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Abstract
Motivated by the discovery of superconductivity in KTaO3-based heterostructures, we study a
pairing mechanism based on spin-orbit assisted coupling between the conduction electrons and
the ferroelectric (FE) modes present in the material. We use ab initio frozen-phonon computations
to show a linear-in-momentum Rashba-like coupling with a strong angular dependence in
momentum for the lower j= 3/2 manifold, deviating from the conventional isotropic Rashba
model. This implies the Rashba-like interaction with the polar modes has substantial L= 3 cubic
harmonic corrections, which we quantify for each electronic band. The strong anisotropy of the
Rashba interaction is captured by a microscopic toy model for the t2g electrons. We find its origin
to be the angular dependence in electronic momentum imposed by the kinetic term on the
degenerate j= 3/2 manifold. A comparison between the toy model and ab initio results indicates
that additional symmetry allowed terms beyond odd-parity spin-conserving inter-orbital hopping
processes are needed to describe the Rashba-like polar interaction between the electrons and the
soft FE mode.

1. Introduction

Recently a new family of superconductors has been discovered on the interfaces between KTaO3 (KTO) and
other oxide insulators, as well as on uncapped KTO surfaces doped with ionic gating [1–6]. The observed
superconducting critical temperature Tc of the two-dimensional electron gas is an order of magnitude higher
than the Tc in the closely related SrTiO3 (STO) based heterostructures [7]. Therefore insights into the pairing
mechanism in these materials are of great interest.

Remarkably, the Tc shows a strong sensitivity on the crystallographic orientation of KTO [5]: Tc = 2K at
the (111) interface, Tc =1 K at the (110) interface and no signal of superconductivity at the (001)
interface [4, 5]. It has been proposed [5] that Cooper pairing mediated by the linear coupling to the soft
transverse optical (TO) mode, the so-called ferroelectric (FE) mode, can explain the strong directional
dependence of Tc. The electron–phonon vertex with the soft FE mode was modeled following [8], where a
spin–orbit coupling (SOC) assisted Rashba-like coupling to a polar mode was derived for incipient FE
systems. In fact, like the related material STO, the dielectric constant of KTO grows to extremely large values
at low T [9], staying on the verge of a FE transition, with a concomitant softening of a TO mode [10]. In
STO, the Rashba pairing mechanism has been found to have a BCS coupling constant of the right order of
magnitude to support bulk superconductivity, and develop a dome of Tc vs carrier density with remarkable
experimental agreement [11].

Motivated by these promising results and encouraging implications for the Rashba pairing mechanism,
in this work we present a careful study of the linear coupling between polar modes and the three SOC bands
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of KTO, going beyond the approximate estimates given in [5]. Following the approach we developed in
[8, 11] we perform relevant frozen-phonon ab initio computations in bulk KTO and extract the
odd-in-momentum Rashba-like couplings from the reconstructed electronic band structure. We find that
besides substantial Rashba couplings to relevant polar modes, a minimal phenomenological form of the
interaction goes beyond the isotropic Rashba model for the two lowest electronic bands of the j= 3/2
manifold, and quantify the anisotropy of the coupling. Moreover, both the strength and anisotropy of the
Rashba coupling strongly depend on the particular eigenvector of the polar mode.

We present a microscopic toy model for t2g electrons coupled to a polar displacement via odd-parity spin
conserving inter-orbital hopping processes. The toy model captures many of the frozen-phonon ab initio
features, including the strong anisotropy (isotropy) of the Rashba coupling in the j= 3/2 (j= 1/2)
multiplet. The angular dependence in the coupling arises from an angular dependent breaking of the
degeneracy of the j= 3/2 states by the hopping terms in the Hamiltonian.

On the other hand, the strong sensitivity of the Rashba coupling features on the polar eigenvector found
by ab initio cannot be described by this one-parameter toy model. Considering additional symmetry allowed
terms besides the odd-parity inter-orbital hopping processes would introduce extra parameters in the model,
and may succeed in capturing the polar eigenvector dependent features.

The paper is organized as follows. Section 2 and section 3 introduce the relevant electronic and polar
phonon degrees of freedom in bulk KTO, respectively. Section 4 contains the results on the linear coupling
between the electrons and polar modes: the strong anisotropic (isotropic) Rashba-like interaction inferred
from frozen-phonon computations in the j= 3/2 (j= 1/2) manifold, and a microscopic model that captures
many of the essential features of these ab initio results. Section 5 summarizes the main findings and
highlights relevant open questions.

2. Model parametrization of the DFT electronic structure

The electronic band structure of bulk KTO computed by ab initio is shown in figure 1(a), within the energy
window of the three doubly degenerate conduction bands, which we denote n= 1, n= 2 and n= 3 from
lowest to highest (see also appendix A for computational details).

The low-energy part of the dispersion from ab initio, shown in figure 1(b) by solid lines, can be effectively
described by a tight-binding model of the Ta 5d electrons supplemented with an atomic spin-orbit
interaction. That is, a model including the yz, zx and xy orbitals within the t2g manifold, referred to as
µ= x,y, and z respectively in this work. The Hamiltonian is given by:

H=H0 +HSOC =
∑
nk

ψ†
n(k)En(k)σ0ψn(k), (1)

H0 =
∑
ksµν

tµν(k)c
†
µs(k)cνs(k), (2)

HSOC = ξ
∑

kµsνs ′l

iϵµνlσkl,ss ′c
†
µ,s(k)cν,s ′(k). (3)

It includes a hopping termH0 between orbitals µ and ν with spin- 12 (s=±) up to next-nearest
neighbors,

tµµ(k) =−2t1 (coskα + coskβ)− 2t2 coskµ

− 4t3 coskα coskβ +(4t1 + 2t2 + 4t3), (4)

tµν(k) =−4t4 sinkµ sinkν , (5)

with hopping parameters t1 = 526 meV, t2 = 33 meV, t3 = 214 meV and t4 = 30 meV. In equation (4)
α ̸= β ̸= µ, while in equation (5), µ ̸= ν. The parameter ξ is the effective atomic SOC. These parameters
were chosen to fit the low-energy dispersion obtained by DFT along the high-symmetry lines. We find that a
local spin-orbit interaction (i.e. a constant ξ) and hoppings up to second neighbors are enough to fit the
bands with reasonable accuracy (figure 1(b)).

