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Abstract
Research e-infrastructures are “systems of systems,” patchworks of resources such as tools and services, which change over
time to address the evolving needs of the scientific process. In such environments, researchers carry out their scientific process
in terms of sequences of actions that mainly include invocation of web services, user interaction with web applications, user
download and use of shared software libraries/tools. The resulting workflows are intended to generate new research products
(articles, datasets, methods, etc.) out of existing ones. Sharing a digital and executable representation of such workflows
with other scientists would enforce Open Science publishing principles of “reproducibility of science” and “transparent
assessment of science.” This work presents HyWare, a language and execution platform capable of representing scientific
processes in highly heterogeneous research e-infrastructures in terms of so-called hybrid workflows. Hybrid workflows can
express sequences of “manually executable actions,” i.e., formal descriptions guiding users to repeat a reasoning, protocol or
manual procedure, and “machine-executable actions,” i.e., encoding of the automated execution of one (or more) web services.
An HyWare execution platform enables scientists to (i) create and share workflows out of a given action set (as defined by
the users to match e-infrastructure needs) and (ii) execute hybrid workflows making sure input/output of the actions flow
properly across manual and automated actions. The HyWare language and platform can be implemented as an extension of
well-known workflow languages and platforms.

Keywords Workflow languages · Scientific workflows · Open Science · HyWare

1 Introduction

Over the past decade Europe has developed world-leading
expertise in building and operating e-Infrastructures [29,34].
They are large scale, federated and distributed research envi-
ronments in which researchers have shared access to unique
scientific facilities (including data, instruments, computing
and communications), regardless of their type and location in
the world. They aremeant to support unprecedented scales of
international collaboration in science, both within and across
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disciplines. Their aim is to realize a common environment
where scientists can create, validate, assess, compare and
share their digital results of science, such as research data,
intended as scientific data produced by a scientific effort, and
research methods, intended as digital computation-oriented
elements resulting from their research; research methods are
discipline-specific, as well as research data, but examples
include software, services, tools, workflows, scripts, algo-
rithms and protocols.

The digitalization of the scientific process has raised
unprecedented opportunities and challenges in the way sci-
ence can be performed but also shared, evaluated and reused.
In the last decade, all stakeholders of the research life cycle
(e.g., researchers, organizations, funders) have highlighted
and endorsed the importance of applying Open Science
publishing principles [4]. According to such principles,
researchers should “publish” their scientific results in order
to enable reuse (reducing the cost of science), reproducibility
of science and transparent evaluation of science. According
to such vision, the scientific article is only one of the possi-
ble publishable products, certainly required but insufficient
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at supporting Open Science principles. The Open Science
movement encourages researchers to share (as openly as
possible) (i) the digital products such as research data and
research methods valuable to their research (e.g., input and
output data, a text-mining algorithm), (ii) the e-infrastructure
tools theyused to implement their research (e.g., a facility ser-
vice to run methods over data) and possibly (iii) the research
workflows, intended as sequences of actions they performed
to reach their results.

Research workflows are the representation of the scien-
tific process, and the steps the researchers had to perform
using the e-infrastructure tools to run an experiment (e.g., “I
used tool X to test my method Y over research data Z and
obtained research data W”). In most scenarios workflows
are described in the scientific article, which, together with
the availability of all digital products and tools, maximizes
the possibility of reproducing an experiment and objectively
evaluate the quality of the underlying research. The opti-
mal scenario, however, is one where the scientific process
can be encoded in terms of digital, fully automated and exe-
cutableworkflows: digital research products, which provided
together with the related products, can be shared to facilitate
the process of reproducibility of science [21].

Research infrastructures today are often far from being
well-designed and consistent environments embracing Open
Science needs. They are rather “systems of systems,” patch-
works of tools that process or generate research products,
often equipped with “catalogues” where researchers (and
services) can register both research tools and products to
enable their sharing, discovery and reuse. In such contexts,
the heterogeneity of tools is often a necessity as it is not pos-
sible to assume that scientists will produce e-infrastructure
tools adhering to a rigorousworkflow language-like approach
(e.g., Apache Taverna [25], Galaxy [18], KNIME [6]). For
example, actions of a workflow may be: first invoke a web
service A over data d1 to produce the result d2; then down-
load a tool B for the execution of R-scripts and execute the
script r over the data d2 to obtain d3; finally, take the Taverna
workflow t and execute it on myExperiment.org over d3.
Indeed, while subsystems of e-infrastructures may support
workflow languages and engines, this way of thinking can be
hardly imposed to the research e-infrastructure as a whole,
namely cross-platform, cross-nation, cross-laboratory, cross-
funders, etc. Workflows, in such context, remain confined
into the article narration as a natural language description of
how tools must be combined to obtain the expected results.
Although the availability of other products represents an
important step forward toward Open Science, reproducibil-
ity is severely compromised by the absence of digital and
executable experiments [9,31].
Paper contribution. This work presents HyWare (HYbrid
Workflow lAnguage for Research E-infrastructures) [8], a
language and an execution platform for representing sci-

entific process in highly heterogeneous e-infrastructures in
terms of so-called hybrid workflows, which can express
sequences of manually executable actions and machine-
executable actions. In other words, HyWare lays in between
business process modeling languages [5,33], which offer
a formal and high-level description of a reasoning, proto-
col or procedure, and workflow execution languages (e.g.,
BPEL [33]), which enable the fully automated execution of
sequences of computational steps via dedicated engines.

