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Product progression: a machine 
learning approach to forecasting 
industrial upgrading
Giambattista Albora 1,2, Luciano Pietronero 2, Andrea Tacchella 3 & Andrea Zaccaria 2,4*

Economic complexity methods, and in particular relatedness measures, lack a systematic evaluation 
and comparison framework. We argue that out-of-sample forecast exercises should play this role, and 
we compare various machine learning models to set the prediction benchmark. We find that the key 
object to forecast is the activation of new products, and that tree-based algorithms clearly outperform 
both the quite strong auto-correlation benchmark and the other supervised algorithms. Interestingly, 
we find that the best results are obtained in a cross-validation setting, when data about the predicted 
country was excluded from the training set. Our approach has direct policy implications, providing a 
quantitative and scientifically tested measure of the feasibility of introducing a new product in a given 
country.

In her essay The Impact of Machine Learning on Economics, Susan Athey states: “Prediction tasks [...] are typi-
cally not the problems of greatest interest for empirical research in economics, who instead are concerned with 
causal inference ” and “economists typically abandon the goal of accurate prediction of outcomes in pursuit of 
an unbiased estimate of a causal parameter of interest ”1. This situation is mainly due to two factors: the need to 
ground policy  prescriptions2,3 and the intrinsic difficulty to make correct predictions in complex  systems4,5. The 
immediate consequence of this behavior is the flourishing of different or even contrasting economic models, 
whose concrete application largely relies on the specific skills, or biases, of the scholar or the  policymaker6. This 
horizontal view, in which models are every time aligned and selected, in contrast with the vertical view of hard 
sciences, in which models are selected by comparing them with empirical evidence, leads to the challenging issue 
of distinguishing which models are wrong. While this situation can be viewed as a natural feature of economic 
and, more in general, complex  systems6, a number of scholars coming from hard sciences have recently tackled 
these issues, trying to introduce concepts and methods from their disciplines in which models’ falsifiability, tested 
against empirical evidence, is the key element. This innovative approach, called Economic Fitness and Complex-
ity7–12 (EFC), combines statistical physics and complex network based algorithms to investigate macroeconomics 
with the aim to provide testable and scientifically valid results. The EFC methodology studies essentially two 
lines of research: indices for the competitiveness of countries and relatedness measures.

The first one aims at assessing the industrial competitiveness of countries by applying iterative algorithms to 
the bipartite network connecting countries to the products they competitively  export13. Two examples are the 
Economic Complexity Index  ECI14 and the  Fitness7. In this case, the scientific soundness of either approach can 
be assessed by accumulating pieces of evidence: by analyzing the mathematical formulation of the algorithm and 
the plausibility of the resulting  rankings15–18, and by using the indicator to predict other quantities. In particular, 
the Fitness index, when used in the so-called Selective Predictability  Scheme19, provides GDP growth predictions 
that outperform the ones provided by the International Monetary  Fund10,20. All these elements concur towards the 
plausibility of the Fitness approach; however, a direct way to test the predictive performance of these  indicators21 
is still lacking. This naturally leads to the consideration of further indices, that can mix the existing  ones22 or use 
new concepts such as information  theory23. We argue that, on the contrary, the scientific validity of relatedness 
indicators can be univocally assessed, and this is the purpose of the present work.

The second line of research in EFC investigates the concept of  Relatedness24, the idea that two human activi-
ties are, in a sense, similar if they share many of the capabilities needed to be competitive in  them25. Practical 
applications are widespread and include international  trade11,26, firm technological  diversification27,28, regional 
smart  specialization29,30, and the interplay among the scientific, technological, and industrial  layers31. Most 
of these contributions use relatedness not to forecast future quantities, but as an independent variable in a 
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regression, and so the proximity (or quantities derived from it) is used to explain some observed simultaneous 
behavior. We point out, moreover, that no shared definition of relatedness exists, despite the widespread use of 
co-occurrences, since different scholars use different normalizations, null models, and data, so the problem to 
decide “which model is wrong” persists. For instance, Hidalgo et al.26 base the goodness of their measure on its 
correlation with the probability that a country starts to export a product. O’Clery et al.32 test the goodness of 
their relatedness measure through an in-sample logit regression; in this way models with a greater number of 
parameters (as provided, for instance, by the addition of fixed effects on countries and products) tend to have 
greater scores. Finally, Gnecco et al.33 propose an approach to assess the relatedness based on matrix completion. 
Note that their test of the goodness of their approach is based on the reconstruction of the country-product 
pairs that have been removed from the data; the approach used here, instead, consists into looking at how good 
the proposed model is to guess new exports of countries after 5 years. So once again the performances are not 
comparable, as it is evident by looking, for instance, at the respective magnitude of the reported F1 scores.

