
This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement.

This is the author's version which has not been fully edited and content may change prior to final publication.

Citation information: https://doi.org/10.1109/tim.2020.3043116

Copyright (c) 2024 IEEE. Personal use is permitted. But republication/redistribution requires IEEE permission.

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

1

Assessment of Different OPC UA Implementations
for Industrial IoT-based Measurement Applications

Alberto Morato, Stefano Vitturi, Federico Tramarin and Angelo Cenedese

Abstract—The Industrial IoT (IIoT) paradigm represents an
attractive opportunity for new generation measurement appli-
cations, which are increasingly based on efficient and reliable
communication systems to allow the extensive availability of
continuous data from instruments and/or sensors, thus enabling
real-time measurement analysis. Nevertheless, different communi-
cation systems and heterogeneous sensors and acquisition systems
may be found in an IIoT-enabled measurement application,
so that solutions need to be defined to tackle the issue of
seamless, effective, and low-latency interoperability. A significant
and appropriate solution is the Open Platform Communications
(OPC) Unified Architecture (UA) protocol, thanks to its object–
oriented structure that allows a complete contextualization of
the information. The intrinsic complexity of OPC UA, however,
imposes a meaningful performance assessment to evaluate its
suitability in the aforementioned context. To this aim, this paper
presents the design of a general yet accurate and reproducible
measurement setup that will be exploited to assess the perfor-
mance of the main open source implementations of OPC UA.
The final goal of this work is to provide a characterization of the
impact of this protocol stack in an IIoT-enabled Measurement
System, in particular in terms of both the latency introduced in
the measurement process and the power consumption.

Index Terms—Industrial internet of things (IIoT), distributed
sensors, open platform communication unified architecture (OPC
UA), latency assessment, performance evaluation, distributed
measurement applications.

I. Introduction
In the last few years, the industrial world embraced the

Industry 4.0 paradigm [1], which merges technologies with
products, systems, and services, having its own intrinsic net-
worked structures, to realize the Industrial Internet of Things
(IIoT) [2], [3]. IIoT is a network of networks that connects
industrial equipment, controllers, sensors and actuators, i.e.
the “Things”, to provide diverse and advanced types of ser-
vices in manufacturing systems, aiming at improving quality,
productivity, efficiency, reliability, safety, and security.

Traditionally, the foundation of manufacturing and process
industries has been in the deployment of specific distributed
sensor systems, to the purpose of monitoring (and then con-
trolling) the production process, thus leveraging the concept
of Distributed Measurement Systems (DMS) [4]. With the in-
creased pervasiveness of the IIoT paradigm, DMSs come even
more into focus, since the components of an IIoT system need

A. Morato is with the Dept. of Information Engineering, University of
Padova, Italy and with CMZ Sistemi Elettronici srl, Carbonera, Italy.

A. Cenedese is with the Dept. of Information Engineering, University of
Padova, Italy and with the CNR–IEIIT, National Research Council of Italy.

S. Vitturi is with the CNR–IEIIT, National Research Council of Italy.
F. Tramarin is with the Dept. of Engineering E. Ferrari, University of

Modena and Reggio Emilia, Italy.

an even further level of interaction to integrate instrumentation
data, sensors, communication and processing. Moreover, the
need of improving production capacity and optimizing the out-
put process, and eventually exploiting predictive maintenance
and machine learning approaches [5], requires an increased
number of sensor devices and sensor swarms to be deployed.

This new IIoT–enabled DMS scenario is based on the
support of efficient and reliable communication systems, which
have to ensure widespread availability of data gathered from
possibly heterogeneous measurement instruments and/or sen-
sors [6], [7]. Overall, the IIoT paradigm may represent the
enabler for several enhanced measurement features: continu-
ous and thorough measurements through low-power wireless
connections, measurement collection over considerably wide
geographic areas, and real-time analysis of measurement data
collected from the field [8].

Unfortunately, in the highlighted IIoT scenario it is common
that components and sensors devices come from different
producers and use different formats to represent measurement
data, and also it is very likely that they intrinsically operate
over heterogeneous networks. Hence, the provision of ways
to enable communication and interoperability among such
devices is of paramount importance. A key solution toward
this goal is the Open Platform Communication (OPC) Uni-
fied Architecture (UA) [9]. OPC UA is a protocol defined
by the IEC 62541 international standard [10] conceived to
implement Machine–to–Machine (M2M) communication over
possibly different physical media, while ensuring high level
data protection against attacks and threats.

OPC UA represents hence an appealing and advantageous
opportunity for the arising IIoT measurement paradigm. Par-
ticularly, its object–oriented structure allows a complete con-
textualization of the information. For instance, an OPC UA
object could be used to store the value of a measurement,
the features of the instrument/sensor, the measurement units,
possible thresholds and so on. Such important characteristics
allow for new generation of measurement instruments to deal
with multiple and heterogeneous types of data.

At the same time, the complexity of the OPC UA protocol
may also reveal an obstacle to its introduction within measure-
ment systems. Indeed, sensors and actuators, field equipment
and measurement instruments in the IIoT scenario are typically
realized exploiting devices with limited hardware resources
and low computational capabilities (and low costs). As a
consequence, the implementation of OPC UA on such devices
might be problematic and, furthermore, the performance might
result compromised, in terms of increased latency and power
consumption, hence impairing the quality and accuracy of

2

measurements.

II. Related Work and Contribution

The introduction of Industrial IoT technologies in the con-
text of distributed measurement systems has started to be
addressed some years ago. Paper [8] deals with the potential of
IIoT for the instrumentation and measurement fields. Notably,
the authors provide an accurate assessment that addresses ben-
efits and challenges, including also some useful commercial
aspects. In [11], [12] and [13] the authors address diverse
Low Power Wide Area Networks (LPWAN) to enable IIoT-
based measurement and monitoring applications over large
distances. Both papers [14] and [15] describe the use of Wi-Fi,
another important network for IIoT, to implement measurement
systems that involve remote cloud data storage and analysis.