HyWare supports a framework where research actions
templates (identifying classes of actions) can be customized
according to the specifics of the underlying e-infrastructure
and then be combined by researchers into workflows. An
HyWare platform, i.e., a system build to support manage-
ment of HyWare workflows, offers user interfaces to support
the scientists at constructing a workflow out of the available
action classes and make it available for others to discovery.
A second scientist may later discover the workflow and, via
the sameHyWare-based tool, be guided through its execution
on a step-by-step basis. Such tools display to the researchers
which steps they shouldmanually execute to repeat the exper-
iments but, when a sequence of steps is based on components
of executable workflows, execute automatically the relative
actions.
Outline. The rest of the paper is organized as follows.
Section 2 discusses related works. Section 3 provides moti-
vations for the definition of a “hybrid” workflow language
such as HyWare by introducing an example and some ter-
minology. Section 4 formally defines terminology, elements
and semantics of the HyWare language, together with a
sketch of a possible implementation. Section 5 describes
the HyWare platform designed to support the execution of
HyWare workflows by presenting the main components and
discussing aKNIME-based implementation. Section 6 exem-
plifies the usage of HyWare in the real-case scenario of the
SoBigData.eu Research Infrastructure [15]. Finally, Sect. 7
concludes the paper by reporting on future works.

2 Related work

Liew et al. [22] have recently analyzed selected workflow
management systems (WMSs) that are widely used by the
scientific community, namely: Airavata [24], Kepler [20],
KNIME [6], Meandre [23], Pegasus [11], Taverna [35] and
Swift [36]. Such systems have been analyzed with respect
to a framework aiming at capturing the major facets charac-
terizing WMSs: (a) processing elements, i.e., the building
blocks of workflows envisaged to be either web services
or executable programs; (b) coordination method, i.e., the
mechanism controlling the execution of the workflow ele-
ments envisaged to be either orchestration or choreography;
(c) workflow representation, i.e., the specification of a work-
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flow that can meet two goals human representation and/or
computer communication; (d) data processingmodel, i.e., the
mechanism through which the processing elements process
the data that can be bulk data or stream data; (e) optimiza-
tion stage, i.e., when optimization of the workflow (if any) is
expected to take place that can either be build time or runtime
(e.g., data workflow processing optimization [19].

In the era of Open Science, where aspects such as repro-
ducibility and transparency of science and FAIRness of
research data (Findable, Accessible, Interoperable, Reusable
research data)1 are becoming central to the whole research
life cycle, workflow languages play a special role.Workflows
can inherently contribute to the implementation of FAIR data
principles by accurately collecting, processing and manag-
ing data and metadata on behalf of the researchers, while
tracking provenance according to standards [17]. Moreover,
workflows are digital objects in their own right, and they can
be published, discovered, shared and cited for reproducibility
and for scientific attribution of science like research arti-
cles, research data and research software. Known approaches
include (i) workflows as digital artifacts: workflow files
are published in a repository with bibliographic metadata
(e.g., Zenodo2, MyExperiment.org [27]) and can be possibly
related to their inputs and outputs [14,30] ; (ii) workflow-
as-a-Service: workflows are shared via a platform/science
gateway that enables their discovery and execution [10,12].

However, the aforementioned approaches are defined
based on the assumption that workflows are composed of
machine-executable actions, i.e., performed by agents that
can be programmatically invoked. They do not address the
needs, motivated by several scientific contexts, e.g., Big Data
and Social Mining [16], Biodiversity and Cheminformatics
domains [13,28], of definingworkflows that include “manual
actions” (cf. Sec. 3), e.g., data manipulation and adaptation
using editors or shell commands. Attempts in this direction
exist but embrace a fully manually oriented approach, e.g.,
protocols.io [32], enabling the digital representation, pub-
lishing and sharing of digital fully manual workflows.

The main contribution of this paper is the HyWare work-
flow language and execution platform, whose intuition was
earlier presented in [8]. HyWare is uniquely designed to
enable the description of “hybrid” workflows, obtained as
sequences of machine-executable and manually executable
actions. As such, the language can serve the mission of
OpenScience by addressing reproducibility of digital science
beyond traditional approaches, in contexts where workflow
actions are not entirely performed by machines. In this
paper, the language is formalized and flanked by a proposed
implementation of its orchestration platform (cf. Sec. 5.1.3),

1 FAIR principles of research data, https://www.force11.org/group/
fairgroup/fairprinciples
2 https://zenodo.org/

realized as an extension of the KNIME language [6]. This
makes HyWare interoperable with other known workflow
language platforms [14,26] like CWL [1]. Moreover, the
HyWare orchestration platform allows users to create, exe-
cute,monitor andpublishworkflowsvia aGUI (cf. Sec. 5.1.1)
to reduce the learning curve and support the execution of
sequences of manual and machine-executable actions.

3 Rationale

One of the aims of a research e-infrastructure (e-infra) is
to guarantee an integrated framework in order to provide
the researchers with an homogeneous and expressive way
for representing experiments, performing and sharing them
among the community. Consider the following scenario: a
scientist working with the e-infra is using the tools it pro-
vides to run the experiments, which consist in reusing and
generating research data andmethods bymeans of sequences
of actions of the following kinds:

– Local execution of software to be first downloaded and
installed: the execution of the action requires the user to
download and execute a software on its own premises;

– Call to web-accessible services (SOAP/REST): the exe-
cution of the action requires a call to a remote service;

– Web-accessible applications (tools accessible via user
interfaces from the web): the execution of the action
requires accessing a web user interface to use a given
functionality;

– Manual operations: the execution of the action con-
sists in performing an operation that does not involve
e-infrastructure resources of the kinds above, but it is
mandatory to complete the experiment (e.g., “make an
output file available at given URL,” “process an input
CSV file to remove column X and return the resulting
CSV file”).

Once the experiment is concluded, the scientist has iden-
tified the actions he/she needs to perform to reproduce it
and she is now willing to materialize the relative work-
flow in order to share it with others. This will allow other
researchers to be convinced of the quality and value of her
scientific process, by possibly repeating and reproducing the
experiment for validation purposes or reusing its parts. To
this aim, the scientists need a workflow language capable of
describing and combining machine-executable actions and
human-executable actions in such a way the workflow can
be re-executed in a trustable and objective way, guaranteeing
evaluation and reproducibility of science. This language has
to orchestrate actions resulting from tools and best practices
made available to the e-infra and interpreted by different sci-
entists, with no common agreements and policies on the way
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the flow between such actions has to be implemented, e.g.,
how input and output data flows from one action to another.