The examples just discussed clarify why we believe that it is fundamental to introduce elements of falsifi-
ability in order to compare the different existing models, and that such comparison should be made by looking 
at the performances in out-of-sample forecasting, that is the focus of the present paper. We will consider export 
as the economic quantity to forecast because most of the indicators used in economic complexity are derived 
from export data, being it regarded as a global, summarizing quantity of countries’  capabilities10,34 but also for 
the immediate policy implications of the capability to be able, for instance, to predict in which industrial sector 
a country will be competitive, say, in five years.

In this paper, we propose a procedure to systematically compare different prediction approaches and, as a 
consequence, to scientifically validate or falsify the underlying models. Indeed, some attempts to use complex 
networks or econometric approaches to predict exports  exist32,35–37, but these methodologies are practically 
impossible to compare precisely because of the lack of a common framework to choose how to preprocess data, 
how to build the training and the test set, or even which indicator to use to evaluate the predictive performance. 
In the following, we will systematically scrutiny the steps to build a scientifically sound testing procedure to 
predict the evolution of the export basket of countries. In particular, we will forecast the presence or the activa-
tion of a binary matrix element Mcp , that indicates whether the country c competitively exports product p in the 
Revealed Comparative Advantage  sense38 (see “Methods” for a detailed description of the export data).

Given the simultaneous presence in the literature of different approaches to measure the relatedness, it is 
natural to argue whether machine learning algorithm might play a role and build comparable or even better 
measures. In particular, given the present ubiquitous and successful use of artificial intelligence in many different 
contexts, it is natural to use machine learning algorithms to set the benchmark. A relevant by-product of this 
analysis is the investigation of the statistical properties of the database (namely, the strong auto-correlation and 
class imbalance), that has deep consequences on the choice of the most suitable algorithms, testing exercises, 
and performance indicators.

Applying these methods we find two interesting results: 

1. The best performing models for this task are based on decision trees. A fundamental property that separates 
these algorithms from the main approaches used in the  literature26 is the fact that here the presence of a 
product in the export basket of a country can have a negative effect on the probability of exporting the target 
product. i.e. decision trees are able to combine Relatedness and Anti-Relatedness signals to provide strong 
improvements in the accuracy of  predictions39

2. Our best model performs better in a cross-validation setting where we exclude data from the predicted 
country from the training set. We interpret this finding by arguing that in cross-validation the model is able 
to better learn the actual Relatedness relationships among products, rather than focusing on the very strong 
self-correlation of the trade data.

In the “Methods” section we show a detailed comparison between our machine learning based approach and 
some of the other definitions of relatedness we mentioned.

The present investigation of the predictability of the time evolution of export baskets has a number of practi-
cal and theoretical applications. First, predicting the time evolution of the export basket of a country needs, as 
an intermediate step, an assessment of the likelihood that the single product will be competitively exported by 
the country in the next years. This likelihood can be seen as a measure of the feasibility of that product, given 
the present situation of that country. The possibility to investigate with such a great level of detail which product 
is relatively close to a country and which one is out of reach has immediate implications in terms of strategic 
 policies40. Second, the study of the time evolution of the country-product bipartite network is key to validate the 
various attempts to model  it41,42. Finally, the present study represents on of the first attempts to systematically 
investigate how machine learning techniques can be applied in development economics, that is something still 
not much discussed in literature with except to very recent  works33,39,43.

