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Abstract

We study the out-of-equilibrium properties of the antiferromagnetic Hamiltonian Mean-Field model at low

energy. In this regime, the Hamiltonian dynamics exhibits the presence of a long-lived metastable state where

the rotators are gathered in a bicluster. This state is not predicted by equilibrium statistical mechanics in the

microcanonical ensemble. Performing a low kinetic energy approximation, we derive the explicit expression

of the magnetization vector as a function of time. We find that the latter displays coherent oscillations,

and we show numerically that the probability distribution for its phase is bimodal or quadrimodal. We

then look at the individual rotator dynamics as a motion in an external time-dependent potential, given

by the magnetization. This dynamics exhibits two distinct time scales, with the fast one associated to the

oscillations of the global magnetization vector. Performing an average over the fast oscillations, we derive

an expression for the effective force acting on the individual rotator. This force is always bimodal, and

determines a low frequency oscillation of the rotators. Our approach leads to a self-consistent theory linking

the time-dependence of the magnetization to the motion of the rotators, providing a heuristic explanation

for the formation of the bicluster.

1. Introduction

The Hamiltonian Mean Field (HMF) model has raised much attention in the last two decades [1–10].

This simple toy model indeed exhibits a plethora of phenomena going beyond the scope of equilibrium

statistical mechanics, as it is typically the case in long-range interacting systems.
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As an interesting physical interpretation, the HMF model can be seen as the first Fourier mode approximation

of sheet models in one-dimension; the antiferromagnetic HMF model corresponds to a charged sheets model,

while the ferromagnetic HMF model corresponds to a massive sheets model [2, 11, 12].

The ferromagnetic HMF undergoes a second order phase transition in both the canonical and micro-

canonical ensembles [1, 13], while, to the best of our knowledge, there exists no equilibrium phase transition

in the antiferromagnetic HMF. However, both the ferromagnetic and the antiferromagnetic HMF are known

to present a variety of long-lived metastable states, with relaxation times diverging with the size of the

system, thus entailing ergodicity breaking [1, 2, 4–6, 14].

More recently, promising generalizations of the HMF model have been proposed, in which some of these

interesting features can be preserved. Notably, some of the aforementioned long-lived metastable states have

been shown to be robust with respect to the addition of a (small enough) nearest-neighbours coupling to

the model. Phase transition phenomena are still observed in this extended framework [5, 13]. Finite-range

versions of the HMF model have also been considered [15, 16], as well as extensions with higher dimensional

spins [6, 14], and quantum versions [17], still presenting a rich phenomenology, namely the emergence of

non-trivial collective behaviours.

Let us introduce the Hamiltonian of the model. We consider an assembly of N planar classical rotators,

endowed with a kinetic energy, subjected to an infinite-range “antiferromagnetic” coupling. This system can

also be seen as a collisionless plasma in a one-dimensional ring, with an all-to-all repulsive interaction [3].

The Hamiltonian coordinates of the rotators are {θj , pj}. The model can be defined through the Hamiltonian

H =

N∑
i=1

p2
i

2
+ V ({θi}) ,

with V ({θi}) =
1

2N

N∑
i,j=1

cos (θi − θj) =
NM2

2
,

(1)

where M is the magnetization vector per rotator, defined as

M =
1

N

N∑
j=1

cos (θj)

sin (θj)

 . (2)

The equations of motions are

ṗj(t) = Mx sin (θj)−My cos (θj) . (3)

The potential of this Hamiltonian is self-consistent, a feature characteristic of mean-field models: the mag-

netization depends on the single rotator dynamics, which in turn depends on the former.

A homogeneous distribution of the angles of the rotators, implying a vanishing magnetization, is expected

at equilibrium in both the canonical and the microcanonical ensemble. However, numerical studies have

shown that a long-living coherent structure, namely a bicluster, can spontaneously form in the Hamiltonian
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dynamics at low energy [2–4, 7, 8]. This long-lived metastable state consists in the gathering of an extensive

quantity of rotators on two opposite angles, and is quantified by the norm M2 of the vector

M2 =
1

N

N∑
j=1

cos (2θj)

sin (2θj)

 . (4)

The parameter M2 varies from 0 in the homogeneous state, to 1 in a bicluster state with no dispersion of

the rotators [2, 3, 7].

