
Supervisory Controller Synthesis
for Product Lines using CIF3

Maurice H. ter Beek1, Michel A. Reniers2, and Erik P. de Vink2,3,?

1 ISTI–CNR, Pisa, Italy
2 Eindhoven University of Technology, The Netherlands

3 CWI, Amsterdam, The Netherlands

Abstract. Using the CIF 3 toolset, we illustrate the general idea of con-
troller synthesis for product line engineering for a prototypical example
of a family of coffee machines. The challenge is to integrate a number
of given components into a family of products such that the resulting
behaviour is guaranteed to respect an attributed feature model as well
as additional behavioural requirements. The proposed correctness-by-
construction approach incrementally restricts the composed behaviour
by subsequently incorporating feature constraints, attribute constraints
and temporal constraints. The procedure as presented focusses on synthe-
sis, but leaves ample opportunity to handle e.g. uncontrollable behaviour,
dynamic reconfiguration, and product- and family-based analysis.

1 Introduction

In the current globalised economy, businesses are eager to offer a myriad of di-
versified products as a strategy to increase turnover. To reduce development
costs and time-to-market, reuse of components (systems as well as software) is
becoming common practice. The aim of Software or Systems Product Line En-
gineering (SPLE) is to institutionalise reuse throughout all phases of product
development [37]. According to this paradigm, enterprises shift from the pro-
duction, maintenance and management of single products to that of a family or
product line of related products, amenable to mass customisation. This requires
the identification of the core assets of the products in the domain to exploit their
commonality and manage their variability, often defined in terms of features. A
feature can be seen as an (increment in) functionality of a product that is visible
or relevant to a customer. Consequently, to the developer feature models define
the combination of features that constitute valid product configurations [13].

While the automated analysis of structural variability models (e.g. the de-
tection of so-called dead or false optional features in feature models) has a long-
standing history [13], that of behavioural variability models has received con-
siderable attention only after the landmark paper by Classen et al. [18]. Since
product lines often concern massively (re)used and critical applications (like
smartphones and cars), indeed it is important to demonstrate that they are not
only configured correctly, but also behave correctly.
? Corresponding author: evink@win.tue.nl

Many approaches aim to engineer systems (of systems) that are provably cor-
rect with respect to their requirements. At one side of the spectrum, (post-hoc)
verification concerns the application of formal analysis techniques after a system
(specification) has been constructed. Typically, a formal specification of the im-
plemented system, or abstraction thereof, describes the intended behaviour, after
which verification techniques like model checking or theorem proving are applied
to verify whether the implementation indeed satisfies the specification [39, 2].
While applications of theorem proving in SPLE have concentrated on the analy-
sis of requirements and code [34, 20, 45] with tools like Coq and KeY, a number of
model-checking tools have been equipped to deal with variability in their speci-
fication models for application in SPLE. These range from modal transition sys-
tem [31, 7] and process-algebraic models [24, 8] to tools like NuSMV and mCRL2 [16,
6], as well as dedicated model checkers like SNIP, VMC, and ProVeLines [15, 10,
19]. Research on applying model checking and theorem proving to product lines
is also reflected in recent editions of ISoLA [1, 25, 32, 14, 4, 33, 9].

At the other end of the spectrum, the principle of correctness-by-construction
has the aim of developing error-free systems from rigorous and unambiguous
specifications, based on stringent correctness criteria in each refinement step.
Dijkstra and Hoare focussed on the construction of provably correct programs
based on weakest precondition semantics [21, 28], whereas Hall and Chapman
focussed on an effective and economical software development process, from user
requirements to implementation, based on zero tolerance of defects [26, 27]. We
consider another approach to correctness-by-construction, namely synthesis seen
as the development of a supervisor (or supervisory controller) in order to coor-
dinate an assembly of (local) components into a (global) system that functions
correctly. Supervisory Control Theory (SCT) [38] synthesises a supervisory con-
trol model from models of system components and a set of given requirements.
Moreover, the ensemble of components controlled by the supervisor satisfies a
number of desirable properties, like the possibility to reach stable local states,
so-called marker states, and the impossibility to globally disable events under
local control. To the best of our knowledge, we are the first to apply supervisory
controller synthesis in SPLE.

At Eindhoven University of Technology, the CIF 3 toolset [11] is developed
and maintained. This toolset targets model-based engineering of supervisory
controllers and supports such an engineering process by offering functionality
for modelling, simulation, visualisation, synthesis, and code generation. More
concretely, in this paper, we show how the CIF 3 toolset [11] can automatically
synthesise a single (family) model representing an automaton for each of the valid
products of a product line from (i) an attributed feature model, (ii) component
behaviour models associated with the features and (iii) additional behavioural
requirements like state invariants, event orderings and guards on events (rem-
iniscent of the Feature Transition Systems (FTSs) of Classen et al. [17]). By
construction, the resulting CIF 3 model satisfies all feature-related constraints as
well as all behavioural requirements that are assumed to be given beforehand.
Note that it was not needed to extend the CIF toolset for our purposes. CIF 3

2

moreover allows, among others, the export of such models in a format accepted
by the mCRL2 model checker, which can be used to verify arbitrary behavioural
properties expressed in the modal µ-calculus with data or its feature-oriented
variant of [6]. An important advantage is that both CIF 3 and mCRL2 can be used
off-the-shelf, meaning that no additional tools are required. Moreover, it is im-
portant to note that the explicit consideration of features as first-class citizens
is a completely new way of using the CIF 3 toolset.

