
Hiding task-oriented programming complexity: an industrial case

study

Enrico Villagrossia, Michele Delledonnea,b, Marco Faronia, Manuel Beschia,b, and
Nicola Pedrocchia

aInstitute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing,
National Research Council of Italy, Via A. Corti 12, 20133, Milan, Italy;
bDepartment of Mechanical and Industrial Engineering, University of Brescia, Via Branze 39,
25123 Brescia, Italy

ARTICLE HISTORY

Compiled April 14, 2023

ABSTRACT
The ease of use of robot programming interfaces represents a barrier to robot adop-
tion in several manufacturing sectors because of the need for more expertise from
the end-users. Current robot programming methods are mostly the past heritage,
with robot programmers reluctant to adopt new programming paradigms. This work
aims to evaluate the impact on non-expert users of introducing a new task-oriented
programming interface that hides the complexity of a programming framework based
on ROS. The paper compares the programming performance of such an interface
with a classic robot-oriented programming method based on a state-of-the-art robot
teach pendant. An experimental campaign involved 22 non-expert users working
on the programming of two industrial tasks. Task-oriented and robot-oriented pro-
gramming showed comparable learning time, programming time and the number of
questions raised during the programming phases, highlighting the possibility of a
smooth introduction to task-oriented programming even to non-expert users.

KEYWORDS
Intuitive robot programming; Task-oriented programming; Human-machine
interaction; End-user robot programming;

1. Introduction

1.1. Context

Industrial robots in manufacturing have steadily grown in the last few decades. Ac-
cording to the World Robotics Industrial Robot report 2021 (International Federation
of Robotics, 2022), two of the most addressed applications of industrial robots are
material handling and components assembly, which are mainly pick&place tasks. The
structure of a pick&place program is frequently defined as a long list of “move to”
instructions.

Since early robotic applications, the definition of the robot program was based on
a teaching-by-showing approach, where the programmer guides the robot manually
along the desired trajectory (lead-through programming), or with the Teach Pendant

CONTACT Enrico Villagrossi. Email: enrico.villagrossi@stiima.cnr.it

(drive-through programming). The use of lead-through programming is frequent for
collaborative robots. The lightweight structure and the low payload allow for drag-
ging the end-effector intuitively across the workspace, while the design of the robot
allows for a safe interaction following the current safety standards as the ISO/TS
15066:2016 (ISO/TC 299 Robotics, 2016).

The evolution of robot programming techniques brought robot-oriented program-
ming languages (Yang et al., 2015). They are high-level programming languages, pri-
marily based on BASIC and PASCAL, such as the ABB Rapid, the Fanuc Karel and
the Kuka KRL. Such programming languages are integrated with advanced robotic
functions that allow the development of complex robotic applications but retain the
teaching-by-showing programming mode. However, the languages continued to develop,
gradually incorporating features from the rest of the programming world. As a draw-
back, each robot manufacturer developed its proprietary robot-oriented programming
language incompatible with the others. Reaching an essential knowledge of propri-
etary languages requires a reduced amount of time. However, a deep knowledge of a
robotic platform requires great experience and training, which is why robotic program-
mers tend to become specialised in a few specific robot brands. This approach may
cause resistance by robot programmers and robotic system integrators to acquire new
programming skills, learn different programming paradigms, and use different robot
brands.

The robot-oriented programming languages are currently the most widespread for
industrial applications, even if offline programming environments more and more of-
ten flank them. Thanks to accurate robotic cell modelling, the development and the
simulation of the robot programs, with offline tools, before on-site testing allows sav-
ing time (Pan et al., 2012). Integrating offline programming environments with CAD
systems has also led to the automatic generation of the robot part program (Castro
et al., 2019). Classic use is for continuous processes such as machining, painting and arc
welding applications (i.e., a vast number of via-points are generated by a CAD/CAM
system and interpolated by the robot). Offline programming can partially generate
collision-free trajectories for a given planning environment. More frequently, they are
used to check and highlight the presence of collisions between the robot and the en-
vironment. As for robot-oriented programming languages, every robot manufacturer
developed its offline programming environment, such as ABB RobotStudio, Kuka.Sim,
Motoman MotSim, Fanuc RoboGuide. Nevertheless, an accurate 3D model of the cell
is not always available, and the construction of the cell can bring inaccuracies w.r.t. the
original design. Hence, adopting the traditional drive-through programming is frequent
during the commissioning phase to re-teach trajectories via-points.

Despite (i) the increasing complexity of robotic applications, (ii) the evolution of
robot-oriented programming languages, (iii) the adoption of offline programming tools,
the approach to robot programming and how the robot programs are structured have
barely changed over the years. The robot program maintains a rigid structure as a
list of instructions coded and saved into the robot memory. Moreover, robot-oriented
programming languages and offline programming tools are not easily handled by end-
users unfamiliar with robotic knowledge.

The introduction of the ROS framework in robotic research has boosted the search
for a programming approach oriented to standardisation enabling the technological
transfer of state-of-the-art algorithms from research to industry. ROS adoption can
bring several innovations, such as task-oriented programming, state-of-the-art motion
planners, dynamic motion planning, simulation environments, and easy sensor inte-
gration. Unfortunately, ROS does not penetrate the world of industrial applications

2

despite the efforts made by the ROS-industrial consortium (ROS-Industrial consor-
tium, 2022). Currently, ROS-industrial is moving on ROS2 with a new tentative to
relaunch the ROS initiative dedicated to industrial purposes. The main barrier to ROS
adoption in the industry remains the slow learning rate for the robotic technicians un-
familiar with General Purpose Languages (GPL), such as C/C++, Java and Python,
and the concepts of a robotic framework. Improvements to programming interfaces
are required to attract new users unfamiliar with GPL bringing together the advanced
features provided by ROS with the ease of use of classical robot-oriented programming
languages and a design that enables task-oriented programming.

1.2. Motivation and Contribution

Despite several demonstrations in robotic research, the penetration of advanced robot
programming techniques, such as visual programming or programming by demon-
stration, is facing barriers in the industrial context (Villani et al., 2018). The main
obstacles are the robustness of the advanced programming algorithms, the complexity
of the programming interfaces and the technical heritage of robot programmers reluc-
tant to adopt new programming techniques because of their familiarity with textual
robot-oriented programming languages.

The Manipulation Framework was introduced (MF), as described in (Villagrossi,
Pedrocchi, and Beschi, 2021), to evolve the current industrial robot programming
paradigm moving from a robot-oriented paradigm to a task-oriented programming
tool, to reduce the programming time and to simplify the development of complex
collaborative applications. The MF improved with the introduction of a task-oriented
Graphical User Interface (MFI hereafter) designed to hide the complexity of the frame-
work based on ROS. This paper aims to compare the acceptance level, the ease of use
and the effectiveness of the task-oriented interface to program industrial tasks by non-
expert robot programmers and end-users. The paper compares the tasks programming
made with the MFI and a classic lead-through programming approach made with the
robot Teach Pendant (TP). The setup used for the test was a UR10e robot, with
its TP, which is nowadays considered the state-of-the-art of robot TPs in terms of
intuitiveness and ease of use1.

