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We discuss the observable-dependence of the effective temperature Teff, defined via the fluctuation-
dissipation relation, of an out-of-equilibrium system composed by homonuclear dumbbell molecules.
Teff is calculated by evaluating the fluctuation and the response for two observables associated,
respectively, to translational and to rotational degrees of freedom, following a sudden temperature
quench. We repeat our calculations for different dumbbell elongations ζ . At high elongations
(ζ > 0.4), we find the same Teff for the two observables. At low elongations (ζ ≤ 0.4), only for very
deep quenches Teff coincides. The observable-dependence of Teff for low elongations and shallow
quenches stresses the importance of a strong coupling between orientational and translational
variables for a consistent definition of the effective temperature in glassy systems. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4901526]

I. INTRODUCTION

Understanding the off-equilibrium state of matter, central
in glass science,1–8 is a challenging task. The difficulty arises
from the lack of a thermodynamic approach capable of de-
scribing glasses. Indeed, in addition to temperature and pres-
sure, other macroscopic observables are requested to uniquely
describe the state of the system. When a liquid is brought off-
equilibrium, e.g., by quickly lowering the bath temperature T,
dynamic properties depend on the observation time t′, i.e., the
system ages. Correlation functions retain their two step decay
behavior characteristic of supercooled equilibrium states, but
show a t′ dependence mainly for the α-relaxation process: the
structural relaxation time, controlled by the slow modes, in-
creases with the observation time. Aging thus affects the long-
time dynamics of particles. The separation of time scales re-
flects particles vibration around their average position at short
times and the diffusional process at long times. As thus, the
fast vibrational dynamics equilibrates to T and does not sig-
nificantly changes with aging.

It has been suggested that the evolution of the correla-
tion function with t′ could be interpreted as arising from the
slow thermalization of the structural degrees of freedom as-
sociated to the α-process. In this respect, one could add to
the state variable one or more additional temperatures of the
slow modes. While it is clear from experiments based on the
Kovacs protocol,9, 10 also reproduced in silico,11, 14 that un-
der strong quenching, more than one additional temperature
is needed, other protocols are compatible with the idea that
one single additional parameter is sufficient to characterize
the aging system. In this picture, aging corresponds to the evo-
lution of this additional temperature toward the bath temper-
ature T. In the theoretical framework developed by Cuglian-
dolo and Kurchan,15, 16 the additional temperature reveals its
presence in the violation of the fluctuation-dissipation theo-
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rem (FDT). In equilibrium, the response of a system to an
external weak perturbation is linearly related to a suitable cor-
relation function (and the coefficient of linearity is T). In ag-
ing, the fluctuation-dissipation theorem is generalized to ac-
count for the presence of an additional temperature, introduc-
ing a fluctuation-dissipation (FD) ratio. Given the correlation
function CAB(t, t′) = 〈A(t)B(t′)〉0 of two variables A(t) and
B(t) in an unperturbed system, and the integrated response
χA,B(t, t ′) = ∫ t

t ′
δ〈A(t)〉

h

δh(s) ds|h→0 to a perturbation field h ap-
plied at a time t > t′ (and coupled to the observable B(t)),
the two functions are related by the expression4, 17

∂CA,B(t, t ′)
∂t ′

= − T

XA,B(t, t ′)
∂χA,B(t, t ′)

∂t ′
, (1)

where

XA,B(t, t ′) = − 1

T

∂χA,B(t, t ′)
∂CA,B(t, t ′)

∣∣∣∣
t ′=f ixed

C
A,B

(t,t ′ )=const

(2)

is the FD ratio. The equilibrium results are recovered when
XA, B(t, t′) = 1 and the FDT is satisfied.