Results
Statistical properties of the country-product network. A key result of the present investigation is a 
clear-cut methodology to compare different models or predictive approaches in Economic Complexity. In order 
to understand the reasons behind some of the choices we made in building the framework, we first discuss some 
statistical properties of the data we will analyze.

Our database is organized in a set of matrices V whose element Vcp is the amount, expressed in US dollars, of 
product p exported by country c in a given year. When not otherwise specified, the number of countries is 169, 
the number of products is 5040, and the time range covered by our analysis is 1996-2018. We use the HS1992, 
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6-digits classification. The data are obtained from the UN-COMTRADE database and suitably cleaned in order to 
take into account the possible disagreements between importers’ and exporters’ declarations (see “Methods”). We 
compute the Revealed Comparative  Advantage38 to obtain a set of RCA matrices R and, by applying a threshold 
equal to 1, a set of matrices M whose binary elements are equal to 1 if the given country competitively exports 
the given product. Here and in the following we use “competitively” in the Balassa sense, that is, Rcp > 1 . In this 
paper we will discuss the prediction of two different situations: the unconditional presence of a “1” element in 
the M matrix and the appearance of such an element requiring that the RCA values were below a non-significance 
threshold t=0.25 in all the previous years. We will refer to the first case as the full matrix and to the new product 
event as an activation. The definition of the activation is somehow arbitrary: one could think, for instance, to 
change the threshold t or the number of inactive years. We find however our choice to be a good trade-off to 
have both a good numerosity of the test set and avoid the influence of trivial 0/1 flips. We point out that our final 
aim is to detect, as much as possible, the appearance of really new products in the export basket of countries.

In Fig. 1, left, we plot the probability that a matrix element Mcp in 1996 will change or not change its binary 
value in the future years. One can easily see that even after 5 years the probability that a country remains com-
petitive in a product is relatively high ( ∼ 0.64 ); being the probability that a country remains not competitive 
∼ 0.95 , we conclude that there is a very strong auto-correlation: this is a reflection of the persistent nature of 
both the capabilities and the market conditions that are needed to competitively export a product. Moreover, the 
appearance of a new product in the export basket of a country is a rare event: the empirical frequency is about 
0.047 after 5 years. A consequence of this persistence is that we can safely predict the presence of a 1 in the M 
matrices by simply looking at the previous years, while the appearance of a new product that was not previously 
exported by a country is much more difficult and, in a sense, more interesting from an economical point of view, 
since it depends more on the presence of suitable, but unrevealed, capabilities in the country; but these capabili-
ties can be traced by looking at the other products that country exports. Not least, an early detection of a future 
activation of a new product has a number of practical policy implications. Note in passing that, since machine 
learning based smoothing  procedures10,44 may introduce extra spurious correlations, they should be avoided in 
prediction exercises, and so only the RCA values directly computed from the raw export data are considered.

On the right side of Fig.1 we plot the density of the matrices M , that is the number of nonzero elements with 
respect to the total number of elements. This ratio is roughly 10% . This means that both the prediction of the 
full, unconditional matrix elements and the prediction of the so-called activations (i.e., conditioning to that ele-
ment being 0 and with RCA below 0.25 in all the previous years) show a strong class imbalance. This has deep 
consequences regarding the choice of the performance indicators to compare the different predictive algorithms. 
For instance, the ROC-AUC  score45, one of the most used measures of performance for binary classifiers, is well 
known to suffer from strong biases when a large class imbalance is  present46. More details are provided in the 
“Methods” sections.