The study involved a heterogeneous group of university students from multiple
STEM faculties and machine tool operators (with different backgrounds) as end-users
testers. Only a few testers had little prior experience in robot programming, and no
one had seen either the MFI or the TP used for the experiments.

The experimental results demonstrate that using a task-oriented framework, as the
MFI, can introduce slightly longer learning time but can bring several benefits w.r.t.
a standard programming technique. Advantages are evident when it is necessary to
deal with: task repetition, robot reprogramming and collision-free motion planning.
The parameters monitored during the experimental tests to compare the interfaces are
the learning time, the programming time, the number of questions made during the
programming, the testing time and the reprogramming time.

The comparison between the two programming methods, the results of an experi-
mental campaign involving industrial tasks in a real industrial environment and the
presence of machine tools operators in the study (which is not common in previous
works) constitute interesting points of novelty.

1Standard industrial robot TPs are, in general, much more complex than UR’s TP.

3

1.2.1. Paper outline

The paper is organised as follows: Section 2 analyses the related works, Section 3
describes the experimental setup, the experiments design, the programming interfaces
and the method. Section 4 discusses the results obtained during the experimental
campaign. Finally, Section 5 reports the conclusions and the future works.

2. Related works

Programming interfaces evolved with the improvements in the technology (Siciliano
et al., 2010) providing a wide range of solutions (Tsarouchi, Makris, and Chryssolouris,
2016; Mukherjee et al., 2022; Heimann and Guhl, 2020). However, a gap remains to
bring robot programming closer to end-users (Ajaykumar, Stiber, and Huang, 2021),
such as production operators, and promote the spread of robotic applications to new
manufacturing fields (Ajaykumar, Steele, and Huang, 2021). Advanced approaches,
such as programming by demonstration, visual programming, augmented/virtual re-
ality, and natural language programming, are characterised by high intuitiveness since
they constitute instances of natural and tangible user interfaces (NUIs and TUIs).

Programming by demonstration is a technique where the programmer can demon-
strate the task to the robot (Billard et al., 2008; Zhang, Wang, and Xiong, 2016). A
common approach to programming by demonstration is the evolution of lead-through
programming method exploiting admittance/impedance control algorithms where the
user physically interacts with the robot through robot manual guidance (Moham-
mad Safeea, 2022). The most common approach uses force/torque sensors mounted
between the robot flange and the end-effector (Bascetta et al., 2013). Conversely,
modern collaborative robots, such as the Kuka LBR or the Franka Emika, integrate
torque sensors into robot joints. The drawbacks of admittance/impedance control al-
gorithms are accurate parameters tuning, which can bring stability issues (Ferraguti
et al., 2019), additional sensing (force/torque sensors), and they are not available as
a software feature for most industrial robots. Moreover, the demonstration accuracy
is not enough for most industrial applications.

Alternative methods, less common, provide the use of voice, vision (Lu, Berger, and
Schilp, 2022) and motion capturing (Makris et al., 2014).

Visual programming makes programming more approachable for non-experts (Coro-
nado et al., 2020; Huang et al., 2020). In literature, visual programming interfaces
commonly use flow diagrams, behaviour trees, blocks, and icons (Stenmark, Haaae,
and Topp, 2017). Some visual programming systems propose personal graphical user
interfaces (Schou et al., 2018) that use buttons, menus, windows, textual inputs, and
sliders. The standard IEC-61131-3, which defines programming languages for automa-
tion, provide visual programming languages, such as the Function Block (FB) or the
Sequential Flow Chart (SFC), that can also be used for robot programming as standard
languages (Thormann and Winkler, 2021; Rendiniello et al., 2020). These languages
are suitable for beginner programmers. The execution speed of visual applications is
slow, and the programming requires more time than a textual one. A complex task re-
quires a large number of operations, users spend time making room for things, encasing
and rearranging them in macros, and the overall program can get crowded.

Augmented/virtual reality allows overlapping the real-world environment with a
virtual one. With this technology, some information or programming tools can ap-
pear directly in the environment. The possibility of overlapping a virtual robot and

4

objects allows the operator to use the programming by demonstration without inter-
acting directly with the robot (Blankemeyer et al., 2018). Visualising virtual panels
with programming information (e.g., robot trajectory or parameter values) allows the
operator to make decisions (Gadre et al., 2019). Using physical auxiliary tools (Ong
et al., 2020) or object detection software (Apostolopoulos et al., 2022) can facilitate
the user programming. This technology presents a high implementation cost; it needs
to be more flexible as it is programmed for a specific task and prone to failures in case
of environmental changes.

Natural language programming uses speech and text to create programs. Usually,
this technique works in parallel with another programming technique. The high com-
plexity of human language requires some constraints, and this type of language cannot
describe the action in its entirety. In literature, natural language programming was
combined with programming by demonstration (Quintero et al., 2018), visual program-
ming (Huang and Cakmak, 2017), and augmented reality (Andronas et al., 2021). The
use of speech recognition is hardly usable in industrial environments; the high noise
that characterises these working places makes it difficult to recognise voice commands.

Tangible programming is a technique that uses physical objects to define program
structures. By positioning specific objects in the environments, it is possible to define
the desired object for a particular action, the action to perform, and the areas where
the actors perform it (Sefidgar, Agarwal, and Cakmak, 2017). Another approach is to
use the specific card to define the task structure; the card type and order represent
the action types and order (Kubota et al., 2020). The programming of a complex task
might require a large number of objects making the environment chaotic. Some actions
are difficult to describe through objects, especially if they need good accuracy.

Alternative ways to automate the creation of the robot part-program provide the
direct use of a CAD model to extract the necessary information to control the robot,
bypassing the robotic offline programming tools as in (Neto and Mendes, 2013). This
approach is helpful for continuous processes.

The EU projects Robo-Partner (ROBO-PARTNER Consortium, Nov. 2013 - Apr.
2017), Sharework (Sharework Consortium, Nov. 2018 - Oct. 2022) and Sherlock (Sher-
lock Consortium, Oct. 2018 - Sep. 2022a), within their scopes, investigated the use of
advanced programming techniques in industrial scenarios. Robo-Partner faced the pro-
gramming of an assembly task exploiting programming by demonstration techniques
through audio commands, visual programming, and direct robot arm manipulation by
the user through force/tactile sensing, as described in (Michalos et al., 2014). The goal
of Robo-Partner was to bring robotics closer to SMEs where poor robotic knowledge
represents a barrier to robot adoption. Sharework aims to introduce dynamic task
planning able to assign the robot actions to the robot controllers autonomously (Um-
brico et al., 2022). The assignment evaluates the evolution of a collaborative task con-
trolling the robot through ROS libraries (Faroni et al., 2020). The project developed
robot motion planning algorithms based on learning by demonstration and provided
intuitive human-robot interaction methods based on virtual reality. Sherlock aims to
provide zero-programming robotics for collaborative and medium-high payload robots.
The project developed a programming architecture that mixes augmented reality (i.e.,
indirect interaction) and manual guidance (i.e., direct interaction) based on force sen-
sors. Mixed reality roughly defines the trajectory starting and ending point, while
manual guidance can refine and adjust precisely the final position. Using a motion
planner and a digital twin enables the generations of collision-free trajectories (Sher-
lock Consortium, Oct. 2018 - Sep. 2022b).