TheHSOC term in equation (1) describes the atomic SOC of the t2g manifold with the conventional
effective orbital moment l= 1 [12], the Levi-Civita symbol ϵµνl and Pauli matrix σ. At the zone-center,
where the hopping termH0 is zero, the mixing of the orbital and spin degrees of freedom ofHSOC breaks the
sixfold degeneracy of the t2g manifold. This results in the following set of eigenstates at the zone-center,
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Figure 1. (a) Ab initio electronic structure of the three conduction bands in bulk KTO alongM—Γ—X. (b) Zoom into the
low-energy dispersion, with the 3ξ = 0.4 eV SOC gap between lower quartet j= 3/2 (equations (6) and (7)) and upper doublet
j= 1/2 (equation (8)). Full lines are ab initio results and dashed lines the tight-binding model equation (1). a= 3.99 Å is the
cubic lattice constant and the energy in the y-axis is measured from the bottom of the lowest conduction band. Orbital angular
momentum ⟨l⟩ of the electronic bands in the tight-binding model along the same k path in the presence of an infinitesimal

polarization (see text) for (c) l⊥ k̂ and (d) l ∥ k̂. The polar axis n̂p ∥ [001] is perpendicular to both l and k̂ and ⟨l[001]⟩= 0.

c†3
2 ,±

3
2
=∓ 1√

2

(
c†x,± ± ic†y,±

)
, (6)

c†3
2 ,±

1
2
=

1√
6

(
∓c†x,∓ − ic†y,∓ + 2c†z,±

)
, (7)

c†1
2 ,±

1
2
=

1√
3

(
−c†x,∓ ∓ ic†y,∓ ∓ c†z,±

)
, (8)

where the j= 1/2 doublet is pushed 3ξ = 400 meV up in energy with respect to the j= 3/2 quartet. This gap
can be seen in figure 1(b), and, as previously pointed out [13], it is an order of magnitude larger than the
28 meV SOC gap of cubic STO, a close analog material with conduction bands formed of 3 d electrons of the
Ti atoms instead.

For a general momentum k, where bothH0 andHSOC are finite, the electronic spinor which diagonalizes
the Hamiltonian equation (1), ψ†

n(k) = (c†n+(k), c
†
n−(k)) with band index n= 1,2,3, develops three doubly

degenerate dispersions En(k) in pseudospin (described by the 2× 2 identity matrix σ0). The resulting band
structure of this tight-binding+SOC model with the parameters t1, t2, t3, t4 and ξ quoted above is shown in
figure 1(b) (dashed lines), showing an excellent agreement with the ab initio computation (full lines).

The eigenstates ofH0 (equation (2)) are degenerate at Γ. This degeneracy is removed by the SOC which
favors eigenstates with finite orbital angular momentum [equations (6)–(8)]. Their residual degeneracy,
however, will be affected at finite k by the effective mass mismatch of the different bands described byH0.
For instance, the additional degeneracy of the j= 3/2 multiplet at the zone-center is broken by the cubic
hopping termH0 in a k̂-dependent manner, which can be shown applying degenerate perturbation theory.
Here, k̂ is the unitary vector of k. We anticipate that how the degeneracy of the manifold is broken byH0 will
become important when discussing the origin of the anisotropic (isotropic) interaction of the j= 3/2
(j= 1/2) manifold with polar modes in section 4.2. The states in equations (6)–(8) have a finite orbital
angular momentum along z. In cubic symmetry at Γ this is completely arbitrary as one can choose any
direction as the quantization axis. For finite momentum, the effect ofH0 partially removes this freedom.
Still, even when the degeneracy is reduced to twofold (Kramers degeneracy) there is some degree of
arbitrariness on the matrix elements of the angular momentum, due to the arbitrary choice of pseudospin
basis. One can remove this arbitrariness by adding an infinitesimal polarization (figures 1(c) and (d)). These
results will become useful later to understand the dependence of the Rashba-like coupling on the electronic
momentum, both in magnitude and direction (section 4.2).

An analogous tight-binding model for cubic STO [8] found very similar hopping parameters ti
(equations (4) and (5)) but, in line with the much smaller SOC gap in that material, a proportionally smaller
SOC parameter: ξKTO = 14.5ξSTO. This will have important effects for the momentum dependence of the
linear polar coupling and the validity of the conventional linear-in-k Rashba regime, as we will explain in
section 4.2.
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3. Polar soft mode in KTO

The atomic displacements of the zone-center polar soft mode of KTO can be given in terms of a complete set
of symmetry coordinates for the T1u irrep of Oh. A suitable set of coordinates apt to describe the eigenvectors
of polar normal modes follows from cubic perovskites [14]. For a generic polar axis n̂p three S̄i symmetrized
modes are defined: ‘Slater’, with a vibration of the Ta against the oxygen cage (i= 1), the vibration of the
potassium out of phase with a rigid TaO3 cage (i= 2) and the deformation of the oxygen cage (i= 3). Then
an arbitrary polar distortion Ū along that polar axis can be decomposed into the three symmetrized polar
modes Ū= n̂p

∑
i uiS̄i. Unlike lower symmetry STO [8], all displacements are in the same direction of the

polar axis. Here, ui describes the amplitude of symmetrized mode i and S̄i defines the symmetrized mode in
terms of normalized atomic displacements (sK, sTa, sOx , sOy , sOz),

S̄1 =
1

1+κ1
(0,−κ1,1,1,1), (9)

S̄2 =
1

1+κ2
(−κ2,1,1,1,1), (10)

S̄3 =
2

3

(
0,0,−1

2
,−1

2
,1

)
, (11)

where the coefficients κ1 =
3mO

mTa and κ2 =
3mO+mTa

mK ensures that the center of mass is not displaced for any of
the S̄i modes. That is, κ1 and κ2 assures the condition

∑
lm

lrl = 0 to be fulfilled, the sum running over all the
l atoms having atomic massml and displacement rl = uisl in the unit cell for each of the S̄i modes. The
normalization of S̄i modes in equations (9)–(11) are set so that ui is the relative displacement of the two
bodies in the mode. Hence, when deriving the electron–phonon Hamiltonian in section 4.3, the two-body
problem will be reduced to a one body problem with a reduced mass. For instance, the relative atomic
displacement u1 between Ta and the O cage in the S̄1 mode is set to be rO − rTi = u1(sO1 − sTi1 ) = u1. Similarly,
u2 (u3) is the relative displacement between K (Oz) and the Ta-O cage (Ox, Oy) in mode S̄2 (S̄3). The bar
symbol indicates a vector spanned by the atoms of the unit cell (as in S̄i), whereas the bold notation (as in n̂p)
refers to the Cartesian coordinates of the atomic displacements.

In this work, we will explore distortions of the cubic structure with polar axis û along the [001] direction
for the S̄i modes. While the soft TO mode in bulk KTO is in general a linear combination of all three S̄i
modes (9)–(11), according to neutron scattering and hyper-Raman experiments the S̄1 mode has the
dominant contribution [10, 15]. Moreover, since we are interested in the coupling of the electronic bands to
the polar modes to linear order, we consider only displacements small enough to stay in the linear regime
near the Γ point (for details see appendix B).