Moving to OPC UA, in [16] the authors describe a method
to achieve synchronization among electrical drives connected
via EtherCAT (a widespread real–time Ethernet network) using
the OPC UA protocol. Particularly, the paper deals with the
significant topic of obtaining a high accuracy synchronization
over a geographically distributed system, that is of uttermost
importance in distributed measurement applications. In [17],
the authors refer to metrology assisted assembly systems, and
introduce the optical large–scale metrology instruments, such
as laser trackers and indoor GPS. Then they propose an object–
oriented model to formally describe such instruments and
investigate the suitability of OPC UA, as well as that of
other protocols, to implement such a model. In [18] OPC
UA is used to implement a smart sensor system to monitor
the behavior of numerical control devices in the Industry
4.0 context. Specifically, OPC UA objects are used to store
sensor information such as measurement, threshold, range,
product data, etc. Another interesting OPC UA application is
proposed in [19]. Here the authors present a system based
on OPC UA to connect and integrate components typical of
industrial automation as well as of distributed measurement
systems. Examples of applications are provided that include
smart microgrids, industrial laboratories and energy systems in
general. Paper [20] considers an IIoT environment and focuses
on the transfer of plant data to a cloud when OPC UA–based
gateways are used to gather data directly at the production
level. Notably, the authors implemented a measurement system
that allowed to determine the impact of Quality of Service
parameters on the communication delays.

The papers cited above represent interesting contributions.
However, as far as OPC UA is concerned, they mostly describe
meaningful applications that make use of such protocol, with-
out investigating its actual potential and capabilities. Nor, they
consider protocol implementation aspects, which represent
very important issues especially in the industrial scenario.

Moving from the above considerations, in this paper, which
substantially extends [21], we propose a more structural as-
sessment about the adoption of OPC UA in the context of
IIoT–based measurement systems. In this respect, we report
and discuss the results of an experimental work on some
popular implementations of the OPC UA protocol stack,
Particularly, we considered four OPC UA implementations.

Three of them are open source, namely Open62541, FreeOPC
UA C++ and FreeOPC UA Python, whereas the fourth one is
a proprietary product, namely Prosys OPC Java. The work is
aimed at investigating the behavior of OPC UA for the different
implementations focusing on i) CPU usage, ii) communication
times and iii) power consumption. In order to provide a
meaningful and fair assessment, the protocol was implemented
on a widespread commercially available Raspberry Pi Model
3B+ board that, thanks to its features, represents a manageable
and effective test–bed. The measurement set–up has been
designed to be of general usage and reproducible. Also, ex-
periments have been mostly carried out using two widespread
communication systems, namely Ethernet and Wi–Fi.

In detail, the paper is organised as follows. Section III gives
a brief description of the OPC UA protocol and outlines the
possible structure of distributed measurement systems that rely
on OPC UA. Section IV introduces the experimental set–up
implemented for the measurements. Section V describes the
tests carried out and discusses the obtained results. Finally,
Section VI concludes the paper and outlines some future
directions of research.

III. Brief Introduction to OPC UA

OPC UA is based on a client–server relationship, in which
the information is structured following an object–oriented
model, where objects are formally referred to as “nodes”. The
OPC UA model defines the node objects in term of variables,
methods and events. A Node is, hence, the fundamental entity
of OPC UA and represents a basic object which has only the
attributes necessary to define any kind of information item
(e.g. ID, name, etc.). The set of nodes made available by an
OPC UA server is referred to as the address space [22].

To access the information stored within the nodes, OPC UA
provides for a number of service sets. The attribute service
set, in particular, contains the read/write services that may
be used by a client to access the attributes of a node. Thus, for
example, the attribute “value” of a node of type “variable” may
be read (respectively, written) by a client by suitably invoking
the read (respectively, write) service.

With the subscription service set, a client may define a “sub-
scription” and assign to it some “monitored items”. Then, any
attribute of any node in the address space may be associated to
a monitored item. The change of one of such attributes triggers
a “notification” to the subscription. Based on a “publishing
interval” set by the client, the subscription periodically sends
to the client the list of notifications that occurred during the
publishing interval. In this way, for example, a client may be
notified periodically with the list of changes of the attribute
value, of a node of type variable, that occurred in the last
publishing interval.

More recently, a further relationship to exchange infor-
mation in the context of OPC UA has been added to the
standard, namely, the PubSub (Publisher – Subscriber) rela-
tionship. It is complementary to the client–server one. With
this model, a publisher is responsible for creating “DataSets”
that may contain the attributes of variable or event nodes
(for example the value of a variable). DataSets are grouped

3

within “DataSetMessages“ that are sent continuously to a
“Message Oriented Middleware” that, in turn, delivers them
to subscribers. With such a model, it is possible to distribute
data and events relevant to the publisher to a set of devices
(subscribers) in a very efficient way.

In the context of IIoT-based measurement applications, the
OPC UA protocol can be profitably exploited to allow seamless
and secure interoperability among the heterogeneous sources
of measurement data, as well as among the heterogeneous
communication networks. Indeed, measurements can be stored
by nodes that belong to one or more servers, so that they can
be seamlessly accessed by distributed clients using, for ex-
ample, the aforementioned service sets. An illustrative sketch
representing the described scenario is reported in Figure 1.
As can be seen, measurements stored in different devices, and
structured within diverse OPC UA servers, can be remotely
accessed by an OPC UA client which implements techniques
of real–time analysis and visualization.

Measurement real-time Analysis
and Visualization

OPC UA client

Cloud,
Internet or

Local Network

OPC UA Server OPC UA Server

Instrument
or Sensor

Instrument
or Sensor

. . .

Fig. 1. Example of use of OPC UA in an IIoT-based Measurement System.