Recognize the country vs. learning the products’ relations. In this section we present the results 
concerning the application of different supervised learning algorithms. The training and the test procedures are 
fully described in the “Methods” section. Here we just point out that the training set is composed by the matrices 
R
(y) with y ∈ [1996 . . . 2013] , and the test is performed against M(2018) , so we try to predict the export basket of 

countries after � = 5 years.
The algorithms we tested are  XGBoost47,48, a basic Neural Network implemented using the Keras  library49 

and the following algorithms implemented using the scikit learn  library50: Random  Forest51, Support Vector 
 Machines52, Logistic  Regression53, a Decision  Tree54,  ExtraTreesClassifier55, ADA  Boost56 and Gaussian Naive 
 Bayes57. For reasons of space, we cannot discuss all these methods here. However, a detailed description can be 
found  in58 and references therein and, in the following sections, we will elaborate more on the algorithms based 
on decision trees, which result to be the most performing ones.

Figure 1.  Left: transition probabilities between the binary states of the export matrix M. The strong persistency 
implies the importance of the study of the appearance of new products (called activations) with respect to the 
unconditional presence of one matrix element (in the following, full matrix). Right: the fraction of nonzero 
elements in M as a function of time. A strong class imbalance is present.
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In Fig. 2 we show an example of the dynamics that our approach is able to unveil. On the left we show the 
RCA of Bhutan for the export of Electrical Transformers as a function of time. RCA is zero from 1996 to 2016, 
when a sharp increase begins. Was it possible to predict the activation of this matrix element? Let us train our 
machine learning algorithm XGBoost using the data from 1996 to 2012 to predict which products will Bhutan 
likely export in the future. The result is a set of scores, or progression probabilities, one score for each possible 
product. Each of these scores measures the feasibility, or relatedness, between Bhutan and all the products it 
does not export. The distribution of such scores is depicted in Fig. 2 on the right. The progression probability 
for Electrical Transformers was much higher than average, as shown by the arrow: this means that, already in 
2012, Bhutan was very close to this product. Indeed, as shown by the figure on the left, Bhutan will start to export 
that specific product in about 5 years. Obviously, this is just an example, so we need a set of quantitative tools to 
measure the prediction performance on the whole test set on a statistical basis.

In order to quantitatively assess the goodness of the prediction algorithms, a number of performance indica-
tors are available from the machine learning literature of binary classifiers. Here we focus on three of them, and 
we show the results in Fig. 3, where we show a different indicator in each row, while the two columns refer to the 
two prediction tasks, full matrix (i.e., the presence of a matrix element equal to one) and activations (a zero matrix 
element, with RCA below 0.25 in previous years, possibly becoming higher than one, that is the appearance of a 
new product in the export basket of a country). AUC-PR46 gives a parameter-free, comprehensive assessment of 
the prediction performance. The F1  Score59,60 is a harmonic mean of the Precision and Recall  measures61, and so 
takes into account both False Positives and False Negatives. Finally, mean Precision@10 considers each country 
separately and computes how many products, on average, are actually exported out of the top 10 predicted. All 
the indicators we used are discussed more in detail in the “Methods” section.

We highlight with a red color the RCA benchmark model, which simply uses the RCA values in 2013 to 
predict the export matrix in 2018. From the analysis of Fig. 3 we can infer the following points: 

1. The performance indicators are much higher for the full matrix. This means that predicting the unconditional 
presence of a product in the export basket of a country is a relatively simple task, being driven by the strong 
persistence of the M matrices through the years.

2. On the contrary, the performance on the activations is relatively poor: for instance, on average, less than one 
new product of out the top ten is correctly predicted.

3. Algorithms based on ensembles of trees perform better than the benchmark and the other algorithms on all 
the indicators.

4. Thanks to the strong autocorrelation of the matrices, the RCA-based prediction represents a very strong 
benchmark, also in the case of the activations. However, Random Forest, ExtraTreesClassifier and XGBoost 
perform better both in the full matrix prediction task and in the activations prediction task.

We speculate that the machine learning algorithms perform much better in the full matrix case because, in a 
sense, they recognize the single country and, when inputted with a similar export basket, they correctly reproduce 
the strong auto-correlation of the export matrices. We can deduce that using this approach we are not learning 
the complex interdependencies among products, as we should, and, as a consequence, we do not correctly predict 
the new products. In order to overcome this issue, we have to use a k-fold Cross Validation (CV): we separately 
train our models to predict the outcome of k countries using the remaining C − k , where in our case C = 169 
and k = 13 . In this way, we prevent the algorithm to recognize the country, since the learning is performed on 
disjoint sets; as a consequence, the algorithm learns the relations among the products and is expected to improve 
the performances on the activations.