4. Linear polar coupling

4.1. Anisotropic Rashba coupling fromDFT
The linear coupling between a polar mode ui(q) = ui(q)n̂p(q) described in section 3 and the SOC electrons
in equation (1) takes the following form:

Hu =
∑
nkq,S̄i

ψ†
n

(
k+

q

2

)
ΛS̄i

n (k,q)ψn

(
k− q

2

)
, (12)

with the coupling 2× 2 matrixΛS̄i
n (k,q) in pseudospin space for a mode S̄i. Note that we are only

considering intra-band coupling for each electronic band n, and we are ignoring inter-band processes in this
work for simplicity. We start with the polar coupling matrix to lowest order in electronic momentum k
allowed by symmetry in a cubic point group [16–18],

ΛS̄i
n (k,q) = τ S̄in kak̂×σ · ui(q), (13)

linear in both k and ui(q), with the bare coupling constant τ S̄in for each electronic n band with a polar mode
S̄i (equations (9)–(11)). We discuss briefly the symmetries involved which will be useful below to generalize
to higher order. Because we consider T1u polar phonons ui(q), the electronic part of equation (13) involving
momentum and pseudospin has to transform also as T1u, and be time reversal symmetric. The lowest order
term, L= 1, in the Lth multipole expansion is k̂×σ (k̂ and σ transform as T1u and T1g, respectively) [19].

4
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Figure 2. Electronic band split |δEn(k,ui(q= 0)n̂p)| in the presence of a frozen polar mode with n̂p ∥ [001], normalized by twice
its amplitude 2ui for modes (a) S̄1, (b) S̄2 and (c) S̄3 computed by ab initio (dashed lines) and (d) computed by microscopic toy
model equation (23) (dashed lines) for a generic polar distortion belonging to the T1u irrep. Full lines show the k-linear Rashba
split in (a)–(c) equations (19) and (20) and (d) equations (24)–(26) up to ka

π
= 0.3. Each vertical panel corresponds to electronic

band n= 1 (blue), n= 2 (red) and n= 3 (green).

Equation (13) couples the polar distortion ui(q) to the pseudospin σ of the electronic band n in a
k-linear form reminiscent of the Rashba interaction appearing in polar structures. The main difference is that
here the structure is non-polar and the polarization, ui(q), is a dynamical field.

We can characterize the coupling τ S̄in by the effect that a q= 0 out-of-equilibrium ui produces on the
electronic structure. In such a ‘frozen phonon’ scheme a characteristic linear-in-k electronic band splitting is
induced in the pseudospin sector, En,+(k)− En,−(k) = δEn(k) where± refer to the pseudospin quantum
number along the quantization axis defined by the n̂p × k̂ direction. The splitting reads,

δEn(k,ui(0)) = 2τ S̄in kaui(0)|n̂p × k̂|. (14)

This band split is maximum (zero) when the electronic momentum k is perpendicular (parallel) to the
polar axis n̂p of the mode. Equation (14) is also isotropic along the azimuthal angle of the polar axis n̂p, i.e. it
has axial symmetry around n̂p.

Following [8, 11] we will now use the electronic band split computed from frozen-phonon ab initio to
extract the Rashba-like couplings τ n of the three electronic bands of KTO (figure 1(b)). For a mode with the
polar axis along n̂p ∥ [001] the electronic split in equation (14) allowed by symmetry becomes:

δEn(k,uin̂p)

2ui
= kaτ S̄in | sinθ|, (15)

where we have introduced the polar angle θ of the momentum direction kmeasured from the polar axis
n̂p ∥ [001]. The axial symmetry of the split in the perpendicular k direction (θ = π

2 ) is shown in figure 3(d),
i.e. the conventional circular Rashba field.

The reconstructed electronic band structure of bulk KTO in the presence of a frozen phonon ui(q= 0)
with polar axis along n̂p ∥ [001] was then computed by DFT for the three relevant S̄i modes presented in
section 3 (equations (9)–(11)). The resulting electronic band splitting is shown in figures 2(a)–(c) for each
band along two electronic momentum directions perpendicular to the polar axis n̂p, k̂ ∥ [110] and k̂ ∥ [100].
As expected, the band-split grows in a linear-in-k conventional Rashba fashion for all bands and modes.

In principle, according to the isotropic form of equation (15), fitting the linear-in-k regime along any
given momentum in the kxky-plane (θ = π/2) should give the same coupling τ n (see also figure 3(d)). In

other words, the linear-in-k slope should not depend on momentum direction k̂. However, by looking at
figures 2(a)–(c), only the split of the highest band n= 3 of the j= 1/2 doublet (green data) is well described
by this isotropic form, and hence by the minimal polar interaction given by equation (13). The lowest two
bands n= 1 (blue) and n= 2 (red) of the j= 3/2 multiplet on the contrary, show a large band split
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anisotropy manifested by the very different slopes displayed along k̂ ∥ [110] and k̂ ∥ [100] (also listed in
table B1), and hence not captured by the isotropic expression in equation (13). In addition, the split
anisotropy strongly depends on the polar mode S̄i for both n= 1 and n= 2 electronic bands.

The frozen-phonon DFT results suggest that one needs to go beyond the conventional isotropic Rashba
form of the polar interaction equation (13) for the lowest two bands n= 1 and n= 2 of KTO. We thus allow
for angular corrections of the electronic momentum k̂ in the interaction in the presence of a cubic crystal
field,

ΛS̄i
n (k,q) = kaui(q)

(
τ S̄in,1k̂+ τ S̄in,3K3(k̂)

)
×σ · n̂p(q), (16)

K3(k̂) =
(
k̂x
(
2k̂2x − 3k̂2y − 3k̂2z

)
, k̂y
(
2k̂2y − 3k̂2z − 3k̂2x

)
, k̂z
(
2k̂2z − 3k̂2x − 3k̂2y

))
, (17)

by including the contribution of the next allowed order cubic harmonicK3(k̂) (with L= 3) of the T1u

irrep [20]. A non-zero τ S̄in,3 takes the angular dependence of the polar interaction in equation (16) beyond the
standard L= 1 order assumed in equation (13). Note that we are still keeping the linear order for the
modulus of the momentum k and polar displacement ui in the interaction (in agreement with the frozen
phonon results in figure 2).

The expression for the new electronic band split δEn(k,ui) in the presence of a polar displacement
incorporates now the cubic angular corrections of the interaction. As we did above, we set the polar axis
along n̂p ∥ [001] and obtain the following expression for the band split in the k-plane perpendicular to n̂p:

δEn(k(cosφ, sinφ,0),ui[001])

2kaui
= τ S̄in,1

√√√√1+
τ S̄in,3

τ S̄in,1
(a0 + b0 cos4φ), (18)

with coefficients a0 =
3
2 +

17
8

τ
S̄i
n,3

τ
S̄i
n,1

and b0 =
5
8

(
4+ 3

τ
S̄i
n,3

τ
S̄i
n,1

)
. The band split in equation (18) has now two

extrema along the k̂ ∥ [100] and k̂ ∥ [110] directions:

δEn(φ= 0)

2kaui
= τ S̄in,1 + 2τ S̄in,3 (19)

δEn(φ= π/4)

2kaui
= τ S̄in,1 −

1

2
τ S̄in,3. (20)

That is, the band split is now anisotropic in the k̂xk̂y-plane for a finite τ
S̄i
n,3, the axial symmetry broken.