IV. Experimental Set–up
The experimental set–up has been redesigned, with respect

to [21], to be as much general as possible, with reproducibility
in mind in order to be easily reused in different scenarios. The
set–up has been used to assess the behavior of some different
OPC UA protocol stacks, implemented on lightweight embed-
ded systems, that resemble those adopted by intelligent IoT
sensors. Particularly, experiments have been carried out using
Raspberry Pi Model 3B+ boards, over two diverse communi-
cation systems, namely Ethernet and Wi-Fi, as schematically
shown in Fig. 2. Indeed, while both networks are meaningful
in distributed measurement systems and IIoT scenarios, the
former is much more targeted to high performance, ultra
low-latency and local measurement applications, whereas the
latter represents its wireless counterpart, allowing for increased
mobility and larger installations. More importantly, although
Wi-Fi networks are able to provide very high transmission rate
and good reliability, the performance figures they provide are
clearly different with respect to those of Ethernet networks,

OPC UA
Server

OPC UA
Server

OPC UA
Client

OPC UA
Client

Ethernet
Switch

Raspberry Pi3 Raspberry Pi3

OPC UA
Server

OPC UA
Server

OPC UA
Client

OPC UA
Client

Access
Point

Raspberry Pi3Raspberry Pi3

WiFi

(((

(((((((((

WiFi Configuration

Ethernet Configuration

Fig. 2. Experimental set–up.

that may considered hence as a benchmark. An important as-
pect that will be analyzed in this work is hence the comparison
between the two network supports in terms of latency to gather
measurement data, which is a crucial parameter for accurate
distributed measurements.

As can be seen, the same topology was used for the two
networks, with OPC UA client and server implemented on two
diverse Raspberry Pi boards. A Netgear WGR 614 Wireless-
G router was used to connect the two boards that was able to
seamlessly implement the packet routing for both the Ethernet
and Wi-Fi configurations.

Two different operating system versions have been used
for the boards. The first one is represented by the default
Raspbian OS (Kernel version 4.14.79), whereas the second
one is its real-time version (Kernel version 4.14.74–rt44).
The latter one has been obtained from the default kernel
version with the introduction of the RT_PREEMPT patch set,
which enables a real–time behavior of the system allowing
non critical parts of the kernel to be preempted in favor of the
execution of userspace applications. Furthermore, we exploited
a useful feature offered by the Linux operating system, to
isolate a group of CPU cores in which a process can be
run. Specifically, the isolcpus boot parameter in combination
with the taskset command, allows to isolate one or more
cores from the kernel scheduling and to reserve them for the
execution of userspace applications without interference from
the OS. Furthermore, in order to minimize the external factors
that may affect the accuracy of the measurements, the CPU
governor (i.e. a kernel–level component responsible of scaling
the CPU frequency based on the workload) has been disabled
during the experiments and the CPU frequency has been set
to its maximum operable value of 1.4 GHz.

The implementations of OPC UA considered in the ex-
periments are reported in Table I, along with the indication
of the adopted programming language (PL). For the open
source implementations (available through the popular Github

TABLE I
OPC UA Implementations.

OPC UA
Implementation Type Programming

Language
Commit

Hash
Open62541 Open Src. C99 / C++98 9f0c73d
FreeOPC UA C++ Open Src. C++11 da2b76f
FreeOPC UA Python Open Src. Python 83fb9ea
Prosys Java v4.3.0-1075 Proprietary Java –

4

platform) we also provide the commit hash of the sources at
the time the experiments were performed.

All the listed protocol stacks work natively on Raspberry
Pi boards, and consequently their setup procedures have not
involved any further software adaptation. However, they are
conceptually different. In particular, as can be seen, two out
of four stacks are implemented by means of compiled lan-
guages (C/C++), whereas the other ones are implemented in,
respectively, Python and java, which are high level interpreted
languages. As a consequence the analysis of their behaviors
reveals necessary to provide useful insights for the applications
that use them. In this direction, since the outcomes of the
experiments also depend on the adopted development envi-
ronment, the most relevant technical details are summarized
below:

• Python version 3.5.3;
• openJDK 1.8;
• glibc 2.23;
• gcc version 6.3.0;
• gcc optimization option: -O3 -s.
Finally, it has to be pointed out that other valuable OPC

UA implementations are available (either free of charge or
commercial), that could have been considered in our work.
For example Eclipse Milo, ASNeG OPC UA, OpenOpcUa,
High Performance OPC UA, to mention some. To this regard,
an interesting overview of such solutions is provided in [23].
However, the aim of our analysis is to investigate the behavior
of OPC UA in the context of IIoT based measurement systems,
not to provide a comparison of different OPC UA imple-
mentations. For this reason, we selected among the available
solutions those listed in Table II paying attention to their
diversity, so that the proposed assessment can result adequately
comprehensive.

V. Measurement Results and Analysis
The objective of the measurements is to assess the behavior

of the diverse different OPC UA implementations focusing
on performance figures that are of interest for IIoT-based
measurement instruments and applications. Specifically, we
addressed the CPU usage, the power consumption and the
task execution times. The latter indicator is of particular
significance in the application context of this paper, since it has
reflects the overall latency with which measurement data can
be collected at the client, and is hence a meaningful indicator
of the intrinsic capability of the system to sustain real-time
measurement analysis over networks [8].

A. CPU Usage
A first set of outcomes is resumed in Table II, which shows

the statistics about the CPU usage for the three considered
implementations.

As can be seen, Open62541 is the most efficient from
the average resources utilization point of view, followed by
FreeOPC UA C++ and FreeOPC UA Python. Actually, the
latter one highlighted a rather higher utilization compared to
the other ones. However, this is not surprising since FreeOPC
UA Python and Prosys Java are based on interpreted languages,

TABLE II
Statistics of the CPU Usage.

CPU Usage

Mean In Kernel
Space

In User
Space

Open62541 17.2% 60.89% 39.11%
FreeOPC UA C++ 26.1% 50.63% 49.37%
FreeOPC UA Python 51.2% – –
Prosys Java 50.9% – –

Server
Client

Thread A:
Acquisition
of a variable

from the sensor

Thread B:
OPC UA

Server Stack

Common
memory

area

OPC UA
Client Stack

Read
request

Response with
variable object

Fig. 3. Test Task for OPC UA.

that are certainly less efficient. It is interesting to note that, for
the Open62541 implementation, the subdivision of the used
resources of the CPU is slightly unbalanced towards the Kernel
Space, while for FreeOPC UA C++ we have a subdivision
almost at 50%. Unfortunately, values for FreeOPC UA Python
are not available, because the tool Perf, with which the
analysis was performed, does not support measurements of
the stack of interpreted languages.