Several frameworks such as: CORBA (Schmidt, Levine, and Mungee, 1998),

5

Figure 1. Robot-oriented program.

Figure 2. Task-oriented program.

YARP (Metta, Fitzpatrick, and Natale, 2006), ROS (Stanford Artificial Intelligence
Laboratory et al., 2022), IMI2S (Anzalone et al., 2014) are currently used to control
the robot. Adopting frameworks is a prerogative of robotic research; no relevant spread
is currently perceptible in the industry. Among the others, the most successful is ROS,
representing a standard de facto for robotic research programming. ROS brings ad-
vanced features and open-source packages that allow for a task-oriented approach. On
the other hand, ROS imposes the use of GPL languages, which are often adopted only
in research2.

3. Materials and Methods

3.1. The programming interfaces

This paper compares a robot-oriented and a task-oriented programming interface.
Robot-oriented programming focuses on primitive robot movements that the robot
can perform. The user combines these primitive actions into a sequence to obtain the
desired program. Figure 1 shows an example of a robot-oriented program.

Task-oriented programming focuses on the task. The user combines high-level ac-
tions by setting the parameters required by the process operation rather than the
robot’s motion. The user does not define the primitive action from scratch, as the
framework programmer previously defined the task structure. The user codes in an
intuitive language, as shown in Figure 2.

The experiments involved one programming interface for each type. The robot-
oriented programming interface is the UR10e TP, and the task-oriented one is a novel
GUI built on the top of the Manipulation Framework (Villagrossi, Pedrocchi, and

2Kuka Sunrise.OS (Kuka AG, 2022), dedicated only to Kuka LBR iiwa, is currently a unique example of a

robotic OS that provides libraries based on GPL languages, like Java, to program the robot.

6

Figure 3. UR10e teach pendant.

Beschi, 2021).

3.1.1. Robot-oriented programming interface: UR10e teach pendant interface

The UR10e TP is a highly intuitive programming interface based on a touch screen
device without physical buttons (apart from the on/off and the emergency buttons);
Figure 3 shows the UR10e TP. The TP enables the robot movements in jogging mode,
the access to robot configurations and parameters, and the robot programming through
a robot-oriented high-level programming language. A new robot program requires a
sequence of move instructions by teaching the starting and the ending robot configu-
ration to be interpolated. The teaching of robot position can be done by lead-through
programming by moving the robot with the so-called manual guidance mode. The
programmer must add intermediate robot configurations (via-points) to guarantee
collision-free trajectories. The TP interface (TPI) provides specific functions to man-
age the gripper activation.

3.1.2. Task-oriented programming interface: manipulation framework interface

The MF is a software package dedicated to manipulation tasks (Villagrossi and Beschi,
2022a,b). MF provides some essential components to enable task-oriented robot pro-
gramming. Figure 4 shows the structure of the MF. For a given manipulation task, the
MF aims to: (i) process manipulation actions (such as pick, place, move to), relieving
the programmer from the management and the execution of single actions; (ii) handle
the kinematic model of the robotic system (arm + grasping system) being able to
compute forward and inverse kinematics; (iii) embed motion planning functionalities
to generate collision-free trajectories for a given planning scene and a given robotic
system in the planning environment that can dynamically change; (iv) execute the
planned trajectories on the desired robotic system; (v) change the robot controller
dynamically. The motion planning uses MoveIt! pipeline (Open source community,
2022). MoveIt! allows dynamic load motion planners as plugins, enabling collision-
free motion planning for a given planning scene. Additional information is available
in (Villagrossi, Pedrocchi, and Beschi, 2021).

7

Figure 4. Manipulation framework layers description.

MF’s APIs require C++ programming and ROS integration (e.g., the creation of
ROS nodes, the definition of configuration files, and dataset management). To over-
come this limit, a GUI was developed as MF Interface (MFI) (Delledonne and Beschi,
2022a,b). MFI has a structure designed for task-oriented programming. The interface
allows to easily concatenate multiple Actions to assemble a Task. The user can set
all the components using interaction with the robot being free to focus on the task
definition. The user can choose between pre-programmed Actions, such as Pick, Place,
GoTo. A program can be composed by dragging and dropping the desired Actions,
as shown in Figure 5. A set of parameters defines each Action. For example, a Pick
action requires the approaching pose, the grasping pose and the gripper closing force
(see Figure 6b). Notice that the MFI does not require to specify via-points, as the MF
will automatically plan the trajectories based on the task specifications.

A relevant feature of the MFI allows specifying an Object Type that groups several
objects. The MF will automatically compute the poses for the object grasping (and IK
solution) for every object of the same Object Type during the motion planning. The
object with the optimal path planning will be selected.

Positioning the robot in the desired position is possible to acquire a robot pose,
similar to classic TP programming. The MFI allows for both lead-though programming
(if the robot has a force/torque sensor) and tele-operation, see Figure 7. The MFI can
be easily connected to a vision system to automatically localise the objects’ positions
in the robot workspace, providing additional programming flexibility and autonomy.

The interface allows for Action, or sequence of Actions execution. The first step is the
kinematics computation (i.e., robot and objects involved in the task), consequently, the
computation of the collision-free motion plans. An error message informs the operator
in case of unfeasible inverse kinematics or motion plan, so it is enabled the modification
of the components or the Action sequence to fix the issue. Currently, the framework
provides only three actions. The development of a new one still requires an expert
developer; however, the number of actions needed to address complex industrial tasks
is limited (Bøgh et al., 2012), and the actions available in the MF allow it to cover a

8

Figure 5. MFI: example of Task composition by concatenating multiple Actions.

(a) Action setting (b) Object setting

Figure 6. Action and components setting panels.

9

Figure 7. Interface Joystick, the movements are performed moving the end-effector
frame with respect to the chosen reference frame.

wide range of tasks. The possibility to intuitively generate a custom action, starting
with the elementary skills, will be part of future works.

3.2. Experimental Setup

The experimental setup consists of a Universal Robots UR10e mounted on a Cobo-
tracks linear guide. The robot gripper is a Robotiq 2F-85. An external PC controls
the robot at a frequency of 500[Hz]. The software used for the PC robot communica-
tion is the official ROS package (Universal Robots, 2022). This package requires the
micro-interpolated joint positions to control the robot. The feedback information are
joint positions, velocities, currents and external forces.