Indeed, equation (18) manifests the cubic angular correction expected from an object belonging
to the A1g irrep, i.e. FA1g(θ,φ)≈ c0 + c4K4(θ,φ) with the L= 4 cubic harmonic taking the form
K4(θ = π/2,φ) = 1+ 5

3 cos4φ in the equatorial plane.
Using the expressions equations (19) and (20) to fit the ab initio frozen-phonon results of

figures 2(a)–(c), we obtain the Rashba couplings τ S̄in,1 and τ
S̄i
n,3. These in turn describe the minimal

Rashba-like polar interaction equation (16) for the three electronic bands with each polar mode S̄i. We list
the estimated couplings in table 1, and show the resulting electronic band split for each of the three S̄i modes
in figures 3(a)–(c). Comparing these results to the isotropic form in figure 3(d), we conclude that only the
n= 3 band (green line) can be approximated by the simple isotropic interaction in equation (13). The band
split of the lowest two bands n= 1 and n= 2 shows a pronounced anisotropy (blue and red curves); hence a
minimal Rashba-like interaction which includes the L= 3 harmonic correction in equation (16) is more
appropriate for the bands stemming from the j= 3/2 multiplet.

4.2. Origin of anisotropic Rashba from amicroscopic toy model
We now illustrate how the anisotropy of the Rashba split in the lower j= 3/2 multiplet naturally emerges
when considering microscopic processes induced by a polar displacement [8, 11, 22–26] and applying
degenerate perturbation theory for the hopping term equation (2).

In order to understand the origin of the band splittings in frozen phonon computations we consider a
uniform polar distortion (q= 0) along n̂p ∥ [001] with amplitude u. This leads to odd-in-k spin-conserving
inter-orbital hopping channels [11] forbidden in the non-interacting Hamiltonian of the t2g manifold
equation (1), but allowed in the presence of a polar displacement. These induced inter-orbital processes have
been found very relevant in STO-based heterostructures [23, 24] and tetragonal STO [11]. In order to

6
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Figure 3. Polarplot of the electronic band split |δEn(k,ui)|
2kaui

induced by a polar mode with amplitude ui and polar axis n̂p ∥ [001] in

the perpendicular momentum plane k̂= (cosφ, sinφ,0). The y-axis ticks indicate the value of the largest split (left, meVÅ−1)
and the corresponding electron–phonon matrix element gTOn (k)/ka (right, meV). (a)–(c) Anisotropic Rashba including L= 3

cubic corrections (equation (18)), with τ S̄i
1,n, τ

S̄i
3,n obtained from linear fits to frozen-phonon computations in KTO (figure 2(a))

for a mode (a) S̄1 (Slater), (b) S̄2 and (c) S̄3. The split of each electronic band is represented by the same color scheme: n= 1

(blue) n= 2 (red) and n= 3 (green). (d) Conventional isotropic Rashba (equation (15)) with a coupling τ S̄i
n . (e) Microscopic toy

model equation (23) with induced inter-orbital hopping amplitude ∂t
∂u

at ka
π
= 0.01. (f) Same as (e) but with additional term in

equation (27) which breaks the degeneracy of j= 3/2 multiplet.

Table 1. Rashba couplings of the cubic expansion τ S̄i
n,1 and τ S̄i

n,3 appearing in the polar interaction equation (16). Obtained from

linear-in-k fits to S̄i frozen-phonon ab initio computations shown in figures 2(a)–(c), in meVÅ−1. The corresponding electron–phonon

matrix-elements gS̄in,1 and gS̄in,3 (in meV) in equation (34), assuming a frequency ωTO = 2.5 meV of the soft FE mode [21] are also
estimated.

S̄1 S̄2 S̄3
n= 1 n= 2 n= 3 n= 1 n= 2 n= 3 n= 1 n= 2 n= 3

|τ S̄i
n,1| 815 496 478 61 59 125 109 227 196

τ
S̄i
n,3

τ
S̄i
n,1

−0.31 0.55 −0.008 0.40 −0.31 −0.016 0.19 −0.29 −0.01

|gS̄in,1|
ka 121 74 71 10 9 20 31 64 55

g
S̄i
n,3

g
S̄i
n,1

−0.31 0.55 −0.008 0.40 −0.31 −0.016 0.19 −0.29 −0.01

understand their role here we consider a toy model, restricting to spin conserving processes. The resulting
microscopic polar Hamiltonian in the t2g manifold to linear order in the polar displacement reads,

Hmic
u =

∑
k

∑
µ=x,y

ψ†
µ(k)tµz(k,0)σ0ψz(k)+ h.c. (21)

tµz(k,0) = 2i
∂t

∂u
u sin(kµa), (22)

in terms of the spinor of the t2g orbitals ψ†
µ = (c†µ+, c

†
µ−), inter-orbitally connected by an induced hopping

amplitude ∂t
∂u along bonds perpendicular to the polar axis [001]. Together with the non-interacting
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Hamiltonian for the t2g sector equation (1) we obtain the following toy model which now includes the
interaction of the t2g electrons with the polar displacement through equation (21),

H=H0 +HSOC +Hmic
u . (23)

The resulting electronic band split for each band in the k̂ plane perpendicular to the polar axis for a finite
hopping amplitude ∂t

∂u is shown in figure 3(e). As seen, this toy model already reproduces some characteristics
of the DFT computations and their parametrization by the phenomenological Rashba form equation (16):
strongly anisotropic split for the lower bands n= 1 and n= 2 with a relative angular shift of π/4, and an
isotropic split for the upper band n= 3. The agreement is particularly good for the S̄2 mode (figure 3(b)) and
qualitatively correct for the S̄3 (figure 3(c)). In the case of the Slater S̄1 mode, the figure is rotated by π/4.
Moreover, the relative coupling strength of the second band with respect to the other two bands is different
for modes S̄2 (smallest coupling) and S̄3 (largest coupling) as seen by comparing the red curve in figures 3(b)
and (c). These polar eigenvector dependent features cannot be captured by the toy model equation (21).
Indeed, having only one induced hopping parameter, it cannot distinguish among different phonon modes
except for an overall mode-dependent factor. Moreover, the relative strength of the interactions is fixed. For
example, the maximum of the Rashba coupling of the n= 2 band is close to that of the other two bands (see
figure 3(e)). Certainly more parameters should be considered to describe the full mode dependence, but
some conclusions about how the anisotropy arises can already be drawn by studying the present toy model.