We thus present a unifying SCT approach to deal with structural and be-
havioural variability, i.e. the resulting synthesised supervisory controller not only
manages feature models (product generation), but also product line behaviour
(variability encoding) and further behavioural requirements (admissible scenar-
ios). The only other integrated approach that we are aware of is a recent ex-
tension of the general-purpose modelling language Clafer [3], that was origi-
nally designed to unify (attributed) feature models with class and meta-models.
Behavioural Clafer [30] provides (i) feature modelling by means of a constraint
language reminiscent of Alloy [29], a light-weight class modelling language with
an efficient constraint notation and an effective analyser for instance generation,
(ii) behavioural variability by means of hierarchical UML state diagrams and au-
tomata (in FTS-style) and (iii) additional behavioural constraints (assertions)
in the form of scenarios, allowing for (bounded) LTL model checking.

Compared to the CIF 3 toolset, Behavioural Clafer provides first-class sup-
port for architectural modelling through Clafer’s rich repertoire for structural
modelling, but it offers less advanced behavioural modelling facilities, little sup-
port for modularisation of feature-based variants (as in Delta-modelling [40]),
and no support for controller synthesis. CIF 3 provides ample facilities to model
a system’s requirements and behaviour. It does so in a highly modular fashion,
with a formal and compositional semantics based on (hybrid) transition sys-
tems. In fact, although not shown in this paper, CIF 3 allows to describe timed
behaviour and supports the translation of timed discrete event models to UPP-
AAL [12], a tool for modelling, simulation and verification of real-time systems.

The remainder of the paper is organised as follows: Section 2 briefly in-
troduces the notion of an attributed feature model and describes our running
example of a family of coffee machines. Section 3 provides background on super-
visory control and illustrates the modelling with CIF 3. In Section 4, we explain,
for the product line of coffee machines, how controller synthesis with CIF 3 can
be used to bring together feature constraints, component behaviour and system
requirements. Section 5 discusses a number of directions for future work.

2 Product Lines

A feature model is a hierarchical and/or-tree of features [13]. A trivial root
feature is considered to be present in any product, mandatory features must be
present provided their parent is, while optional features may be present provided
their parent is. Exactly one alternative feature must be present provided their
parent is, and at least one or feature must be present whenever their parent is.

3

A cross-tree constraint either requires the presence of another feature for
a feature to be present, or it excludes two features to be both present. In an
attributed feature model, the primitive features (leaves of the tree) are more-
over equipped with a non-functional attribute, like cost or weight, and complex
constraints over features. Attributes further constrain the feature configuration
process, in particular by limiting the cost or weight of features, or of products.

relationship formula

root F0 F0 ⇐⇒ true

mandatory
F1

F2

F1 ⇐⇒ F2

optional
F1

◦
F2

F2 =⇒ F1

alternative
F

F1 F2 Fn

(F1 ⇐⇒ (¬F2 ∧ · · · ∧ ¬Fn ∧ F))
∧ · · · ∧

(Fn ⇐⇒ (¬F1 ∧ · · · ∧ ¬Fn−1 ∧ F))

or
F

F1 F2 Fn

F ⇐⇒ (F1 ∨ F2 ∨ · · · ∨ Fn)

requires F1
//------ F2 F1 =⇒ F2

excludes F1
oo //------ F2 ¬ (F1 ∧ F2)

A feature model is equivalent to
a propositional formula over fea-
tures defined as the conjunction
of the formulas obtained from the
mapping on the right (adapted
from [13]). As a result, deciding
whether or not a product is valid
according to the feature model
reduces to a Boolean satisfiabil-
ity problem, which implies that it
can efficiently be computed with
BDD or SAT solvers. However, in
case of feature models displaying
non-Boolean attributes and com-
plex constraints, one needs to re-
sort to SMT solvers, for example.

As a running example, we use a family of coffee machines. This product line
was used earlier too in work on the application of formal methods and tools such
as VMC and mCRL2 to (software) product lines, cf. e.g. [10, 5, 4, 7]. In short, coffee
machines from our example product line are described as follows:
– A coffee machine either accepts one-euro coins (1e), exclusively for Euro-

pean products, or one-dollar coins (1 $), exclusively for Canadian products.
– After inserting a coin, the user has to decide whether or not she wants sugar,

by pressing one out of two buttons.
– Next, a beverage must be selected, which is either coffee (which is always

available), tea or cappuccino (tea is optionally available, cappuccino is op-
tionally available from European machines).

– After delivering a beverage, optionally a ringtone is rung. However, in case
the product is offering cappuccino this must be the case.

– After the beverage is taken, the machine returns to its idle state.
– Optionally, coins of other denominations than one euro or one dollar can be

inserted. Change will be returned when appropriate.

The attributed feature model depicted in Figure 1 organises 11 features, reflect-
ing the description of the above product family. The root feature M, mandatory
features S, O, B, and C, and optional features E, D, R, P, T and X. Sibling features
E and D are alternatives, whereas independent features D and P are mutually
exclusive. The feature R is required by feature P. The primitive features come
equipped with an attribute for costs, an integer value between 3 and 10.