When the system is out of equilibrium the fluctuation and
the integrated response are differently related at short and long
time-scales. For short time-scales,

|XA,B(t, t ′)| = 1 if (t − t ′)/t ′ � 1, (3)

i.e., the aging system behaves as if it were in equilibrium,
while at long times,

|XA,B(t, t ′)| = T

Teff(t, t
′)

if (t − t ′)/t ′ � 1, (4)

where Teff, named effective temperature, has been interpreted
as the temperature of the slow degrees of freedom. Thus,
while the vibrational dynamics is instantaneously in equilib-
rium at T after a temperature quench, the slow modes can
be thought to be in quasi-equilibrium17, 18 at Teff(t

′) > T.
The t′ dependence clarify that Teff progressively evolves in
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time. Hence, the FDR in structural glasses leads naturally
to a rigorous definition of Teff that can be evaluated esti-
mating the FD ratio. Evidence of a two-slope FDT in ag-
ing systems have been largely provided by numerical simula-
tions of supercooled liquids following temperature or pressure
changes.19–26 For these cases, it has been suggested that Teff
coincides with the temperature that a thermometer, weakly
coupled to the system, would measure in an aging glass if its
internal time-scale is equal to the time-scale of the slow pro-
cesses in the glass.7, 15 In addition, in some simple molecular
glass models, Teff has been shown to coincide with an internal
temperature independently obtained from an extended ther-
modynamic framework based on the potential energy land-
scape (PEL) approach.23, 26, 27 Finally, while the assumption
of one single additional parameter has been questioned in
the past,9–13 the hypothesis of one single Teff appears to be
particularly appropriate in some class of systems.25, 28, 29 For
these systems, the effective temperature could enter, along
with the other equilibrium thermodynamic parameters, in a
two-temperatures thermodynamic approach in which a sepa-
ration of time scales is assumed.4

Although the Teff defined from the FDR has been proven
to be a valuable concept in several cases, few studies have
focused on its observable dependence in structural glasses.
Indeed, if Teff can be interpreted as a genuine thermody-
namic parameter, it should coincide when measured for dif-
ferent observables on the same time-scale. There is no ex-
perimental evidence of the observable independence of Teff
in glassy systems and only a few theoretical16 or numeri-
cal investigations.21, 30, 31 This issue has also been discussed
in the context of granular matter32–34 or fluids near critical
points.35, 36

In the numerical investigations of Lennard-Jones (LJ)
atomic liquids,30, 31 it was found that the FD ratio built from
calculating the fluctuations and the responses of density at dif-
ferent wave vectors results in the same Teff. However, such
result is limited to a single system and all the observables
employed in the study are related to translational degrees of
freedom. At odd, scarce experimental works have focused on
molecular glasses37–40 and related to the observation of fluc-
tuations and responses of molecules orientation.

In this study, we scrutinize the observable-dependence
of Teff, by measuring intrinsically different (i.e., translational
and rotational) observables. We study the out-of-equilibrium
behavior of a system of homonuclear molecules with differ-
ent elongations, probing both translational and rotational de-
grees of freedom. We show that various scenarios can occur
as a function of the molecules elongation and that distinct
observables can be found in distinct aging conditions during
the same temperature quench. This results in a partial decou-
pling of the translational and rotational degrees of freedom
and hence in dissimilar FD ratios.

II. MODELS AND METHODS

We perform Metropolis Monte Carlo (MC) simulations
of a binary mixture 80 : 20 of N = 500 homonuclear dumbbell

molecules interacting via a cut-and-shifted LJ potential,41

Vαβ(r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6

+ A0 + A1
r

σαβ

]
.

(5)
Here, r is the center-to-center distance of two atoms belonging
to molecules of type α and β (with α, β ∈ A, B). σαβ and εαβ

quantify the characteristic size and depth of the interaction
potential. The two constants A0 and A1 are set to guarantee the
continuity of the potential and of its derivative at the cut-off
distance c = 2.5 (in units of σαβ). From such two constraints
one finds that A0 = c−6(7 − 13c−7) and A1 = 6c−7(2c−6 − 1).

