
Received 4 October 2024, accepted 14 November 2024, date of publication 20 November 2024,
date of current version 29 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3504354

Evaluating Task Optimization and Reinforcement
Learning Models in Robotic Task
Parameterization
MICHELE DELLEDONNE 1,2, ENRICO VILLAGROSSI 1, MANUEL BESCHI 1,2, (Member, IEEE),
AND ALIREZA RASTEGARPANAH 3
1Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, 20133 Milan, Italy
2Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
3School of Metallurgy and Materials, University of Birmingham, B15 2TT Birmingham, U.K.

Corresponding author: Michele Delledonne (michele.delledonne@stiima.cnr.it)

This work was supported in part by the REBELION Project under Grant 101104241; and in part by the Lombardy, Italy Regional Project
EcoCirc (deliberation XI/4730 of the 17/05/2021).

ABSTRACT The rapid evolution of industrial robot hardware has created a technological gap with software,
limiting its adoption. The software solutions proposed in recent years have yet to meet the industrial sector’s
requirements, as they focus more on the definition of task structure than the definition and tuning of its
execution parameters. A framework for task parameter optimization was developed to address this gap.
It breaks down the task using a modular structure, allowing the task optimization piece by piece. The
optimization is performed with a dedicated hill-climbing algorithm. This paper revisits the framework by
proposing an alternative approach that replaces the algorithmic component with reinforcement learning (RL)
models. Five RL models are proposed with increasing complexity and efficiency. A comparative analysis
of the traditional algorithm and RL models is presented, highlighting efficiency, flexibility, and usability.
The results demonstrate that although RL models improve task optimization efficiency by 95%, they still
need more flexibility. However, the nature of these models provides significant opportunities for future
advancements.

INDEX TERMS Reinforcement learning, robotic task optimization, task-oriented programming, intuitive
robot programming.

I. INTRODUCTION
The ability of robots to perform increasingly complex tasks
with unprecedented precision and speed has redefined the
boundaries of industrial production [1]. However, outdated
and inefficient programming methodologies often hinder the
progress in hardware and control strategies [2]. Current pro-
gramming interfaces are primarily based on textual program-
ming, with each manufacturer developing its language [3].
This results in slow and tedious programming processes,
requiring specialized operators with extensive knowledge and
experience in robotics programming. Moreover, there is low

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

flexibility and high reconfiguration times when the robot’s
task changes.

These limitations have spurred the research of more intu-
itive and user-friendly programming approaches. Intuitive
methods, such as programming by demonstration, aim to con-
vert human behaviors or messages into traditional software
programs. These methods provide significant improvements
in terms of intuitiveness and ease of programming. However,
this simplification has specific issues, such as reduced
precision or difficulty defining complex tasks. Additionally,
the industrial environment could pose challenges for these
methods, for example, due to noise and lighting conditions.

The Task Optimization Framework (TOF) [4] was devel-
oped to address these challenges, designed to self-tune
the parameters necessary for task execution. TOF operates

173734

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-5236-2706
https://orcid.org/0000-0002-9493-4175
https://orcid.org/0000-0002-8845-2313
https://orcid.org/0000-0003-4264-6857
https://orcid.org/0000-0002-2750-8029


M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

through a trial-and-error process, employing a set of param-
eters to execute tasks and subsequently receiving a reward
based on performance evaluation. This process is guided by
an optimization algorithm that updates probability variables
based on the rewards from previous trials. Although TOF has
demonstrated effectiveness, it still has limitations, primarily
due to the lack of detailed task knowledge that hinders more
targeted parameter modifications.

Given these limitations, the integration of artificial intel-
ligence (AI), specifically reinforcement learning (RL), has
been explored to enhance the efficiency and adaptability of
robotic systems. Over recent years, AI has significantly
advanced robotics, enabling the execution of intricate tasks
with remarkable autonomy and precision. Five RL models of
increasing complexity were trained to replace the algorithmic
component of TOF to improve its performance.

This paper details the methodology for selecting, integrat-
ing, and training RL models within the TOF framework,
presenting the outcomes of various learning processes and
a comparative analysis focusing on process efficiency and
ease of use. The article is organized as follows: Section II
analyzes related works, Section III provides an overview of
TOF and the integration of RL, the case study description,
and the methodology used for the learning process and tests.
Section IV presents and discusses the results. Section V
finally reports the conclusions and future work.

II. RELATED WORKS
Current robot programming methods involve textual pro-
gramming, which means operators must manually write
all the instructions for the robot’s movements and actions,
requiring a debugging and optimization phase; the operator
must test and correct the code, which is a time-spending
activity.

Robot actions are often defined sequentially and rigidly;
robots follow a predefined movement pattern without the
ability to adapt dynamically to environmental variations or
job demands. This type of structure also makes it difficult to
make changes or adjust the program in response to new needs
or operational requirements [5].
This situation calls for developing new software tech-

nologies to make programming more intuitive, flexible,
and adaptable to any robot and process [6]. Graphical
programming works through a graphical representation
of data flows and control [7], [8]. These use graphical
elements, including blocks that identify different operations
and functionalities, visual connections to interconnect the
various blocks, and implement diverse logic, all through
drag-and-drop. Methods that ensure modularity, reuse, and
simplification of complexity. Programming by demonstration
allows the operator to program a robotic task by personally
performing it [9] or manipulating the robot to perform it [10].
The robot can generate a model from these demonstrations
to autonomously replicate the task. Furthermore, during
executions, the system can receive operator feedback to
optimize the execution further. Natural language and voice

control programming methods decode human language,
written or spoken [11], [12], into specific operations that the
robot can perform to accomplish the desired task. This aims
to make robot programming a regular dialogue between the
operator and the robot. Augmented and virtual reality are used
in robotic programming to create an immersive and intuitive
experience for developers [13]. Developers can interact
directly with the robot and its work environment through
headsets, displaying programming elements overlaid on the
real world [14] or exploring dedicated virtual environments.
Using gestures or voice commands, they can manipulate
objects, add instructions to the robot’s program, and test
changes in real time. This approach offers a smoother
and more collaborative programming experience, enabling a
better understanding of the robot’s behavior and facilitating
the development of complex applications.