Notably, bicluster states are also characterized by a non-zero magnetization, with M ∼
√
e, where

e = E/N is the total energy density, with E = H({θi(0), pi(0)}). Using the kinetic definition of the tem-

perature T = 〈p2〉, this entails an anomalous energy-temperature relation, with respect to the expected

equilibrium linear relation T = 2e [2, 7].

Remark that this phenomenon is not compatible with linear stability analysis of the Vlasov equation

[1, 3]1, which predicts the homogeneous states to be stable for all energies, for a wide class of initial distri-

butions of momenta.

The class of initial conditions leading to a bicluster is yet not precisely known. Let γ0 = V0/E, with

V0 = V ({θi(0)}). Previous studies [8] have shown that, at a given energy, for initially uniformly random

distributions of angles and momenta (i.e. waterbag distributions, defined later in Sec. 4), the closer we are

to γ0 = 1, the more likely is the formation of the bicluster, and the larger is the stationary value of M2. We

chose to use this ratio as a control parameter for our simulations in section 4.

Nevertheless, it is worth noting that biclusters can also arise from sinusoidal initial distributions of momenta

(i.e. pi(0) ∝ sin (θi(0))), in which case the parameter γ0 becomes irrelevant [8]. In the present work, we will

solely focus on waterbag initial distributions.

Previously, a theory has been devised to explain the formation and stabilization of a bicluster, as the

equilibrium state of an averaged Hamiltonian [3], derived by using a variational method inspired by Ref.

[18]. The authors of Ref. [3], separating fast and slow variables in the Lagrangian, notably predicted the

occurrence of two collective high frequencies ω±, and gave accurate quantitative results.

In the following, we propose a new approach, to get a better understanding of the dynamical mechanism

at the base of the bicluster formation and stabilization. We derive the same high frequencies ω± in section 2,

by directly studying the dynamics of the magnetization vector, which is the driving force of the system (see

1In Ref. [1], linear stability analysis was performed for the ferromagnetic model. Stability in the antiferromagnetic case can
be retrieved by a simple change of sign.
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Eq. (3)). This allows us, in section 3, to rewrite the equations of motions in a non-autonomous form, and

thereby perform an averaging over the fast variables in a very simple fashion. An expression for the effective

force is found, with associated low frequency ω0, and its dependence to initial conditions is discussed.

Section 4 exposes our numerical results, showing excellent agreement with the theory.

In section 5, we discuss our results and develop a heuristic argument to explain the birth and stabilization

of the bicluster states. We conclude by mentioning possible analogies with other models, and proposing

further developments.

2. Dynamics of the total magnetization

We are interested in deriving a dynamical equation for the macroscopic quantity M . We are considering

here the low energy regime, for which biclusters are known to occur. From Eq. (2), we get

d2

dt2
M(t) =

1

N

N∑
j=1

−ṗj sin (θj)− p2
j cos (θj)

ṗj cos (θj)− p2
j sin (θj)

 . (5)

We identify in this expression the correlator 〈p2 cos (θ)〉 ∼ o(MT ) ∼ o(e3/2), that we can neglect in the low

energy regime, since the other term turns out to be of order o(M) ∼ o(e1/2). We are left with

d2

dt2
M(t) ≈ 1

N

N∑
j=1

−ṗj sin (θj)

ṗj cos (θj)

 . (6)

Then, inserting the equations of motion (3), we obtain the eigenproblem

d2

dt2

Mx(t)

My(t)

 ≈
− 1−M(2)

x

2

M(2)
y

2
M(2)

y

2 − 1+M(2)
x

2

Mx(t)

My(t)

 . (7)

The eigenvalues and corresponding eigenvectors result

−ω2
± = −1±M2

2
(8)

M− =

cos (φ2/2)

sin (φ2/2)

 , M+ =

− sin (φ2/2)

cos (φ2/2)

 , (9)

where φ2 is defined as the phase of M2. We hence expect the system to globally rotate with φ2/2, which

already stresses the importance of M2 in the characterization of the dynamics.

Let us emphasize the consistency of this result with that one of Ref. [3], in which the modes ω± were found

to be the eigenvalues of the fast Lagrangian, and where φ2/2 was already recognized as the system’s center

of mass. These frequencies, arising from nonlinear mode interaction, can be seen as a splitting of the single

normal mode ω = 1/
√

2, present in the homogeneous state [8]. This normal mode can also be found by

linear analysis of the Vlasov equation [3].
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Assuming M2 constant, after a global rotation of −φ2/2, we get

M =

M− cos (ω−t+ φ−)

M+ cos (ω+t+ φ+)

 , (10)

where φ± are arbitrary constant phases. It is worth remarking that, in the ferromagnetic case, the eigen-

values read λ± ≈ 1±M2

2 , and under the same low energy hypothesis, M will rather converge to a constant,

following a slow drift motion [2].