Using the cross validation procedure, we trained again the three best performing algorithms which are the 
Random Forest, ExtraTreesClassifier, and XGBoost. The result is that only the XGBoost algorithm improves 

Figure 2.  An example of successful prediction. On the left, the RCA of Bhutan in electrical transformers as a 
function of time. Already in 2012, with RCA stably below 1, the progression probability of that matrix element 
was well above its country average, as shown by the histogram in the figure on the right. Bhutan will start to 
competitively export electrical transformers after 5 years.
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Figure 3.  Comparison of the prediction performance of different algorithms using three performance 
indicators. Tree-based approaches are performing better; the prediction of the activations is a harder task with 
respect to the simple future presence of a product.
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its scores, which means that in the cross-validation setting it is more capable to learn the inter-dependencies 
among products. So what is happening is that, if we do not perform the cross validation, the Random Forest 
tends to recognize the countries better than XGBoost, but if we perform the cross validation XGBoost learns the 
inter-dependencies among products better than the Random Forest. This step is crucial if one wants to build a 
representation of such interdependencies which has also a good forecasting  power39.

In Fig. 4 (left) we show the relative improvements of various performance indicators when the CV is used 
to train the XGBoost model and the test is performed on the activations. All indicators improve; in particular, 
F1-score and mean Precision@10 increase by more than 10%. On the right, we compare the cross-validated 
XGBoost predictions with the RCA benchmark, showing a remarkable performance although the previously 
noted goodness of the benchmark.

In Table 1 we report the values of the performance indicators for the non cross-validated Random Forest, 
the cross-validated XGBoost and the RCA benchmark model, once again tested on the activations. The last four 
rows represent the confusion matrix, where the threshold on the prediction scores is computed by optimizing 
the F1 scores.

The cross validated XGBoost gives the best scores except for the AUC-ROC and the accuracy which are 
influenced by the high class imbalance because of the large number of True Negatives, making these metrics 
unsuitable for evaluating the goodness of the predictions. However, the non cross-validated Random Forest is 
comparable and in any case shows better scores than the RCA benchmark, so it represents a good alternative, 
especially because of the much lower computational cost. Indeed, the inclusion of the cross-validation proce-
dure increases the computational cost by about a factor 13, moreover, if compared with the same number of 
trees, Random Forest is 7.7 times faster than XGBoost. So, even if the cross validated XGBoost model is the best 
performing, the non cross validated Random Forest is a good compromise to have good predictions in less time.

In general, a desirable output of a classification task is not only a correct prediction, but also an assessment 
of the likelihood of the label, in this case, the activation. This likelihood provides a sort of confidence in the 
prediction. In order to test whether the scores are correlated or not with the actual probability of activations we 

Figure 4.  Left: relative improvement of the prediction performance of XGBoost when the training is cross 
validated. The algorithm now can not recognize the country, and so all the performance indicators improve. 
Right: relative improvement of the cross validated XGBoost algorithm with respect to the RCA benchmark.

Table 1.  Comparison of the predictive performance of XGBoost with cross validation, Random Forest without 
cross validation and the RCA benchmark for the activations using different indicators. The last row indicates 
the computational cost with respect to the non cross validated Random Forest; XGBoost is about 100 times 
slower. The highest values of each indicator are in bold.