HyWare (HYbrid Workflow lAnguage for Research E-
infrastructures) [8] is aworkflowmodeling languagedesigned
to meet such scenarios. Its execution engine performs the
orchestration of the workflow by delegating the execution of
some of the actions to the e-infra, of other actions to the sci-
entists, and ensuring input/output parameters of such actions
are properly channeled. HyWare takes inspiration from:

– Orchestration language: HyWare graphically describes
a workflow as a directed graph of nodes whose input
and output parameters are interconnected and validated
according to a degree of compatibility, and whose edges
imply a temporal ordering of execution; workflows are
executed by a local engine, which executes their business
logic and lets the data flow across them, to produce a final
output;

– The protocols.io approach [32]: HyWare actions that
require human interaction are described according to
given templates, so that other scientists can interpret
them and execute them; such actions are executed by the
HyWare engine,which prompts the scientist viaGUIwith
the instructions to perform the action; also human actions
obey to minimal specification requirements, which allow
input and output of the actions to flow frommachine exe-
cutable to human executable nodes.

HyWare hybrid workflows are built out of two main
classes of action nodes: (i) the actions that require human
interaction, and (ii) the actions that are performed by the
e-infrastructure. Unlike other languages, however, the work-
flow makes sure that research data or research methods flow
through both classes of nodes correctly, by adhering to static
compatibility patterns. As in the case of protocols.io the lan-
guage does not enforce specific kinds of actions, but rather
gives the possibility to instantiate e-infra specific classes of
human actions (e.g., download and execution of software)
or machine actions (e.g., web service call) based on a meta-
structure for actions:
Human actions. Human actions are characterized by a
description, expressed by the respective properties, which
should be detailed enough to guide a scientist through the
execution of the action. As a general design pattern, human
actions should reflect the flavor of machine actions, in the
sense their execution should ideally return output parameters
after processing input parameters. For example, the opera-
tion of downloading software and installing should not be
regarded as a “proper” HyWare human action. The action
of downloading a software, installing it, executing it over an
input data file and return an output data file, can be instead
considered a valuable HyWare action.

Machine actions. Machine actions are characterized by a
description, expressed by the respective properties, but are
also associated with a specific implementation of an action
actuator. An actuator is a method whose implementation
wraps the business logic of the action (i.e., each action class
has its own actuator implementation): it is invoked with the
input parameters of the action to execute the business logic of
the action (e.g., invoking a third-party service or local code)
and returns the results to return the output parameters of the
action. For example, a machine action class corresponding
to the execution of a REST service X implements the actu-
ator as a wrapper that properly maps the input parameters,
performs the call to the service and maps the output of the
service as an output of the actuator.
Hybrid workflows. A hybrid workflow is a composition of
human and/ormachine actions into aDirectedAcyclic Graph
(DAG). Time edges between actions express the chronologi-
cal ordering of the actions, hence, before an action can begin
all actions relative to incoming time edges must be termi-
nated. As in the case of service workflow languages, between
two nodes connected by a time edge other input–output edges
exist, indicating the associations between the output param-
eters and the input parameters of the two actions.

In the following we outline a simple example of a hybrid
workflow using different processing tools provided by an e-
infrastructure.

Example 1 (Proactive carpooling application)
This example shows a proactive carpooling application,

developed by means of the tools for analysis of city mobil-
ity (or city of citizens) listed in Table 1. For example, the
Trajectory Builder operator is a web service hosted by the e-
infrastructure,which canbe executed ondemand in the cloud;
the Urban Mobility Atlas is available both as a web service,
for programmatic access, or as a web application, for end-
user access. Anywaymost of the servicesmake their software
freely download-able for local execution. Researchers may
combine and configure these tools to build their own analytic
processes. Thismapping between tools of the e-infrastructure
and the relative actions allows the user to use HyWare inside
the VREs to represent the analytic processes they perform
in terms of hybrid workflows, i.e., DAGs of actions. Such
workflows are themselves e-infra products, hence shareable
and reproducible, by other scientists, as well as subject to
comments and discussion.

In this particular example we present a workflow for
the analysis of vehicular GPS traces in order to build a
proactive carpooling application. The workflow performs
an analytic process that extracts the systematic movements
of the people and computes the possible matches between
“compatible users” offering them an automatic list of rec-
ommendations. In Fig. 1, high-level representation of the
workflow is depicted. The researcher has chosen the tools

123



International Journal of Data Science and Analytics

Table 1 Example of City of Citizens operators

Action Type of invocation

Urban Mobility Atlas Web page, Web service

Trajectory Builder Service hosted, Download

Borders Web service

Sociometer Download

Trip Builder Web page

Carpooling Download

MyWay Download

Privacy Risk Download

O/D Matrix Web service

Mobility Profiles Download

Exploration of Time Download

Statistical Validation Service hosted, Download

Twitter Scraper Web service

IGD Graph Visualizer Web page

needed for his analytic process. Building it, he discovered
that he needs some additional steps of data transformation
where the results of some tools must be adapted to be pro-
cessed by the next one. Moreover, as already said, different
tools are invoked in a different way.

The process starts with the Trajectory Builder action
which require a reference to a table in the platform database
containing the spatio-temporal observations of the user in the
form: userid, the longitude, latitude and the timestamps. The
result is a sequence of trajectories followed by the vehicles
separated in the case a stop is identified.

The resulting datamust be processed by the user exporting
the data from the database into a CSV file and thenmanually
transformed to fit the format required by the next tool.

Mobility Profile is a tool available for local execution;
therefore, the user must first download it, then install it and
finally execute it on the data he prepared in the previous
step. All the trajectories of a single vehicle are grouped in
order to extract a concise representation of its systematic
movements. The obtained result is in the right format, so no
transformations are needed.