The robot’s end-effector is a Robotiq gripper with two fingers and 85[mm] of working
range; a force/torque sensor was mounted between the robot flange and the gripper.
The force measuring range is 100[N], and the torque measuring range is 10[Nm].
Figure 8 shows the experimental setup, highlighting the ceil robot configuration. The
Cobotracks linear guide was not used during the experiments.

3.3. Experiments description

During the experimental session, the users programmed two tasks exploiting the robot-
oriented (i.e., the UR10 Teach Pendant Interface, TPI hereafter) and the task-oriented
(i.e., the MFI) programming interfaces. Task 1 was a pick&place task with 10 objects,
thought to measure the performance (i.e., programming and testing time) of the two
programming interfaces with a highly repetitive task. Task 2 recalls a machine tending
application where the robot has to enter the machine tool workspace and withdraw
or release a workpiece by avoiding obstacles. The task was thought to measure the
performance of the interfaces when required to deal with multiple obstacles in the
robot workspace, restricted spaces, and reprogramming.

The experiments consist of five phases:

(1) introduction: the user is informed about the experiment and the test phases.
(2) Teaching: the user watches a video that describes the interfaces (i.e., the robot

TPI or the MFI) and their usage. Then, an expert operator supports the user

10

Figure 8. Experiment setup.

in assisted training, where the goal is to perform a single pick and place. In this
phase, the user is free to ask questions to the trainer. The training continues
until the user declares he/she can program a task autonomously. Finally, the
expert operator describes the user’s task to program; the programming phase
can start.

(3) Autonomous programming: the user programs the robot without the help of an
expert. This phase ends when the user declares finished the task programming.
The user can ask questions if he/she cannot proceed in task programming. The
number of questions is an evaluation parameter.

(4) Testing: testing the program developed in the previous phase. In case the task is
correctly performed, this phase ends. On the contrary, the user must correct and
test the program until it is completed. The task’s success determines the end of
this phase.

(5) Questionnaire: the user fills in a questionnaire regarding the intuitiveness and
complexity of the interface.

The experiments on Tasks 1 and 2 were carried out with 22 people. All subjects par-
ticipated voluntarily, signing an informed consent form by the Declaration of Helsinki.

3.3.1. Task 1 experiment description

Task1 requires the pick&place of ten objects. The objects were of two types (cubes
and cylinders), 5 objects per type. After the picking, the robot place the object in
the relative box on the base of the object type. The programmer is free to decide the
picking sequence and, if necessary, trajectories via-points. Figure 9 shows the objects
and boxes layout. The box on the right was for the cubes, and the box on the left was
for the cylinders.

The experiments enlisted two groups of users, hereafter named Group A and Group
B. Users were mostly university students from STEM faculties, aged between 20 and
35 years old. Group A was composed of 8 people; they programmed the application
using the UR10e TP’s described in Section 3.1.1. Group B was composed of 9 people;

11

Figure 9. Task 1 setup and description.

they programmed the same application using the MFI described in Section 3.1.2.
The experiment consists of the five phases described in Section 3.3.

3.3.2. Task 2 experiment description

Task 2 requires picking 2 objects from a constrained box, moving them outside the box
and placing them in a specific area. The picking sequence is free; the programmer can
decide the picking positions. Once the program is finished and tested, the programmer
has to change the release positions of the objects.

The idea is to avoid a penalisation of the TPI when a high number of repetitive
Actions is required, as for Task 1. Indeed, the task involves only 2 objects. At the
same time, the robot has to move through a restricted environment with obstacles
to evaluate the planning performance of the MF (i.e., collision-free motion planning)
compared to the TP where the programmer has to take care of the collision avoidance
by adding intermediate trajectory via-points.

This task simulates a typical application of an industrial robot in machine tending,
where the robot has to enter the machine tool workspace to withdraw or release a
workpiece, and several obstacles constrain the planning environment. The programmer
has to take care of possible collisions carefully. A frequent request is the reprogramming
of robot tasks due to modifications to the robotic cell. Indeed, at the end of the task
programming, we requested to adjust the robot program slightly to deal with robotic
cell changes. We asked to partially modify the original robot program to measure
the reprogramming time with both interfaces. These requests are frequent when small
batches and huge production variability characterise the production.

The experiments’ execution was on the shop floor of a mechanical engineering com-
pany. The experiment participants were machine tools operators and one production
engineer with neither a robotic background nor previous experience in robot program-
ming; it was the first time they had seen both programming interfaces. The users’
group was composed of 5 people, aged between 26 and 46 years old; 4 over 5 users
have high school graduation, while the fifth has an automation engineering degree.

12

Figure 10. Task 2 setup and description.

The users were all with technical backgrounds and experiences in machine tool pro-
gramming but no experience in industrial robot use.

The hosting company provided only a limited number of users, so it was impossible
to create two independent groups; thus, all the participants repeated the experiments
twice using both interfaces. The first experiment can influence the learning phase of the
second one because the programming experience can provide some knowledge of the
task for the second experiment; the order of the interfaces was randomly alternated,
avoiding any possible bias. The users who experimented with Task 2 were not involved
in Task 1 experiments’ and vice-versa.

This experiment was composed of the five phases described in Section 3.3, with
the addition of an autonomous reprogramming phase after phase 4 where the user
has to modify the program already developed. The time spent by the user during the
autonomous reprogramming and the number of questions were recorded as evaluation
parameters. A second test phase has been added to correct any reprogramming errors.
Finally, the user has to fill the questionnaire.

3.4. Performance Measurement

In general, during the task programming, it is possible to identify 4 main phases: (i)
the user learning phase, (ii) the program development phase, (iii) the testing phase,
(iv) the execution phase. The first evaluation metric is the time taken by these phases.
Therefore, the following evaluation parameters have been chosen:

• learning time (LeT): the time spent by the user to learn the programming envi-
ronment during the assisted programming in phase 2 (teaching). LeT evaluates
the steepness of the learning curve of the interface.

• Programming time (PrT): the time spent by the user to develop a robot program
to achieve the given task. PrT reflects the ease of use and the intuitiveness of
the interface.

• Testing time (TeT): the time spent by the user to test the robot program. The

13

Table 1. Questionnaire proposed to users after Task 1 and Task 2.

1 On a scale of 1 to 10, where 1 is inexperienced and 10 is very
experienced, how experienced are you in the use of industrial robots?

2 On a scale of 1 to 10, where 1 is not simple and 10 is very simple, how

simple did you find the use of the programming interface you were proposed to use?
3 On a scale of 1 to 10, where 1 is not intuitive and 10 is very intuitive, how

intuitive did you find the use of the programming interface you were proposed to use?
4 On a scale of 1 to 10, where 1 is not fast and 10 is very fast, how fast did

you find learning to use the programming interface you were proposed to use?

5 On a scale of 1 to 10, where 1 is not useful 10 is very useful, how much did your previous
knowledge affect you in learning to use the programming interface you were proposed to use?

programmer must test the program developed in the real working environment by
checking possible collisions and adding or adjusting via-points if needed. TeT is a
proxy of the ability of the interface to avoid user errors during task programming
as it measures the time spent for program debugging.