Algorithm XGBoost-CV Random Forest RCA 

AUC-ROC 0.698 0.724 0.592

F1 score 0.0479 0.0476 0.0369

mean Precision@10 0.059 0.045 0.039

Precision 0.34 0.035 0.023

Recall 0.079 0.073 0.103

MCC 0.043 0.042 0.035

AUC-PR 0.018 0.017 0.011

Accuracy 0.981 0.982 0.967

Negative predictive value 0.994 0.994 0.994

TP 202 186 263

FP 5663 5063 11413

FN 2359 2375 2298

TN 403767 404367 398017

Computational cost  100 1 –
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build a calibration curve. In Fig. 5 we show the fraction of positive elements as a function of the output (i.e., the 
scores) of the XGBoost and Random Forest algorithms in the activations prediction task. We divide the scores 
into logarithmic bins and then we compute the mean and the standard deviation inside each bin. In both cases a 
clear correlation is present, pointing out that a higher prediction score corresponds to a higher empirical prob-
ability that the activation of a new product will actually occur. Moreover, we note that the greater is the score 
produced by the model, the greater is the error on the y axis; the reason is that the models tend to assign higher 
scores to the products already exported from a country, so if we look at the activations the values start to fluctu-
ate, and the statistic becomes lower.

We close this section mentioning the possibility to train our algorithms by taking explicitly into account the 
class imbalance, as suggested  in62,63. The results of this investigation are reported in section 2 of the Supplemen-
tary Information. We observe a mild decrease of the prediction performance.

Opening the black box. In order to qualitatively motivate the better performance of tree-based algo-
rithms, in this paragraph we elaborate on the operation of Random Forests. As specified in the “Methods” sec-
tion, in these prediction exercises we train one Random Forest model for each product, and each Random Forest 
contains 100 decision trees. In Fig. 6 we show one representative decision tree. This tree is obtained by putting 
the number of features available for each tree equal to P = 5040 : this means that we are bootstrap aggregating, or 
bagging64 the trees, instead of building an actual Random Forest, which considers instead a random subset of the 
 products51 (the decision trees may be different also in this case, since the bagging procedure extracts the features 
with replacement). Moreover, the training procedure is cross validated, so the number of input countries is 156 
× 7 (156 countries and 7 years from 2007 to 2013).

The decision tree we show refers to the product with HS1992 code 854089; the description is valves and tubes 
not elsewhere classified in heading no. 8540, where 8540 stands for cold cathode or photo-cathode valves and tubes 
like vacuum tubes, cathode-ray tubes and similars.

The color represents the class imbalance of the leaf (dark orange, many zeros; dark blue, many ones, quanti-
fied in the square brackets). The root product, the one which provides the best split, is chromium, which is used, 

Figure 5.  Calibration curves: fraction of positive elements as a function of the scores produced by XGBoost 
(left) and Random Forest (right) for the activations prediction task. In both cases a clear positive correlation 
is present, indicating that higher scores are associated to higher empirical probabilities that the activation will 
actually occur.
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Figure 6.  A representative decision tree to forecast the export of the product valves and tubes. The root product, 
chromium, has a well known technological relation with the target product, and in fact is able to discriminate 
against future exporters with high precision.
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for instance, in the cathode-ray tubes to reduce X-ray leaks. So the Random Forest found a nontrivial connec-
tion between chromium and these types of valves and tubes: out of the 1006 couples country-year that do not 
export valves and tubes, 994 do not export chromium either (note the negative association). We can explore the 
network considering that the no-export link is always on the left. Looking at the export direction we find the cut 
on washers of iron and steel that works very well: only 2 of the 12 couples country-year that do not export valves 
and tubes do export washers and only 2 of the 42 countries that export valves and tubes do not export washers.

Looking at the other splits we find some of them more reasonable, like the one on particle accelerators, and 
some that seem coincidental, like the one on hides and skins of goats.

From this example it is clear that the decision tree is a natural framework to deal with a set of data in which 
some features (i.e., products) may be by far more informative than others, and so a hierarchical structure is 
needed to take into account this heterogeneous feature importance.

Feature importance may be evaluated by looking at the normalized average reduction of the impurity at each 
split that involves that  feature50. In our case, we are considering the Gini impurity. In Fig. 7 we plot this assess-
ment of the feature importance to predict the activation of valves and tubes. One can easily see that the average 
over the different decision trees is even more meaningful than the single decision tree shown before, even if the 
each one of the former sees fewer products than the latter: all the top products are reasonably connected with 
the target product and so it is natural to expect them to be key elements to decide whether the given country 
will export valves and tubes or not.