Following Ref. 41 we set the interaction parameters to
σ AA = 1.0, σ AB = 0.8, σ BB = 0.88, εAA = 1.0, εAB = 1.5, and
εBB = 0.5, which correspond to the values first introduced by
Kob and Andersen42, 43 for a binary mixture of Lennard-Jones
atoms with the aim to prevent the mixture from crystallizing
at high densities. In the following, all the parameters will be
expressed in reduced units, selecting εAA and σ AA as units of
energy and distance. We also set kB = 1. In the case of dumb-
bell molecules, the total packing fraction φtot = φAA + φBB
can be defined as41

φαα = π

6
ραασ 3

αα

(
1 + 3

2
ζ − 1

2
ζ 3

)
, 0 ≤ ζ ≤ 1, α ∈ {A,B},

(6)
where ραα = N

α

V
is the number density (namely, the num-

ber of α dumbbells over the volume), while ζ is the elonga-
tion, i.e., the bond length lαα between the centers of the two
atoms forming the molecule, expressed in units of σαα (i.e.,
ζ = lAA/σ AA = lBB/σ BB). A series of snapshots showing how
much the shape of the molecules changes when decreasing ζ

are reported in Fig. 1. In our study, we fix the packing frac-
tion to φ = 0.708 in order to compare our equilibrium results
with previous Molecular Dynamics (MD) studies at different
elongations.41, 44 In such studies, the apparent divergence of
the rotational relaxation time τ and the vanishing of the dif-
fusion coefficient D has been estimated according to the the-
oretical power-law dependence predicted by Mode Coupling
Theory (MCT).44 These values provide a reference for the dy-
namic arrest temperature. In the following, we define a MC
step as N attempts to translate and rotate a randomly selected
dumbbell.

Since our work concerns the study of dynamical quanti-
ties obtained from a stochastic dynamics (MC), it is legitimate
to ask whether the Metropolis algorithm reproduces a long-
time dynamical behavior similar to the one observed with
Newtonian dynamics41, 44 for the same system. This question
has been previously addressed for supercooled binary mix-
tures of LJ atoms24 and for models of colloidal particles.45, 46

FIG. 1. Snapshots of the dumbbell molecules as a function of the elongation.
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These studies have provided evidence that the Metropolis
algorithm can give rise to a physically relevant slow dynam-
ics. More precisely, it has been shown that the long-time-
decay of the self-intermediate scattering function is identi-
cal (with a proper time rescaling) for Newtonian, Brownian,47

and Monte Carlo simulations.24 Following a procedure simi-
lar to that presented in Ref. 24, we have verified that the long-
time relaxation behavior for density and angular correlators in
equilibrium LJ dumbbells is equivalent to that evaluated with
Newtonian dynamics.41, 44 A detailed discussion for the case
of molecules with ζ = 0.5 can be found in the Appendix.

In order to study the FDR, we exploit a zero-field MC
algorithm developed and tested previously on atomic struc-
tural glasses. This algorithm provides an unbiased measure-
ment of the response function.31 The method allows us, within
the same simulation, the simultaneous measure of both the re-
sponse and the correlation at different waiting times t′ until a
fixed time t from the quench, thus reducing the computational
load. Following standard works on FDT violation in glasses,17

we measure Teff by building the FD plot; it consists in report-
ing Tχ (t, t′) versus C(t, t′). If the system is characterized by
a clear separation of time-scales, as in our case, the result-
ing parametric curve will display two slopes; the FD ratio
X = T/Teff can be immediately visualized being the angular
coefficient of the straight line different from X = 1. As a rule,
we choose to evaluate X via a linear fit of the points in the
FD-plot satisfying the relation (t − t′)/t′ > 2.