Carpooling is available for local execution as well and the
user needs to follow a similar procedure to the previous step.
The result is a list of vehicle pairs representing the vehicles
that may give a ride to the other. This procedure is done over
the systematic movements; therefore, the match defines the
vehicles which are compatible in the everyday activities. The
results produced by the carpooling software have to be trans-
formed in order to be visualized by the IGDGraphVisualizer.
In practice from a specific format the user must transform the
data in a JSON file. The user then may visualize the graph
obtained and apply visual analytic tools to extract the final
list of matches between passengers and drivers.

This example clearly highlights in a real-case scenario the
need for hybrid workflows to encode a repeatable scientific
processes. In the following sections we provide a formaliza-
tion of HyWare actions and workflows and describe how an
HyWare platform installation can be used as an add-on to an
existing research e-infrastructure, highlighting the integra-
tion requirements and required efforts, so as to support such
kind of workflows.

4 The workflow language

In this sectionwe formally describe anAction class, an action
instance, how the latter can be combined into a well-formed
workflow, and how suchworkflows are executed by an engine
via a shared memory. An engine underpins the execution
of workflows by ensuring input and output parameters flow
consistently across the relative actions to reach completion.

Definition 1 (Action class) An Action class A is a represen-
tation of one operation, i.e., a manual or a machine action,
that researchers typically need to perform to implement their
scientific process. Formally, it is defined in terms of inputs
and outputs, processing function and configuration parame-
ters, A =< in, out, f , cp >:

in = {pi1, . . . , pin}, out = {po1, . . . , pok }, cp = {l1, . . . , lr }

where p∗
i is a port defined by the triple < t ype, loc, opt >,

representing, respectively: the type of data produced (output)
or required (input), the location of the data (e.g., local file
system, remote file system, database, etc.), and the opt flag
defining if the port is optional or not. Ports are the chan-
nels through which actions acquire inputs from preceding
actions and deliver outputs to subsequent actions. Configu-
ration parameters are values to be manually provided by the
scientists, required by the action to perform f . De facto, an
Action class represents the generic pattern out = f (in, cp),
where f is the business logic of the humanormachine action.

A port type is a unique label representing a domain of
known values in the e-infrastructure. As it is expected from
programming language types, values of such domains con-
form to given meaning and/or structure. On the other hand,
ports are not always expected to carry such values, like vari-
ables in programming language do. Depending on the port
location loc, ports may contain values of the following kinds:

– URLs to remote files (loc =↑): the file is expected to
contain a value of the given type and it is the consuming
action that needs to fetch such file;

– URIs to local files (loc =↓): as above, the file is expected
to contain a value of the given type and it is the consuming
action that needs to fetch such file;
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Fig. 1 Proactive carpooling
application process

– an actual value (loc = −) represented as a string: the
value needs to be cast by the consuming action to con-
form to the given type, for example a string, an integer,
a Boolean or a custom type.

If an action class A has an output port po, associating
it with location kinds ↑ or ↓ determines a specific behav-
ior of the function A. f . For example if po.loc =↑ then
f is expected to upload a file of type po.t ype on the Web
at a URL to be passed via po. An actual value location −
implies that the value passed over the port has a specific
interpretation (and consumption modes) shared across a set
of Action classes and identified by the type. For example, a
set of action classes may define functions f ’s operating over
a shared databasewhose configuration and access are embed-
ded in the business logic of the actions; actions may define a
custom-type remoteDB whose actual values are strings rep-
resenting valid SQL queries. In another scenario, the same
set of actionsmay instead be able to access any SQL database
accessible online; hence, the type remoteDB would be asso-
ciated with values as queries expressed by URLs that include
database connection details.

Definition 2 (Compatible ports) An input port pi and output
port po are compatible (po � pi ) iff

po.t ype ≤ pi .t ype ∧ po.loc � pi .loc
where

pi .t ype = po.t ype �⇒ pi .t ype ≤ po.t ype and
pi .loc = po.loc �⇒ pi .loc � po.loc

but other custom compatibility statements can be added by
HyWare users to match specific e-infrastructure and actions
needs. This means that types can be casted to application-
specific compatibility rules based on ≤.

As such, an action class is simply a “template” of an oper-
ation, whose actual execution is instead represented by an
action instance.

Definition 3 (Action instance) An action instance a, or sim-
ply an action, is one specific instance of an Action class A.
The same action class may have multiple instances, as many
as needed by a scientists to perform a scientific process.

Action instances make sense as part of a so-called work-
flow, involving other actions of the same of different action
classes. An action instance has a Boolean flag executed that
represents its state of execution.

Definition 4 (Workflow) Given a set of Action classes
A = {A1, . . . , Am}, a workflow w can be defined as a
directed acyclic graph w = (N , E) where nodes N =
{a1, . . . , an} are action instances of the classes in A and
edges E = {e1, . . . , er } are pairs of output and input ports
< a.po, a′.pi >, where a, a′ ∈ N . We can call w a well-
formed workflow iff

1. All the required input ports pi (¬pi .opt) are connected
by and edge:∀A =< in, out, f , cp >∈ N ,∀pk ∈ A.in :
¬pk .opt ⇒ ∃e =< p∗, pk >∈ E
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2. All edges involve compatible ports:

∀e =< pi , po >∈ E, pi � po.

The execution of a well-formed workflow is performed
by an engine as a sequence of steps. Each step executes all
executable actions a, which are those whose input ports or
configuration parameters cp’s have input values available.
Input ports are fed by the values prompted on output ports
of executed actions, while configuration parameters are pro-
vided by users. To this aim, the engine relies on a memory
that is a < key, value > map keeping track, for all actions
in each instant of the execution, which are the values avail-
able for output ports and for configuration parameters. To
this aim, the execution of an action a updates the memory
with < key, value > entries relative to all output ports in
a.out .

Definition 5 (Memory) A memory M is defined a set of <
key, value > pairs that keeps the status of execution of all
workflows w. Keys are of two kinds: action output ports
(w.a.out .po) or action configuration parameters (w.a.cp.l).
The former are yielded by the execution of actions, the latter
are added to M by the researchers.