Time dependence. In the procedure discussed above we used a time interval �model equal to 5 years for the 
training, and we tested our out-of-sample forecasts using the same time interval � . Here we investigate how the 
choice of the forecast horizon � affects the quality of the predictions. To make this analysis we used XGBoost 
models trained with the cross validation method and a lower �model = 3 . The machine learning algorithms are 
trained using data in the range y ∈ [1996 . . . 2008] and their output, obtained giving RCA (2008) as input, will be 
compared with the various M(2008+�) by varying � . Being the 2018 the last year of available data, we can explore 
a range of � s from 1 to 10. All details about the training procedure of the machine learning algorithms are given 
in the “Methods” section.

The quality of the predictions as a function of the forecast horizon � are summarized in Fig. 8, where we nor-
malized the indicators in such a way that they are all equal to 1 at � = 1 . In the left figure we have the plot for the 
activations prediction task: both precision and precision@10 increase with � , while the negative predictive value 
decreases and accuracy shows an erratic behavior. This means that our ability to guess positive values improves 
or, in other words, the greater the time you wait the higher the probability that a country sooner or later does 
activate the products we predict. This improvement on positive values, however, corresponds to a worsening on 
negative values that can be interpreted as the fact that countries during time develop new capabilities and start 
to export products we cannot predict with a � interval too large.

If we look to a score that includes both performances on positive values and performance on negative values, 
like accuracy, we have a (noisy) worsening with the increase of �.

In the figure on the right we show instead the full matrix prediction task. In this case all the scores decrease 
with � because the algorithm can not leverage anymore on the strong auto-correlation of the RCA matrix.

0 0.02 0.04 0.06 0.08 0.1

Microwave tubes

Chromium wrought other than waste and scrap

Hydroxide and peroxide of magnesium

Navigational instruments and appliances

Isobutene−isoprene rubber

Valves and tubes receiver or amplifier

Threaded screws of iron and steel

Microscopes and diffraction apparatus

Halogenated derivatives of acyclic hydrocarbons

Television camera tubes

Feature Importance

Target product: valves and tubes

Figure 7.  Feature importance is a measure of how much a product is useful to predict the activation of the 
target product. Here we use the average reduction of the Gini impurity at each split. All important products are 
reasonably connected with the target.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1481  | https://doi.org/10.1038/s41598-023-28179-x

www.nature.com/scientificreports/

Note that the steepness of the decreasing curves is higher when we look at precision scores, the reason being 
the high class imbalance and the large number of true negatives with respect to true positives as shown in Table 1.

Discussion
One of the key issues in economic complexity and, more in general, in complexity science is the lack of systematic 
procedures to test, validate, and falsify theoretical models and empirical, data-driven methodologies. In this 
paper we focus on export data, and in particular on the country-product bipartite network, which is the basis 
of most literature on economic complexity, and the likewise widespread concept of relatedness, that is usually 
associated to an assessment of the proximity between two products or the density or closeness of a country with 
respect to a target product. As detailed in the Introduction, many competing approaches exist to quantify these 
concepts, however, a systematic framework to evaluate which approach works better is lacking, and the result 
is the flourishing of different methodologies, each one tested in a different way and with different purposes. We 
believe that this situation can be discussed in a quantitative and scientifically sound way by defining a concrete 
framework to compare the different approaches in a systematic way; the framework we propose is out-of-sample 
forecast, and in particular the prediction of the presence or the appearance of products in the future export 
baskets of countries. This approach has the immediate advantage to avoid a number of recognized  issues65 such 
as the mathiness of microfounded  models66 and the p-hacking in causal inference and regression  analyses1,67.