In this study, we calculate Teff for observables asso-
ciated to translational and rotational degrees of freedom.
For translations, we choose AT RANS(t) = N−1 ∑

j εj e
−ik·r

j
(t)

and BT RANS(t) = 2
∑

j εj cos(k · rj (t)) where the coordi-
nates rj (t) are the positions of the centers of mass of the
molecules at time t and εj = ±1 is a bimodal variable with
zero mean which suppresses the cross terms in the correlation
and the response functions.31 Thereby, the correlation func-
tion Fs(k, t, t ′) ≡ 〈AT RANS(t)BT RANS(t ′)〉0 corresponds to
the self-intermediate scattering function, where the zero sub-
script indicates the average over unperturbed trajectories. For
rotations we choose A

(l)
ROT (t) = √

NlN
−1 ∑

i εiPl[cos(θi(t))]

and B
(l)
ROT (t) = √

Nl

∑
i εiPl[cos(θi(t))], where εi is a bi-

modal variable as above, Pl is the Legendre polynomial of
order l, and θi(t) = êi(t) · x̂ is the projection of the molec-
ular axis on the x-axis. In addition, Nl is a normalization
constant which depends on the order l of the Legendre poly-
nomial and ensures the angular correlation function Cl(t, t

′)
= 〈A(l)

ROT (t)B(l)
ROT (t ′)〉0 to be 1 when t = t′. Specifically,

N1 = 1
3 and N2 = 1

5 . In the following, we will refer to the
FD-plots of the two sets of observables (translation and rota-
tion) as the self-density and the l-orientation FD-plots.

III. RESULTS AND DISCUSSIONS

We perform several temperature quenches by instanta-
neously lowering the bath temperature from T = 6 to T = 0.4
for different elongations and we observe the off-equilibrium
evolution of the correlators (Fs(k, t, t′) and C1(t, t′)) and of the
corresponding integrated responses (χ s(k, t, t′) and χ1(t, t′))
up to a fixed time t from the quench. This allows us to build

the FD-plot from which it is possible to extract Teff. A previ-
ous study25 has shown that, in a temperature jump down to a
final T, the effective temperature evaluated after a given time t
depends weakly on the initial state point as long as the initial
T is above the onset temperature of the so-called “landscape-
influenced regime”48 at which the correlation function starts
to display a separation of time-scales. This is shown in
Fig. 2(c) for two quenches, respectively, T = 6.0 → T = 0.4
and T = 3.0 → T = 0.4, at elongation ζ = 0.5. In the present
model, T = 6.0 guarantees that we are well above the onset
temperature for all elongations. When not specified, we select
|k| � 8.0, that roughly corresponds to the first peak of the
static structure factor S(k) of the species A. We calculate Teff
both in the high elongation region (i.e., ζ > 0.4) and in the
low elongation region (ζ ≤ 0.4).

A. High elongation region (ζ > 0.4)

We investigate the off-equilibrium dynamics of
molecules with elongation ζ = 0.45, 0.5, 0.55. For each
elongation, we perform trial quenches and monitor the
evolution of the potential energy during aging. We select
the smallest investigated waiting time t′ when the potential
energy starts to show a logarithmic behavior, indicative of
a “quasi-stationary” aging regime. We find such time to be
t′ = 1800 MC steps for the three elongations. Successive
waiting times are separated one from the other by 1200 MC
steps. The total observation time t is set to t = 29 400 MC
steps.

We have not been able to investigate the cases with
ζ > 0.55. Indeed, for these values rotations are severely
frozen; this implies that, when building the l = 1-orientation
FD-plot, the second slope is not well developed within our
observation-time window and we cannot evaluate Teff. A mea-
surement of Teff would require prohibitively longer times, in-
accessible with our computational facilities.