Despite these methods bringing notable innovation in
intuitiveness and simplification of programming, they still
present defects that prevent them from being used in an
industrial context [15]. The task of simplifying programming
often leaves gaps in terms of execution precision [16].
Simplifying the programming method tends to remove as
much burden as possible from the operator, leaving the
robot responsible for defining most of the process to be
carried out. However, these techniques usually focus more
on transforming the information provided by the operator
into the structure of the task; the quality of execution is
often overlooked. For example, pick-and-place programming
focuses more on which object to pick up and which position
it should take without worrying about the accuracy of picking
and releasing. This is unacceptable in an industrial environ-
ment, considering the high standards required by production.
Furthermore, industrial processing usually requires very
complex tasks, and the simplicity of programming makes this
goal very difficult [17] because the programming process
requires many details that intuitive programming cannot
define. There is also an adaptability problem; techniques that
may be effective in a laboratory environment may not be in
an industrial environment [18]. Vision systems may struggle
in a non-perfectly lit environment or with variable brightness
throughout the day. Vibrations due to processes may make it
challenging to use sensors. The excessive noise characteristic
of industries does not allow adequate detection of human
voices. An industrial environment must also comply with
safety regulations. Furthermore, these methods often require
special equipment or a significant overhaul of industrial
equipment, requiring time, effort, and additional costs.

These issues have led to the search for new solutions,
including artificial intelligence (AI), which is becoming
increasingly popular in robotics [19]. The ability of AI to
learn and adapt to different situations and environments,
generating intelligent models, provides powerful tools with
capabilities superior to traditional algorithms [20]. AI is
being applied across various fields of robotics, including
path planning and replanning [21], object detection and
recognition [22], and human activity recognition [23]. These

VOLUME 12, 2024 173735



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

advancements have generated tools that can be useful to
integrate into robotic programming. Providing the robot with
intelligence removes some of the operator burdens, and high-
level programming could be possible thanks to task planning.

Task planning and adaptability are crucial for a robot to
perform a task autonomously. The robot must define which
operations are necessary to achieve a goal and in what order
to carry them out. An important aspect is the ability to modify
this structure to adapt to various unforeseen events that a
work environment may present. AI algorithms are often used
for this purpose [24]; specifically, reinforcement learning
finds considerable use [25]. Equally important are the control
algorithms that enable adaptive movement.

Robot control algorithms allow the robot to adjust
movements based on external inputs, such as force sensors,
enabling it to adapt to various task requirements, especially
when simply defining a trajectory is insufficient, as in the case
of interaction with the environment. In an assembly task, path
planning alone is not enough to perform the task correctly,
as it requires exchanging forces with different components,
and the robot must react appropriately to them. Neural
network approaches are ideal for solving these problems [26],
[27]. Advancements in Large Language Models further
enhance these capabilities.

Large Language Models significantly expand robots’
interactive and cognitive capabilities. These are trained to
understand and generate human language, making them ideal
tools for improving human-machine interfaces. These models
make it easier to program new robotic tasks through a
common language [28]. They also allow a dialogue with
the operator to define the task [29]. Among the various AI
methods, reinforcement learning stands out.

RL is notably prominent among the methods proposed by
AI. It aims to train a model or agent to interact optimally
with an environment to achieve a specific objective. The agent
interacts with the environment through certain actions, which
alter the state of the environment, resulting in a reward that
indicates the benefit of the action towards the final goal.
Through the continuous execution of actions, the agent learns
which actions optimize the reward, specifically its cumulative
value. RL finds use in numerous areas of robotics [30],
highlighting a notable use in manipulating objects [31].

III. MATERIALS AND METHODS
A. TASK OPTIMIZATION FRAMEWORK (BACKGROUND)
In [4], the authors proposed the Task Optimization Frame-
work (TOF). The framework aims to autonomously define a
robotic task’s parameters through a trial and error process,
ensuring a correct task execution. The framework’s core
is modular, providing an intuitive task definition structure
for easy implementation. This structure defines tasks using
three different levels: TOF skills, TOF actions, and the
TOF task. TOF skills represent the primitive operations
a robot can perform, such as actuating an end effector,
linear movement, or force application. These TOF skills

alone cannot generate any result; however, an ordered set
of TOF skills creates a TOF action. TOF actions, which
compose the second level of the structure, can be seen as the
phases into which a task can be decomposed. For instance,
in an assembly task, the manipulation of each component
represents a TOF action. A characteristic of these TOF
actions is their independence from one another; for example,
object manipulation cannot be divided into separate TOF
actions of picking and releasing because the position with
which the object is picked influences its release position. The
only dependency is the order in which they are performed,
as certain assembly processesmust follow a specific sequence
(e.g., the final piece cannot be added before the preceding
parts are assembled). Finally, an ordered set of TOF actions
constitutes a task. Fig. 1 shows the TOF task structure.

The modularity of this structure is essential not only for
intuitive definition but also for parameter definition. The
simultaneous parameter definition can be highly complicated.
Breaking the TOF task into TOF actions makes working on
parameter subsets possible, simplifying the process.

Behavior trees were used to focus TOF’s work on defining
required parameters. Their modular tree-like structure is
ideal for describing this type of structure, making it easy to
program by an operator.

TOF uses a hill-climbing algorithm, presented in [4],
to navigate the parameter space, searching for parameters that
make the task effective. This process involves executing the
task with different parameter values and receiving a reward
that defines the quality of execution. Intelligent selection of
future sets allows for effective reward improvement by trying
to maximize it. It is summarized as follows.

The parameters are modified individually by choosing one
of the three possible actions: increase, decrease, or maintain
the same value. Equation (1) shows these actions, where
pk represents the parameter to use at the k-th iteration, pb
represents the parameter given by the best reward, δmax
represents the maximum allowable variation (it depends on
the work area considered), rand[0:1] samples from a uniform
distribution with a value between 0 and 1, v represents the
action chosen from the three available actions vi, vd , and veq

pk =


pb + δmax · rand[0:1], if v = vi
pb − δmax · rand[0:1], if v = vd
pb, if v = veq.

(1)

The action to be performed is selected using probability
variables associated with each action. Equation (2) shows the
principle of this choice. P(vi), P(veq), and P(vd ) represent,
respectively, the probability variables associated with the
relative actions vi, veq, and vd .

v =


vi, if rv < P(vi)
veq, if P(vi) < rv < (P(veq)+ P(vi))
vd , if rv > P(veq)+ P(vi),

(2)

173736 VOLUME 12, 2024



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

FIGURE 1. Hierarchical structure of TOF task, actions, and skills.

where

rv = rand[0:Ps] , (3)

represents a random value ranging from 0 to the sum of the
probability variables

Ps = P(vi)+ P(veq)+ P(vd ) . (4)

Based on the obtained reward, probability variables
related to the performed actions are updated, increasing the
probability of actions that led to a reward increase and vice
versa. Equation (5) shows the evolution of these variables,
where k is the iteration number.