4

Fig. 1. Attributed feature model for the family of coffee machines [5].

More formally, the feature model yields 20 different products when ignor-
ing the attribute constraints. Each product can be identified with a subset P
of the set F of all features. For example, the subset of features {M, S, O, E, B, C}
describes a European coffee machine of a minimal number of features. The at-
tribute function cost : F → N associated to the attribute cost extends to prod-
ucts in a straightforward manner, cost (P) =

∑
{ cost (f) | f ∈ P }, by assigning

cost 0 to non-primitive features. If we consider the attributes and their overall
quantitative constraint requiring cost (P) 6 30 for all P ⊆ F , then the at-
tributed feature model only defines 16 valid products. For instance, the product
{M, S, O, E, R, B, C, T, X} meets the feature requirements of the feature model, but
has a cost of 33, exceeding the bound of 30.

3 Supervisory Control Synthesis

SCT provides a mechanism to obtain a model, an automaton, of a supervisory
controller from given (component) models of the uncontrolled system and its
requirements. The synthesised supervisory controller, if successfully produced,
is such that the controlled system, which is the synchronous product of the
uncontrolled system and the supervisory controller, satisfies the requirements
and is additionally non-blocking, controllable and maximally permissive [38]. In
the context of supervisory control, an automaton is called non-blocking in case
from each state at least one of the so-called marker states can be reached. This
indicates that the system always has the capability to return to an accepted rest
state or stable state. The user has to indicate for each of the component models
which are such marker locations.

In SCT, one distinguishes controllable and uncontrollable events. Controlla-
bility means that the supervisory controller is not permitted to block uncontrol-
lable events from happening. The controller is only allowed to disable behaviour
of the uncontrolled system indirectly by preventing controllable events from hap-
pening. Intuitively, controllable events correspond to stimulating or actuating the

5

system, while the uncontrollable events correspond to messages provided by the
sensors (which may be neglected, but cannot be denied from existing). However,
in the application of SCT demonstrated in this paper, all events are assumed to
be controllable for simplicity. The resulting supervisory controller is maximally
permissive (or least restrictive). This means that as much behaviour of the un-
controlled system as possible is still present in the controlled system without
violating neither the requirements, nor the controllability nor the non-blocking
condition on the reachability of marker states.

In earlier work, both the components and the requirements were expressed
by means of finite automata. Thus the complete model of the system is a net-
work or composition of automata. These automata may share certain events,
and it is assumed that shared events will only occur at the system level if all
automata that share that event execute it simultaneously. It is this form of multi-
party synchronisation that allows a compact and modular specification [11, 42].
More recently, in order to increase modelling comfort, finite state machines were
replaced by extended finite automata, which allow the use of variables in the au-
tomata [41]. In addition, the original algorithm for synthesis was strengthened
to be able to deal with these as well [36]. Requirements for the controlled system
to hold may be specified in various ways. First of all, allowed event sequences
may be specified using automata. Also, state invariants and event conditions are
typically used [35]. Invariants are predicates evaluating the overall state of the
system. An event condition restricts the occurrence of an event to states that
satisfy a specific state predicate.

As mentioned above, component models and (part of) the requirements are
provided by means of extended finite automata. More specifically, a (component
or requirement) automaton has a name. Refer to Listings 1 and 2 for examples
of the concepts introduced here. Its name is used in other automata and re-
quirements to refer to concepts that are defined inside the automaton, such as
its events, variables and locations. In the automaton, local events may be de-
clared (together with the indication that these are controllable). Similarly, local
variables may be declared with their type and initial value (Listing 2). Further-
more, locations are declared together with the transitions emitting from them.
Transitions are described using the keyword edge. A transition may have an
event name, a condition or guard (following the keyword when), and an update
or assignment (following the keyword do). The guard is a Boolean expression in
terms of the values of variables and the current location of other automata. The
update is an assignment of new values (by using an expression over variables
and locations) to local variables. In CIF 3, a variable may only be assigned in
the automaton it is declared in, but may be read/used in all other automata
and requirements. CIF 3 distinguishes algebraic variables, like cost in Listing 3,
and discrete variables, like cnt in Listing 2. An algebraic variable is a variable
for which the value is at all times defined as the result of an expression in the
right-hand side of the declaration of that variable.

In Listing 1, the textual description of the component automaton COFFEE is
given. It declares controllable events done, coffee, cappuccino, pour_coffee

6

and pour_milk. Other automata may refer to these events by prefixing the name
of the defining automaton, e.g. COFFEE.cappuccino.

Listing 1. Automaton COFFEE

controllable
done , coffee , cappuccino , pour_coffee , pour_milk;

location NoChoice: initial , marked;
edge coffee goto Coffee;
edge cappuccino goto Cappuccino;

location Coffee: marked;
edge pour_coffee;
edge done goto NoChoice;
edge cappuccino goto Cappuccino;

location Cappuccino: marked;
edge pour_coffee;
edge pour_milk;
edge done goto NoChoice;
edge coffee goto Coffee;

The automaton of the COFFEE component model has three locations, of which
the location NoChoice is the initial location. Note that all locations are marked.
From the location NoChoice with the event coffee the automaton may transit
to location Coffee. Note that in the automaton there are no variables and,
therefore, no conditions and updates are specified for the transitions. If the
description of a transition does not reveal a target location explicitly (using the
keyword goto) then a loop is implied.