(a) (b)

(c) (d)

Figure 1: The dynamics and histogram of φ, the phase of M , measured in a simulation with γ0 = 1, M2 = 0.52 (see Sec. 4,
Fig. 3a). We define a vector v according to Eq. (10). The frequencies ω± are drawn from measurements of M2, the amplitudes
v−,+ respectively defined through max(Mx,y) (after M was rotated of −φ2/2), and we finally rotate v of φ2/2, as suggested
by Eq. (9). We show in Cartesian coordinates the dynamic, measured over the time interval t ∈ [10000, 10100], of M (resp.
v) in Fig. 1a (resp. c). The corresponding distributions P(φ) (resp. P(φv)) are reported in Fig. 1b (resp. d). Histograms are
derived from a sample of values retrieved in the time interval t ∈ [10000, 11000]. We used the time step ∆t = 0.05.

Fig. 1 shows the behaviour of M measured by numerical integration of the full equations of motion (3),

and the one of a vector v defined according to Eq. (10). Namely, v =
(
v− cos (ω−t), v+ cos (ω+t)

)
, where ω±

are computed from the average value of M2 and v± are measured by taking the maximum value of Mx,y,

after a rotation of −φ2/2. Also, we present later, in Fig. 2a the frequency spectrum of the components

Mx, My, derived by a fast Fourier transform, also performed after a rotation of −φ2/2. Better agreement

is found for well-formed biclusters (M2 & 0.1), as we will discuss in section 4. A few other examples are

displayed in Appendix A.

The parametric curves defined by Eq. (10) are named Lissajous curves. Such curves are bounded in the
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(Mx,My)-plane by a rectangle of sides M− and M+, and are known to densely fill its area, provided that

the ratio ω−/ω+ is irrational, condition that is almost always fulfilled. The norm M evidently possesses

four maxima, each located at a fixed angular position. One can see from Eq. (10) that Ṁ approaches 0 as

M approaches (±M−,±M+) (when M is maximal), making these regions favoured in terms of the amount

of time spent there by the system, as illustrated in Fig. 1b.

Note that, when M2 ≈ 0, the curve is an ellipse, hence M exhibits two maxima. This is also the case when

M− � M+ (or M− � M+). The probability density function for M is hence bimodal (at least during a

first transient phase) or quadrimodal, in the considered low energy regime.

This simple derivation already provides us with a heuristic explanation for the occurrence of a bimodal

distribution of the rotators in the antiferromagnetic HMF model. Indeed, as we will show below, if the

rotators are slow enough with respect to ω±, they effectively experience a bimodal potential.

It is fairly obvious from Fig. 1 that, as this regime persists for very long times, it brings on a breaking

of ergodicity. Indeed, the accessible state space is bounded by the Lissajous curve, entailing a probability

density P(φ,M) anomalous with respect to the expected one from equilibrium statistics. In particular,

while the time average of M is null, the one of M is not. These coherent oscillations hence allow for a

non-vanishing (extensive) average potential energy.

3. Time scale separation

We found above an explicit time dependence for the bare potential. By doing this, we also decoupled

it from the generalized coordinates {θj}. This allows us to fully take advantage of the mean-field nature of

the model, hence to actually consider single rotators as uncoupled pendula, evolving under the action of an

external potential driven by the oscillating “magnetic field” M .

We first insert Eq. (10) in Eq.(3), thus

ṗj(t) = εa− cos (ω−t+ φ−) sin (θj)− εa+ cos (ω+t+ φ+) cos (θj) , (11)

with εa± = M±, so that we have a2
+ + a2

− = 1, and ε =
√
M2

+ +M2
− ∼

√
e.

We are now able to perform a simple approximation, related to the ponderomotive effect, well-known in

the area of plasma physics [19]. As the one employed in Ref. [3], it relies on the clear separation of time

scales between fast and slow variables, and is somehow analogous to the method first proposed by Landau

and Lifshitz to solve systems exhibiting two distinct time scales [20]. The prototypical example of such

systems is the Kapitza pendulum [21].