B. Read and Write Services
The experiments we carried out to test the OPC UA read and

write services were based on a purposely developed test OPC
UA task, with which an integer variable stored in the OPC
UA server is read by the OPC UA client. In a first session, we
focused on the open source implementations. In this task, the
server implements two separate threads as shown in Figure 3.
Thread A simulates the acquisition of a new measurement (i.e.
a physical quantity) every second, by increasing an integer
variable. Thread B is instead devised to manage the whole
OPC UA server. The measurement outcome, stored in an OPC
UA object, is saved in a memory area common to both threads
so that the server can access it. In the test task, the OPC UA
client cyclically reads the value of the variable stored on the
server. This is accomplished by a read request issued by the
client, to which the server answers in agreement with the OPC
UA protocol rules.

The outcomes relevant to the CPU usage for the read and
write services are reported in Table III. The table refers to
context switches, CPU migrations and total number of CPU
cycles to complete the execution of 100.000 consecutive OPC
UA test tasks. These outcomes are common indices exploited
to determine the efficiency of a program, where high values
indicate poor optimization and therefore long execution times.

5

The results are in good agreement with those shown in Subsec-
tion V.A. Also in this case, both the compiled implementations
have comparable values, whereas both the Python and Java
based ones show much higher values regarding in particular
the number of CPU cycles.

TABLE III
CPU usage for the OPC UA test task.

context
switches

CPU
migrations

CPU
cycles

Open62541 100 · 103 1 7.7 · 109

FreeOPC UA C++ 200 · 103 0 13 · 109

FreeOPC UA Python 283 · 103 29 533 · 109

Prosys Java – – 174 · 109

To assess the performance of the read and write services,
we measured the task execution time, 𝑇𝑠 , defined as the time
necessary to complete one instance of the OPC UA test task
described in Figure 3. Specifically, 𝑇𝑠 represents the time
that elapses between the read request of the client, 𝑇𝑟𝑒𝑞 , and
the time at which it actually receives the OPC UA object
containing the variable, 𝑇𝑟𝑒𝑠.

𝑇𝑠 = 𝑇𝑟𝑒𝑠 − 𝑇𝑟𝑒𝑞 (1)

In the experiments, 𝑇𝑠 has been measured by a direct access
to the content of the Cycle Counter Register (CCR), an
internal CPU register implemented within ARM processors,
which is a counter of the processor clock cycles. This design
choice is significant to improve the accuracy relevant to the
measurement of the task execution time, because accessing
the CCR register requires only one CPU cycle [24], hence
introducing a negligible impact on the evaluation of the time
𝑇𝑠 . The OPC UA test task was run continuously, meaning that
a new instance of the task was started immediately after the
conclusion of the former one. In the Ethernet configuration, the
selected transmission rate was 100 Mbit/s whereas, for the Wi-
Fi one, we chose the IEEE 802.11g mode, with transmission
rate dynamically selected by the multi–rate support feature
provided by such protocol1. For each experimental session,
𝑁 = 100.000 measurements of the execution time have been
collected and analyzed. Furthermore, all the components of
the experimental set–up were located sufficiently close to each
other to ensure, particularly for the Wi-Fi configuration, a
high success probability in packet delivery. This has been
subsequently confirmed by the traffic analysis we carried out,
that showed a very low number of packet retransmissions and
losses, with an average of about 3.6%.

The statistics of the execution time for the OPC UA test
task are reported in Table IV for the case of non – isolated
CPU and, respectively, in Table V for the isolated one.

At a first glance, the beneficial effect of introducing CPU
isolation appears clear. Indeed, as shown in Table V, all mean
values decrease when such a feature is used. The behavior of
standard deviations is similar, with an exception relevant to
the Open62541 implementation. In this case, a slight increase
(from 12.56 to 12.76 µs) is observed when switching from

1Please note that the multi–rate support feature could not be disabled on
Raspberry Pi boards.

TABLE IV
Statistics of the Execution Time for the OPC UA Test Task –

Non–Isolated CPU.

Execution Time 𝑇𝑠 [µs]

Generic OS RT OS

Mean Std Mean Std

Ethernet
Open62541 312.83 12.56 382.48 24.44
FreeOPC UA C++ 377.30 4.54 467.59 15.01
FreeOPC UA Python 736.79 7.44 778.43 20.63

Wi-Fi
Open62541 2036.12 501.60 3765.62 924.52
FreeOPC UA C++ 2063.38 488.10 3869.62 907.36
FreeOPC UA Python 9274.24 750.59 12824.94 3901.25

TABLE V
Statistics of the Execution Time for the OPC UA Test Task – Isolated

CPU.

Execution Time 𝑇𝑠 [µs]

Generic OS RT OS

Mean Std Mean Std

Ethernet
Open62541 306.67 12.76 368.78 10.13
FreeOPC UA C++ 374.74 3.32 457.60 11.32
FreeOPC UA Python 711.27 6.52 735.84 9.69

Wi-Fi
Open62541 1950.29 460.55 3431.68 886.28
FreeOPC UA C++ 2017.71 457.51 3656.67 902.52
FreeOPC UA Python 9031.62 713.10 12463.11 3807.16

the non–isolated case to the isolated one. We believe this
aspect may be explained by the low average execution time
of the Open62541 implementation. Indeed, we have checked
that only the 30% of the CPU time was necessary to execute
the Open62541 stack. Thus, both the task execution time and
its variability, are mostly determined by the execution times
of unbounded kernel threads (e.g. those concerned with the
TCP/IP protocol suite, the network drivers, etc.), as well as by
the network transmission times, that do not benefit from the
CPU isolation.

The results shown in Table V are confirmed by the prob-
ability density functions obtained experimentally (empirical
probability density function, EPDF), reported for the Ethernet
configuration, respectively, in Fig. 4 (generic operating system)
and in Fig. 5 (RT operating system). As can be seen, the CPU
isolation improves the EPDF shapes in most cases.