For ζ = 0.45, 0.5, 0.55, we perform 20 000 inde-
pendent quenches to ensemble average the correlators and
the response functions requested for drawing the FD-plots.
Fig. 2(a) clearly shows that, differently from equilibrium, the
integrated response (plotted as 1 − Tχ ) evolves in time more
slowly than the correlation, both for translational and rota-
tional observables. Figs. 2(b)–2(d) show the three FDT vio-
lations. The two-time-scale separation between fast and slow
modes in the model system gives rise to FD-plots character-
ized by two slopes. For both translational and rotational ob-
servables, the resulting parametric plots display the same FD
ratio X(t, t′) and hence the same Teff.

Fig. 2(c) (ζ = 0.50) also shows the FD-plot for the self-
density evaluated at two other different k vectors. In all cases,
the same slope is found, confirming that Teff does not depend
on k, in agreement with results for atomic systems.31, 49

B. Low elongation region (ζ ≤ 0.4)

In this region, we investigate molecules with elongations
ζ = 0.2, 0.3, 0.4. As for high elongations, we follow the
decay of the potential energy during a quench to identify a
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FIG. 2. (a) Correlation and integrated responses as a function of t − t′ for the system of LJ dumbbells with elongation ζ = 0.5. Functions are, respectively,
Fs(k, t, t′) (black up triangles), 1 − Tχ s(k, t, t′) (red down triangles), C1(t, t′) (green left triangles), and 1 − Tχ1(t, t′) (blue right triangles). Data are taken for
the quench T = 6.0 → T = 0.4. (b) Self-density (blue squares) and l = 1-orientation (red diamonds) FD-plots for ζ = 0.45. (c) Self-density FD-plots for wave
vectors |k| = 10.1 (violet up triangles), |k| = 7.9 (blue squares), and |k| = 5.0 (green circles), together with the l = 1-orientation FD-plot (red diamonds) for
LJ dumbbells with ζ = 0.5. Open symbols are FD-plots obtained for the quench T = 3.0 → T = 0.4. (d) Self-density (blue squares) and l = 1-orientation (red
diamonds) FD-plots for ζ = 0.55.

quasi-equilibrium regime. For the three elongations, we set
the first waiting time to t′ = 1800 MC steps, the same value
used for large ζ . As before, successive waiting times are sep-
arated by 1200 MC steps and the total observation time is
t = 29 400 MC steps. We perform a number of quenches vary-
ing between 10 000 and 20 000 for each elongation and we
build the self-density and the l = 1-orientation FD-plots, find-
ing again the two-slope scenario. However, if we extract Teff
from the parametric plots, we find two different effective tem-
peratures for the two FD-plots. The difference between the
two Teff increases when decreasing ζ . This is shown in Figs.
3(a) and 3(b), respectively, for ζ = 0.4 and ζ = 0.3. Note
that the slope of the FD-plot relative to l = 1-orientation is
always higher than the slope relative to the density; it follows
that the Teff for l = 1-orientation is always closer to T than the
self-density Teff.

A hint to rationalize the previous results comes from
the equilibrium dynamic behavior of the dumbbell molecules
in the supercooled regime at different ζ . Previous theoret-

ical and numerical studies41, 44, 50 have investigated the dy-
namic phase diagram of the dumbbells in the T − ζ plane,
showing a strong dependence of the relaxation dynamics
on the elongation of the molecules. For instance, numerical
simulations44 have shown that iso-diffusivity lines are non-
monotonic functions of the elongation. The behavior of the
rotations is also intriguing: depending on the degree l of the
Legendre polynomial employed to build Cl(t), the observed
dynamics and the isochronal iso-τ l curves (where τ l is the
relaxation time of Cl(t)) can be different (inset of Fig. 3(b)).
Specifically, for even-l correlators, e.g., Cl = 2(t), the iso-τ 2
curve closely follows the iso-diffusivity line in the T − ζ

plane. Contrary, the iso-τ 1 line of C1(t) is coupled to the iso-
D and to the iso-τ 2 curves only at high ζ , while the cou-
pling is lost for lower ζ . In this decoupled region, C1(t) re-
laxes to zero significantly faster than C2(t). This peculiar be-
havior has been explained in terms of hopping processes oc-
curring in the low-elongation region. Indeed, it has been ob-
served that low-elongation molecules perform rotational flips