• Execution time (ExT): the time spent by the robot to execute the program.
The execution time is related to the robot speed (equal for both the interfaces)
and the length of the paths found by the motion planners. Using the TP, the
ExT depends on the number and the position of the via-points selected by the
programmer; using the MFI the length of the trajectory is defined by the selected
motion planner.

• Number of tests executed (TeN): the number of executions run before a correct
task execution (excluded ExT). Similarly to TeT, TeN evaluates the robustness
of the programming interface w.r.t. the errors made by the user during the
programming.

• Number of questions during programming (PrQ) and testing (TeQ): the
amount of questions highlights the user understanding of the interface use, it
evaluates the ease of use and the intuitiveness of the interface;

During the experiments of Task 2, the following parameters were also measured to
evaluate the reprogramming phase:

• reprogramming time (ReT): the same as PrT during the re-programming phase.
• reprogramming testing time (ReTeT): the same as TeT during the re-
programming phase.

• reprogramming execution time (ReExT): the same as ExT during the re-
programming phase.

• number of tests made during the reprogramming (ReTeN): the same as TeN
during the re-programming phase.

• number of questions during reprogramming (ReQ) and reprogramming testing
(ReTeQ);

Finally, to evaluate the user feel, users filled out the questionnaire in Table 1.

4. Results and Discussion

The methodology applied during experiment execution is described in Section 3.3. The
evaluation exploits the performance indexes described in Section 3.4.

14

4.1. Task 1 Experiments Results

The experiments relative to Task 1 applied the method described in Section 3.3
and 3.3.1. Section 3.4 reports the parameters measured to evaluate the interfaces.
All the evaluation indices measured during Task 1 are reported in Figures 11 and 12.

The average learning time LeT for the MFI is 44.9% higher than the TPI, see
Figure 11a. This result was expected as the MFI has more complex concepts than the
TPI and the learning time tends to be higher. The average programming time PrT
for the MFI is 51.7% lower than the TPI, see Figure 11b. High values of PrT for the
TPI are directly related to the number of objects involved in the task because the
operator needs to teach multiple positions to perform collision-free trajectories. On
the contrary, the MFI allows defining a Pick&Place Task teaching only two grasping
positions to define the Pick Action and two release positions to define the Place Action.
Once defined as an Action, the operator can replicate the same Action. The average
number of programming questions PrQs and test questions TeQs, see Figures 11c
and 11f respectively, is low for both the interfaces. These low values represent a good
operator learning rate that reflects comparable ease of use for both interfaces. The
number of tests TeNs and the test time TeT, see Figure 11e and 11d respectively, are
low. Most of the experiments do not present mistakes during the programming. The
low presence of mistakes avoids corrections in many experiments; when required, the
correction time is short, strengthening the result already given by PrT values. The low
number of mistakes leads to overlapping the TeTs and the ExTs. The average execution
time ExT is 13.5% lower for the TPI, see Figure 11g. The robot motion planner
interpolates the trajectory via-points taught through the TPI. The time to compute
the trajectories is short, and the via-points are linearly interpolated. Instead, the MFI
interpolates the starting and the goal position with optimal collision-free trajectories.
The computational time to evaluate the planning scene and generates the collision-free
trajectories can vary. This difference explains the differences in the execution times.
Despite this, the difference between the results is insignificant; furthermore, TPI ExT
present a larger standard deviation than the MFI. The large standard deviation of the
ExT of TPI highlights a high dependency on the user’s skills. The MFI presents a
small ExT standard deviation because the execution is independent of the operator’s
capacity.

In the end, a questionnaire was proposed to the users (see Table 1). The questions are
related to the user’s impressions concerning his/her previous experience level (Q1), ease
of use (Q2), intuitiveness (Q3), learning speed (Q4), and the utility of his/her previous
knowledge (Q5). Figure 11h, 12a and 12b show almost identical results between the
MFI and the TPI regarding ease of use, intuitiveness and learning speed. The plots of
the score given to questions 1 and 5 (user’s previous experience level and the utility
of the previous knowledge to program the task) are not reported because the scores
were always low. Therefore the informative contribution was not significant. Table 2a,
2b shows information about the users that participated in the experiments of Task 1.

4.2. Task 2 Experiments Results

The experiments relative to Task 2 applied the method described in Section 3.3 and
3.3.2. Section 3.4 reports the parameters measured to evaluate the interfaces. All the
evaluation indices measured during Task 2 are reported in Figures 13 and 14.

The average learning time LeT is 43.7% higher for MFI; see Figure 13a. The result
is similar to the LeT of Task 1 experiments. The average programming time PrT is

15

(a) Learning Time (LeT). (b) Programming Time (PrT).

(c) Programming Questions (PrQs). (d) Test Time (TeT).

(e) Test Numbers (TeNs). (f) Test Questions (TeQs).

(g) Execution Time (ExT). (h) Interface ease of use, Table 1 Q2.

Figure 11. Task 1 experiments’ results.
TP: UR10e teach pendant interface. MF: manipulation framework interface.

16

(a) Interface intuitiveness, Table 1 Q3. (b) Interface speed, Table 1 Q4.

Figure 12. Task 1 experiments’ results.
TP: UR10e teach pendant interface. MF: manipulation framework interface interface.

Table 2. Participants data for Task 1: E.Q. (educational qualification): h.s.g. (high
school graduation); m.d. (master’s degree); b.d. (bachelor degree). I.R.P.E. (industrial
robot programming experience). P.O. (professional occupation).