Definition 6 (Executable Action) Given a workflow w =
(N , E), an action w.a =< in, out, f , cp > in w is exe-
cutable according to a given memory M (w.a ⊕ M) if and
only if:

∀l ∈ w.a.cp : M(w.a.cp.l) �= ⊥)

and

∀pi ∈ w.a.in. < pi , po >∈ w.E : M(w.a.out .po) �= ⊥

and

w.a.executed = f alse

An engine is the agent responsible for the execution of a
well-formed workflow w in a memory M .

Definition 7 (Engine) Given a memory M , and a workflow
w = (N , E) we define:

– The workflow starting actions (nodes without input
ports)

SA(w) = {a ∈ w.N |a.in = ∅}

– The workflow closing actions (nodes without output
ports)

CA(w) = {a ∈ w.N |a.out = ∅}

– The workflow executable actions at a given step of exe-
cution

E AM (w) = {a ∈ w.N |a ⊕ M}

– The execution of an action a ∈ E AM (w) (output values
generated by a. f )

ActionExecM (a) =
{< a.out .p, value > | f generates < a.out .p, value >}

and sets a.executed = true.

An engine executes a well-formed workflow w in the
scope of a given M , inductively, by executing at each step
all possible executable actions, updating M accordingly and
moving to the next step. Intuitively the execution starts when
E AM (w) equals SA(w) and closeswhen the engine executes
the last set of actions E AM (w) = CA(w). To this aim an
engine defines an execution functionWork f lowExecM (w)

that executes an entire workfloww in the context of memory
M as follows:

Work f lowExecM (w) ={
Work f lowExecM̄ (w), E AM (w) �= ∅
M, otherwise

(1)

where M̄ is obtained as

M̄ = M ∪
⋃

a∈E AM (w)

ActionExecM (a)

5 HyWare platform

5.1 Architecture

HyWare is an hybrid workflow language whose execution
environment consists of a platform designed to be integrated
as an overlay of any existing research e-infrastructure (RI).
The HyWare platform provides i the primitives and recom-
mendations to instruct RI researchers at encoding their “RI
actions” in terms of HyWare action classes, and ii the user
interfaces to build, test, share HyWare workflows build out
of actions. The HyWare platform’s architecture consists of
three main components (see Figure 3):

User Interface. The User Interface offers to users the func-
tionalities required to i create a workflow in terms of
sequences of HyWare actions as made available by the
registry component, ii discover existing workflows in the
registry component, iii execute workflows via the work-
flow engine component.
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Registry. The registry is the catalogue of all available
HyWare classes, which can be human actions ormachine
actions, and also the place where workflows created by
users can be deposited for discovery and sharing;

Workflow Engine. The engine offers the functionality to exe-
cute a hybrid workflow as a result of the execution of
individual machine actions (interaction with third-party
services) and human actions it contains.

In the followingwe shall describe the details of these com-
ponents and how they are supposed to interact.

5.1.1 User interface

HyWare’s user interface supports the user with all func-
tionalities required by a workflow management system. In
particular, it enables:

1. Management of “my workflows”: creation, update, exe-
cution of workflow templates and workflow instances.

2. Discovery of workflow templates and relative instances.
3. Monitoring ofworkflows: execution history, notifications,

etc.
4. Publishing of workflows: DOI minting, linking with pub-

lications, making workflow reproducible (if action types
make it possible).

Figure 2 shows a mock of the HyWare user interface, with
a snapshot taken during the execution of a human action in
a workflow. It has divided into two main area. The topmost
area depicts the workflow steps by clearly highlighting the
already performed actions, the current action and the actions
to be performed afterward. The central part contains infor-
mation about the action currently being executed including a
progress bar. The user interfaces require interaction with all
platform components, as shown in Fig. 3.

5.1.2 Registry

Asmentioned above, the registry is the place where the avail-
able human andmachine action classes are described and the
placewhereworkflow templates andworkflows are deposited
for sharing:

Action classes. An action class is characterized by the fol-
lowing properties: a (unique) name, a description,the
types and location of input ports and output ports (as
defined in Sect. 4), and a set of configuration parameters
required to properly execute the action. When the action
is machine-actionable, the action class includes the name
of the actuator method implementing the business logic
of the action and locally deployed within the engine. The

user interface allows users to build workflows by search-
ing, selecting and connecting compatible action classes.

Workflow template. A workflow template is a valid combi-
nation of action classes, properly pipe-lined in respect of
their input and output port types compatibility. Work-
flow templates were not formally introduced, as they
were not necessary to define the semantics of theHyWare
engine, but are technically useful to have to support users
with an effective workflow management suite. A work-
flow template specifies how the ports of two subsequent
actions a1 and a2 are related to each other, identifying
for each input port a2.pi a relative input–output chan-
nel e =< a1.po, a2.pi >. It specifies the overall logic
behind an experiment, in terms of the list of actions
required to perform it, still it cannot be executed since
it misses a specific configuration of such actions, to be
provided by means of the relative configuration parame-
ters.

Workflow. Aworkflow instance, as defined in Definition 4,
is obtained from a workflow template by instantiating
all its action classes with the respective configuration
parameters, to be provided by the user at workflow con-
figuration time.

Workflow executions. Once completed, the information rel-
ative to workflow instance executions are stored in the
registry. Information such as initial workflow (actions)
parameters, input and output port values for the actions,
start time, end time, invoking user, are preserved in the
registry. Such provenance information is crucial to ensure
reproducibility of an experiment and support good Open
Science practices.

5.1.3 Workflow engine

The workflow engine implements the logic required to exe-
cute a workflow template, hence the relative sequences of
actions. As such, its main functions are:

– Executing action instances;
– Enabling parameters passing between different action
instances;

– Keeping track of the executions of all workflows.