The tests carried out on the Wi-Fi configuration revealed
similar trends, as shown in both Table IV and Table V and
in both Fig. 6 and Fig. 7. In particular, the benefits brought
by the CPU isolation are evident. As can be seen, both mean
and standard deviation are greater with respect to the Ethernet
case. This is due to the longer packet transmission times as
well as to the possible retransmissions (interleaved by random
backoff times) that could be necessary to successfully deliver
a packet. Also, as discussed in [25], the task execution time is
further negatively influenced by the Access Point which may
introduce additional, non negligible, delays and randomness.

The introduction of the RT operating system, in general,

6

280 300 320 340 360 380
0

5

10
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

(a) Open62541

340 350 360 370 380 390 400 410 420
0

10

20

·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F

(b) FreeOPC UA C++

700 710 720 730 740 750 760 770 780 790
0

5

10
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F

(c) FreeOPC UA Python

Fig. 4. Generic OS: EPDF of the execution time of the OPC UA test task
for the Ethernet configuration. Blue line: configuration without CPU isolation.
Red line: configuration with CPU isolation enabled, where both server and
client are forced to run on the isolated CPU.

worsened the behavior of the OPC UA test task execution
time, as can be evinced from the statistics and the EPDF
reported above. Actually, the mean values are higher for all the
OPC UA implementations, with respect to the correspondent
cases in which the generic OS is used. The same happens
for the standard deviation, with the unique exception of the
Open62541 implementation (in this case, the value decreases
from 12.76 to 10.13 µs when the RT OS is used). However,
as already pointed out, these values, for the Open62541
implementation, are mostly influenced by the times necessary
to execute unbounded kernel threads.

Although the worsening observed when the RT operating
system is used may seem surprising, it may be explained
making some considerations about the introduction of the
Linux real–time extension. Actually, as can be seen from Table
II, all the considered implementations of the OPC UA protocol
stack make extensive use of the kernel functions, especially
those concerning network connectivity. Nonetheless, the real-
time patch makes some parts of the kernel preemptable, thus
leaving up more space for executing instructions in the user
space. Thus, the stack execution could be interrupted more
frequently, resulting in longer execution times and greater
jitter. Furthermore, as reported in [26], the application of
the Linux real–time extension has negative effects on the
throughput of the communication interface. This is confirmed

340 360 380 400 420 440 460
0

5

10

15 ·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

(a) Open62541

420 440 460 480 500 520 540 560
0

2

4

6
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F

(b) FreeOPC UA C++

720 740 760 780 800 820 840 860
0
2
4
6
8

·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F

(c) FreeOPC UA Python

Fig. 5. RT OS: EPDF of the execution time of the OPC UA test task for the
Ethernet configuration. Blue line: configuration without CPU isolation. Red
line: configuration with CPU isolation enabled, and where both server and
client are forced to run on the isolated CPU.

by the traffic analysis that showed, in the worst case, an
increment of 2.8 times of packet retransmissions.

Focusing on the stack implementations, the obtained re-
sults show that both the compiled versions, Open62541 and
FreeOPC UA C++, are characterized by comparable average
values of the OPC UA test task execution time. Conversely, the
average 𝑇𝑠 is much higher (about doubled) for the FreeOPC
UA Python implementation, as it was expected since Python
is an interpreted language. This aspect is exacerbated for
the Wi-Fi configuration. As far as the standard deviation
is concerned, with the Ethernet configuration, Open62541
presents higher values than both FreeOPC UA C++ and
FreeOPC UA Python, especially as percentage of the mean,
reflecting in a considerable jitter of the execution time. This
feature is evident for the generic operating system, whereas it
appears more vague for the RT operating system, likely due
to the additional randomness introduced by this latter one. A
similar consideration can be made for the Wi-Fi configuration.
In this case, as can be seen, both the mean and standard
deviation are increased with respect to Ethernet. However, the
standard deviation values become comparable, especially for
Open62541 and FreeOPC UA C++, likely as an effect of the
randomness in accessing the physical medium introduced by
Wi-Fi.

The final experiments of the read and write services

7

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

·103

0

5

10
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

(a) Open62541

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

·103

0

5

10
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F

(b) FreeOPC UA C++

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04

·104

0

2

4

6
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F

(c) FreeOPC UA Python

Fig. 6. Generic OS: EPDF of the execution time of the OPC UA test task for
the Wi-Fi configuration. Blue line: configuration without CPU isolation. Red
line: configuration with CPU isolation enabled, where both server and client
are forced to run on the isolated CPU.

were concerned with the Prosys Java implementation. In this
case, due to space limitations we considered only the (most
meaningful) case of generic OS over Ethernet. The EPDF of
the test task execution time is shown in Fig. 8, whereas the
statistics are reported in Table VI. As can be seen, both mean
and standard deviation are considerably higher with respect to
the open source implementations, confirming the trend already
observed when an interpreted language (Java in this case) is
used. Also, the EPDF shown in Fig. 8 puts in evidence the
high variability of 𝑇𝑠 , which is only partially mitigated by the
CPU isolation.

TABLE VI
Statistics of the Execution Time for the OPC UA Test Task for the

Prosys Java implementation on Ethernet with Generic OS.

Execution Time 𝑇𝑠 [µs]

Without
CPU Isolation CPU Isolation

Mean Std Mean Std
2793.19 348.50 2648.31 280.13

C. Subscription Services
In this session of experiments, we addressed the OPC

UA subscription services. Similarly to the last test of the
previous Subsection, we considered the case of generic OS

2 2.5 3 3.5 4 4.5 5

·103

0
2
4
6
8

·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

(a) Open62541

2 2.5 3 3.5 4 4.5 5

·103

0

5

10
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F

(b) FreeOPC UA C++

0.8 1 1.2 1.4 1.6 1.8 2

·104

0

2

4

·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F

(c) FreeOPC UA Python

Fig. 7. RT OS: EPDF of the execution time of the OPC UA test task for the
Wi-Fi configuration. Blue line: configuration without CPU isolation. Red line:
configuration with CPU isolation enabled, and where both server and client
are forced to run on the isolated CPU.