P(v)|k =


P(v)|k−1 ·

(
k − 1
k

)
+

1
k
, if R > Ro

P(v)|k−1 ·
(
k − 1
k

)
, if R ≤ Ro.

(5)

Notably, the search remains near the best current solution,
only changing the search area if the reward improves. This
feature prevents the algorithm from diverging, which is a
significant risk given the usually high number of parameters
to modify.

Algorithm 1 shows the TOF process. task_execution
is a function that performs the robotic task using the current
task parameters (pcurr and pinit for the first execution),
r indicates the reward obtained from the evaluation of
the task (task_evaluation), rbest represents the best
reward obtained during all the process and pbest the
relative parameters set, k is the iteration number. It is
required for the probability variables (P) update. v is the
vector containing the normalized parameter variation. It is
obtained by the function actions_selection using (2),
params_modification is the function that uses (1) to
update the parameters, P_increment and P_decrement
implement (5).

The hill-climbing process can be problematic if con-
ducted directly in a real environment. Using unknown task
parameters can make the robot’s behavior unpredictable,

Algorithm 1 TOF Algorithm
Input: pinit ▷ Initial task parameter set
Output: pbest ▷ Optimized task parameter set
task_execution(pinit)
r, success ← task_evaluation()
rbest ← r
pcurr ← pinit
pbest ← pinit
k ← 0
while not success do

k ← k + 1
v ← actions_selection(P)
params_modification(pcurr, v)
task_execution(pcurr)
r, success ← task_evaluation()
if r > rbest then

pbest ← pcurr
P_increment(P, k)

else
pcurr ← pbest
P_decrement(P, k)

end if
end while

potentially leading to harmful actions for the robot or
operators. Therefore, the initial parameter definition process
is performed in a simulated environment. The proposed
methods use PyBullet [32], a physics engine and simulation
library widely used in robotics, physics-based simulations,
and reinforcement learning.

B. REINFORCEMENT LEARNING INTEGRATION
The task decomposition in TOF actions makes RL a suitable
tool. Theoretically, a well-trained agent could compute the
optimal parameters in a limited computation time without
needing hill-climbing optimization. In a more realistic
scenario, the agent output may allow the optimizer to

VOLUME 12, 2024 173737



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

FIGURE 2. Software structure for RL models training.

converge in a few generations. However, using RL shifts the
design effort from optimizing the parameters space to training
the agent to generalize the solution of real-life TOF actions.
The Gymnasium [33] library has been used to generate

the working environment and the Stable-Baselines3 [34]
library for the agent or model to be trained. Both are based
on libraries provided by OpenAI, making them suitable
for working together. Gymnasium offers pre-developed
environment models and a base class from which anyone can
generate a custom environment. Stable-Baselines3 provides
ready-to-train reinforcement learning algorithms, which can
be customized through parameters.

As previously described, TOF focuses on defining the
parameters that characterize a task. The algorithmic optimiza-
tion component navigates the parameter space to find a set
that effectively accomplishes a task. To optimize a complex
task, all TOF actions must be optimized as follows from the
Bellman principle of optimality.

A reinforcement learning process requires the definition
of specific components. The environment is the component
to interact to achieve a specific goal. In TOF, this is the
simulation or real environment. Specifically, at the software
level, the gymnasium environment is the interface that
communicates with the simulator or the real robotic cell.
It allows for the reception and transmission of the data
necessary for training. The data provided to the robot are
the parameters that characterize the task. The information
received can vary depending on the task to be performed.
This information defines the environment state, such as the
positions of objects in the scene or the robot configuration.
Part of this information is used as input for the model and is
called observation. The agent is the model to train, which has
the task of learning how to interact best with the environment
to achieve the set goal. These interactions are called actions;
in TOF, these represent the variation of the robotic task
parameters. Finally, the reward is the feedback provided to
train the model that informs it of how much the previously
executed action has benefited or not in achieving the goal.
In the case study, the reward is evaluated based on the quality
of the execution performed. It is provided only during the
learning process; it is not part of the model input. Models are
usually trained in environments where it is easy to obtain the

reward, unlike the usage environment such as the real world.
Fig. 2 shows how the learning components are connected.
Given that the agent must work in a highly complex

environment with a high risk of divergence, the TD3 was
the model choice. This model has characteristics that provide
high stability and the capability to work with very complex
environments.

C. TASK DESCRIPTION
The task chosen to validate the proposed method and train
the RL models is a peg-in-hole operation, where an object
must be inserted into a designated hole. This task was selected
for its simplicity in definition, as it requires few operations,
but it is also relevant for assembly activities that require
force interactions, the ones on which our research focuses.
However, it presents challenges due to the dependency of
grasping positions on the inserting position and the non-trivial
insertion process involving multiple interaction forces.

The execution of a peg-in-hole process consists of inter-
dependent operations, where the grasp position influences
the insertion position. This requires incorporating the process
into a single TOF action so it can be analyzed as a whole;
this TOF action is called object_peg_in_hole. At a high level,
it may only require defining which object to manipulate and
which location to occupy.

In the case study, the task is represented by a single
object_peg_in_hole action. The object_peg_in_hole action
can be divided into (i) moving to the grip position,
(ii) closing the gripper, (iii) moving to the insertion position,
(iv) inserting, and (v) opening the gripper for release. This
subdivision allows us to define this action using only three
TOF skills.Move_to skill was used for moving the robot from
position A to B, generating and executing a free-collision
trajectory. The final position reached by the gripper is defined
by providing the name of the desired reference frame and the
relative translation and rotation. Gripper_operation skill was
used for managing the gripper, and defining how the gripper
should operate. Themain parameter of this skill is whether the
gripper should open or close its fingers. If the robotic gripper
allows, the force applied during the action or the finger
positioning width can also be specified. Tactile_movement
was used for the insertion operation, allowingmovements at a

173738 VOLUME 12, 2024



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

constant speed until a force limit is reached.1 The movement
speed can be defined in both translation and rotation. The
target force can be defined as a total force or by setting limits
for each direction and rotation.

The task involves symmetrical objects around their axis,
making them approximate simple geometric shapes like
cylinders, boxes, or cones. It is assumed that the object is
placed vertically on the working surface, and the axis and
position of the insertion hole are known. Assuming that the
grasping position is perpendicular to the working surface and
the reference position is parallel to the hole axis simplifies
the parameter definition process. This way, relative rotations
were removed from the possible parameters to set. Working
with non-delicate objects, the simple function of opening
and closing the gripper was used without worrying about
specific forces and positions. The remaining parameters
are the grasping and insertion positions, focusing only on
translation.