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

193.54.87.164 On: Thu, 18 Dec 2014 09:05:26



194507-5 Ninarello, Gnan, and Sciortino J. Chem. Phys. 141, 194507 (2014)

0.4 0.5 0.6 0.7 0.8 0.9 1
C(t,t’)

0

0.1

0.2

0.3

0.4
T

χ(
t,t

’)
FDT
TRANS k=8.1
ROT

ζ=0.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C(t,t’)

0

0.1

0.2

0.3

0.4

0.5

0.6

T
χ(

t,t
’)

FDT
TRANS k=6.0
ROT ODD
ROT EVEN

0.3 0.4 0.5 0.6 0.7 0.8
ζ

0.4

0.6

0.8

1

1.2

T

MCT iso-D=0
MCT iso-τ

2
=∞

MCT iso-τ
1
=∞

ζ=0.3

(a) (b)

FIG. 3. Self-density (blue squares) and l = 1-orientation (red diamonds) FD-plots for dumbbells with elongation (a) ζ = 0.4 and (b) ζ = 0.3, for the quench
T = 6.0 → T = 0.4. Green squares in (b) is the l = 2-orientation FD-plot, associated to even rotations of molecules. Inset: MCT arrested lines, i.e., the loci of
points predicted by Mode Coupling Theory at which the diffusion coefficient is D = 0 (blue-squares), the decay time of C1(t) is τ 1 = ∞ (red circles) and that
of C2(t) (dashed dotted line) is τ 2 = ∞ (green triangles) in the T − ζ plane. Data from Ref. 44.

of 180◦ which change sign to P1 (and to all odd Legendre
replace polynomial with polynomials), providing the domi-
nant contribution to the decorrelation of C1(t). According to
Mode-Coupling Theory for monodisperse dumbbells,50 a crit-
ical value for the molecules elongation ζ c = 0.345 marks the
crossover between the strong-to-weak hindrance scenario de-
scribed above. Simulations also suggest a value close to ζ c
for the present binary mixture of dumbbells. These equilib-
rium results provide two important pieces of evidence: (i) that
there is a cross-over between small and large ζ values, asso-
ciated to a decoupling of rotation and translation for odd l,
(ii) that the decay of the odd l correlation functions for small
ζ proceed much faster than the decay of the other correlators.

Based on these findings we investigate the off-
equilibrium behavior of the l = 2 orientation C2(t, t′) and its
integrated response χ2(t, t′) when ζ = 0.3. Figure 3(b) shows
the resulting l = 2-orientation FD-plot: we find that, as for
the equilibrium case, the aging behavior of observables asso-
ciated to translational and l = 2-rotational degrees of freedom
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T
χ(

t,t
’)

FDT
TRANS k=7.9
ROT ODD
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FIG. 4. Self-density and l = 1-orientation FD-plots for the system of dumb-
bells with ζ = 0.3 for the quench T = 6.0 → T = 0.2.

are strongly coupled. Differently from what found for l = 1,
the two FD-plots display now the same Teff.

As a last piece of evidence, we investigate the sensitivity
of the previous results to the quench depth. Figure 4 shows
the result for ζ = 0.3 following a quench from T = 6.0 to T
= 0.2. At this low T, we expect (based on extrapolation of the
T-dependence of the equilibrium rotational and translational
characteristic times) that also the l = 1 correlator is unable
to thermalize. Indeed, we find that when T is low enough,
the odd-rotations are frozen and hence coupled to the density,
being described by the same Teff.