As another example, consider the requirement SWEETNESS specified in List-
ing 2. In this automaton a discrete variable with name cnt is introduced of type
int[0..2], which means it can only take one of the values 0, 1, or 2. Initially, it
has value 0. In this automaton, the use of conditions and updates is illustrated.
For the transition labeled by event pour_sugar (from automaton SWEET, intro-
duced later) it is required that the value of variable cnt is at most 1. Taking
this transition results in adding 1 to the value of the variable by means of the
assignment described after do. Observe that the order of transitions as described
does not imply any priority among them.

Listing 2. Requirement SWEETNESS

disc int [0..2] cnt :=0;
location Idle: initial , marked;

edge SWEET.sugar goto SugarNeeded;
edge SWEET.done when SWEET.NoSugar;

location SugarNeeded: marked;
edge SWEET.pour_sugar when cnt61 do cnt:=cnt+1;
edge SWEET.done when cnt=2 do cnt :=0 goto Idle;

Note how the requirement forces the sweet component to provide two portions
of sugar when sugar is requested.

CIF 3 has ample features for defining templates with parameters and for
reusing those. Please refer to http://cif.se.wtb.tue.nl for more information.

7

We only make limited use of these mechanisms in this paper. CIF 3 has been
applied to several industrial size case studies, cf. e.g. [22, 44].

4 Modelling Product Lines with CIF 3

In this section, we demonstrate several aspects involving the modelling of product
lines with CIF 3. First, we consider the modelling of the set of acceptable prod-
ucts as defined by a feature model. Then we add to this model the uncontrolled
behaviour of components, with the behaviour of the components as is. Further-
more, we show how behavioural requirements can easily be incorporated in the
CIF 3 model, and we describe how these may be used to obtain a supervisory
controller for the family of valid products, satisfying both the feature-related
and the behavioural requirements.

4.1 Valid Products

In this section, we propose a simple way of obtaining all valid products from
a feature model. In line with Section 2, we introduce Boolean variables for the
presence and absence of features. We demonstrate how the restrictions imposed
by a feature model can be described by invariants on these Boolean variables.

We introduce a generic definition FEATURE for features, shown in Listing 3.
The definition may have multiple instances (cf. e.g. FM and FS representing an
automaton for the features M and S, respectively). Here, the cost of each feature
is taken as a so-called algebraic parameter. In this declaration an if-then-else
expression is used to provide different values for the variable depending on a
condition (present in this case). In CIF 3, every automaton needs to have at
least one location, hence the dummy location (with name Dummy) defined in
Listing 3.

Listing 3. Generic feature definition FEATURE

def FEATURE(alg int cost):
alg int cost = if present : cost else 0 end;
disc bool present in any;
location Dummy: initial , marked;

end

FM: FEATURE (0); FS: FEATURE (5); ; FX: FEATURE (10);

We next discuss how in-tree, cross-tree and attribute constraints, as given by an
attributed feature model, can be represented as CIF 3 requirements.

An example of a mandatory feature is the link between the beverage feature B
and the coffee feature C in Figure 1. In CIF 3, we define a requirement that states
that, invariantly, presence of the beverage feature B, represented by the Boolean
variable present of automaton FB, coincides with presence of the coffee feature,
i.e. the Boolean variable present of automaton FC (cf. the mapping in Section 2).

requirement invariant FB.present ⇔⇔⇔ FC.present;

8

An example of an optional feature is the connection between features B for
beverage and T for tea in Figure 1. As an optional feature is allowed to be present
when the parent feature is present, but it is not allowed to be present when the
parent feature is absent, we have the following invariance requirement in CIF 3.

requirement invariant FT.present ⇒⇒⇒ FB.present;

Selection from alternative features occurs in Figure 1 concerning the features
O, E and D. The intended meaning of the alternative features E and D is that pres-
ence of the parent feature O implies presence of exactly one of these alternative
features, and the other way around: presence of E or D requires presence of O.
The requirement generalises straightforwardly to more than two alternatives.

requirement invariant
FO.present ⇔⇔⇔ (FE.present ⇔⇔⇔ not FD.present);

An example of a ‘requires’ cross-tree constraint occurs in Figure 1 between
the requiring cappuccino feature P and the required ringtone feature R. We define
the following invariant as CIF 3 requirement.

requirement invariant FP.present ⇒⇒⇒ FR.present;

Figure 1 shows an ‘excludes’ cross-tree constraint between the dollar fea-
ture D and the cappuccino feature P. The meaning is that these features are not
allowed to be both present in the same product, i.e. dollar machines do not offer
cappuccino. Therefore, in CIF 3 we define the following requirement.

requirement invariant not (FD.present and FP.present);

The example feature model of Figure 1 includes one (global) attribute con-
straint. It states that the total cost of the selected features may not exceed the
threshold of 30 units. We have modelled the cost associated with each feature
as a parameter (cf. Listing 3). The total cost can therefore be modelled in CIF 3
as the sum of the costs of the features that are present. Note that in the generic
feature definition the cost of a non-present feature is defined to be 0.

requirement invariant FM.cost + FS.cost + · · ·· · ·· · · + FT.cost 666 30;

Apart from the five categories of constraints mentioned above, for feature
models it is often assumed that a product contains at least one non-trivial fea-
ture, i.e. a feature which is not the root feature. The requirement below encodes
a disjunction over all non-trivial features.

requirement invariant
(FS.present or FO.present or · · ·· · ·· · · or FT.present);

Observe that the in-tree and cross-tree requirements arising from a feature
model have been modelled in CIF 3 in such a way that the transformation from
a feature model to a CIF 3 model can easily be automated. Translation of the

9

attribute constraints requires some attribute constraint specific modelling; this
can be automated too with a modest effort dependent on the expressiveness of
the constraints allowed.