Applying perturbation theory on the spin-orbit termHSOC (equation (3)) with the hopping termH0

(equation (2)) as a perturbation along a particular momentum direction k̂, we obtain a k̂-dependent basis
for the j= 3/2 multiplet, and an isotropic basis for the j= 1/2 doublet. Projecting then the polar term
equation (21) into the perturbative basis we recover a Rashba-like interaction term equation (12). Because
the basis withH0 as a perturbation is k̂-dependent for the j= 3/2 multiplet, so is the resulting Rashba-like
interaction, and the induced band split in figure 3(e) (blue and red curves). On the contrary, the band split of
the j= 1/2 doublet remains isotropic, like in the conventional Rashba model (equation (14)). The
k̂-dependence of the perturbative basis explains why there is a strong (weak) angular correction of the L= 3
cubic harmonic for the bands stemming from the j= 3/2 (j= 1/2) multiplet.

From the perturbation analysis, we obtain the following expressions for the Rashba split given by the
microscopic model equation (23) at linear order in k along two different momenta directions k̂ ∥ [100] and
k̂ ∥ [110] for the three electronic bands:

δE1(k[100],u)

2kau
=

4

3

∂t

∂u
;

δE1(k[110],u)

2kau
=

2

3

∂t

∂u

(
1− δ− 12t4√

δ2 + 48t24

)
t4=0−−→ 0, (24)

δE2(k[100],u)

2kau
= 0;

δE2(k[110],u)

2kau
=

2

3

∂t

∂u

(
1+

δ− 12t4√
δ2 + 48t24

)
t4=0−−→ 4

3

∂t

∂u
, (25)

δE3(k[100],u)

2kau
=

4

3

∂t

∂u
;

δE3(k[110],u)

2kau
=

4

3

∂t

∂u
. (26)

Here we have introduced the hopping parameter δ = t1 + 2t3 − t2 appearing in the eigenstates along
k̂ ∥ [110]. It is obvious from equations (24) and (25) that the two lower bands acquire k̂-dependent splits
with different values along k̂ ∥ [100] and k̂ ∥ [110]. The upper n= 3 band (equation (26)), on the contrary,
remains isotropic, in a conventional Rashba form. One can check that the perturbative expressions
equations (24)–(26) reproduce the numerical result in figure 3(e) in the appropriate directions. Note that the
band split of n= 1 and n= 2 is reduced to simple identical expressions with a relative π/4 rotation, when
taking the even-parity inter-orbital hopping term t4 in equation (5) to zero.

This comparison between the ab initio and the toy model band splitting strongly suggests that different
microscopic processes with distinct amplitudes are activated for each of the S̄i polar modes, and one needs to
go beyond the spin-conserving inter-orbital odd-in-k hopping processes we considered here (equation (21)).
That is, include additional symmetry allowed terms within the t2g manifold with effects such as orbital
polarization, spin-flip hopping channels and virtual processes to the eg manifold in the minimal polar
Hamiltonian equation (21), in particular for the (experimentally relevant) Slater mode S̄1. These additional
terms should allow one to understand the relevant processes that are needed to reproduce the obtained polar
mode dependent ab initio results: modify the relative amplitudes of the split in the different electronic bands
for S̄2 and S̄3, and recover the rotated anisotropy for S̄1.

With strained materials and heterostructures in mind, we note that the anisotropic linear-in-k Rashba
result is fragile around the zone-center towards perturbations that break the degeneracy of the j= 3/2
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manifold at Γ. We illustrate this effect by introducing a new term in equation (23) that shifts the energy of
the z-orbital, and hence breaks the degeneracy of j= 3/2 (equations (6) and (7)):

Htet =∆
∑
µs

δµ,zc
†
µscµs. (27)

This term can be used to describe effects such as a tetragonal crystal field in the bulk or differential
confinement effects in heterostructures [23, 24]. It is also allowed in the presence of a polar distortion along
[001] like the one we have considered in this work, but it enters as a quadratic coupling∆∝ u2. Figure 3(f)
shows the electronic band split of equation (23) at ka

π = 0.01 with the additional term (27) and symmetry
breaking parameter∆=∆SOC/200= 2 meV, a very small fraction of the SOC gap∆SOC. As seen, the
coupling of the lowest band n= 1 (blue line) has been significantly reduced, and the second band n= 2 has
lost most of its anisotropy, approaching the conventional isotropic Rashba model. The effect is large at small
momenta, when the splitting of bands in the absence of SOC is comparable to or smaller than∆, and fades
away otherwise.

This result is in agreement with a recent study in tetragonal STO [8, 11], a system with∆=∆SOC/1.6.
The pseudospin band split computed from analogous frozen-phonon computations was indeed found to be
fairly isotropic for the lowest two bands in the linear-k regime. Our analysis implies one should expect a
similar anisotropic Rashba interaction in the j= 3/2 multiplet of cubic STO.

Equation (16) assumes a conventional Rashba linear-in-k form. As can be seen in the ab initio results of
figures 2(a)–(c), the electronic band split grows linearly with momentum in KTO, but only up to a fraction
of the inverse cubic lattice constant, typically ka∼ 0.6 along the [100] direction. In fact, this deviation from
conventional linear-in-k Rashba is very well captured by the toy microscopic model in equation (23), as can
be inferred from figure 2(d).

In the case of STO, it was explicitly shown in [11] that this effect can be traced back to a competition
between spin–orbit and hopping energies, which leads to a momentum-dependent quenching of the orbital
angular momentum. Here, this scenario applies very well for k ∥ [100] in KTO. Indeed, the j= 3/2 multiplet
at the zone center gets strongly split at finite momentum due to the mass mismatch (figure 1(b)). As a
consequence, the orbital angular momentum gets quenched for some bands as shown in figures 1(c)–(d).
Here, for each Kramers doublet, we choose the basis so that it diagonalizes the perturbation corresponding to
an infinitesimal polarization n̂p along z. Once the basis is determined we compute the expectation value of the
orbital angular momentum ⟨l⟩ of the two degenerate states. One finds that the Rashba coupling (figure 2(d))
scales with the magnitude of the orbital angular momentum projected in the direction perpendicular to np and
k and decreases when this ‘perpendicular’ component of the orbital angular momentum is quenched
(figure 1(c)). This is also valid when comparing different directions. For example, the fact that the
perpendicular orbital angular momentum of n= 3 has the same k→ 0 limit for the two directions in
figure 1(c) (green line) matches the isotropic form of the Rahsba splitting in figure 3(e) and equation (26).

By the same token, an unquenched angular momentum fully parallel to k (as for band n= 2 with
k ∥ [100]) does not produce a Rashba splitting (red lines in figures 1(c)–(d) and 2(d)). In general, the
deviation from the linear-in-k behavior of the Rashba splitting in the toy model is determined by the point at
which the perpendicular component of the angular momentum deviates from constant. In the case of band
n= 1 where the perpendicular angular momentum is constant for k ∥ [110] (blue lines) the deviation from
linearity is due to lattice effects (i.e. sin(kia) in equation (21)).