To this aim, as shown in Figure 3, the engine includes
the following components: a workflow interpreter, a pool
of actuators (one for each action class), a memory, a type
framework and a workflow execution store.
Action actuators. An actuator is associated with a machine
action class. The execution of an action consists in the exe-
cution of the actuator which may in turn wrap the invocation
of a remote service or simply execute local code. For exam-
ple, scientists willing to integrate a service so as to make it
executable as a machine action in a HyWare workflow, must
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Fig. 2 An example of HyWare
web GUI considering the
execution of a human action

Fig. 3 Registry and workflow
engine
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therefore define the relative action class (name and proper-
ties) and plug-in the actuator required to:

1. Collect all input parameters: parameters are partly from
the action instance configuration parameters and partly
from the workflow execution environment (see memory
below), namely the input ports of the action;

2. Return the results of the invocation: package the results
in order for them to be available via the output ports (see
memory below) to the subsequent action instance execu-
tion.

Memory. The memory component (see Definition 5) is
required to ensure correct input–output parameter passing
between compatible action ports during the execution of a
workflow instance. It acts like a cache of parameter values
(or URLs to such values) that the workflow engine relies on
to temporarily store the results of an action and feed it to the
subsequent one. The value returned on an output port po of
an action a in a workflow instancew is stored in the memory
in the respective entry identified by (w.a.po)t , where t is the
time-stamp relative to the execution time of the workfloww.
The time-stamp is required to distinguish among different
executions of the same workflow instances.

The memory supports the interpreter at (i) understanding
whether or not an action instance can be executed by verify-
ing the availability of all values required by its input ports,
and (ii) fetching the values to be passed as input to an action
and (iii) caching the values returned by the output ports of
an action after its execution.

Interpreter. Given a workflow instance w in the registry,
the user interface lets the user execute either manually or
automatically its actions, by interacting with the interpreter
component. In order to visualize the current status of an
action a, the UI invokes the interpreter that fetches the val-
ues relative to (i) the configuration parameters available in
w for a and to (ii) the input parameters for the pi ’s of a
from the memory component. The user can now execute the
action: for human-executable actions the user manually fol-
lows the instruction using the values, then provides the values
required for the output ports of a and presses the “action
complete” button, which stores the output values in memory;
for machine-executable actions the user presses the “execute
action” button, which causes the interpreter to invoke the
actuator relative to the action class of a. The actuator, given
the values fetched by the interpreter, executes the action and
returns the values to be associated with the output ports in
memory.
Port types framework.The definition of action classes (Def-
inition 1) in the registry defines the input and output ports
for each class as quadruples < name,t ype,loc, opt >. As
in typed programming languages, HyWare types suggest to
users defining a workflow template (and to validation algo-

rithms checking the correctness of a workflow template)
when two actions in a pipeline have input and output ports
that are compatible with each other and if a channel can be
established between an input and an output port. On the other
hand, the rigorousness of types, i.e., the guarantee that an
action produces or can interpret values of a given type, is not
responsibility of the interpreter, but of the scientists realizing
the actions and/or the relative actuators. In other words, the
interpreter is not aware and has not control over the effective
domain, or exchange format, or internal representation of the
values of a type.

In all cases the values returned by an output port are strings
to be passed to the next associated input port and be properly
interpreted by the relative action actuator.

Users may chose to offer classes that enable management
of values of a given typeswith a custom location. Technically,
such classes must implement a set of mandatory and optional
methods, standardizing the way values can be accessed, cre-
ated, updated, searched, preserved for reproducibility and
reuse, and visualized in preview in the UI. The resulting type
framework enables: (i) other usersmay create actions and rel-
ative implementations that operate on such values, and (ii)
the user interface can activate functionalities to preview input
and output values for such types, aswell as creating “research
objects” to enable the reproducibility of a workflow.

Such high-level types represent a reasonable equilibrium
between enabling static control, supporting users with work-
flow language tools, and at the same time let the user decide
to which extent they are willing to integrate their actions into
the language.

5.2 Implementing HyWare via KNIME

TheHyWare’s architecture shown inFigure 3 identifies the
key elements for the construction of a platform implementing
HyWare’s framework and language. In this section we sug-
gest how such elements could be implemented by means of
the KNIME platform and relative run-time support. Figure 4
depicts how the reference architecture described in Sec. 5.1
can be implemented by using KNIME [6].

KNIME is an Analytics Platform for data-driven work-
flows widely used in the community of data analysis. The
platform is open source and has a big community of data
scientists contributing to the development of different tools.

KNIME workflows are sequences of pipelined KNIME
nodes (an example is discussed in Sec. 6). Nodes are the
smallest processing unit in KNIME, each node dedicated to
perform a specific task (e.g., filtering data rows, training a
set, applying a model). Nodes perform a task by executing
the relative business logic, given a set of input parameters,
which they can collect from their input ports or fromamanual
configuration. Each node has a state, indicated by the traffic
light below the node:
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Fig. 4 Registry and workflow
engine: KNIME implementation

– Red light (“not configured”): the node has been created,
but it is not ready for execution, i.e., missing input param-
eters;

– Yellow light (“idle”): the node is ready to execute, so
configured, but has not yet performed its task;

– Green light (“executed”): the node has executed its task
successfully;

– Red light with a cross: (“error”): the node has executed
its task with an error.

Similarly to HyWare, KNIME workflows are sequences
of nodes, where nodes are connected to each other via their
input and output ports. KNIME workflows are graphically
specified as shown in Figure 5; workflows and nodes are
graphic equivalents of scripts and instructions. The execution
of nodes sets the values of the relative output ports, which
can be used to feed the input ports of subsequent nodes in
the workflow to enable their execution.

New nodes can be introduced in KNIME to perform new
tasks by simply implementing a given set of classes and
closely following a well-established and clear documenta-
tion. Node business logic can be a call to a local procedure
(e.g., R, Phyton) or to a remote call to a service embed-
ding any other framework (e.g., SQL databases, MapReduce
Hadoop, web services).