2,500 2,600 2,700 2,800 2,900 3,000
0

2

4

·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

Fig. 8. EPDF of the execution time of the OPC UA test task for the Prosys
Java implementation on Ethernet with Generic OS.

over Ethernet. Moreover, we focused on only one open source
implementation, namely Open62541, and on the Prosys Java
proprietary solution. Notably, Open62541 revealed the most
effective open source implementation among those addressed
in the previous subsection. Also, as discussed in [27] and [28],
Open62541 is well supported and suitable for applications in
the IIoT scenario.

Subscription services are totally asynchronous and let the
server to notify changes in its nodes. With refer to Fig 3, we
associated a monitoring item to the sensor value simulated
by Thread A. In this way, the server checks the data source
with a period defined by the “Sampling Interval” and, when
the publishing interval elapses, it sends a “Publish Response”
message containing the notification of data change. Then the

8

220 240 260 280 300 320
0

0.5

1

1.5

2
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

Fig. 9. EPDF of the delivery time for the subscription service – Open62541
implementation over Ethernet with Generic OS.

client acquires the data and sends a “Publish Request” message
that acknowledges the received data.

To assess the performance of the subscription service for the
Open62541 implementation, we evaluated the delivery time,
defined as the time employed by the client to acquire a data
published by the server. The measurements have been carried
out as follows. When the publish response message is ready
to be transmitted, the server sets one of the GPIO pins of the
Raspberry Pi. Similarly, when the client receives the message
at the application level, it sets one of its GPIO pins. The
interval elapsed between the generation of the two consecutive
signal edges represents the delivery time. In this experiment,
6000 measurements have been collected and analyzed.

On the server, both the publishing interval and sampling
interval have been set to 100 ms, which is the minimum
selectable value on the default implementation of Open62541,
whereas the update interval of Thread A has been set to 30 ms.
The signal edges of the GPIO have been acquired by a logic
analyzer with a sample rate of 24 MHz.

TABLE VII
Statistics of the delivery time for the subscription service Open62541

implementation over Ethernet with Generic OS.

Delivery Time [µs]

Without
CPU Isolation CPU Isolation

Mean Std Mean Std
267.77 24.55 255.68 22.59

The EPDF of the delivery time is shown in Fig. 9, whereas
its statistics are provided in Table VII. Although an effective
comparison with the results of the read and write services
reported in Subsection V-B can not be done (the adopted mea-
surement techniques had to be necessarily different), it may be
observed that the delivery time has, on average, lower values
than the task execution time of the read service. This can
be explained considering that, with the subscription services,
a single message transmission by the server is sufficient to
make the measured data available to the client. Conversely,
the jitter increases with respect to the read service for the
Open62541 implementation. For the same considerations made
in Subsection V-B, we believe this is most likely due to the
execution of unbounded kernel threads that may heavily impact
on the behavior of the delivery time. As a final observation,
the CPU isolation is beneficial also in this case.

Moving to the Prosys Java implementation, an analogous
procedure to evaluate the delivery time could not be used,
since for such a proprietary implementation, it has not been

250 300 350 400 450 500 550
0

1

2

3
·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

Fig. 10. EPDF of the delivery time for the subscription service – Prosys Java
implementation over Ethernet with Generic OS..

possible to modify the stack core to set the GPIO pins.
Thus, we resorted to analyze the time stamps of the messages
exchanged over the network, acquired with Wireshark. The
delivery time has been hence determined as the time interval
between the generation of the publish response message and
the arrival of the acknowledgment generated by the client.

The EPDF of the delivery time is shown in Fig. 10, whereas
the statistics are reported in Table VIII

As can be seen, also in this case, the subscription service
appears more efficient than the read one (although, as already
pointed out for the Open62541 implementation, an effective
comparison can not be made). Indeed, the mean time necessary
to acquire a measurement data by the client is definitely lower
than that shown in Table VI for the read service. Also, the
beneficial effect of the CPU isolation is evident.

TABLE VIII
Statistics of the delivery time for the subscription service Prosys Java

implementation over Ethernet with Generic OS.

Execution Time 𝑇𝑠 [µs]

Without
CPU Isolation CPU Isolation

Mean Std Mean Std
434.33 47.57 401.53 24.84

D. PubSub Communication Profile
In a final experimental session we addressed the OPC UA

PubSub communication model. Currently, PubSub is only
supported by Open62541 and, although it provides all the
main methods, it is an experimental version still under heavy
development. Similarly to the subscription services carried out
for Open62541, the server has been configured to publish a
message every 100 ms. These messages were sent to a message
oriented middleware via UDP multicast transmissions using
the UADP encoding. As for Open62541, we measured the
delivery time as the difference between the generation of the
two consecutive signal edges on the GPIO pins. The EPDF of
the delivery time and its statistics are reported respectively in
Fig. 11 and Table IX. Contrary to expectations, with the use
of PubSub, there is a remarkable worsening of performance
with respect to the subscription services. Indeed both mean
and jitter values increase considerably. This is an unexpected
result, since the PubSub communication model has been
conceived to minimize protocol overhead and hence to reduce
the transmission times between publishers and subscribers.
Thus, there are not logical explanations of these outcomes.

9

300 350 400 450 500 550
0

0.5
1

1.5
2

·10−2

𝑇𝑠 [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

Fig. 11. EPDF of the pubsub transmission time for the Open62541 imple-
mentation on Ethernet with Generic OS.

We suppose the problem is due to the fact that the PubSub
implementation of Open62541 is still under development.

TABLE IX
Statistics of the delivery time for the pubsub communication profile

over Ethernet with Generic OS.