4.3. Electron-polar-phonon Hamiltonian
In order to derive the electron-polar-phonon Hamiltonian we quantize the atomic displacements in the polar
interaction (16) by decomposing them into a set of normal modes α,

Hu =
1√
N

∑
nkqα

ψ†
n

(
k+

q

2

)
gαn (k,q)ψn

(
k− q

2

)(
âqα + â†−qα

)
, (28)

whereN is the number of unit cells. The electron-polar-phonon coupling function is in turn also a 2× 2
matrix in pseudospin space,

gαn (k,q) = ka

√
ℏ

2muωqα

(
ταn,1k̂+ ταn,3K3(k̂)

)
×σ · n̂αp (q), (29)

and has acquired the cubic structure of the polar interactionΛn(k,q) (equation (16)) with finite ταn,3. Heremu

is the atomic mass constant, and ωqα and n̂αp (q) are the frequency and polar axis of the αmode, respectively.
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In [11] we presented a formalism to obtain the electron–phonon matrix elements in equation (29) for a
general mode α, by decomposing the eigenvector of the αmode into the complete S̄i basis presented in
section 3. The actual eigenvector of the soft FE mode is however hard to determine accurately due to the
anharmonic nature of the system [21]. Both neutron [15] and hyper-Raman [10] experiments indicate that
the soft FE mode is very close to the Slater S̄1 mode at room temperature, but whether this trend is kept when
lowering T is unknown. So as a first step, we evaluate the electron-polar-phonon matrix element by
assuming the polar mode α to be a pure mode: S̄1, S̄2 or S̄3. Then the Rashba couplings in equation (29)

become ταn,j =
√

mu
µS̄i

τ S̄in,j for j= 1,2,3, where we have introduced the reduced mass of each S̄i mode,

µ−1
S̄1

=
(
mTa
)−1

+
(
3mO

)−1
(30)

µ−1
S̄2

=
(
mK
)−1

+
(
mTa + 3mO

)−1
, (31)

µ−1
S̄3

=
(
mO
)−1

+
(
2mO

)−1
, (32)

and the electron-polar-phonon coupling function becomes,

gαn (k,q) = ka

√
ℏ

2µS̄iωqα

(
τ S̄in,1k̂+ τ S̄in,3K3(k̂)

)
×σ · n̂αp (q). (33)

Substituting the experimental zone-center frequency of the soft FE mode at low-T ωqα = ωTO = 2.5

meV [21], we obtain a characteristic zero-point motion length lTO =
√

ℏ
2µS̄i

ωTO
equal to 0.15 Å for the S̄1

mode. Inserting in equation (33) the estimated Rashba couplings τ S̄in,1 and τ
S̄i
n,3 (listed in table 1) we obtain

the following electron-TO-phonon coupling function,

gTOn (k,q) = kalTO
(
τ S̄in,1k̂+ τ S̄in,3K3(k̂)

)
×σ · n̂TOp (q). (34)

The matrix-elements for the three S̄i modes, gS̄in,j = kalTOτ
S̄i
n,j, are listed in table 1, and the corresponding plot

for the S̄i modes polarized along [001] in the perpendicular kxky-plane is shown in figures 3(a)–(c)
(maximum value indicated on the right of the y-axis).

As seen, the coupling to the soft mode is generally weaker in the pure S̄2 and S̄3 modes than in the pure S̄1
mode, i.e. |gS̄1n,j|> |gS̄3n,j|> |gS̄2n,j| for j= 1,3. This implies that starting from a pure S̄1 mode in equation (34)
(as suggested by neutron and hyper-Raman experiments [10, 15]), and then including small to intermediate
contributions to the eigenvector of the soft TO mode from S̄2 and S̄3 modes should not result in substantial
modifications of the estimated electron-TO-phonon matrix element. This is unlike tetragonal STO, where
the enormous Rashba-like coupling to the S̄3 mode had important consequences [11]. In cubic KTO this
mode appears to be less relevant, simplifying the problem of finding the precise form of the eigenvector of
the soft FE mode.

We can now use the estimated electron-phonon coupling function in equation (34) to estimate the
corresponding SC pairing strength. Solving the full anisotropic SC gap equation is beyond the scope of this
article. We obtain instead an approximate estimate of the pairing coupling constant by taking the isotropic

limit of the Slater electron-phonon matrix element gTO

kFa
≈ 100 meV (figure 3(a)) for an isotropic s-wave SC

solution. The BCS pairing coupling constant is λBCS = NFVTO with electronic density of states NF and

effective pairing interaction from the coupling to the TO mode VTO = |gTO|2
ωTO

≈ (4 eV)(kFa)2. The estimated
pairing strength is indeed very close to analogous pairing estimations for STO from a soft Slater mode [8].
This is because the smaller bare Rashba coupling τ S̄1 to the Slater mode in STO is compensated by a softer
mode frequency ωSTO

TO ≈ 0.4ωKTO
TO (both τ S̄1 and ωTO enter quadratically in VTO), giving rise to a similar

Rashba pairing interaction estimate in both materials. We emphasize that while we are not aware of any
experimental reports of SC in doped bulk KTO to date (doping this system is currently difficult from the
synthesis side [27, 28]), our simple estimates suggest this is a promising venue to be explored.

5. Conclusions and outlook

We have studied the Rashba-like coupling between the three spin-orbit electronic bands and polar modes in
cubic bulk KTO. Relevant q= 0 frozen-phonon ab initio computations find a very anisotropic Rashba-like
linear-in-k electronic band reconstruction of the lowest j= 3/2 multiplet, while the reconstruction in the
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highest j= 1/2 doublet is fairly isotropic (see figures 2(a)–(c) and 3(a)–(c)). The anisotropy of the j= 3/2
manifold implies that a minimal interaction describing the linear coupling of the two lowest electronic bands

to a polar mode is given by equation (16), which includes substantial L= 3 cubic harmonic corrections τ S̄in,3
for n= 1,2 (see table 1) beyond the conventional L= 1 isotropic Rashba model equation (13).

The amplitude and structure of the ab initio electronic band splitting shows a pronounced dependence
on the type of frozen phonon, i.e. on the polar eigenvector. While the qualitative split in the electronic bands
is the same for polar modes S̄2 and S̄3 (equations (10) and (11)), the relative amplitudes of the band split is
different in both modes (see figures 3(b) and (c)). Moreover, not only the relative strength of the electronic
bands is different for the Slater mode S̄1 (equation (9)), but the anisotropy of the j= 3/2 multiplet appears
also rotated by π/4 with respect of that in modes S̄2 and S̄3.

In order to understand the origin of the anisotropy in the polar Rashba-like interaction we derived a
tight-binding electronic model (equation (1)) for bulk KTO which excellently captures the low-energy part
of the DFT band structure (figure 1(b)). We construct a toy model which considers in addition to the
tight-binding model, symmetry allowed odd-parity spin-conserving inter-orbital hopping processes to
describe the interaction of the electrons with a polar mode (equation (21)). The anisotropy (isotropy) of the
j= 3/2 (j= 1/2) manifold Rashba-like interaction is reproduced by this toy model (figure 3(e) and
equations (24)–(26)). The origin of the anisotropy can be traced back to the angular k̂-dependent manner in
which the non-interacting electronic hopping term (equation (2)) breaks the degeneracy of the SOC j= 3/2
manifold at k→ 0. It can be also understood by how these symmetry breaking terms affect the orbital
angular momentum.