Our use of this approximation method is justified by the consideration that, already in Eq. (11), one can

clearly identify the two time scales of the motion. The first is a fast one, related to the motion of the phase,

which is set by the frequencies ω± ∼ 1. The second is a slow one, and is proportional to the square root of
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the amplitude of the acceleration, giving a time scale of the order
√
ε, which in fact characterizes the motion

of a pendulum at the bottom of the potential.

Let us decompose the variables in a fast and a slow component. We set the magnitude of the fast component

to be o(ε), and introduce a “slow time” τ = εt, associated to the slow oscillations, insuring 〈ṗ2
j 〉 ∼ ε2,

θj(t) = θ0
j (τ, t) + εfj(t) . (12)

The single rotator dynamics thus presents a fast motion of small amplitude, superimposed with a slow

motion of large amplitude.

Expanding Eq. (11) up to first order in εfj , we obtain

ε2
d2

dτ2
θ0
j (τ, t) + ε

d2

dt2
fj(t) =ε

(
a− cos (ω−t+ φ−) sin (θ0

j (τ))− a+ cos (ω+t+ φ+) cos (θ0
j (τ))

)
+ ε2fj(t)

(
a− cos (ω−t+ φ−) cos (θ0

j (τ)) + a+ cos (ω+t+ φ+) sin (θ0
j (τ))

)
.

(13)

By identifying terms order by order, we get the following expression for the fast variables

d2

dt2
fj(t) = a− cos (ω−t+ φ−) sin (θ0

j (τ))− a+ cos (ω+t+ φ+) cos (θ0
j (τ)) , (14)

which we can straightforwardly integrate, since θ0
j (τ) is considered constant on the time scale of fj(t). It

results

fj(t) = − a−
ω2
−

cos (ω−t+ φ−) sin (θ0
j (τ)) +

a+

ω2
+

cos (ω+t+ φ+) cos (θ0
j (τ)) . (15)

Then, by substituting this expression for fj(t) in Eq. (13), we obtain after some manipulations (for conve-

nience, we dropped the time dependence and the constant phases φ±)

d2

dt2
θ0
j =

1

4

[
M2

+

ω2
+

(
1 + cos (2ω+t)

)
−
M2

−
ω2
−

(
1 + cos (2ω−t)

)]
sin (2θ0

j )

+
1

4

[
M+M−

ω2
+

(
1 + cos (2θ0

j )
)
− M+M−

ω2
−

(
1− cos (2θ0

j )
)](

cos ((ω− + ω+)t) + cos ((ω− − ω+)t)
)
.

(16)

If M2 is of the order of ε then (ω+ − ω−) is of the order of ε, a low frequency that cannot be neglected

by averaging over the fast oscillations. Then, our computation holds when M2 � ε, and a priori does not

account for the beginning of the transient. By averaging over the fast oscillations, we get the expression for

the slow variables
d2

dt2
θ0
j ≈

1

4

(M2
+

ω2
+

−
M2

−
ω2
−

)
sin (2θ0

j ) . (17)

Assuming that the prefactor is negative, we can consider a rotator in the bottom of one potential well,

located at θ0
j ≈ kπ, with k ∈ Z, so sin (2θ0

j ) ≈ 2θ0
j − 2kπ. We then have

θ0
j (t) ≈ kπ +Aj cos (ω0t+ φj), with (18)

ω0 =
1√
2

√
M2

−
ω2
−
−
M2

+

ω2
+

. (19)
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ω0 is of the order of M , namely the square of the natural frequency. This emphasizes that the effective

force emerges from the non-linearity, linked to the self-consistency of the magnetization.

The attractive or repulsive nature of this bimodal effective interaction, is related to the sign of the

prefactor in Eq. (17), namely

∆−M2 < 0 , (20)

with ∆ =
M2

+−M2
−

M2
++M2

−
. The effective force is self-consistent, in the sense that its strength is proportional to M2,

which is governed by the force itself. Thus, we are brought to assume that M+, M− and M2 are evolving

during a transient phase in an interdependent fashion, following a dynamics which is determined by the

initial conditions. In particular, we will comment in next section, based on numerical observations, that the

bicluster forms when the initial condition is a waterbag such that γ0 ∼ 1.

This result provides a dynamical explanation for the stabilization of biclusters over very long times.