(a) Group A

Age E.Q. I.R.P.E. P.O. Gender

1 24 m.d. little PhD student man

2 28 m.d. no PhD student man
3 35 h.s.g. little mechanical operator man

4 23 b.d. no student man

5 20 h.s.g. no student female
6 23 m.d. little student man

7 26 m.d. no PhD student man

8 22 h.s.g. no student man

(b) Group B

Age E.Q. I.R.P.E. P.O. Gender

9 29 PhD expert researcher male
10 35 h.s.g. little mechanical operator male

11 23 b.d. no student female
12 24 b.d. little student male

13 24 b.d. little student male

14 23 b.d. no student female
15 22 h.s.g. no student male

16 31 m.d. no sw developer male

17 34 m.d. no sw engineer male

17

15.2% lower for the MFI; see Figure 13b. The PrT is similar for both the interfaces
because Task 2 is composed of only two objects, and the number of repetitive Actions
is reduced, tending to provide similar results. The programming questions PrQs is
higher for the MFI; see Figure 13c. The users involved in Task 2 (i.e., shop floor
machine tools operators and technicians) had less familiarity with the use of robots
and, in general, less inclination to technologies compared to the users of Task 1 (i.e.,
STEM faculties students). This aspect is the possible cause of why Task 2 PrQs values
are higher than Task 1, in particular for the MFI. The more complex structure of MFI
has amplified this phenomenon. Despite this problem, the PrQs values do not represent
a real problem. The training of non-expert operators for the MFI is less than one hour
(considering the video watching). The test time TeT, see Figure 13d, shows similar
TeT for both interfaces apart from the spike of user one that is however, present for
both interfaces; in particular, the time to correct the errors is comparable. The test
numbers TeNs, see Figure 13e, show a not relevant number of trials, so the reduced
number of errors made during the programming demonstrates that reduced knowledge
does not affect the operator performance. The test questions TeQs, see Figure 13f,
show a high autonomy of the user to correct the errors. The execution time ExT,
see Figure 13g, indicates that the TPI ExT has lower values than the MFI. In this
case, the computation time necessary for the MF to generate collision-free trajectories
is higher than Task 1 because the robot workspace presents constrained spaces and
more obstacles. The higher ExTs is reflected in the benefit of a collision-free trajectory
guaranteed by the MF motion planners. On the contrary, with the TPI, the collision
avoidance of the robot is in charge of the programmer. The average reprogramming
time ReT, see Figure 13h, shows that usually, the MFI ReT values are lower than the
TPI. The MFI ReT average value is 26.1% lower than TPI. With the MFI, the user
has to modify the program to teach only two new positions. Instead, the TPI requires
adding new via-points to the trajectories already defined. The reprogramming number
of questions ReQs, see Figure 14a, shows the low ReQs values; most of the users did not
need any help during the reprogramming. The reprogramming test times ReTeTs, the
reprogramming tests numbers ReTeN, the test questions ReTeQs, and the execution
time ReExT, see Figure 14b, 14c, 14d, and 14e respectively, show results similar to
those obtained in the first testing phase and no significant differences emerged between
the interfaces.

As for Task 1, at the end of Task 2, the questionnaire described in Table 1 was
proposed to the users. Figure 14f, 14g, and 14h show again similar values for both
interfaces. The parameters have high values demonstrating a good appreciation by
the machine tools operators highlighting the usability of the interfaces in the indus-
trial world. The assessments of previous knowledge have no informative contribution,
and the plot of the scores of questions 1 and 5 are not reported. Table 3 show the
information about the users participating in the experiments of Task 2.

4.3. Discussion

The experiments presented similar results for both interfaces. The similarities are visi-
ble in every operational aspect of the interfaces. In other words, the MFI can compete
with the UR10e TPI. The higher learning times of the MFI can be quickly recovered by
the daily use of the MF for robot programming when the tasks present repetitive Ac-
tions. However, the learning time of the MFI for a non-expert end-user was minimal
and below one hour to give a basic understanding of the interface and to be inde-

18

(a) Learning Time (LeT). (b) Programming Time (PrT).

(c) Programming Questions (PrQs). (d) Test Time (TeT).

(e) Test Numbers (TeNs). (f) Test Questions (TeQs).

(g) Execution Time (ExT). (h) Reprogramming Time (ReT).

Figure 13. Task 2 experiments’ results.
TP: UR10e teach pendant. MF: manipulation framework interface.

19

(a) Reprogramming Questions (ReQs). (b) Reprogramming Test Time (ReTeT).

(c) Reprogramming Test Numbers (ReTeN). (d) Reprogramming Test Questions (ReTeQ).

(e) Reprogramming Execution Time (ReExT). (f) Interface ease of use, Table 1 Q2.

(g) Interface intuitiveness, Table 1 Q3. (h) Interface speed, Table 1 Q4.

Figure 14. Task 2 experiments’ results.
TP: UR10e teach pendant. MF: manipulation framework interface.

20

Table 3. Participants data for Task 2: E.Q. (educational qualification): h.s.g. (high
school graduation); m.d. (master’s degree); b.d. (bachelor degree). I.R.P.E. (industrial
robot programming experience). P.O. (professional occupation).

Age E.Q. I.R.P.E. P.O. Gender

1 36 h.s.g. little mechanical operator male
2 35 h.s.g. little mechanical operator male

3 32 h.s.g. No mechanical operator male

4 46 h.s.g. No shift supervisor male
5 26 m.d. little process engineer male

pendent of the task programming. At the same time, the MF brings together several
additional benefits, such as using the ROS framework, task-oriented programming, and
collision-free motion planning. The goal of using a complex robot programming frame-
work accompanied by an intuitive interface was reached, demonstrating that shop floor
operators can quickly adopt the framework without significant learning barriers and
any particular preliminary knowledge. This paper does not present an alternative to
UR10e TP. The paper aims to demonstrate that using complex software with a suit-
able programming interface can bring advanced programming features even to shop
floor operators, enabling the use of advanced robotic cells in SMEs.

5. Conclusions and Future Works

This paper compares two robot programming interfaces representing two different
robot programming approaches. The first is the UR10e teach pendant interface, com-
bined with lead-through programming, enabling a classic robot-oriented approach. The
second is the Manipulation Framework interface providing task-oriented programming
approach. The experiments over 22 users show similar results for both interfaces high-
lighting that an intuitive interface that hides the complexity of a framework based
on ROS, such as the MF, can reach a high level of acceptance between end-users
without specific programming experience. The short learning times show the possibil-
ity of training an end-user in very little time bringing advanced features to the shop
floor without particular knowledge of robotics. At the same time, the flexibility dur-
ing reprogramming improved. The modification of the robot control program can be
accessible to all production plant operators.

In future works, the authors will investigate using machine learning algorithms to
create new actions. From a limited number of skills, for example, machine learning
algorithms should dynamically compose new actions based on specific requirements
without developer interventions.

Acknowledgement

This work is partially supported by ShareWork project (H2020, European Commission
– G.A. 820807).
The authors thank Cembre S.p.A. (Cembre S.p.A., 2022) to provide the opportunity
to make the experimental tests on their shop floor with their machine tool operators.
A special thanks to Andrea Scala and Piervincenzo Tavormina for help organizing the

21

experiments.

References

Ajaykumar, Gopika, Maureen Steele, and Chien-Ming Huang. 2021. “A Survey on
End-User Robot Programming.” ACM Comput. Surv. 54 (8). https://doi.org/
10.1145/3466819.

Ajaykumar, Gopika, Maia Stiber, and Chien-Ming Huang. 2021. “Designing user-
centric programming aids for kinesthetic teaching of collaborative robots.”
Robotics and Autonomous Systems 145: 103845. https://www.sciencedirect.

com/science/article/pii/S0921889021001305.
Andronas, Dionisis, George Apostolopoulos, Nikos Fourtakas, and Sotiris Makris. 2021.
“Multi-modal interfaces for natural Human-Robot Interaction.” Procedia Manufac-
turing 54: 197–202. 10th CIRP Sponsored Conference on Digital Enterprise Tech-
nologies (DET 2020) – Digital Technologies as Enablers of Industrial Competi-
tiveness and Sustainability, https://www.sciencedirect.com/science/article/
pii/S2351978921001669.