Within the toy-model, the k̂-dependence in the SOC eigenstates results in a k̂-dependent anisotropic
Rashba coupling to the polar modes for the two lowest bands (equations (24) and (25)) and the orbital
angular momentum (figure 1(c)). The highest j= 1/2 manifold lacks the extra degeneracy and has isotropic
SOC eigenstates and orbital angular momentum and develops a correspondingly isotropic Rashba
interaction to polar modes (equation (26) and green curve in figure 3(e)). Following this argument one
should also expect similar anisotropic Rashba interactions in high-T cubic STO and other systems with
highly-degenerate SOC multiplets, such as half-Heusler materials [29].

While the toy model equation (23) captures the strong anisotropy (isotropy) of the linear-in-k Rashba
interaction of the j= 3/2 (j= 1/2) manifold shown in ab initio computations, it does not capture several of
the polar eigenvector dependent features highlighted above. In particular, the rotated anisotropy of the
j= 3/2 multiplet and the strong renormalization of the relative Rashba couplings of the electronic bands for
the Slater S̄1 mode are missed (compare figures 3(a) and (e)). Since experimentally the eigenvector of the soft
FE mode in bulk KTO seems to be very close to S̄1, a minimal model to describe the coupling to this mode
should include additional processes beyond the odd-parity inter-orbital processes we considered in
equation (21).

Another important feature reproduced rather well by the toy model equation (23) is the k evolution of
the electronic band split found by ab initio (figure 2). That is, the range of validity for the conventional
linear-in-k Rashba interaction equation (16). The deviation from linearity in the toy model originates from a
competition between SOC and hopping energies, which leads to a pronounced dependence of the orbital
angular momentum of the electronic bands on electronic momentum (figure 1(c)). The situation is
particularly simple for momenta along the [100] direction where, at high-momenta, the kinetic terms start
to dominate and the spin-orbit assisted Rashba interaction is cut-off and dies out.

KTO has a SOC interaction which is an order of magnitude larger than in STO [13]. Naively one would
expect that this larger interaction should manifest in the electron-polar mode coupling strength. However,
similar to STO, due to the orbital degeneracy of the electronic bands without SOC at Γ (equation (2)), total
angular momentum eigenstates can be constructed which diagonalize the SOC interaction independently of
its strength. As a consequence the linear-in-k Rashba splittings and corresponding matrix elements are
independent of the strength of SOC (c.f. equations (24)–(26)). The larger SOC in KTO manifests in the
range of k in which a significant Rashba coupling (equation (12)) is found, before the hopping terms cut-off
the interaction (the hopping energies ti and band mismatches are very similar in STO and KTO). Indeed, for
STO along the [110] direction the maximum Rashba matrix element is found for ka∼ 0.4 [11]. For KTO this
deviation shifts to much larger momentum values where lattice effects enter into play (c.f. figure 2(a) and
equation (21)). This suggests that the Rashba pairing mechanism in KTO may support superconductivity at
a larger bulk doping than in STO and is an encouragement for high doping attempts. On the other hand, as
doping increases other effects such as screening, the hardening of the TO mode and the softening of the LO
mode may become important. More experimental and theoretical work is needed to address these issues.

We have also derived the electron-polar-phonon coupling function and estimated the corresponding
matrix-elements for the three S̄i polar modes. The strong Rashba coupling anisotropy in the j= 3/2 inferred
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from ab initio is of course inherited by the electron-polar-phonon coupling function (equation (29) and r.h.s
of y-axis in figures 3(a)–(c)). The Slater-Koster fit [23] used to estimate the electron-phonon matrix element
for the Slater mode in [5], gTO/ka= 65 meV, is within the estimates we have presented here using
frozen-phonon ab initio instead (see r.h.s. of y-axis in figure 3(a)).

The estimated electron-polar-phonon matrix elements suggest a pairing interaction strength similar to
that of STO, making superconductivity in bulk KTO a promising venue to be explored. In 2D KTO-based
heterostructures superconductivity has been reported, with a strong sensitivity of Tc on the crystallographic
orientation of KTO [5]. It is already interesting that the Rashba-like coupling to the polar modes we
presented here in the higher cubic symmetry of the bulk is intrinsically anisotropic. In heterostructures there
will be additional crystallographic orientation dependent strong crystal field effects [5, 30, 31] affecting both
the electrons and their interaction with the polar modes. This calls for ab initio computations in relevant slab
geometries [32], including appropriate electrostatic boundary conditions [33], to directly address the
crystallographic orientation dependence of the Rashba interaction in heterostructures following the
approach we presented here.
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Notes added−While drafting this manuscript we learnt of the recent preprint [34] which explores the
electron-phonon coupling to the phonon modes in KTO neglecting SOC, and hence not considering the
Rashba interaction vertex we explored here.

Appendix A. Computational details

Ab initio calculations have been performed within the Density Functional Theory (DFT) using the
projector-augmented wave (PAW) method [35] as implemented in VASP [36, 37]. We adopted the
generalized gradient approximation revised for solids (PBEsol) [38]. A 12× 12× 12 Monkhorst-Pack
grid [39] of k-points has been used for Brillouin-zone integration, with a plane-wave cutoff of 520 eV. The
cubic structure with Pm3̄m (Oh) symmetry has been fully relaxed until forces were smaller than 1 meVÅ−1,
resulting in a lattice parameter a0 = 3.99 Å, in excellent agreement with experimental data [40]. Spin–orbit
coupling has been included for band-structure computations [41], both for undistorted cubic structure and
for distorted (frozen-phonon) ones where atoms have been displaced according to the S̄i modes defined in
equations (9)–(11). We considered several amplitudes ui for each mode, ranging from 0.5×10−3 to
10×10−3 Å, in order to identify the linear regime for the electron-polar-phonon coupling (see appendix B).

Appendix B. Linear coupling regime to polar modes

In this section we present our DFT results for the three basis polar modes S̄i with different ui(q= 0)
amplitudes for electronic bands n= 1, n= 2 and n= 3, shown in figure B1. For the S̄1 mode (figure B1(a))
the splitting for all three electronic bands |δEn(k)| is of the order of the meV already at ka/π ∼ 1/10 long
both k directions [110] and [100]. A small deviation from the linear regime is found from u1 = 0.002 Å to
u1 = 0.0025 Å. Therefore, we set the maximum amplitude allowing a linear splitting of the bands for S̄1
mode to u∗1 = 0.002 Å. The same procedure leads to the same regime of linearity for S̄2 (figure B1(b)) and S̄3
modes (figure B1(c)).