4. Numerical results

Our simulations were performed at energies ranging from 10−5 to 10−4, with N = 1000. The equations

of motions have been integrated using a fourth-order sympleptic scheme [22]. For most of the figures, we

used a time step ∆t = 0.05, which gives a conservation of the energy up to ∆e ∼ 10−12. On the contrary,

to produce Fig. 5, we used a more efficient time step ∆t = 0.5, yielding ∆e ∼ 10−6. For the purpose of

measuring a low frequency, with an efficient integrating scheme and at these ranges of energy, such a time

step remains of an acceptable precision.

We initially set a water-bag distribution, picking the positions and momenta uniformly at random in a

domain [−π, π] × [−p0, p0]. We used the prescription of Ref. [8] to use γ0 as a control parameter. To do

this, we first find, by iterating multiple times, a distribution of positions giving a potential energy in the

desired range. Then we choose p0 to set T = 〈θ̇j
2
〉 accordingly, and globally shift the momenta to set the

constant of motion 〈pj〉 = 0.

The averages are taken after a transient, typically of the order of 10000 proper times. We have checked

that the averages do not change by increasing the duration of the transient. By looking directly at the time

series, we have also checked that the system has reached a steady state after the transient.

In the literature [2, 3, 7], as well as in our own simulations, the parameter M2 has never been reported

to exceed 0.8.

In Fig. 2 is shown an example of the short term dynamics of M , along with the corresponding Fourier

spectra of its components, performed after a global rotation of −φ2/2. Here, the agreement of experimental

data with Eq. (10) is excellent.

For small M2, the agreement of M with Eq. (10) is not as good. Though collective oscillations still occur,
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(a) Frequency spectrum of Mx and My . (b) Short time phase trajectory of M .

Figure 2: Power spectrum and detail of the trajectory of M , with γ0 = 1, M2 = 0.52, ∆ = −0.09 (see Fig. 3a).

the envelopes M± fluctuate, and the trajectories of the magnetization lose their regularity.

However, we observed the fast collective oscillations to be present from the beginning, regardless of the later

formation of a bicluster (hence of the value of γ0), and before the system has reached a steady state.

The average value ofM = M/
√

2e is related to γ0: a high initial value leads to an accordingly high average

of 〈M〉.

Fig. 3 shows the general dynamics of the system, at different values of the parameters. Here, the existence

of two distinct time scales is manifest: the one associated to the fast oscillation of M , is visibly much smaller

than the one associated to the long-term behaviour of the single rotator dynamics. In this view, it is evident

that the dynamics associated to the slow variables is similar to one of a rotator in a bimodal potential.

Indeed, we can clearly see two angular regions “favoured” by M in terms of the time spent as well as in

magnitude. These are the locations of the two clusters, following as expected the same slow linear drift

as φ2/2. Around these regions some trapped rotators (below the separatrix) slowly oscillate, while some

untrapped ones (above the separatrix) are evolving in an almost ballistic fashion.

Note that well-formed biclusters seem to occur regardless of the value of ∆. Indeed, we were not able to

find a clear relation of the stationary value of ∆ neither with γ0 nor with the stationary value of M2.

Although we have found that the effective force Eq. (17) can become very slightly repulsive when γ0 ≈ 0, it

ends up attractive in the vast majority of cases. Also, ∆ and M2 evolve, at a slow time scale with respect

with ω±, towards values satisfying Eq. (20).

To investigate the spectral properties of the rotator trajectories, we focused on initial conditions leading

to sufficiently well-formed biclusters, i.e. M2 & 0.2 (γ0 > 0.7), and performed the global rotation of −φ2/2

to follow the center of mass.
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(a) γ0 = 1, M2 = 0.52, ∆ = −0.09 (b) γ0 = 1, M2 = 0.51, ∆ = −0.98

(c) γ0 = 0.46, M2 = 0.06, ∆ = −0.94 (d) γ0 = 0.05, M2 = 0.03, ∆ = −0.11

Figure 3: Some rotators trajectories are shown in blue, along with the magnetization in a red gradient; the color gradient
indicates the rescaled norm M = M/

√
2e. Energy was set to e ∼ 10−5.

Figure 4: Power spectrum of a single trapped rotator from
figure 3a.

Figure 5: Comparison of ω0 theoretical and experimental.
We performed Fourier transforms on small random sub-
sets of trapped rotators, at energies ranging from 10−5 to
10−4.

Fig. 4 shows an example of a single rotator Fourier spectrum, trapped in a potential well and oscillating

with a small amplitude. The slow mode ω0 is not present in the spectra of the untrapped rotators, or is

very weak and with a higher discrepancy with Eq. (19).