In summary, KNIME has addressed several technological
challenges mandatory for the implementation of a general-
purposeworkflowengine,which can be re-used to implement
a language of a higher level of abstraction such as HyWare.
More specifically:

– HyWareMachineActions canbe implemented asKNIME
Nodes with a red light traffic light;

– HyWare Manual Actions can be implemented by intro-
ducing a specific family of KNIME nodes, whose execu-
tion interactswith theHyWare user interface (notification
mode) to enable the visualization of the description of the
specific manual action and allow to user to progress with
the workflow;

– HyWare Action input/output ports are implemented by
structuring thebare textual values inKNIME input/output
ports to model ports as quadruples: name, location, type,
value;

– HyWare Workflow templates are KNIME workflows
whose nodes are “not configured”;

– HyWare Workflow instances are KNIME workflows
whose nodes are “idle.”

To complete the implementation specific libraries and
structures are required to (i) model HyWare ports (quadru-
ples) by means of KNIME ports, (ii) model the HyWare
memory (i.e., the same action across different workflows
should havedifferent ports identifiers) in termsof theKNIME
shared memory and (iii) to enable the name-based typing of
input and output ports supported by HyWare. Similarly, the
KNIME classes to be implemented for the realization of a
node should make use of HyWare port libraries in order to
properly access the actual values needed for their task exe-
cution, now part of a quadruple in a HyWare memory.

The HyWare user interface would support users in (i) the
construction of valid HyWare workflow templates which are
in turn stored in the registry as KNIME workflows and (ii)
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in the execution of such workflows via the KNIME work-
flow engine. The user interface should fire the execution of
a KNIME workflow and be ready to “listen” to any notifica-
tion that executed workflows might send in correspondence
of the execution of a manual action.

6 A real-case scenario for HyWare: the
SoBigData e-infrastructure

SoBigData.eu [16] is an European Commission project
whose goal is to create the Social Mining & Big Data
Ecosystem, i.e., a research infrastructure (RI) providing an
integrated ecosystem for ethic-sensitive scientific discover-
ies and advanced applications of social data mining on the
various dimensions of social life, as recorded by “big data.”
SoBigData.eu is opening up new research avenues in multi-
ple research fields, including mathematics, ICT, and human,
social and economic sciences, by enabling easy comparison,
reuse and integration of state-of-the-art big social data, meth-
ods and services, into new research. Although SoBigData.eu
is primarily aimed at serving the needs of researchers, the
openly available datasets and open-source methods and ser-
vices provided by the new research infrastructure will also
impact industrial and other stakeholders (e.g., government
bodies, non-profit organizations, founders, policy makers).

SoBigData aims at realizing ahomogenous e-infrastructure
by “gluing together” tools that scientists and practitioners
have been realizing in full autonomy and without rely-
ing on common interoperability agreements. To this aim,
SoBigData e-infrastructure is being realized following an
“open ecosystem approach” having the e-infrastructure plat-
form d4science.org as pivot [3] is used. The D4Science
platform supports an advanced notion of Virtual Research
Environments (VREs), intended as innovative, web-based,
community-oriented, comprehensive, flexible and secure
working environments conceived to serve the needs of nowa-
day scientific investigations [2,7]. The implementation and
operation of such challenging and evolvingworking environ-
ments largely benefits from and complements the offering
of research infrastructures. Via the pivotal infrastructure it
is possible to integrate heterogeneous community tools and
offering them to scientists in dedicated VREs each tailored
to satisfy the needs of a designated community. Clearly this
represents a challenge, with the pre-requisites described in
previous sections: absence of common standards and proto-
cols, variety in technologies and usage modes, inability or
unwillingness to change technology. D4Science acts as the
technological bridge via which such tools can be registered,
discovered and used by scientists, respecting the will or pos-
sibility of the owners of the tools to integrate them fully (e.g.,
autonomic execution), partly (e.g., web interface integration)
or not integrating them in the e-infrastructure (e.g., down-

load and install). In addition, scientists can also benefit from
advanced collaborative services: (i) a VRE workspace, orga-
nized as a shared file system, which allows data to be moved
between different tool-based actions, (ii) a data analytics
platform benefiting from a distributed and multi-tenant com-
puting infrastructure oriented to provide scientists a broad
variety of algorithms and methods as well as other kind of
web-based resources and (iii) collaboration-oriented facili-
ties enabling scientists to publish research results with the
possibility to add comments on them in a social-network
fashion.

SoBigData scientists can today integrate their tools for
VRE-integrated reuse, but cannot represent sequences of
actions as a workflow, in order to share it and reproduce it.
Equipping SoBigData VREs with HyWare allows scientists
to attach to a specific result the entire process used to obtain
it. This makes the environment evolve into a living labora-
tory, which contains not only the methods and the results but
also the experience of the researcher in using them in and
compose analytic process with it.

In the following sections we shall introduce the classes
of actions characterizing SoBigData tools and showcase the
usage of HyWare to represent the implementation of the ana-
lytic workflow called City of Citizens defined in Example 1.

6.1 SoBigData tools and HyWare actions

In this section we describe the SoBigData.eu infrastructure
action classes and instances of such classes, i.e., actions,
as described and exemplified in Section 2. Moreover, we
shall describe how they are made available in the VREs. As
described above the VRE is a working environment tailored
to serve the needs of a specific research scenario. The under-
lying D4Science e-infrastructure platform allows SoBigData
scientists to (i) integrate and then register resources, i.e., tools
and products (e.g., datasets), to the SoBigData infrastructure
and (ii) build VREs as sets of such resources, to support
the specific needs of a group of scientists. Specifically, tool
resources comprehend and entail the following classes of
HyWare actions:

– Method invocation: methods (e.g., Java methods, R algo-
rithms, Pythonmethods) to be executed by theD4Science
processing engine, integrated based on OGC Web Pro-
cessing Service (WPS);