Synthesis with CIF 3 of a supervisory controller capturing the constraints of
Figure 1 yields a product automaton of all features together with a supervisor
which has 16 initial states, each corresponding to a valid product. This is the
same number as reported in [5, 4].

4.2 Component Behaviour

The CIF 3 toolset is very much suited to describe the dynamic behaviour of com-
ponents. With CIF 3 we initially define the potential behaviour of each individual
component. It follows that the combined potential behaviour of the components
together may contain undesired behaviour. In a later stage, we impose the ad-
ditional behavioural requirements that are needed to obtain meaningful and
acceptable behaviour (cf. Section 4.3).

For the coffee machine example we identified seven components in [4]: COIN,
CANCEL, SWEET, RINGTONE, COFFEE, TEA and MACHINE. We will specify the po-
tential behaviour of each of these in isolation by means of CIF 3 automata. In
principle this needs to be described textually, but for presentation purposes we
provide it in a graphical way as illustrated in Figure 2. The textual description
of automaton COFFEE has been given in Listing 1 in Section 3.

NoChoice

Coffee Cappuccino
coffee

done cappuccino
done

cappuccino

coffee

pour_coffee pour_coffee
pour_milk

NoChoice

Sugar NoSugar
sugar

done no_sugar

done

no_sugar

sugar

no_sugarsugar
pour_sugar

Fig. 2. Graphical representation of CIF 3 automata for components COFFEE and SWEET.
Initial states indicated by an incoming arrow, marker states indicated by a filled state.

Using the CIF 3 toolset one can easily obtain the uncontrolled behaviour of the
seven components together, an automaton with 18 states and 207 transitions. It
contains all possible behaviour for the case in which all components are included
(which may very well be prohibited by the feature constraints when imposed).
More interestingly, based on the attributed feature model defined in CIF 3 and
the component automata we can synthesise a state space that contains 16 initial
states, one for each valid product, and display the behaviour for each of them.
The state space has 147 states and 1254 transitions. It is obtained in less than
2 seconds of user time on a standard laptop. In the composed system at hand we
have included the requirement PRESENCE_CHECK below, which couples features
and components, i.e. it states for each event of the components which features
need to be present for it to be available. This is similar to the notion of an

10

FTS [17] mentioned in the introduction, where transitions are not labelled with
action names only but by a Boolean expression of features as well. Note that
here we choose to give global conditions for events. However, if we instead require
these conditions locally in the component automata, different occurrences of the
same event can be made subject to different conditions (as in FTSs).

Listing 4. Requirement PRESENCE_CHECK

location Dummy: initial , marked;
edge CANCEL.cancel when FX.present;
edge COFFEE.coffee when FB.present and FC.present;
edge TEA.tea when FB.present and FT.present;
· · ·· · ·· · ·

With the model presented so far we have achieved to describe the behaviour of
all 16 valid products of the running example, as specified by the feature model
and the component models. Note that so far the products are not supervised yet,
we have only achieved to enforce behaviour that is consistent with the feature
model. This means that we may still be allowing unacceptable behaviour, such
as pouring coffee while no coin has been inserted. In the next subsection, we
describe how to model further requirements that the controller should enforce.

4.3 Behavioural Requirements

As mentioned, the constructed product behaviours are still uncontrolled, in the
sense that we have not yet attempted to implement a supervisory controller
that forces the products to behave according to a list of desired behavioural
requirements. To illustrate the flexibility of the approach, we will introduce some
of these. We consider the following types of requirements: (i) state invariants,
(ii) event conditions, (iii) event ordering requirements, (iv) requirements using
observers and (v) requirements using additional variables.

State invariants In many applications of supervisory controller synthesis one
uses so-called state invariants to express that certain combinations of states
of components should not occur at the same time. In the case study of this
paper, for instance, one may desire to require that it is impossible to be ready
for pouring coffee and tea at the same time. In CIF 3 this can be expressed as
follows.

requirement invariant not (COFFEE.Coffee and TEA.Tea);

Event conditions An event condition is a requirement in which a state predicate
must be satisfied before an event may be executed. In CIF 3, the following no-
tation is used for such event conditions: requirement <event> needs <pred>,
where <event> is an event name and <pred> is a state predicate. The meaning
of this requirement is that the event may only be executed in case the predicate
holds. For instance, we may want to impose that it is not allowed to change the
choice of a beverage (coffee, cappuccino or tea) once the choice has been made.

11

This means that a choice may only be made if no choice has been made yet.
Observe that reference is made to events and locations of component automata
in such requirements.