Finally, to gain insight into the off-equilibrium dynamics
of molecular rotations, we study the t dependence of Teff by
comparing the correlators and the response functions for two
different waiting time t′ for the quench T = 6.0 → T = 0.4.
Figure 5 shows the self-density and the l = 1-orientation FD-
plots for the observation times t1 = 29 400 and t2 = 79 200
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FIG. 5. Self-density and l = 1-orientation FD-plots for the system of dumb-
bells with ζ = 0.3 for a quench from T = 6 to T = 0.4. Data plotted as (red)
left and (green) right triangles are measured for a total time of t = 29 400 MC
steps, while for (red) circles and (green) squares the total observation time is
set to t2 = 79 200 MC steps.
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MC steps. We note that for both translational and rotational
degrees of freedom the slope of the FD-plot changes with t′, in
agreement with previous observations for atomic systems,23

highlighting the presence of a slow aging process. We also
note that while the Teff of the self-density always remains very
different from T, the l = 1-orientation appears to have almost
completely thermalized at the largest t′ value.

IV. CONCLUSIONS

The idea of considering the Teff entering in the FD-ratio
as a thermodynamic parameter that accounts for the aging
of the slow modes in structural glasses has been widely dis-
cussed in many different frameworks. One of the requests for
being a robust thermodynamic variable is its independence
from the (slow) observable measured.18 For this purpose, we
investigated the off-equilibrium dynamics of a van der Waals
liquid composed of a binary mixture of dumbbell molecules,
by studying the fluctuations and the responses of observables
associated both to translational and rotational motions. Thus,
we have been able to carry on a more complete study with
respect to the case of the atomic Lennard-Jones, where only
the wave-vector dependence of the density correlator24, 51 was
investigated. In this article, we have reported the first com-
putational measurements of the FDR for rotational degrees of
freedom in a molecular liquid. We note in passing that previ-
ous experimental studies of the FDT violation were built on
the observation of rotational dynamics, based on depolarized
light-scattering or dielectric spectroscopy.37–40 The evaluation
of Teff at different elongations highlighted a rich and unex-
pected scenario. We focused on the off-equilibrium dynamics
of density and orientation fluctuations of the molecules and
we observed that, for high elongations, rotational and transla-
tional degrees of freedom are characterized by the same Teff.
Such situation is partially lost at lower elongations. For small
elongations and shallow quenches, odd rotational degrees of
freedom are characterized by different FD-plots as compared
to the translational ones, and the Teff of the rotational degrees
of freedom approaches the bath temperature. For small elon-
gations and deep quenches, the effective temperatures of the
translational and rotational observables couple again.

These findings bear a resemblance with the ζ depen-
dence of the equilibrium rotational and translational behav-
ior. At small ζ , molecules undergo rotations of 180◦ which
allow C1(t) (but not C2(t)) to relax fast,44 decoupling transla-
tions and rotations. As a consequence, at equilibrium, C1(t)
does not show a separation of time-scales at temperatures
where Fs(k, t) and C2(t) are instead characterized by the typ-
ical two-step decay. Indeed, in the limit of zero elongation,
rotations are completely free and decoupled from transla-
tions. Our results suggests that only at very deep tempera-
tures, odd-rotational dynamics couples again to translations.
Indeed, only for deep quenches, the l = 1-orientation and
the self-density FD-plots display the same Teff. The l = 2-
orientation instead is always coupled with density. We find
that for shallow quenches, the violation of the FDT for the
l = 1-orientation is a transient effect. Hence, in a hypothet-
ical experiment on molecular liquids with low elongation,
the measurement of the fluctuations and of the responses of