Anzalone, Salvatore M., Marie Avril, Hanan Salam, and Mohamed Chetouani. 2014.
“IMI2S: A Lightweight Framework for Distributed Computing.” In Simulation, Mod-
eling, and Programming for Autonomous Robots, edited by Davide Brugali, Jan F.
Broenink, Torsten Kroeger, and Bruce A. MacDonald, Cham, 267–278. Springer
International Publishing.

Apostolopoulos, George, Dionisis Andronas, Nikos Fourtakas, and Sotiris Makris.
2022. “Operator training framework for hybrid environments: An Augmented Re-
ality module using machine learning object recognition.” Procedia CIRP 106: 102–
107. 9th CIRP Conference on Assembly Technology and Systems, https://www.
sciencedirect.com/science/article/pii/S2212827122001639.

Bascetta, Luca, Gianni Ferretti, Gianantonio Magnani, and Paolo Rocco. 2013. “Walk-
through programming for robotic manipulators based on admittance control.”
Robotica 31 (7): 1143–1153.

Billard, A., S. Calinon, R. Dillmann, and S. Schaal. 2008. “Robot Programming by
Demonstration. In: Handbook of Robotics.” .

Blankemeyer, Sebastian, Rolf Wiemann, Lukas Posniak, Christoph Pregizer, and An-
nika Raatz. 2018. “Intuitive Robot Programming Using Augmented Reality.” Pro-
cedia CIRP 76: 155–160. 7th CIRP Conference on Assembly Technologies and
Systems (CATS 2018), https://www.sciencedirect.com/science/article/pii/
S2212827118300933.

Bøgh, Simon, Oluf Skov Nielsen, Mikkel Rath Pedersen, Volker Krüger, and Ole Mad-
sen. 2012. “Does your robot have skills?” In Proceedings of the 43rd international
symposium on robotics, VDE Verlag GMBH.

Castro, André, João Pedro Souza, Lúıs Rocha, and Manuel F. Silva. 2019. “Adapt-
Pack Studio: Automatic Offline Robot Programming Framework for Factory Envi-
ronments.” In 2019 IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), 1–6.

Cembre S.p.A. 2022. “Cembre S.p.A.” https://www.cembre.it/.
Coronado, Enrique, Fulvio Mastrogiovanni, Bipin Indurkhya, and Gentiane Venture.
2020. “Visual Programming Environments for End-User Development of intelligent
and social robots, a systematic review.” Journal of Computer Languages 58: 100970.
https://www.sciencedirect.com/science/article/pii/S2590118420300307.

22

Delledonne, Michele, and Manuel Beschi. 2022a. “Manipulation interface.” https:

//github.com/JRL-CARI-CNR-UNIBS/manipulation_interface.
Delledonne, Michele, and Manuel Beschi. 2022b. “Manipulation interface.” https:

//github.com/JRL-CARI-CNR-UNIBS/manipulation_interface_example.
Faroni, Marco, Manuel Beschi, Stefano Ghidini, Nicola Pedrocchi, Alessandro Um-
brico, Andrea Orlandini, and Amedeo Cesta. 2020. “A Layered Control Approach
to Human-Aware Task and Motion Planning for Human-Robot Collaboration.” In
2020 29th IEEE International Conference on Robot and Human Interactive Com-
munication (RO-MAN), 1204–1210.

Ferraguti, Federica, Chiara Talignani Landi, Lorenzo Sabattini, Marcello Bonfè, Cesare
Fantuzzi, and Cristian Secchi. 2019. “A variable admittance control strategy for
stable physical human–robot interaction.” The International Journal of Robotics
Research 38 (6): 747–765. https://doi.org/10.1177/0278364919840415.

Gadre, Samir Yitzhak, Eric Rosen, Gary Chien, Elizabeth Phillips, Stefanie Tellex,
and George Konidaris. 2019. “End-User Robot Programming Using Mixed Reality.”
In 2019 International Conference on Robotics and Automation (ICRA), 2707–2713.

Heimann, Oliver, and Jan Guhl. 2020. “Industrial Robot Programming Methods: A
Scoping Review.” In 2020 25th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Vol. 1, 696–703.

Huang, Gaoping, Pawan Rao, Meng-Han Wu, Xun Qian, Shimon Nof, Karthik Ra-
mani, and Alexander Quinn. 2020. “Vipo: Spatial-Visual Programming with Func-
tions for Robot-IoT Workflows.” In CHI ’20: CHI Conference on Human Factors
in Computing Systems, 04, 1–13.

Huang, Justin, and Maya Cakmak. 2017. “Code3: A System for End-to-End Pro-
gramming of Mobile Manipulator Robots for Novices and Experts.” In 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction (HRI, 453–462.

International Federation of Robotics. 2022. “World Robotics Industrial Robots Re-
port.” https://ifr.org/worldrobotics/.

ISO/TC 299 Robotics. 2016. “ISO/TS 15066:2016.” https://www.iso.org/

standard/62996.html.
Kubota, Alyssa, Emma I. C. Peterson, Vaishali Rajendren, Hadas Kress-Gazit, and
Laurel D. Riek. 2020. JESSIE: Synthesizing Social Robot Behaviors for Personalized
Neurorehabilitation and Beyond, 121–130. New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/3319502.3374836.

Kuka AG. 2022. “Kuak Sunrise.OS.” https://www.kuka.com/en-gb/products/

robotics-systems/software/system-software/sunriseos.
Lu, Shuang, Julia Berger, and Johannes Schilp. 2022. “System of Robot Learn-
ing from Multi-Modal Demonstration and Natural Language Instruction.” Proce-
dia CIRP 107: 914–919. Leading manufacturing systems transformation – Pro-
ceedings of the 55th CIRP Conference on Manufacturing Systems 2022, https:
//www.sciencedirect.com/science/article/pii/S2212827122003687.

Makris, Sotiris, Panagiota Tsarouchi, Dragoljub Surdilovic, and Jörg Krüger. 2014.
“Intuitive dual arm robot programming for assembly operations.” CIRP An-
nals 63 (1): 13–16. https://www.sciencedirect.com/science/article/pii/

S0007850614000201.
Metta, Giorgio, Paul Fitzpatrick, and Lorenzo Natale. 2006. “YARP: Yet Another
Robot Platform.” International Journal of Advanced Robotic Systems 3 (1): 8.
https://doi.org/10.5772/5761.

Michalos, George, Sotiris Makris, Jason Spiliotopoulos, Ioannis Misios, Panagiota
Tsarouchi, and George Chryssolouris. 2014. “ROBO-PARTNER: Seamless Human-

23

Robot Cooperation for Intelligent, Flexible and Safe Operations in the Assembly
Factories of the Future.” Procedia CIRP 23: 71–76. 5th CATS 2014 - CIRP Confer-
ence on Assembly Technologies and Systems, https://www.sciencedirect.com/
science/article/pii/S2212827114011366.

Mohammad Safeea, Pedro Neto. 2022. “Precise positioning of collaborative robotic ma-
nipulators using hand-guiding.” The International Journal of Advanced Manufactur-
ing Technology 120: 5497–5508. https://doi.org/10.1007/s00170-022-09107-1.