Delivery Time 𝑇𝑠 [µs]

Without
CPU Isolation CPU Isolation

Mean Std Mean Std
384.77 43.93 376.28 43.69

E. Power Consumption
One of the main issues concerned with, possibly mobile,

battery powered devices is the autonomy. Indeed, such devices
have to ensure a good level of performance for a given amount
of time. To meet these requirements, modern processors are
capable of Dynamic Voltage and Frequency Scaling (DVFS) to
minimize their power consumption and, consequently, extend
the battery lifetime [29]. In the Raspberry PI boards used in
the experimental setup, the DVFS functionality is driven by
a default kernel governor, called ondemand, that dynamically
adjusts the CPU frequency in agreement with the workload
variation. Specifically, if the workload exceeds a predefined
threshold for a certain amount of time, then the governor
increases the CPU operating frequency to its maximum value.
Conversely, if the workload is below the threshold, the operat-
ing frequency is switched to the lowest feasible one [30]. Such
an approach, clearly, represents an optimal trade-off between
performance and power consumption in a generic processing
system.

We carried out an analysis of the DVFS impact on both
power consumption and performance for the experimental
setup considered so far. The first tests have been performed
using the Open62541 stack, on the Wi-Fi configuration, with
the generic operating system and without CPU isolation using
read/write services. In detail, we measured the current con-
sumption on the client side, as well as the time necessary
to complete the experimental session described in Subsection
V.B, that comprised the execution of 𝑁 = 100.000 OPC UA
test tasks.

The circuit implemented for current measurement is de-
scribed in Figure 12. The Raspberry Pi was powered by a
stabilized power supply, providing a 5 V continuous voltage.
The adsorbed current was measured using a Hall effect sensor
whose sensitivity is 185 mV/A. Current measurements have
been acquired using an external digital acquisition system

equipped with a 12 bit ADC with an input range of (0 , 3.3) V
at a sampling rate of 1 kHz. Each time the OPC UA test task
is started, the Raspberry Pi rises a signal triggering a new
acquisition of the current level, which is also timestamped for
further analysis.

Power
Supply

Current Sensor

RaspberryPi

External ADC

−

+

Trigger

5V

Fig. 12. Setup adopted for current measurements.

TABLE X
Statistics of the current consumption with CPU governor disabled

and enabled.

Current [A] Session completion
time [ms]

Mean Std Idle

Governor Enabled 0.4175 0.0587 0.3928 235924
Governor Disabled 0.4767 0.0760 0.4462 215259

The results of this new set of experiments are summarized in
Table X, which reports the statistics of the current consumption
for the two cases in which the governor was, respectively,
enabled and disabled. The table also shows the current con-
sumption in idle state (i.e. while the experimental session was
not carried out), for comparison.

As can be seen, enabling the governor leads to a slight
decrease of the current consumption, for both average and
standard deviation values. However, the time necessary to
complete the experimental session increases, by almost 10%,
as a result of the continuous CPU frequency adjustments
caused by the workload variations. Thus, at a first glance, it
might not be worth to maintain the governor enabled, since
the benefits achieved in term of power savings may result
nullified by the performance degradation. However, a decision
in this direction has to take into consideration other aspects,
such as the specific devices adopted and the performance
requirements.

A further observation can be made with respect to the
current consumption in idle state. Table X clearly shows only
a limited increase of the current consumption, when moving
from this state to that in which experiments were executed,
regardless of the governor status (enabled or disabled). This
may be explained considering that Open62541 uses very low
CPU resources that, evidently, are not sufficient to imply a
remarkable variation in current consumption, as confirmed by
the results presented in Table II.

Finally, we carried out additional tests for the subscrip-
tion service set and PubSub communication profile. In both
cases, we used we measured the power consumption for the
Open62541 implementation, over Ethernet, with the governor
disabled. The analysis, actually, has not revealed any signifi-
cant change with respect to the former measurements.

10

VI. Conclusion and Future works
In this paper we considered the case of IIoT measurement

applications and proposed the adoption of OPC UA protocol to
enable a seamless interoperability when heterogeneous sources
of measurement data coexist sharing information over the net-
work. We focused on four widespread implementations of the
protocol, to analyze their impact on a networked measurement
system, mostly in terms of latency and power consumption.
A reproducible and effective measurement setup has been
designed that allowed to carry out a thorough assessment, thus
providing a rather complete characterization of OPC UA for
network-based measurement instrumentation systems.

Meaningful results have been obtained, allowing also to pro-
vide some interesting implementation guidelines. For instance,
it has been verified that the use of a real-time operating system
does not bring specific advantages whereas, in general, the best
performances are achieved with a generic operating system
exploiting the CPU isolation for the measurement application.

Furthermore, in compliance with modern IIoT-based appli-
cations, we considered the case of battery powered wireless
measurement systems, thus providing some valuable insights
about the expected power consumption in some selected and
relevant cases. Indeed, the measurement campaign highlighted
that the DVFS feature should be enabled, allowing for lower
power consumption without compromising the performance.

The current work opens up to future analysis. For instance,
power consumption depends also on intrinsic parameters of the
accumulator and on environmental conditions, hence requiring
a more extensive experimental campaign focused on mobile
battery powered measurement instruments. In addition, the
proposed experimental setup for latency analysis seems to be
overkill for small integrated smart sensors. Hence, we plan
to test the framework on low power embedded devices, like
widespread microcontrollers with no operating systems.

References
[1] Y. Lu, “Industry 4.0: A survey on technologies, applications and open

research issues,” J. Ind. Inf. Integr., vol. 6, pp. 1–10, Jun. 2017.
[2] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-

trial internet of things: Challenges, opportunities, and directions,” IEEE
Trans. Industr. Inform., vol. 14, no. 11, pp. 4724–4734, Nov. 2018.

[3] S. Vitturi, C. Zunino, and T. Sauter, “Industrial Communication Systems
and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G,”
Proc. IEEE, vol. 107, no. 6, pp. 944–961, Jun. 2019.

[4] D. Grimaldi and M. Marinov, “Distributed measurement systems,”
Measurement, vol. 30, no. 4, pp. 279–287, Dec. 2001.

[5] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. Boston: Morgan Kaufmann,
2011.

[6] G. Y. Tian, “Design and implementation of distributed measurement
systems using fieldbus-based intelligent sensors,” IEEE Trans. Instrum.
Meas., vol. 50, no. 5, pp. 1197–1202, Oct. 2001.

