− α

1 + α

σ̇(t)

σ(t)
v(t).
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From (A.1) and (A.2), when σ2(t) = t we obtain

m(t) = C1 t, v(t) = C2 t
2, E[Yt]

2 = C3 t+ C4 t
2,

where

C1 = µ− σ2
S

2(1 + α)

(

1− α

2
Γα

)

C2 =
1

5α + 4

(

2(1 + α)µΓα − σ2
S

(

Γα − α

2
Cα

)

+ 2µ− σ2
S

(1 + α)

(

1− α

2
Γα

)

)

C3 =
σ2
S

1 + α

(

1− α

2
Γα

)

C4 =

(

µ− σ2
S

2(1 + α)

)

C1 +
α

4(1 + α)
σ2
SC2

Recall that, letting α = 0 we obtain the first two moments of the log-return
process in the Black & Scholes model:

m(t) =
(

µ− σ2
S

2

)

t, v(t) =
(

µ− σ2
S

2

)

t2, E[Yt]
2 = σ2

S t+
(

µ− σ2
S

2

)2

t2.

When σ2(t) = Σ2
α t

2
2+α , with Σα > 0 constant, it results that

m(t) = µ t− σ2
S

2(1 + α)

(

1− α

2
Γα

)

Σ2
α t

2
2+α

v(t) = V1 t
4+α

2+α + V2 t
4

2+α

E[Yt]
2 = µ2 t2 +M1 t

4+α

2+α +M2 t
4

2+α +M3 t
2

2+α ,
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where

V1 = µ
(1 + α)(2 + α)

4 + 6α+ α2

(

Γα +
2

(1 + α)(2 + α)

)

Σ2
α

V2 = − 1

4 + 5α

(

Γα − α

2
Cα +

1

1 + α
(1− α

2
Γα)

)

σ2
SΣ

4
α

M1 = − (2 + α)µ

(1 + α)(4 + α)

(

1− α

2
Γα

)

σ2
SΣ

2
α +

αV1

(1 + α)(4 + α)
σ2
S

− 2µ

(1 + α)(4 + α)
σ2
SΣ

2
α

M2 =
1

4(1 + α)2

(

1− α

2
Γα

)

σ4
SΣ

4
α +

αV2

4(1 + α)
σ2
S

M3 =
1

1 + α

(

1− α

2
Γα

)

σ2
SΣ

2
α

Finally, when σ2(t) = Σ2
α t

2
2−α , we get that

m(t) = µ t− σ2
S

2(1 + α)

(

1− α

2
Γα

)

Σ2
α t

2
2−α

v(t) = V1 t
4−α

2−α + V2 t
4

2−α

E[Yt]
2 = µ2 t2 +M1 t

4−α

2−α +M2 t
4

2−α +M3 t
2

2−α ,

where

V1 = µ
(1 + α)(2− α)

4 + 4α− α2

(

Γα +
2

(1 + α)(2− α)

)

Σ2
α

V2 = − 1

4 + 5α

(

Γα − α

2
Cα +

1

1 + α
(1− α

2
Γα)

)

σ2
SΣ

4
α

M1 = − (2− α)µ

(1 + α)(4− α)

(

1− α

2
Γα

)

σ2
SΣ

2
α +

αV1

(1 + α)(4− α)
σ2
S

− 2µ

(1 + α)(4− α)
σ2
SΣ

2
α

M2 =
1

4(1 + α)2

(

1− α

2
Γα

)

σ4
SΣ

4
α +

αV2

4(1 + α)
σ2
S

M3 =
1

1 + α

(

1− α

2
Γα

)

σ2
SΣ

2
α
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Appendix B. Proofs

Proof of Proposition 2. The proof essentially follows a standard procedure,
but with the use of upper bounds that are strictly related to the functions
we are dealing with. We first prove that

|gα(t, x)− gα(t, y)| ≤ C

√

σ̇(t)

σ(t)
|x− y|, (B.1)

where, from now on, C > 0 denotes different constants, possibly depending
on α but not on time and whose specific values are irrelevant. In fact, since

|gα(t, x)− gα(t, y)| = |∂xgα(t, θ) (x− y)|,

for some θ ∈ [min{x, y},max{x, y}], it is sufficient to prove that

|∂xgα(t, θ) | ≤ C

√

σ̇(t)

σ(t)
.

This inequality is satisfied, since

gα(t, x) =

√

2σ(t)σ̇(t)

1 + α

√

1− α
x2

2σ2(t)
,

and

|∂xgα(t, x)| =
√

2σ(t)σ̇(t)

1 + α

−α |x|
2σ2(t)

√

1− α x2

2σ2(t)

≤ C

√

σ̇(t)

σ(t)
.

For m ∈ N, define the sequence of adapted processes

X0
t ≡ 0, Xm+1

t =

∫ t

0

gα(s,X
m
s ) dWs.