In particular, the task used in the learning phase involves
a cylinder with a height of 10 cm and a base radius of 3 cm.
The hole, instead, has a radius of 3.2 cm and a depth of 7 cm.
Fig. 3 shows the working environment in the task’s three
fundamental moments: the initial state, the grasping phase,
and complete insertion.

The parameters optimization for this task has two main
objectives. The first is to correct any errors made during the
programming phase, whether performed by an operator or by
taking default parameters. The second objective is to address
potential vision-system errors. The grasping and insertion
positions are relative to the detected object position and must
adapt to any detection inaccuracies.

1) MULTI-ACTION TASK
The optimization of individual actions composing a task
corresponds to the optimization of the entire task. Experi-
ments were conducted on a more complex assembly scenario
involving a series of consecutive peg-in-hole insertions to
validate that. Fig. 4 illustrates the objects being handled
and how they should be assembled. The task is divided
into the following actions: inserting the bottom part of a
container into a holder to restrict its movements, placing the
desired object into the container, and closing the container.
Each pairing between the objects under examination has
a clearance of 2 millimeters, making it comparable to the
previously described task. Separate models for grasping and
insertion were selected to make the data acquisition process
lighter and faster.

D. REINFORCEMENT LEARNING MODELS
The objective of the learning process is to obtain an agent
capable of navigating within the parameter space to provide
a set that generates the successful task. This model must
cope with uncertainties that can arise when working with
a real environment, ranging from object detection errors

1the force measure involves using a Force/Torque sensor.

FIGURE 3. Task execution in the simulation environment.

to programming errors by the operator. In the case study,
possible errors are represented by incorrect settings of

VOLUME 12, 2024 173739



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

FIGURE 4. Multi-action task objects and desired final configuration. Objects: holder (A)(fixed), container bottom (B), internal object (C), container lid
(D). Operation: insert B in A, insert C in B, and place D on C and B.

the grasping and insertion positions or by incorrect object
identification, therefore not knowing its exact position.
This section presents the training approach of five models
designed with increasing complexity but also with increasing
efficiency.

1) POSITION MODEL
The first model was trained using information as similar
as possible to that provided by the optimization algorithm
integrated into TOF. The input to the algorithm consists of
the set of parameters to be optimized and the reward obtained
from the executions. By design, the Reinforcement Learning
model does not use the reward as an input; the reward is
only utilized during the training phase to evaluate the model’s
action goodness in response to the input received. Therefore,
only the current set of skill parameters remains from the
algorithm input. However, using only the set of parameters
does not provide enough information for training. These
parameters represent the variation of the physical quantities
that define the robot task under study, but they have no
physical meaning. Therefore, the model is also provided with
the influenced physical quantities as input, in this case, the
relative position of the gripper and the insertion position.

The RL structure is, therefore, based on an observation
composed of the current set of parameters and the respective
grasping and insertion positions. The action represents the
modification of the parameters; it is a vector of float values
that range between−1 and 1. These values are thenmultiplied
by the maximum possible variation, the same as that provided
by the hill-climbing algorithm. In this way, the parameters
can be increased or decreased within a variation contained
in a known range. The reward is the evaluation of the task
execution. It takes values between −1 and 1. Its value is
defined by analyzing the different conditions in which the
environment can be found. The reward can take on the
following values:
• from −1 to −0.3 if the object is not grasped. The
reward increases as the distance between the grasping
and detected object positions decreases. It wants to bring
the grasping position closer to the object;

• from −0.3 to 0.3 if the grasp position collides with
the object. The reward increases the more aligned the
grasp position is with the object detection concerning the
vertical axis, and the further it is from the floor, it must
move centrally and above the object;

• from 0.3 to 1 if the object is grasped increases as the
final distance between the object and the desired position
decreases.

The defined thresholds have values that are convenient for
dividing the reward into three areas. The physical quantities
are processed so that the reward falls within these thresholds
for each of their values.

Equation (6) is used to generate the reward, where dg_o
indicates the distance between the grasp position and the
detected object, dhg_o is the same distance but only along the
horizontal plane, df _o is the distance between the object and
floor along the vertical axis, and do_t the distance between the
detected object and the target position.

R =


1− do_t , if grasped
0.0− dhg_o + df _o, if collision
−0.3− dg_o, else,

(6)

with do_t ∈ [0, 0.7], dhg_o ∈ [0, 0.3], df _o ∈ [0, 0.3]
and dg_o ∈ [0, 0.7]. The distances are saturated with the
reported value, the distances are measured in meters, and the
definition of the simulation environment makes it challenging
to saturate these limits.

A single trial corresponds to a learning step of the entire
task execution; therefore, the training process requiring
many steps implies unacceptable learning times, leading to
ineffective training in a simulated environment. Overcoming
this problem, the Position model was trained in a fictitious
environment that does not use simulation, designed to repro-
duce the reward’s behavior concerning the parameter values,
drastically reducing the times. This fictitious environment has
the same characteristics as the previous one.

2) GENERIC POSITION MODEL
To expand the capability of the Position model, a model was
trained on multiple types of objects, providing the object’s

173740 VOLUME 12, 2024



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

TABLE 1. RL model summary.

dimensions and type considered as information. Selected
objects have symmetric geometries concerning their axis to
be attributable to simple geometries such as box, cylinder,
cone, or sphere. The model name is Generic position model.

3) GRASPING FORCES MODEL AND INSERTION FORCES
MODEL
As a further improvement, the history of interaction forces
was observed during the grasping and insertion phases.
The force history should help the model understand where
the object is located. Due to the fictitious environment,
recording the interaction forces during each execution is
impossible. Therefore, a recording process was carried out
using the simulation environment, modifying the grasping
and insertion positions within a grid to record the interaction
forces in each situation. During the learning phase, the
fictitious model takes the obtained histories and performs
interpolation to generate information even for all intermediate
positions, and for all ones that do not fall within the grid,
the forces are considered zero. The grid of positions used
to obtain the data is composed of x and y values between
±2cm with an interval of 1mm to obtain 1600 positions.
These positions are relative to the correct position to record
in the affected area. The precomputed histories were carried
out by separating the grasping phase from the insertion
phase; specifically, the insertion phase was performed using
a perfect grasping position. This approach does not consider
the dependency between grasping and insertion, so it was
impossible to train a model that simultaneously worked on
both phases. However, two separate models were retained,
one for grasping and one for insertion.