Mukherjee, Debasmita, Kashish Gupta, Li Hsin Chang, and Homayoun Najjaran.
2022. “A Survey of Robot Learning Strategies for Human-Robot Collaboration in
Industrial Settings.” Robotics and Computer-Integrated Manufacturing 73: 102231.
https://www.sciencedirect.com/science/article/pii/S0736584521001137.

Neto, Pedro, and Nuno Mendes. 2013. “Direct off-line robot programming via a com-
mon CAD package.” Robotics and Autonomous Systems 61 (8): 896–910. https:
//www.sciencedirect.com/science/article/pii/S0921889013000419.

Ong, S.K., A.W.W. Yew, N.K. Thanigaivel, and A.Y.C. Nee. 2020. “Augmented
reality-assisted robot programming system for industrial applications.” Robotics and
Computer-Integrated Manufacturing 61: 101820. https://www.sciencedirect.

com/science/article/pii/S0736584519300250.
Open source community. 2022. “MoveIt! Moving robots into the future.” https://

moveit.ros.org/.
Pan, Zengxi, Joseph Polden, Nathan Larkin, Stephen Van Duin, and John Nor-
rish. 2012. “Recent progress on programming methods for industrial robots.”
Robotics and Computer-Integrated Manufacturing 28 (2): 87–94. https://www.

sciencedirect.com/science/article/pii/S0736584511001001.
Quintero, Camilo Perez, Sarah Li, Matthew KXJ Pan, Wesley P. Chan, H.F. Machiel
Van der Loos, and Elizabeth Croft. 2018. “Robot Programming Through Augmented
Trajectories in Augmented Reality.” In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 1838–1844.

Rendiniello, Angelo, Alberto Remus, Ines Sorrentino, Prajval Kumar Murali, Daniele
Pucci, Marco Maggiali, Lorenzo Natale, et al. 2020. “A Flexible Software Architec-
ture for Robotic Industrial Applications.” In 2020 25th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), Vol. 1, 1273–1276.

ROBO-PARTNER Consortium. Nov. 2013 - Apr. 2017. “ROBO-PARTNER Project
Seamless Human-Robot Cooperation for Intelligent, Flexible and Safe Operations
in the Assembly Factories of the Future.” http://www.robo-partner.eu/.

ROS-Industrial consortium. 2022. “ROS-Industrial.” https://rosindustrial.org/.
Schmidt, Douglas C., David L. Levine, and Sumedh Mungee. 1998. “The Design of
the TAO Real-Time Object Request Broker.” Comput. Commun. 21 (4): 294–324.
https://doi.org/10.1016/S0140-3664(97)00165-5.

Schou, Casper, Rasmus Skovgaard Andersen, Dimitrios Chrysostomou, Simon Bøgh,
and Ole Madsen. 2018. “Skill-based instruction of collaborative robots in industrial
settings.” Robotics and Computer-Integrated Manufacturing 53: 72–80. https://
www.sciencedirect.com/science/article/pii/S0736584516301910.

Sefidgar, Yasaman S., Prerna Agarwal, and Maya Cakmak. 2017. “Situated Tangible
Robot Programming.” In Proceedings of the 2017 ACM/IEEE International Con-
ference on Human-Robot Interaction, HRI ’17, New York, NY, USA, 473–482. Asso-
ciation for Computing Machinery. https://doi.org/10.1145/2909824.3020240.

Sharework Consortium. Nov. 2018 - Oct. 2022. “Sharework.” https:

//sharework-project.eu/.
Sherlock Consortium. Oct. 2018 - Sep. 2022a. “Sharlock - Seamless and safe hu-

24

man centred robotic applications for novel collaborative workplaces.” https://www.
sherlock-project.eu/home.

Sherlock Consortium. Oct. 2018 - Sep. 2022b. “Sherlock - Deliverable 4.8
Autonomous learning and programming methods – Final prototype.”
https://ec.europa.eu/research/participants/documents/downloadPublic?

documentIds=080166e5e30cb5db&appId=PPGMS.
Siciliano, Bruno, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. 2010.
“Robotics: modelling, planning and control.” .

Stanford Artificial Intelligence Laboratory et al. 2022. “Robotic Operating System.”
https://www.ros.org.

Stenmark, Maj, Mathias Haaae, and Elin Anna Topp. 2017. “Simplified Programming
of Re-Usable Skills on a Safe Industrial Robot - Prototype and Evaluation.” In 2017
12th ACM/IEEE International Conference on Human-Robot Interaction (HRI, 463–
472.

Thormann, Christian, and Alexander Winkler. 2021. “Programming of a Lightweight
Robot Using Function Blocks and Sequential Function Charts.” In 2021 25th Inter-
national Conference on Methods and Models in Automation and Robotics (MMAR),
348–353.

Tsarouchi, Panagiota, Sotiris Makris, and George Chryssolouris. 2016. “Human–robot
interaction review and challenges on task planning and programming.” International
Journal of Computer Integrated Manufacturing 29 (8): 916–931. https://doi.org/
10.1080/0951192X.2015.1130251.

Umbrico, Alessandro, Andrea Orlandini, Amedeo Cesta, Marco Faroni, Manuel Beschi,
Nicola Pedrocchi, Andrea Scala, et al. 2022. “Design of Advanced Human–Robot
Collaborative Cells for Personalized Human–Robot Collaborations.” Applied Sci-
ences 12 (14): 6839. http://dx.doi.org/10.3390/app12146839.

Universal Robots. 2022. “Universal Robots ROS Driver.” https://github.com/

UniversalRobots/Universal_Robots_ROS_Driver.
Villagrossi, E., N. Pedrocchi, and M. Beschi. 2021. “Simplify the robot programming
through an action-and-skill manipulation framework.” In 2021 26th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
1–6.

Villagrossi, Enrico, and Manuel Beschi. 2022a. “Manipulation examples.” https://

github.com/JRL-CARI-CNR-UNIBS/manipulation_examples.
Villagrossi, Enrico, and Manuel Beschi. 2022b. “The manipulation library.” https:

//github.com/JRL-CARI-CNR-UNIBS/manipulation.
Villani, Valeria, Fabio Pini, Francesco Leali, and Cristian Secchi. 2018. “Survey on hu-
man–robot collaboration in industrial settings: Safety, intuitive interfaces and appli-
cations.” Mechatronics 55: 248–266. https://www.sciencedirect.com/science/
article/pii/S0957415818300321.

Yang, Shuo, Xinjun Mao, Binbin Ge, and Sen Yang. 2015. “The Roadmap and Chal-
lenges of Robot Programming Languages.” In 2015 IEEE International Conference
on Systems, Man, and Cybernetics, 328–333.

Zhang, Jiafan, Yue Wang, and Rong Xiong. 2016. “Industrial robot programming
by demonstration.” In 2016 International Conference on Advanced Robotics and
Mechatronics (ICARM), 300–305.

25