Then, ∀ m ∈ N and ∀ 0 ≤ t ≤ T , we get

Em
t = E

[

(

Xm+1
t −Xm

t

)2
]

≤ C

(

1

2

)m

σ2(t). (B.2)

In fact, (B.2) holds for m = 0 since

E0
t = E

[

(

X1
t

)2
]

= E

[
∫ t

0

g2α(s, 0)ds

]

=
σ2(t)

1 + α
.
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Now, assume that (B.2) holds for m − 1; we prove that it also holds for m.
We get

Em
t = E

[

(

Xm+1
t −Xm

t

)2
]

= E

[

(
∫ t

0

(

gα(s,X
m
s )− gα(s,X

m−1
s )

)

dWs

)2
]

= E

[
∫ t

0

(

gα(s,X
m
s )− gα(s,X

m−1
s )

)2
ds

]

≤ C

∫ t

0

σ̇(s)

σ(s)
E

[

(

Xm
t −Xm−1

t

)2
]

ds

≤ C

(

1

2

)m−1 ∫ t

0

σ̇(s)

σ(s)
σ2(s) ds = C

(

1

2

)m

σ2(t),

where the first inequality follows from (B.1) while the second inequality is
due by induction. Thanks to (B.2) and

∑∞
m=0(1/2)

m < ∞, the following
inequalities hold

E
[

(Xm
t )2
]

≤
m−1
∑

k=0

E

[

(

Xk+1
t −Xk

t

)2
]

=
m−1
∑

k=0

Ek
t ≤ C

m−1
∑

k=0

(

1

2

)k

σ2(t)

≤ Cσ2(t) < ∞. (B.3)

For each m ∈ N, define the process

Mm
t = Xm+2

t −Xm+1
t =

∫ t

0

(

gα(s,X
m+1
s )− gα(s,X

m
s )
)

dWs

and denote by < Mm >t its square variation. Process Mm
t is a continuous

true martingale since E [< Mm >T ] = Em+1
T < ∞. Using Doob and Markov

inequalities, we get

E

[

max
t∈[0,T ]

(Mm
t )2
]

≤ 4E[< Mm >]T = Em+1
T ≤ C

(

1

2

)m+1

σ2(T ), (B.4)

P

(

max
t∈[0,T ]

(Mm
t )2 ≥ 2−

m

2

)

≤ C 2
m

2

(

1

2

)m+1

σ2(T ) ≤ C

(

1√
2

)m

σ2(T ).(B.5)

Since
∑∞

m=0

(

1√
2

)m

< ∞, from the Borel-Cantelli lemma we can deduce that

for almost every ω there exists m̄(ω) ∈ N such that for all m ≥ m̄(ω)

max
t∈[0,T ]

Mm
t (ω) = max

t∈[0,T ]
|Xm+2

t (ω)−Xm+1
t (ω)| ≤ 2−

m

4 (B.6)
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and therefore, for any r ∈ N,

max
t∈[0,T ]

|Xm+r
t (ω)−Xm+1

t (ω)| ≤
r
∑

j=2

|Xm+j
t (ω)−Xm+j−1

t (ω)|

≤
r
∑

j=2

2−(m+j−2)/4 = 2−m/4
r
∑

j=0

2−j/4 ≤ C 2−m/4. (B.7)

This shows the existence of the limiting process Xt = limm→∞ Xm
t a.s (X0 =

0 a.s), which is a continuous adapted process such that P
(

∫ T

0
g2α(t, Xt) dt < ∞

)

=

1 and Xt =
∫ t

0
gα(s,Xs) ds a.s. The last two assertions follow from (B.1),

(B.3) and the dominated convergence theorem.

Proof of Proposition 3. It suffices to observe that

ut =
µ− r

σSgα(t,Ωt)
=

µ− r

σS

√

2σ(t)σ̇(t)

√
1 + α

√

φα(t,Ωt)
,

where φα(t, x) = 1 − αx2

2σ2(t)
. Since φα(t, x) is greater than 1, we deduce that

ut ≤ C√
σ(t)σ̇(t)

.

Proof of Proposition 4. It suffices to show that the local Q-martingale (28)
has finite quadratic variation. In fact,

d

dt
EQ [

∫ t

o

g2α(s,Ωs)ds ] = EQ [g2α(t,Ωt) ] ∼ σ(t)σ̇(t)

(

1 +
1

2σ2(t)
EQ [Ω2

t ]

)

.

By Schwarz inequality, we get

EQ [Ω2
t ] = E

[

dQ

dP
Ω2

t

]

≤
(

E

[

(

dQ

dP

)2
])1/2

(

E [Ω4
t ]
)1/2

,

where
(

dQ

dP

)2

= exp

(

−
∫ T

0

2utdWt −
1

2

∫ T

0

(2ut)
2dt

)

exp

(
∫ T

0

u2
tdt

)

.

As already observed in the proof of Proposition 3, it holds 0 ≤ ut ≤ C√
σ(t)σ̇(t)

.

Assuming (27) and using Novikov theorem, we deduce that

E

[

exp

(

−
∫ T

0

2utdWt −
1

2

∫ T

0

(2ut)
2dt

)]

= 1,

28



and therefore

E

[

(

dQ

dP

)2
]

≤ exp

(

C2

∫ T

0

1

σ(t)σ̇(t)
dt

)

≡ C(T ) < +∞.

Since (E [Ω4
t ])

1/2
=

√
Cασ

2(t), we deduce that EQ [g2α(t,Ωt) ] is dominated
(up to a constant, possibly depending on T ) by σ(t)σ̇(t). This concludes the
proof.
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