This RL structure presents an observation composed of
the current set of parameters, the respective considered
positions, and the history of the measured forces. The action
remains to modify the parameters. The reward takes values
between 1 and 0 when the considered positions fall within the
known range; if the object is not touched or the insertion is
entirely outside the hole, it becomes impossible to modify the
position sensibly. The reward value decreases as the position

moves away from the correct one. If the position does not
fall within the known range, the reward takes values from
0 to −1. It decreases as the distance between the current and
theoretical correct positions increases. Theoretical correct
position means the position that would be correct if the
object was actually in the detected pose. It is, therefore,
considered that the vision-system error is not larger than the
record area, so the model can always bring itself back to
a position that falls within the known range. Equation (7)
shows the formulas used to generate the reward R, where
dpco_pcu indicates the distance between the current and correct
positions, and dpcu_pth is the distance between the current and
theoretical positions. As in (6), distances are saturated and
measured in meters.

R =

{
1− dpco_pcu , if in known range
0.0− dpcu_pth , else.

(7)

with dpco_pcu ∈ [0, 1] and dpcu_pth ∈ [0, 1]. The model
that uses the grasping force history is called Grasping forces
model, the other one Insertion forces model.

4) PEG-IN-HOLE FORCES MODEL
New force histories were collected to obtain a model that
considers the dependency of the two phases and works
simultaneously on both. In this phase, the forces were
recorded considering the complete task, so each grasping
position was associated with all the insertion positions and
vice versa. By maintaining the previous grid, the number
of recordings would have become too burdensome. It was,
therefore, decided to modify the grid, maintaining the same
range but with an interval of 5mm, to obtain a grid of 64 points
for each position and, therefore, a set of 4096 combina-
tions. However, the structure of the environment remains
unchanged, except that the single grasping or insertion
position is no longer considered, and both are considered
simultaneously. This model was finally called Peg-in-hole
forces model. Table 1 shows a quick summary of the models
proposed in Section III-D.

VOLUME 12, 2024 173741



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

TABLE 2. RL model evaluation indices.

IV. RESULTS AND DISCUSSION
A. REINFORCEMENT LEARNING RESULTS
This section presents the results obtained training the models
described in Section III-D, analyzing them individually.
The following indices report the models’ efficiency and
computational burdens since the solution needs to be easily
adaptable to new requirements.
• Simulation Time indicates the time used to collect data
using the simulation environment.

• Learning Steps represent the steps required to achieve
and maintain a full success rate.

• Learning Time defines the time needed to complete all
the Learning Steps.

• Programming error goal shows if a model can fix a
possible programming error.

• Vision-system error goal shows whether the model can
cope with the vision-system inaccuracy.

• Required step indicates the steps that the model,
after learning, needs to provide a correct set of
parameters.

Table 2 reports the indices computed for all the models.
Position model presents a zero-simulation time because

it avoids simulation usage by design. Training a model
using an environment that included programming and object
detection errors was impossible. This model improved reward
by reaching the grasping area. Once here, the model does
not have enough information to correct the vision-system
error. For this reason, the indices are obtained by training
the model using an environment without object detection
errors. Fig. 5a shows that the model learned to solve the
problem successfully after only 100000 steps, corresponding
to 7 minutes. Fig. 5b demonstrates how the model reduces
epoch length to around two steps, requiring very few steps
to provide a successful parameter set. Fig. 5c depicts the
evolution of the reward. The drawback of this model is
its inability to handle potential vision-system errors and
its capability to provide the theoretical grasp position only
relative to an object.
Generic position model also presents a zero simulation

time, as the only environment modification compared to the
previous case is the generalization of the object. Like the
previous model, this one can only learn from an environment
without object detection errors. Fig. 6a illustrates how this
model’s learning requires exponentially more steps than
the previous one; achieving a success rate of 1 takes
around 1250000 steps, but for greater stability, it requires
approximately 2250000 steps, totaling 160 minutes. Fig. 6b

FIGURE 5. Position model learning results.

shows that the model learns to provide the desired solution
with an average of 3 steps. Fig. 6c demonstrates a rapid initial
increase in reward; the model quickly learns to position itself

173742 VOLUME 12, 2024



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

in the grasp area, withmost of the learning period dedicated to
increasing the success rate percentage. This model addresses
object generalization but not detection errors. It can be highly
useful in the initial phase of defining positions, providing a
good set of parameters to start with and correcting vision-
system errors.

FIGURE 6. Generic position model learning results.

Grasping forces model is trained using an environment
that utilizes data obtained from the simulation world. The
time required to record the various interactions from different
positions is 250 minutes. Fig. 7a shows that the model
achieves a success rate of 1 after 45000 steps but reaches
stability after 90000 steps. The success rate does not stabilize

at 1, which may be because different positions around the
correct position can produce similar forces. The flat surface
of the gripper fingers ensures that small movements parallel
to this surface do not produce variations in force. Fig. 7b
illustrates that the model learns to provide a solution in fewer
than 15 steps. The number of steps is higher than in previous
models but is justified by the significant increase in problem
complexity. Fig. 7c shows an initial rapid increase in reward
followed by a drastic slowdown, which may again be
attributed to the similarity of data around the correct position.

FIGURE 7. Grasping forces model learning results.

Insertion forces model also utilizes data from the simula-
tionworld. The recording time is 300minutes, which is longer

VOLUME 12, 2024 173743



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

than the previous model because the insertion operation
takes slightly more time than grasping. Fig. 8a demonstrates
how the model learns to solve the problem successfully
after 52000 steps, with the success rate remaining stable.
Compared to the previous model, the learning data is more
distinctive. Fig. 8b highlights that the model can solve the
problem in fewer than 14 steps. Despite the increased data
characterization, the resolution speed remains similar to the
previous model. Fig. 8c shows a trend without a stagnant
zone, as the insertion data is more distinctive.

FIGURE 8. Insertion forces model learning results.

Peg-in-hole forces model utilizes the simulator for
1400 minutes. The time is significantly higher than previous

models because, despite reducing the number of grasping
and insertion positions, their combination exponentially
increases the number of required recordings. Additionally,
each recording involves executing the entire task, requiring
more time. Fig. 9a shows a stable success rate of 1 after
375,000 steps. Despite the not extremely high number of
steps, the learning time is longer at 300minutes. Using data as
the model’s state requires high memory usage, slowing down
computation speed; this effect is also observed in the previous
two models, grasping and insertion. Fig. 9b demonstrates that
this model is more efficient than the two separate models,
achieving an average of 5 steps per epoch. This illustrates that
training a model considering relationships between phases
aids the model. The reward trend in Fig. 9c exhibits a smooth
progression without significant issues.