observables coupled with degrees of freedom not sensitive
to the hopping processes will lead to a resulting Teff which
reflects the same aging behavior of the translational degrees of
freedom. Differently, l = 1 observables may or may not cou-
ple to translational degrees of freedom. The possibility thus
exists that the effective temperature of the odd angular cor-
relator might differ from the one of the translational degrees
of freedom. To establish a connection with possible exper-
iments we note that our dumbbell model, at least for inter-
mediate elongations, could be a realistic model for toluene,
a molecule composed by a phenyl group and a methyl group
that can be approximated as spheres. The two groups have dif-
ferent sizes and hence a better representation of toluene would
be an asymmetric dumbbell. Still, assuming the symmetric
dumbbell model, all the quenches done in our study, would be
compatible with temperature jumps from ambient T to around
40 K. Keeping the correspondence with toluene, we can also
extract information on the timescales at which we observe the
violation of the FDT. In fact, we can use the mapping between
Monte Carlo and molecular dynamics time steps described in
the Appendix, to obtain an estimation of the observation time
in our simulations. Then, using the parameters for mass, size,
and energy scale for the phenyl group (following Ref. 52), we
find that our observation time (∼30 000 MC steps) roughly
corresponds to a few nanoseconds, a timescale that can be
accessed, for example, via neutron scattering experiments or
broadband dielectric spectroscopy.

Finally, we want to stress that recent theoretical
arguments34 provided evidence that, in off-equilibrium sta-
tionary states, the observable independence of Teff is related
to the uniformity of the phase space distribution. It would be
interesting to understand in future studies how our results con-
nect with this appealing theoretical result.
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APPENDIX: COMPARISON WITH
NEWTONIAN DYNAMICS

In our simulations, a Monte Carlo step is defined as N
attempts to translate and rotate a molecule chosen randomly.
Translations are uniformly extracted in the interval [− δrMAX,
δrMAX] while rotations are performed around a randomly cho-
sen axis with an angle uniformly distributed within the inter-
val [− δαMAX, δαMAX]. The attempt to move a molecule is re-
jected or accepted according to the Metropolis rule.53 Hence,
the acceptance rate, and consequently the dynamics, depends
on the balance between the two parameters δrMAX and δαMAX.
Since the acceptance rate has not to be neither too small nor
too high (i.e., should range between 30% and 60% of the to-
tal attempts) to provide a long-time dynamics consistent with
the Newtonian one, we set the acceptance rate in our simula-
tion to 45%. Given this, there are a number of combinations
for δrMAX and δαMAX that satisfy the condition on the accep-
tance rate. We then perform a number of simulations in the
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FIG. 6. (a) Self-intermediate scattering function Fs(k, t) and (b) autocorrela-
tion function C1(t) of the first Legendre polynomial for dumbbell molecules
with elongation ζ = 0.5 at the state point T = 0.75, φ = 0.708. Symbols are
results from MC dynamics and solid lines from Newtonian dynamics (data
taken from Ref. 41). Insets: evolution of the relaxation times (a) for Fs(k, t)
as a function of δrMAX, (b) for C1(t) as a function of δαMAX. The minimum
values of δrMAX and δαMAX used in MC simulations provide a relaxation be-
havior of functions in (a) and (b), compatible with the results obtained in
molecular dynamic simulations.

canonical ensemble where the two parameters are varied and
we observe the relaxation of density and angular correlation
functions. We report here the results for the intermediate state
point T = 0.75, φ = 0.708 when the elongation of the dumb-
bell is set to ζ = 0.5, but the procedure to follow is the same
at all the elongations.

We extract from simulations the relaxation times of the
self-intermediate scattering function τ d and of the angular
correlator τα , defined as the value at which the correlation
functions decay at 1/e. The relaxation times (in unit of MC
step) τ d and τα as a function of δrMAX and δαMAX are shown
in the insets of Figs. 6(a) and 6(b), respectively. Due to their
non-monotonic behavior we are able to extrapolate through
a parabolic fit the value at which τ d and τα are minimized,
finding δrMAX = 0.025 and δαMAX = 0.20. Figures 6(a) and
6(b) show that for such values, the long-time decay of the an-
gular correlation function and of the self-intermediate scatter-

ing function can be superimposed on top of the corresponding
correlators obtained from Newtonian dynamics, after having
scaled the x-axis of the MC curves by an arbitrary factor.
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