Listing 5. Example event conditions

requirement
COFFEE.coffee needs COFFEE.NoChoice and TEA.NoChoice;

requirement
COFFEE.cappuccino needs COFFEE.NoChoice and TEA.NoChoice;

requirement
TEA.tea needs COFFEE.NoChoice and TEA.NoChoice;

Event ordering requirements Another type of requirement is used to express that
certain events may only occur in specific orderings. For instance, one may have
the requirement that a ringtone may only occur after a drink has been delivered.
We can use automata to model such requirements, as in Listing 6.

Listing 6. Requirement RING_AFTER_BEVERAGE_COMPLETION

location NotCompleted: initial , marked;
edge COFFEE.done when FR.present goto Completed;
edge TEA.done when FR.present goto Completed;
edge COFFEE.done , TEA.done when not FR.present;

location Completed:
edge RINGTONE.ring goto NotCompleted;

Requirements using observers Many of the events that can be performed by the
components of the coffee machine should only occur if a coin is in the machine.
For such a requirement, we define an additional automaton, commonly called an
observer, which establishes whether or not a coin is in the machine. It is depicted
in Listing 7. It uses the events from the component automata to observe their
occurrences and then uses these to decide on the logical state of the system.
Note that we have taken care to develop this observer in such a way that all its
events are possible from any of its states. Thus, the automaton itself does not
restrict the behaviour of the components.

Listing 7. Observer automaton COIN_PRESENCE

location NoCoinPresent: initial , marked;
edge COIN.insert goto CoinPresent;
edge CANCEL.cancel , Machine.take_cup;

location CoinPresent:
edge CANCEL.cancel goto NoCoinPresent;
edge MACHINE.take_cup goto NoCoinPresent;
edge Coin.insert;

Next, this observer automaton may be used in requirements. For example, coffee
may only be poured if a coin is in the system.

requirement COFFEE.coffee needs COIN_PRESENCE.CoinPresent;

12

Using additional variables An exemplary quantitative requirement to restrict
the behaviour of products in such a way that if sugar is chosen, then always two
portions are used, was provided in Listing 2 in Section 3.

4.4 Synthesis

Above we have illustrated how various types of requirements regarding the be-
haviour of the components may be modelled in CIF 3. With this in place, we
can obtain a supervisor for each of the valid products by simply combining the
feature model, the component behaviour models and all of the requirements into
one model. The synthesis algorithm then constructs the synchronous product
of the component and requirement automata and starts an iterative process of
removing states that do not satisfy the invariants and the nonblocking property
until a proper supervisor is obtained, or an empty supervisor results indicating
that no supervisor may exist at all. The synthesis algorithm suffers from the
same state space explosion problem as for model checking [23].

In this case, application of the supervisory controller synthesis options offered
by CIF 3 then results in a single CIF 3 model that represents an automaton for
each of the valid products. The state space of the 16 valid products together
contains 503 states an 868 transitions. Again, it was obtained within 2 seconds
user time on a standard laptop.

Among others, the resulting CIF 3 model describes for each event the addi-
tional conditions that need to be satisfied in terms of the locations and values
of variables for the presence of features, component, observer and requirement
automata. Listing 8 provides part of this. Note that in these conditions several
automata, such as X, Y, Z, RESTRICTED_CANCEL and NO_FREE_LUNCH are refer-
enced that have not been shown in this paper.

Listing 8. Supervisor automaton

edge COFFEE.cappuccino when not FD.present and (FP.present
and X.Idle) and (TEA.NoChoice and (RESTRICTED_CANCEL.
CancelAllowed and NO_FREE_LUNCH.Full));

edge COFFEE.pour_milk when not X.OneUnitNeeded and
Z.OneUnitNeeded or (X.OneUnitNeeded and (Z.OneUnitNeeded
and SWEET.NoSugar) or X.OneUnitNeeded and (Z.
OneUnitNeeded and SWEET.Sugar));

edge SWEET.pour_sugar when X.Idle and FT.present and
(TEA.Tea and SWEETNESS.cnt 6=2) or (X.OneUnitPoured and
SWEETNESS.cnt 6=2 or X.OneUnitNeeded and SWEETNESS.cnt 6=2);

edge TEA.pour_tea when Y.OneUnitNeeded and
(not Y.OneUnitNeeded or not SWEET.NoChoice);

edge TEA.tea when X.Idle and FT.present and
(RESTRICTED_CANCEL.CancelAllowed and NO_FREE_LUNCH.Full);

.

13

It must be mentioned that these conditions are not simplified in any way. For
example the condition of event pour_tea may be simplified to Y.OneUnitNeeded
and not SWEET.NoChoice.

5 Concluding remarks

We have shown how CIF 3 can be put to work for feature-guided integration
of components. Given (i) an attributed feature model capturing in-tree, cross-
tree and attribute constraints, (ii) a description of the potential behaviour of
a number of components and (iii) additional static, dynamic and quantitative
requirements, the CIF 3 machinery synthesises a composition of the components
that is consistent with the attributed feature model and adheres to the additional
requirements, if possible at all. Otherwise CIF 3 reports that a composition is
non-existent. Each initial state of the overall system corresponds to a unique valid
product from the product line as defined by the feature model. All products are
sound by construction and the set of products is complete with respect to the
combined feature model and behavioural requirements, because of the maximal
permissiveness guaranteed by CIF 3 [38, 36].