B. TOF RESULTS
This section will briefly show the results presented in the
previous work [4]. These results were obtained using the
algorithm presented in Section III-A on a pick-and-place task.
Table 3 shows the results related only to the optimization
phase, as the framework does not require initial phases where
a model needs to be trained. It can be noted that the presented
results show different algorithms because, in addition to
the algorithm shown previously, variants were created to
make comparisons. Algorithm 2 modifies the search area
in the state space to better adapt to the requirements.
Algorithm 3 presents a different assignment of weights to
previous rewards, trying to give more value to the most
recent ones. Algorithm 4 implements bothmodifications. The
table shows the average iterations needed to reach a goal.
‘Centering’ is the goal that indicates the number of steps
needed to align the peg (in this case, it was a can) with the
hole. ‘Success’ indicates a complete insertion of the can into
the hole. The averages were obtained from the results of
20 optimization processes for each algorithm.

TABLE 3. TOF tests result. Centering: iterations to obtain can centering.
Success: iterations to perfect execution (500 is the maximum iteration
number in the simulation).

It is immediately noticeable that the iterations required to
achieve a correct result are higher than those obtained with
RL models. This highlights how a customized tool is more
efficient.

C. MODELS AND ALGORITHMS COMPARISON
This section compares the TOF approach presented in [4] and
the approach, based on RL, presented in the current paper
solving the peg-in-hole task. Three aspects are considered for
the comparison: ease of use and adaptation (i.e., the effort

173744 VOLUME 12, 2024



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

FIGURE 9. Peg-in-hole forces model learning results.

required by an operator to use one of these methods when
approaching a new task); process efficiency (i.e., how efficient
and valuable a method is and under what conditions); future
potential (i.e., how the various methods could evolve and
identify the most interesting ones for development).

Regarding ease of use, both methods share some common
features. The operator is burdened to define a new work
environment and task and must provide the necessary
information for the optimization phase. This specifies which
parameters to modify, their range, and which indices to use
for the reward calculation. TOF does not require anything
more to be operational. On the other hand, RLmodels require

FIGURE 10. Container bottom Insertion forces model learning results.

additional steps. For models that do not use data, a new
dedicated environment must also be defined each time a new
model needs to be trained. This is because these environments
simulate the rewards generated by a specific robotic task,
so if the task changes, the environment must also change. For
models that work with historical force data, the environment
can be made generic, able to adapt to a different number of
parameters and different data dimensions, customizing which
phases of the task to record. The drawback of these models is
the initial data collection. Even for this process, it is possible
to generate generic software, but this process takes time,
which increases proportionally with the length of the task.

VOLUME 12, 2024 173745



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

FIGURE 11. Internal object Insertion forces model learning results.

Speaking about process efficiency, the RL models are
significantly better. Aside from the Theoretical Position and
Generic Theoretical Position models, which only partially
meet the requirements for a successful task, the other models
have a much lower number of steps per process than can be
achieved using TOF. RL models have an efficiency better
than 95%. This shows that a customized model is necessarily
better than a generalized algorithm. However, since they
require a costly data collection phase, these models are more
useful when repeatedly working with the same objects. The
high variability of the scene objects greatly complicates the
entire adaptation process regarding RL models.

FIGURE 12. Container lid Insertion forces model learning results.

Future potential of the algorithms used by TOF is
possible, although their modification would likely not result
in significantly better efficiencies than the current ones. Their
growth potential is insufficient to allow them to reach the
efficiencies achieved with RLmodels. In contrast, RLmodels
still have enormous growth potential. For example, consider
a model that learns from data collected on different types of
objects and with different dimensions. Of course, the data
acquisition process would be much more burdensome. Still,
it would generate a much more flexible model, eliminating
the adaptability problem to different tasks while maintaining
the same efficiency.

173746 VOLUME 12, 2024



M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

Overall, the TOF framework provides a more flexible
tool with the same usage times. For RL models, the time
necessary for data collection must be considered. However,
RL models present significant development possibilities that
could lead to having an equally flexible and more efficient
tool. The only drawback of these new models would be a
high data collection time, having to record data for various
situations, but then compensated by its execution speed.
This time requirement makes the method suitable only for
producing medium-large batches, where reschedules are rare
and training is done offline.

D. MULTI-ACTION TASK RESULT
This section presents the results of training RL models on a
multi-action task. The task under examination is introduced
in Section III-C1, highlighting the training of separate
models for grasping and insertion. Regarding the grasping
task, the geometry of the considered objects resulted in
the inability to train any model successfully. The gripping
surfaces are flat, meaning infinite gripping positions exhibit
the same interaction forces. Therefore, assuming a maximum
localization error of 0.5 cm for the objects, the training
focused on the insertion models.

Figures 10 11 and 12 show the training results of the
models. A significant improvement in learning speed is
observed; the values range between 4000 and 5000 steps for
the two container parts (elements A and B in Figures 4a
and 4b). At the same time, for the internal object, they
reach 20,000 steps (element C in Figure 4c). This marked
improvement can be attributed to the geometry of the parts.
The square base of the container allows for a millimeter of
mechanical clearance on both sides, allowing more clearance
along the diagonals. The same reasoning applies to the
hexagon but more strictly explains the increase in learning
steps.

This demonstrates the effectiveness of these optimization
methods even for tasks composed of multiple actions.

V. CONCLUSION
This paper compares two methods for defining the robotic
task parameters using a trial and error approach. The first
method uses the Task Optimization Framework, a tool based
on a dedicated algorithm developed by authors in [4]. The
second presents an alternative solution where the algorithm
is replaced by RL models trained for the specific task.

The results are obtained by evaluating the performance
of both methods in solving a peg-in-hole problem. These
show efficiency better than 95% with the use of RL models.
However, this is accompanied by poor flexibility, as the
models are trained to solve a specific task. In contrast,
TOF shows excellent flexibility but requires considerable
time for each optimization process. It is, therefore, evident
that for similar tasks where training new RL models is not
required, the latter are much more useful. In more general
tasks, TOF proves to be the better choice. The potential for
method evolution greatly favors RL models, as they could

become superior in every aspect with the possibility of greater
generalization.

Despite the demonstrated potential, both methods are
still limited by the simulation constraints. The optimization
process is slowed down significantly by long simulation
times. Additionally, not all processes can be accurately
simulated. Tasks involving themanipulation of flexible or soft
objects, or interactions with very complex geometries, such
as the interaction of a thread and a screw, continue to pose
challenges for achieving reliable simulations.