In the considered regime, the low frequency observed in simulations agrees with our theoretical value,
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up to a multiplicative factor of order 1, namely ωexp0 ≈ 0.94ωth0 , as shown in Fig. 5.

5. Conclusions and perspectives

In the light shed by these results, let us synthesize and propose a scenario accounting for the formation

of biclusters in the antiferromagnetic HMF model, from a waterbag initial distribution.

At low energy, an initial state of small but non-vanishing magnetization generates a collective oscillatory

regime. This is due to the self-consistency of M , which repels all of the rotators, entailing its own motion

towards the opposite angle, in a periodic fashion. The time scale associated to this collective motion is much

smaller than the typical time scale of the individual rotators. We observe a cyclic high frequency transfer of

energy between kinetic and potential, and the system periodically returns close to its initial high value of the

γ = M2/2E ratio. This entails the non-vanishing 〈M〉. If, initially, the temperature is small with respect

to the potential energy, the magnetization vector M follows a Lissajous-type regular curve parametrized

by ω± =
√

1−M2

2 and M±, as described in Eq. (10). The phase of M is rapidly oscillating between two or

four symmetric angles, and we thus have 〈M〉 = 0 and, near one of the maxima, rotators are subjected to

repulsive and attractive forces, alternatively.

In the very beginning, as M2 ≈ 0, ω− ≈ ω+ ≈ 1/
√

2, and M follows an almost elliptic trajectory, and thus

exhibits two maxima in magnitude at two opposite angular positions. The variables ω±, M±, are evolving

concomitantly with M2, at a slow rate. As M2 increases, the unique frequency of M split into two, and the

two maxima (generally) split into four.

When the difference between the two frequencies becomes large enough, a bimodal effective force can be

derived, accounting for the stabilization of the bicluster.

The nature of this effective force is determined by Eq. (20). A full understanding of the conditions

leading to a stable bicluster would thus involve a thorough study of the transient dynamics of the slow

macroscopic variables M2, M+ and M−.

It would also require to explain how other types of initial distributions (in particular, initial sinusoidal

distributions of momenta, with vanishing initial magnetization) relate to the processes described above.

The study of the dynamics of this simple mean-field model provides valuable insights into the mecha-

nisms leading to ergodicity breaking in long-range interacting systems.

We have stressed the importance of the self-consistency of the potential, giving rise to nonlinear effects, solv-

able through multiscale analysis. This self-consistency is characteristic of mean-field models; an interesting

development would hence be to look for the presence of biclusters and collective oscillations in modified

versions of the antiferromagnetic HMF, weakening this self-consistency. This emergent behaviour has been

shown to be preserved in presence of a nearest-neighbour ferromagnetic or antiferromagnetic perturbative

interaction [13]; the phenomenon is hence not specific of pure mean-field models.
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In recent studies, it has been noticed that the HMF model presents strong similarities with systems of cold

atoms in optical cavities [23, 24]. Such systems can be considered as almost isolated, thus opening the

possibility of performing a “real-life experiment” showing the non-trivial ordered phases discussed in this

paper.
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Appendix A. Examples of magnetization dynamics

Below are shown the dynamics of M in Cartesian coordinates, along with the corresponding distributions

P(φ), from different simulations. The histograms are derived from samples of values retrieved in the time

interval t ∈ [10000, 11000], while the dynamics are bounded by the time interval t ∈ [10000, 10100]. We used

the time step ∆t = 0.05.

The upper figures display the dynamics directly retrieved from simulations, while the lower ones shows the

same views of a vector v defined using Eq. (10). The frequencies ω± are drawn from measurements of M2,

v± = max(Mx,y) (with M rotated of −φ2/2), and we finally rotate v of φ2/2, as suggested by Eq. (9).

Visibly, the discrepancy between the real dynamics and our analytical formula is higher for less well-

formed biclusters. This is due to the fact that, as mentioned is section 4, in this regime, the amplitudes M±

are fluctuating, whereas our parameters v± are constant.
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(a) (b)

(c) (d)

Figure A.6: γ0 = 1, M2 = 0.51, ∆ = −0.98, long-time behaviour shown in Fig. 3b

(a) (b)

(c) (d)

Figure A.7: γ0 = 0.46, M2 = 0.06, ∆ = −0.94, long-time behaviour shown in Fig. 3c
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(a) (b)

(c) (d)

Figure A.8: γ0 = 0.05, M2 = 0.03, ∆ = −0.11, long-time behaviour shown in Fig. 3d
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