Since we focussed on supervisory controller synthesis for product lines as
supported by CIF 3, many notions from SCT that are useful to SPLE have been
left unspoken here. For instance, one can imagine a coffee machine to come
equipped with a sensor to monitor whenever one of the ingredients, say sugar,
has become depleted. By its nature, the sensor’s messaging that the machine
is out of sugar is an uncontrollable event. From the perspective of model-based
engineering such a distinction is relevant; the modelling formalism of CIF 3 is
sufficiently expressive to take this into account. Incorporation of uncontrollable
events may be useful to detect feature interaction as failure of synthesis may
reveal unexpected dependencies. For this to work the synthesis algorithm needs
to be refined.

In the present case study, it is assumed that presence/absence of features
is statically organised. However, many systems, including the coffee machine,
may be reconfigured while operating. For instance, one may wish to remove or
add the tea feature dynamically (possibly dependent on the ingredients that
are available). This can easily be achieved by adding a self-loop transition in
the FT automaton labelled with a reconfigure event which switches presence of
the feature. More complicatedly, a reconfiguration modifying a specific feature
may immediately result in a violation of some of the constraints imposed by the
feature model because of the interplay of the feature with other features. It is
possible to also model this type of reconfigurations in CIF 3 by introducing events
that represent the simultaneous reconfiguration of several features, temporarily
lifting the constraints stemming from the feature model.

Often, especially in earlier design phases, the set of requirements that are
to be enforced has not become clear yet. As a consequence, supervisory con-
trol synthesis may result in the impossibility to produce a supervisor, or lead
to a controlled system that omits states of which the designer would not expect

14

their omission. In recent work [43], the synthesis algorithm has been adapted to
retrieve the reason why the controlled system is blocked from reaching specific
states. This information can then be used for understanding which requirements
(under which conditions) are conflicting, whereupon the model of the compo-
nents and/or the requirement may be refined. For future work, we plan to con-
sider adaptations to the synthesis algorithm that may reveal conflicts among
features and/or their attributes. Such conflicts may be used to discover that
changes in the components interfere with the feature model in force, excluding
products that were valid before.

Acknowledgments Ter Beek is supported by EU project QUANTICOL, 600708.
We are thankful to the ISOLA reviewers for their constructive comments.

References

1. P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi. A Compositional Framework
to Derive Product Line Behavioural Descriptions. In T. Margaria and B. Steffen,
editors, ISoLA’12, volume 7609 of LNCS, pages 146–161. Springer, 2012.

2. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
3. K. Bąk, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wąsowski. Clafer: unifying

class and feature modeling. Software & Systems Modeling, 2015.
4. M. H. ter Beek and E. P. de Vink. Towards modular verification of software product

lines with mCRL2. In T. Margaria and B. Steffen, editors, ISoLA’14, volume 8802
of LNCS, pages 368–385. Springer, 2014.

5. M. H. ter Beek and E. P. de Vink. Using mCRL2 for the analysis of software
product lines. In FormaliSE’14, pages 31–37. IEEE, 2014.

6. M. H. ter Beek, E. P. de Vink, and T. A. C. Willemse. Towards a Feature mu-
Calculus Targeting SPL Verification. In FMSPLE’16, volume 206 of EPTCS, pages
61–75, 2016.

7. M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. Modelling and analysing
variability in product families: Model checking of modal transition systems with
variability constraints. Journal of Logical and Algebraic Methods in Programming,
85(2):287–315, 2016.

8. M. H. ter Beek, A. Legay, A. Lluch Lafuente, and A. Vandin. Statistical Analysis
of Probabilistic Models of Software Product Lines with Quantitative Constraints.
In SPLC’15, pages 11–15. ACM, 2015.

9. M. H. ter Beek, A. Legay, A. Lluch Lafuente, and A. Vandin. Statistical Model
Checking for Product Lines. In T. Margaria and B. Steffen, editors, ISoLA’16,
LNCS. Springer, 2016.

10. M. H. ter Beek, F. Mazzanti, and A. Sulova. VMC: A Tool for Product Variability
Analysis. In D. Giannakopoulou and D. Méry, editors, FM’12, volume 7436 of
LNCS, pages 450–454. Springer, 2012.

11. D. A. van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski, J. M.
van de Mortel-Fronczak, and M. A. Reniers. CIF 3: Model-Based Engineering of
Supervisory Controllers. In E. Ábrahám and K. Havelund, editors, TACAS’14,
volume 8413 of LNCS, pages 575–580. Springer, 2014.

12. G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and
M. Hendriks. UPPAAL 4.0. In QEST’06, pages 125–126. IEEE, 2006.

13. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated Analysis of Feature
Models 20 Years Later: a Literature Review. Information Systems, 35(6), 2010.

15

14. R. Bubel, R. Hähnle, and M. Pelevina. Fully abstract operation contracts. In
T. Margaria and B. Steffen, editors, ISoLA’14, volume 8803 of LNCS, pages 120–
134. Springer, 2014.

15. A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Model checking
software product lines with SNIP. International Journal on Software Tools for
Technology Transfer, 14(5):589–612, 2012.

16. A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Formal se-
mantics, modular specification, and symbolic verification of product-line behaviour.
Science of Computer Programming, 80:416–439, 2014.

17. A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin.
Featured Transition Systems: Foundations for Verifying Variability-Intensive Sys-
tems and Their Application to LTL Model Checking. IEEE Transactions on Soft-
ware Engineering, 39(8):1069–1089, 2013.

18. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking Lots of systems: Efficient verification of temporal properties in software
product lines. In ICSE’10, pages 335–344. ACM, 2010.

19. M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. ProVeLines:
a product line of verifiers for software product lines. In SPLC’13, volume 2, pages
141–146. ACM, 2013.

20. B. Delaware, W. R. Cook, and D. S. Batory. Product Lines of Theorems. In C. V.
Lopes and K. Fisher, editors, OOPSLA’11, pages 595–608. ACM, 2011.

21. E. W. Dijkstra. A constructive approach to the problem of program correctness.
BIT Numerical Mathematics, 8(3):174–186, 1968.

22. S. T. J. Forschelen, J. M. van de Mortel-Fronczak, R. Su, and J. E. Rooda. Applica-
tion of supervisory control theory to theme park vehicles. Discrete Event Dynamic
Systems, 22(4):511–540, 2012.

23. P. Gohari and W. M. Wonham. On the complexity of supervisory control design
in the RW framework. IEEE Trans. Systems, Man, and Cybernetics, Part B,
30(5):643–652, 2000.

24. A. Gruler, M. Leucker, and K. D. Scheidemann. Modeling and model checking
software product lines. In G. Barthe and F. S. de Boer, editors, FMOODS’08,
volume 5051 of LNCS, pages 113–131. Springer, 2008.

25. R. Hähnle and I. Schaefer. A Liskov Principle for Delta-Oriented Programming.
In T. Margaria and B. Steffen, editors, ISoLA’12, volume 7609 of LNCS, pages
32–46. Springer, 2012.

26. A. Hall. Correctness by Construction: Integrating Formality into a Commercial
Development Process. In L. Eriksson and P. A. Lindsay, editors, FME’02, volume
2391 of LNCS, pages 224–233. Springer, 2002.

27. A. Hall and R. Chapman. Correctness by Construction: Developing a Commercial
Secure System. IEEE Software, 19(1):18–25, Jan/Feb 2002.

28. C. A. R. Hoare. Proof of a Program: FIND. Communications of the ACM, 14(1):39–
45, 1971.

29. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

30. P. Juodisius, A. Sarkar, R. R. Mukkamala, M. Antkiewicz, K. Czarnecki, and
A. Wąsowski. Clafer: Lightweight Modeling of Structure and Behavior with Vari-
ability. Unpublished manuscript.

31. K. Lauenroth, K. Pohl, and S. Töhning. Model checking of domain artifacts in
product line engineering. In ASE’09, pages 269–280. IEEE, 2009.

16

32. M. Leucker and D. Thoma. A Formal Approach to Software Product Families.
In T. Margaria and B. Steffen, editors, ISoLA’12, volume 7609 of LNCS, pages
131–145. Springer, 2012.

33. M. Lochau, S. Mennicke, H. Baller, and L. Ribbeck. DeltaCCS: A Core Calculus
for Behavioral Change. In T. Margaria and B. Steffen, editors, ISoLA’14, volume
8802 of LNCS, pages 320–335. Springer, 2014.

34. M. Mannion and J. Cámara. Theorem Proving for Product Line Model Verifica-
tion. In F. van der Linden, editor, PFE’03, volume 3014 of LNCS, pages 211–224.
Springer, 2003.

35. J. Markovski, K. G. M. Jacobs, D. A. van Beek, L. J. A. M. Somers, and J. E.
Rooda. Coordination of resources using generalized state-based requirements. In
J. Raisch, A. Giua, S. Lafortune, and T. Moor, editors, WODES’10, pages 287–292.
International Federation of Automatic Control, 2010.

36. L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson. Nonblocking and Safe Control
of Discrete-Event Systems Modeled as Extended Finite Automata. IEEE Trans-
actions on Automation Science and Engineering, 8(3):560–569, 2011.

37. K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

38. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

39. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. MIT
Press, 2001.

40. I. Schaefer. Variability Modelling for Model-Driven Development of Software Prod-
uct Lines. In D. Benavides, D. S. Batory, and P. Grünbacher, editors, VaMoS’10,
volume 37 of ICB-Research Report, pages 85–92. Universität Duisburg-Essen, 2010.

41. M. Skoldstam, K. Åkesson, and M. Fabian. Modeling of discrete event systems
using finite automata with variables. In CDC’07, pages 3387–3392, 2007.

42. B. van der Sanden, M. A. Reniers, M. Geilen, T. Basten, J. Jacobs, J. Voeten, and
R. R. H. Schiffelers. Modular model-based supervisory controller design for wafer
logistics in lithography machines. In MoDELS’15, pages 416–425. IEEE, 2015.

43. L. Swartjes, M. A. Reniers, D. van Beek, and W. Fokkink. Why Is My Supervisor
Empty? Finding Causes for the Unreachability of States in Synthesized Supervi-
sors. In WODES’16. IEEE, 2016. To appear.

44. R. J. M. Theunissen, D. A. van Beek, and J. E. Rooda. Improving evolvability
of a patient communication control system using state-based supervisory control
synthesis. Advanced Engineering Informatics, 26(3):502–515, 2012.

45. T. Thüm, I. Schaefer, M. Hentschel, and S. Apel. Family-Based Deductive Verifi-
cation of Software Product Lines. In GPCE’12, pages 11–20. ACM, 2012.

17