In future work, the authors aim to develop new RL models
that generalize tasks as much as possible to obtain models
capable of adapting to different environments and object
types. Experiments will also be conducted on diverse tasks
to validate the effectiveness of the proposed methods with
generic tasks. Simulators such as Isaac Lab, which allow
parallel simulations to reduce process times drastically, will
also be considered.

REFERENCES
[1] A. Gasparetto and L. Scalera, ‘‘A brief history of industrial robotics in the

20th century,’’ Adv. Historical Stud., vol. 8, no. 1, pp. 24–35, 2019.
[2] M. Bdiwi, ‘‘Intuitive robot programming and intelligent tools,’’ IST Int.

Surf. Technol., vol. 16, no. 2, pp. 8–9, Jun. 2023, doi: 10.1007/s35724-022-
1138-6.

[3] R. Raffaeli, P. Bilancia, F. Neri, M. Peruzzini, and M. Pellicciari,
‘‘Engineering method and tool for the complete virtual commissioning
of robotic cells,’’ Appl. Sci., vol. 12, no. 6, p. 3164, Mar. 2022. [Online].
Available: https://www.mdpi.com/2076-3417/12/6/3164

[4] M. Delledonne, E. Villagrossi, and M. Beschi, ‘‘Optimizing parameters
of robotic task-oriented programming via a multiphysics simulation,’’
in Proc. IEEE 28th Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2023, pp. 1–4.

[5] M. Wojtynek, J. J. Steil, and S. Wrede, ‘‘Plug, plan and produce as
enabler for easy workcell setup and collaborative robot programming in
smart factories,’’ KI—Künstliche Intelligenz, vol. 33, no. 2, pp. 151–161,
Jun. 2019, doi: 10.1007/s13218-019-00595-0.

[6] P. Bilancia, J. Schmidt, R. Raffaeli, M. Peruzzini, and M. Pellicciari,
‘‘An overview of industrial robots control and programming approaches,’’
Appl. Sci., vol. 13, no. 4, p. 2582, Feb. 2023. [Online]. Available:
https://www.mdpi.com/2076-3417/13/4/2582

[7] T. B. Ionescu, ‘‘Leveraging graphical user interface automation for generic
robot programming,’’ Robot., vol. 10, no. 1, pp. 1–23, 2021. [Online].
Available: https://www.mdpi.com/2218-6581/10/1/3

[8] M. Chemnitz, M. Yordanova, and A. Vick, ‘‘Graphische programmierung
von industrierobotern,’’ Zeitschrift für wirtschaftlichen Fabrikbetrieb,
vol. 116, no. 4, pp. 227–231, Apr. 2021, doi: 10.1515/zwf-2021-0044.

[9] J. P. C. de Souza, A. M. Amorim, L. F. Rocha, V. H. Pinto, and
A. P. Moreira, ‘‘Industrial robot programming by demonstration using
stereoscopic vision and inertial sensing,’’ Ind. Robot, Int. J. Robot. Res.
Appl., vol. 49, no. 1, pp. 96–107, Jan. 2022, doi: 10.1108/ir-02-2021-0043.

[10] L. Biagiotti, R. Meattini, D. Chiaravalli, G. Palli, and C. Melchiorri,
‘‘Robot programming by demonstration: Trajectory learning enhanced by
sEMG-based user hand stiffness estimation,’’ IEEE Trans. Robot., vol. 39,
no. 4, pp. 3259–3278, Apr. 2023.

[11] H. Hu, J. Chen, H. Liu, Z. Li, and L. Huang, ‘‘Natural language-based
automatic programming for industrial robots,’’ J. Grid Comput., vol. 20,
no. 3, p. 26, Aug. 2022, doi: 10.1007/s10723-022-09618-x.

[12] T. B. Ionescu and S. Schlund, ‘‘Programming cobots by voice: A
pragmatic, Web-based approach,’’ Int. J. Comput. Integr. Manuf., vol. 36,
no. 1, pp. 86–109, Jan. 2023.

[13] W. Yang, Q. Xiao, and Y. Zhang, ‘‘HAR2bot: A human-centered
augmented reality robot programming method with the awareness of
cognitive load,’’ J. Intell. Manuf., vol. 35, pp. 1985–2003, Mar. 2023, doi:
10.1007/s10845-023-02096-2.

VOLUME 12, 2024 173747

http://dx.doi.org/10.1007/s35724-022-1138-6
http://dx.doi.org/10.1007/s35724-022-1138-6
http://dx.doi.org/10.1007/s13218-019-00595-0
http://dx.doi.org/10.1515/zwf-2021-0044
http://dx.doi.org/10.1108/ir-02-2021-0043
http://dx.doi.org/10.1007/s10723-022-09618-x
http://dx.doi.org/10.1007/s10845-023-02096-2


M. Delledonne et al.: Evaluating Task Optimization and Reinforcement Learning Models

[14] B. Ikeda and D. Szafir, ‘‘PRogramAR: Augmented reality end-user robot
programming,’’ACMTrans. Hum.-Robot Interact., vol. 13, no. 1, pp. 1–20,
Mar. 2024, doi: 10.1145/3640008.

[15] G. Ajaykumar, M. Steele, and C.-M. Huang, ‘‘A survey on end-user robot
programming,’’ ACM Comput. Surv., vol. 54, no. 8, pp. 1–36, Oct. 2021,
doi: 10.1145/3466819.

[16] S. Blankemeyer, R. Wiemann, L. Posniak, C. Pregizer, and
A. Raatz, ‘‘Intuitive robot programming using augmented reality,’’
in Proc. CIRP, vol. 76, 2018, pp. 155–160. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212827118300933

[17] P. Tsarouchi, S. Makris, G. Michalos, M. Stefos, K. Fourtakas,
K. Kaltsoukalas, D. Kontrovrakis, and G. Chryssolouris, ‘‘Robotized
assembly process using dual arm robot,’’ in Proc. CIRP Conf.
Assem. Technol. Syst., vol. 23, 2014, pp. 47–52. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212827114011354

[18] V. Villani, F. Pini, F. Leali, and C. Secchi, ‘‘Survey on human–robot collab-
oration in industrial settings: Safety, intuitive interfaces and applications,’’
Mechatronics, vol. 55, pp. 248–266, Nov. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957415818300321

[19] J. Arents and M. Greitans, ‘‘Smart industrial robot control trends,
challenges and opportunities within manufacturing,’’ Appl. Sci., vol. 12,
no. 2, p. 937, Jan. 2022. [Online]. Available: https://www.mdpi.com/2076-
3417/12/2/937

[20] M. Soori, B. Arezoo, and R. Dastres, ‘‘Artificial intelligence,
machine learning and deep learning in advanced robotics, a review,’’
Cognit. Robot., vol. 3, pp. 54–70, Jan. 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667241323000113

[21] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, ‘‘Path
planning techniques for mobile robots: Review and prospect,’’ Expert
Syst. Appl., vol. 227, Oct. 2023, Art. no. 120254. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095741742300756X

[22] S. M. Marvasti-Zadeh, L. Cheng, H. Ghanei-Yakhdan, and S. Kasaei,
‘‘Deep learning for visual tracking: A comprehensive survey,’’ IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 5, pp. 3943–3968, May 2022.