Once the linearity near the Γ point is guaranteed by the small amplitude of the mode, we perform the
linear-in-k fit of the DFT calculations as:

|δEn(k,ui)|/2ui = ka|τ S̄in,DFT(k̂)|. (B.1)

The results of the fits are listed in table B1.
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Figure B1. DFT frozen phonon results of the electronic band split |δEn(k,ui)| along the directionsM−Γ−X normalized by the
amplitude 2ui for bands n= 1,2,3 for a polar mode along [001] with eigenvector (a) S̄1, (b) S̄2 and (c) S̄3. The critical value u∗i
setting the linear regime for all three bands is 0.002 Å. The band splitting for modes S̄2 and S̄3 is far smaller than the splitting for
S̄1, causing the observed noise in the data at small amplitudes.

Table B1. Parameter |τ S̄i
n,DFT (̂k)| (in meVÅ−1) from the linear-in-k fit of equation (B.1) to the frozen-phonon DFT results in figure 2 for

polar modes S̄1, S̄2, S̄3. In all cases the polar axis n̂p ∥ [001] and k̂⊥ n̂p.

S̄1 S̄2 S̄3

k̂ n= 1 n= 2 n= 3 n= 1 n= 2 n= 3 n= 1 n= 2 n= 3

[100] 316 1042 472 109 20 120 151 95 192
[110] 940 360 478 47 69 125 99 260 197
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[13] Bruno F Y, McKeown Walker S, Riccò S, De La Torre A, Wang Z, Tamai A, Kim T K, Hoesch M, Bahramy M S and Baumberger F
2019 Adv. Electron. Mater. 5 1800860

[14] Axe J D 1967 Phys. Rev. 157 429–35
[15] Harada J, Axe J and Shirane G 1970 Acta Crystallogr. 26 608–12
[16] Kozii V and Fu L 2015 Phys. Rev. Lett. 115 207002
[17] Gastiasoro M N, Trevisan T V and Fernandes R M 2020 Phys. Rev. B 101 174501
[18] Sumita S and Yanase Y 2020 Phys. Rev. Res. 2 033225
[19] Dresselhaus M S, Dresselhaus G and Jorio A 2008 Group Theory, Application to the Physics of Condensed Matter (Berlin: Springer)
[20] Muggli J 1972 Z. fur Angew. Math. Phys. 23 311–7
[21] Vogt H 1995 Phys. Rev. B 51 8046–59
[22] Petersen L and Hedegård P 2000 Surf. Sci. 459 49–56
[23] Khalsa G, Lee B and MacDonald A H 2013 Phys. Rev. B 88 041302
[24] Zhong Z, Tóth A and Held K 2013 Phys. Rev. B 87 161102
[25] Djani H, Garcia-Castro A C, Tong W Y, Barone P, Bousquet E, Picozzi S and Ghosez P 2019 npj Quantum Mater. 4 1–6
[26] Kumar A, Chandra P and Volkov P A 2022 Phys. Rev. B 105 125142
[27] Wemple S H 1965 Phys. Rev. 137 A1575–82
[28] Sakai A, Kanno T, Yotsuhashi S, Adachi H and Tokura Y 2009 Japan. J. Appl. Phys. 48 097002
[29] Savary L, Ruhman J, Venderbos J W F, Fu L and Lee P A 2017 Phys. Rev. B 96 214514
[30] Vicente-Arche L M et al 2021 Adv. Mater. 33 2102102
[31] Varotto S et al 2022 Nat. Commun. 13 1–9
[32] Shanavas K V and Satpathy S 2014 Phys. Rev. Lett. 112 086802
[33] Brumme T, Calandra M and Mauri F 2014 Phys. Rev. B 89 245406
[34] Esswein T and Spaldin N A 2022 arXiv:2210.14113
[35] Blöchl P E 1994 Phys. Rev. B 50 17953–79
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett.

100 136406
[39] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188–92
[40] Vousden P 1951 Acta Crystallogr. 4 373–6
[41] Steiner S, Khmelevskyi S, Marsmann M and Kresse G 2016 Phys. Rev. B 93 224425

14

https://doi.org/10.1002/aelm.201800860
https://doi.org/10.1002/aelm.201800860
https://doi.org/10.1103/PhysRev.157.429
https://doi.org/10.1103/PhysRev.157.429
https://doi.org/10.1107/S0567739470001547
https://doi.org/10.1107/S0567739470001547
https://doi.org/10.1103/PhysRevLett.115.207002
https://doi.org/10.1103/PhysRevLett.115.207002
https://doi.org/10.1103/PhysRevB.101.174501
https://doi.org/10.1103/PhysRevB.101.174501
https://doi.org/10.1103/PhysRevResearch.2.033225
https://doi.org/10.1103/PhysRevResearch.2.033225
https://doi.org/10.1007/BF01593094
https://doi.org/10.1007/BF01593094
https://doi.org/10.1103/PhysRevB.51.8046
https://doi.org/10.1103/PhysRevB.51.8046
https://doi.org/10.1016/S0039-6028(00)00441-6
https://doi.org/10.1016/S0039-6028(00)00441-6
https://doi.org/10.1103/PhysRevB.88.041302
https://doi.org/10.1103/PhysRevB.88.041302
https://doi.org/10.1103/PhysRevB.87.161102
https://doi.org/10.1103/PhysRevB.87.161102
https://doi.org/10.1038/s41535-019-0190-z
https://doi.org/10.1038/s41535-019-0190-z
https://doi.org/10.1103/PhysRevB.105.125142
https://doi.org/10.1103/PhysRevB.105.125142
https://doi.org/10.1103/PhysRev.137.A1575
https://doi.org/10.1103/PhysRev.137.A1575
https://doi.org/10.1143/JJAP.48.097002
https://doi.org/10.1143/JJAP.48.097002
https://doi.org/10.1103/PhysRevB.96.214514
https://doi.org/10.1103/PhysRevB.96.214514
https://doi.org/10.1002/adma.202102102
https://doi.org/10.1002/adma.202102102
https://doi.org/10.1038/s41467-022-33621-1
https://doi.org/10.1038/s41467-022-33621-1
https://doi.org/10.1103/PhysRevLett.112.086802
https://doi.org/10.1103/PhysRevLett.112.086802
https://doi.org/10.1103/PhysRevB.89.245406
https://doi.org/10.1103/PhysRevB.89.245406
https://arxiv.org/abs/2210.14113
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1107/S0365110X5100115X
https://doi.org/10.1107/S0365110X5100115X
https://doi.org/10.1103/PhysRevB.93.224425
https://doi.org/10.1103/PhysRevB.93.224425

	Anisotropic Rashba coupling to polar modes in KTaO3
	1. Introduction
	2. Model parametrization of the DFT electronic structure
	3. Polar soft mode in KTO
	4. Linear polar coupling
	4.1. Anisotropic Rashba coupling from DFT
	4.2. Origin of anisotropic Rashba from a microscopic toy model
	4.3. Electron-polar-phonon Hamiltonian

	5. Conclusions and outlook
	Appendix A. Computational details
	Appendix B. Linear coupling regime to polar modes
	References