[7] L. Skrzypczak, D. Grimaldi, and R. Rak, “Analysis of the different
wireless transmission technologies in distributed measurement systems,”
in Proc. IDAACS, Rende, Italy, 2009, pp. 673–678.

[8] B. Ooi and S. Shirmohammadi, “The potential of IoT for instrumentation
and measurement,” IEEE Instrum. Meas. Mag., vol. 23, no. 3, pp. 21–26,
May 2020.

[9] D. Bruckner, M.-P. Stanica, R. Blair, S. Schriegel, S. Kehrer, M. See-
wald, and T. Sauter, “An Introduction to OPC UA TSN for Industrial
Communication Systems,” Proc. IEEE, vol. 107, no. 6, pp. 1121–1131,
Jun. 2019.

[10] International Electrotechnical Commission, IEC 62541: OPC unified
architecture - Part 1: Overview and concepts. IEC, 2016.

[11] M. Rizzi, P. Ferrari, A. Flammini, and E. Sisinni, “Evaluation of the IoT
LoRaWAN Solution for Distributed Measurement Applications,” IEEE
Trans. Instrum. Meas., vol. 66, no. 12, pp. 3340–3349, Dec. 2017.

[12] H. Lee and K. Ke, “monitoring of large-area iot sensors using a lora
wireless mesh network system: Design and evaluation,” IEEE Trans.
Instrum. Meas., no. 9, pp. 2177–2187.

[13] R. Palisetty and K. C. Ray, “FPGA Prototype and Real Time Analysis of
Multiuser Variable Rate CI-GO-OFDMA,” IEEE Trans. Instrum. Meas.,
vol. 67, no. 3, pp. 538–546, Mar. 2018.

[14] V. Bianchi, A. Boni, S. Fortunati, M. Giannetto, M. Careri, and I. De
Munari, “A Wi-Fi Cloud-Based Portable Potentiostat for Electrochemical
Biosensors,” IEEE Trans. Instrum. Meas., vol. 69, no. 6, pp. 3232–3240,
Jun. 2020.

[15] Y. Liao and H. Lai, “Investigation of a Wireless Real-Time pH Monitor-
ing System Based on Ruthenium Dioxide Membrane pH Sensor,” IEEE
Trans. Instrum. Meas., vol. 69, no. 2, pp. 479–487, Feb. 2020.

[16] J. Cavalaglio Camargo Molano, A. Lahrache, R. Rubini, and M. Coc-
concelli, “A new method for motion synchronization among multiven-
dor’s programmable controllers,” Measurement, vol. 126, pp. 202 – 214,
Oct. 2018.

[17] B. Montavon, M. Peterek, and R. Schmitt, “Model–based interfacing
of large–scale metrology instruments,” Proc. SPIE 11059, Multimodal
Sensing: Technologies and Applications, 110590C, Jun. 2019.

[18] S. Lee, C. Kim, and J. Lee, “Development of a Smart Sensor System
Using OPC UA,” in Proc. MoMM, 2017, pp. 220–225.

[19] I. González, A. J. Calderón, A. J. Barragán, and J. M. Andújar,
“Integration of Sensors, Controllers and Instruments Using a Novel OPC
Architecture,” Sensors, vol. 17, no. 7, Jul. 2017.

[20] P. Ferrari, A. Flammini, S. Rinaldi, E. Sisinni, D. Maffei, and M. Malara,
“Impact of Quality of Service on Cloud Based Industrial IoT Applica-
tions with OPC UA,” Electronics, vol. 7, no. 7, p. 109, Jul. 2018.

[21] A. Morato, S. Vitturi, F. Tramarin, and A. Cenedese, “Assessment of
Different OPC UA Industrial IoT solutions for Distributed Measurement
Applications,” in Proc. I2MTC, Dubrovnik, Croatia, 2020, pp. 1–6.

[22] M. Damm, S.-H. Leitner, and W. Mahnke, OPC Unified Architecture.
Springer-Verlag Berlin Heidelberg, 2009.

[23] H. Haskamp, M. Meyer, R. Möllmann, F. Orth, and A. W. Colombo,
“Benchmarking of existing OPC UA implementations for Industrie 4.0-
compliant digitalization solutions,” in 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN), 2017, pp. 589–594.

[24] “Arm Architecture Reference Manual Armv8, for Armv8-A architecture
profile”. Accessed: 2020-10-05. [Online]. Available: https://developer.
arm.com/documentation/ddi0487/fb/

[25] L. Seno, F. Tramarin, and S. Vitturi, “Performance of Industrial Com-
munication Systems - Real Application Contexts,” IEEE Ind. Electron.
Mag, vol. 6, no. 2, pp. 27–37, Jun. 2012.

[26] “Raspberry Pi: The N-queens Problem (benchmark)
Preempt-RT vs. Standard Kernel”. Accessed: 2020-
10-05. [Online]. Available: https://lemariva.com/blog/2018/04/
raspberry-pi-the-n-queens-problem-performance-test

[27] F. Palm, S. Gruener, J. Pfrommer, M. Graube, and L. Urbas, “Open
source as enabler for OPC UA in industrial automation,” in Proc. ETFA,
Luxembourg, Luxembourg, 2015, pp. 1–6.

[28] J. Pfrommer, “Semantic interoperability at big-data scale with the
open62541 OPC UA implementation,” in Proc. Workshop Interoper-
ability and Open-Source Solutions for the Internet of Things, Stuttgart,
Germany, 2016, pp. 173–185.

[29] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-
Larsen, S. Steibl, S. Borkar, V. K. De, and R. Van Der Wĳngaart, “A 48-
Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing
and DVFS for Performance and Power Scaling,” IEEE J. of Solid-St.
Circ., vol. 46, no. 1, pp. 173–183, Jan. 2011.

[30] M. P. Karpowicz, “Energy-efficient CPU frequency control for the Linux
system,” Concurr. Comput., vol. 28, no. 2, pp. 420–437, Feb. 2016.