[23] M. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, ‘‘Human
activity recognition using tools of convolutional neural networks: A state
of the art review, data sets, challenges, and future prospects,’’ Comput.
Biol. Med., vol. 149, Oct. 2022, Art. no. 106060. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0010482522007739

[24] L. Heuss, D. Gebauer, and G. Reinhart, ‘‘Concept for the automated
adaption of abstract planning domains for specific application cases
in skills-based industrial robotics,’’ J. Intell. Manuf., vol. 35, no. 8,
pp. 4233–4258, Oct. 2023, doi: 10.1007/s10845-023-02211-3.

[25] K. Jabrane and M. Bousmah, ‘‘A new approaach for training cobots from
small amount of data in industry 5.0,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 12, no. 10, pp. 1–13, 2021, doi: 10.14569/ijacsa.2021.0121070.

[26] S. Chen and J. T. Wen, ‘‘Industrial robot trajectory tracking control
using multi-layer neural networks trained by iterative learning con-
trol,’’ Robotics, vol. 10, no. 1, p. 50, Mar. 2021. [Online]. Available:
https://www.mdpi.com/2218-6581/10/1/50

[27] T. N. Truong, A. T. Vo, and H.-J. Kang, ‘‘Neural network-based sliding
mode controllers applied to robot manipulators: A review,’’ Neuro-
computing, vol. 562, Dec. 2023, Art. no. 126896. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231223010196

[28] H. Fan, X. Liu, J. Y. H. Fuh, W. F. Lu, and B. Li, ‘‘Embodied intelligence
in manufacturing: Leveraging large language models for autonomous
industrial robotics,’’ J. Intell. Manuf., vol. 2024, pp. 1–17, Jan. 2024, doi:
10.1007/s10845-023-02294-y.

[29] K. Hori, K. Suzuki, and T. Ogata, ‘‘Interactively robot action planning with
uncertainty analysis and active questioning by large language model,’’ in
Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII), Jan. 2024, pp. 85–91.

[30] Md. A. Khan, M. R. J. Khan, A. Tooshil, N. Sikder, M. A. P. Mahmud,
A. Z. Kouzani, and A.-A. Nahid, ‘‘A systematic review on reinforcement
learning-based robotics within the last decade,’’ IEEE Access, vol. 8,
pp. 176598–176623, 2020.

[31] D. Han, B. Mulyana, V. Stankovic, and S. Cheng, ‘‘A survey on
deep reinforcement learning algorithms for robotic manipulation,’’
Sensors, vol. 23, no. 7, p. 3762, Apr. 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/7/3762

[32] E. Coumans and Y. Bai. (2016). Pybullet, a Python Module for
Physics Simulation for Games, Robotics and Machine Learning. [Online].
Available: http://pybullet.org

[33] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. D. Cola,
T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel,
R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis. (Mar. 2023). Gymnasium. [Online]. Available:
https://zenodo.org/record/8127025

[34] A. Raffin, A. Hill, A. Gleave, A. Kanervisto,M. Ernestus, andN.Dormann,
‘‘Stable-baselines3: Reliable reinforcement learning implementations,’’ J.
Mach. Learn. Res., vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-1364.html

MICHELE DELLEDONNE received the B.S. and
M.S. degrees in industrial automation engineering
from the University of Brescia, Italy, in 2019 and
2021, respectively. He is currently pursuing the
joint Ph.D. degree in mechanical and industrial
engineering with the University of Brescia and the
Institute of Intelligent Industrial Technologies and
Systems for Advanced Manufacturing, National
Research Council, Milan, Italy. His research
interests include robot task optimization, intuitive

robot programming, and control techniques for industrial manipulators.

ENRICO VILLAGROSSI received the B.S. and
M.S. degrees in industrial automation engineering
and the Ph.D. degree in applied mechanics from
the University of Brescia, in 2008, 2011, and
March 2017, respectively. His Ph.D. thesis was
about the use of industrial robots in machining
applications. Since December 2020, he has been
a permanent Researcher with the Institute of
Intelligent Industrial Technologies and Systems
for Advanced Manufacturing, National Research

Council (STIIMA-CNR), Italy. He has been involved in several European
projects, including FP7, H2020, and HE programs. His research interests
include cutting-edge robotic applications in advanced manufacturing,
robotics applications for circular economy, and sustainable robotics.

MANUEL BESCHI (Member, IEEE) received the
B.S. and M.S. degrees in industrial automation
engineering from the University of Brescia, Italy,
in 2008 and 2010, respectively, and the Ph.D.
degree in computer science, engineering and
control systems technologies from the Department
of Mechanical and Industrial Engineering. He has
been an Associate Professor with the University of
Brescia, since 2022.

ALIREZA RASTEGARPANAH received the
Ph.D. degree in robotics from the University of
Birmingham, in 2016. Continuing his research
pursuits, he joined University College London
and later the Faraday Institution. He is a
Senior Research Fellow with diverse research
interests broadly centered on robotics, machine
vision, AI, machine learning, and human–robot
interaction. He is internationally recognized in
robotic disassembly and currently a Co-PI of the

REBELION Project, which focuses on robotizing the process of testing,
disseminating, and sorting EV batteries.

Open Access funding provided by ‘Consiglio Nazionale delle Ricerche-CARI-CARE-ITALY’
within the CRUI CARE Agreement

173748 VOLUME 12, 2024

http://dx.doi.org/10.1145/3640008
http://dx.doi.org/10.1145/3466819
http://dx.doi.org/10.1007/s10845-023-02211-3
http://dx.doi.org/10.14569/ijacsa.2021.0121070
http://dx.doi.org/10.1007/s10845-023-02294-y