– Software to be downloaded and executed locally;
– Web (REST) services for remote invocation;
– Web applications, offering WebUI-accessible function-
alities.
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Fig. 5 Example of KNIME workflow

6.2 Implementing the carpooling application

Now that the HyWare is described in details, we recall the
example 1 to show how it is implemented in the system.
We complete this use case providing the definition of some
actions using the HyWare definitions introduced in Sect. 4.
The defining is not related to the fact that an action is per-
formed by a humanor automatically by the engine. In the next
code we codify two representative actions of the workflow
in Figure 1.
The first action is the Trajectory Builder action that it is
automatically executed by system only by setting its param-
eters.

atb = < in = {Database_table,↑, true},
out = {Database_table,↑, true},
fW S = tra jectory_builder(),

cp = {max_t ime_gap,min_space_gap} >

This action requires a database connection to a table
as input, executes as web service the function trajec-
tory_builder() using the values associate tomax_time_gap,
min_space_gap as parameters. With this parameter the
function separates the original GPS observation sequences
into meaningful trajectories cutting where the user remains
“static.” The result of this computation is stored in the
database table (which is the output).

Then an export of the data from the database to a specific
data format required by the Mobility Profile is needed, this
kind of transformation is not specified in the HyWare core as
standard translation, for this reason the researcher created a
new Human action:

aex = < in = {Database_table,↑, true},
out = {Local_ f ile,↓, true},
fW S = export_tra jectories(),

cp = {} >

where export_tra jectories() is a function showing the
steps needed. The User then is guided through the process:

step 1: Check PgAdmin software in your local computer,
if not present download and install it from https://www.
pgadmin.org/;

step 2: Connect to the database with the following creden-
tials and locate the table of trajectories: [input];

step 3: Click on the table and select “export table”;
step 4: Go to “Dump option1” and select “only data”;
step 5: Go to “Dump format” and de-select “use quotation

for strings”;
step 6: Go to “General” and insert a name for the destina-

tion file;
step 7: Insert the name of the exported file here: [output].

Here the [input] is the information received in the input
port of the action referring to the database connection and
table; moreover, at the end of the process the user must spec-
ify the name of the local file exported in the [output] field.
The next action is the Mobility Profile defined as:

ade =< in = {Local_ f ile,↓, true},
out = {Local_ f ile,↓, true},
fW S = download_execute,

cp = {Execution_string,
Param_description,Url_so f tware} >

where the user is requested to download, install and execute
a software on a file. This action is very common, and in
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this case, the framework provides a generic action which is
suitable for many cases. The general description of the steps
is:

step 1: Download software here: [Url_software]
step 2: Determine the parameters as follows: [Param-

_description]
step 3: Execute the software with the following call: [Exe-

cution_string] where the input file is: [input]
step 4: Insert the name of the results file here: [output]

where [Url_software] is where the software can be down-
loaded, [Param_description] is the description of the param-
eters for the call of that specific software, i.e., the minimum
frequency as the minimum number times a user must follow
the same trajectory to be considered systematic trip and the
distance tolerance to consider two trajectories equal. Finally
the [Execution_string] is the actual string to use to call the
software:

mobili t yprof iler [min_ f req] [dist_tol] − f [input-
f ile] − o [output f ile]
As before the resulting file must be inserted in the output

field.
The same action with a different values in the parameters

cp is used for the carpooling already shown in fig.2. The
resulting systematic movements are matched, and the result
is stored in a local file.

The next action is another data transformation from a flat
text file to a JSON file. The action is defined as follows:

ade = < in = {Local_ f ile,↓, true},
out = {Local_ f ile,↓, true},
fW S = csv_to_J SON ,

cp = {} >

Again the csv_to_JSON function is a human action
explaining how to transform the data and require that the
result is stored in a file specified as [output].

The last step is an automatic action which takes the local
file and upload it in the HyWare workspace to be used in the
call of a web page for the visualization of the graph.

ade = < in = {Local_ f ile,↓, true},
out = {},
fW S = IGD_V isuali zer ,

cp = {} >

The result of the last action is the visualization of the
IGD web application interface with the carpooling match-
ing graph. This example highlights the ability of HyWare

to represent processes performed by the analysts, where pro-
cesses are integrating human andmachine-executable actions
to flexibly support a degree of reproducibility of the results
in highly heterogeneous scenarios.

7 Conclusions

Open Science principles have became relevant in many
research sectors, and concepts such as “reproducibility of sci-
ence” and “transparent assessment” are now central for every
research infrastructure. This paper shows that in research
infrastructure environments, researchers carry out their sci-
entific processes in terms of sequences of actions called
workflows. The generated workflows are themselves prod-
ucts of the researchers.

In this work, we outlined why it is complex managing
all the cases inside a research infrastructure since the tools
(actions) invocable inside a process are different for nature
(e.g., web services or external web applications invoked via
API), and they can also include human interaction (e.g.,
freely download-able software for local execution). For this
reason,we proposed theHyWare framework and platform for
the representation and reproducibility of hybrid workflows in
highly heterogeneous e-infrastructures. The HyWare frame-
work allows scientists to describe the classes of actions they
are accustomed to perform, by abstracting over the execu-
tion of web services and over so-called human actions. The
HyWare platform offers user interfaces to support the scien-
tists at constructing a workflow out of the available action
classes and make it available for others to discovery.

Despite the degree of heterogeneity of “actions,” e-
infrastructures equipped with HyWare embrace Open Sci-
ence principles. They allow scientists to share (publish)
workflows, repeat and validate science. We exemplified the
usage of HyWare in the real context of the SoBigData e-
infrastructure and illustrated a possible implementation of
the platform via the KNIME framework and engine.

The workflow engine is currently being implemented in
the context of D4Science so as to make it available to all e-
infrastructures it supports (including SoBigData). This will
enable us to have experience for evaluating the engine (and
the language) on a large set of real examples created by
the research infrastructure users. The implementation will
demonstrate definitively how useful your approach is, and
what are the advantages when it is used in practice.
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