In this paper we systematically compare different machine learning algorithms in the framework of a super-
vised classification task. We find that the statistical properties of the export data, namely the strong auto-corre-
lation and the class imbalance, imply that the appearance, or activation, of new products should be investigated, 
and some indicators of performance, such as ROC–AUC and accuracy, should be considered with extreme 
care. On the contrary, indicators such as the mean Precision@k have an immediate policy interpretation. In the 
prediction tasks tree-based models, such as Random Forest and Boosted Trees, clearly outperform the other 
algorithms and the quite strong benchmark provided by the simple RCA measure. The prediction performance 
of Boosted Trees can be further improved by training them in a cross validation setting, at the cost of a higher 
computational effort. The calibration curves, which show a high positive correlation between the machine learn-
ing scores and the actual probability of the activation of a new product, provide further support to the correct-
ness of these approaches. A first step towards opening this black box is provided by the visual inspection of a 
sample decision tree and the feature importance analysis, which shows that the hierarchical organization of the 
decision tree is a key element to provide correct predictions but also insights about which products are more 
useful in this forecasting task.

From a theoretical perspective, this exercise points out the relevance of context for the appearance of 
new products, in the spirit of the New Structural  Economics68, but it has also immediate policy implications: 
each country comes with its own endowments and should follow a personalized path, and machine learning 
approaches are able to efficiently extract this information. In particular, the output of the Random Forest or the 
Boosted Trees algorithm, provides scores, or progression probabilities, that a product will be soon activated by 
the given country. This represents a quantitative and scientifically tested measure of the feasibility of a product 
in a country. This measure can be used in very practical contexts of investment design and industrial planning, 
a key issue after the covid-related economic  crisis69,70.

Conclusion
Measuring the relatedness between countries and products is one of the main topics in the economic complex-
ity  literature71, given its importance to assess the feasibility of investments and strategic  policies72,73. Start-
ing from 2007 with the Product  Space26, many different approaches to measure the relatedness have been 
 proposed11,32,35–37,39,43. With all these models in the literature, a big issue is the absence of a scientifically sound 
procedure to compare them and quantifying how good they are in measuring the relatedness.

Figure 8.  In the plot on the left we show the performance indicators in the case of the activations prediction 
task. The performance on positive values improves, while the one on negative values gets worse. On the right we 
show the same performance indicators in the case of the full matrix prediction task. All the scores get worse due 
to the vanishing auto-correlation of the matrices.
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The first contribution of this work is the proposal of out-of-sample forecasts of new exported products as 
a method to compare different relatedness models. In this way, the problem of measuring the relatedness can 
be casted as a binary classification exercise and, by using standard performance indicators, one can assess the 
goodness of a measure and compare them quantitatively. The second contribution of the present paper is the 
use of machine learning algorithms to measure the relatedness. We show that decision trees-based algorithms 
like Random  Forest51 and  XGBoost48 provide the best assessment and represent the benchmark for possible new 
measures of relatedness.

This paper opens up a number of research lines in various directions. One critical issue of the machine learn-
ing algorithms with respect to traditional network-based approaches is the explainability ot the results, so an 
important direction of research is the construction of a model that is fully explainable and do not lose quality 
with respect to the measures provided by machine learning algorithms. Another possible direction for future 
research is the application of this framework to different bipartite networks using different databases. Finally, 
one could use statistically validated  projections31 to build density-based predictions and compare them within 
our testing framework. All these studies will be presented in future works.

Methods
Data description. The data we use in this analysis are obtained from the UN-COMTRADE database, Har-
monized System 1992 classification (HS 1992) and include the volumes of the export flows between countries. 
The raw database, however, presents internal inconsistencies: for instance, the import declaration of the buy-
ing country might not coincide with the corresponding export declaration of the selling country. The correct 
exchanged volumes may be inferred using a Bayesian  approach10. The data used in this work are obtained from 
this cleaning procedure. The time range covered is 1996–2018 and for each year we have a matrix V whose ele-
ment Vcp is the amount, expressed in US dollars, of product p exported by country c. The total number of coun-
tries is 169 and the total number of products is 5040.

To binarize the data we determine if a country competitively exports a product by computing the Revealed 
Comparative Advantage (RCA) introduced by  Balassa38. The RCA of a country c in product p in year y is given by:

R
(y)
cp  is a continuous value and represents the ratio between the weight of product p in the export basket of country 

c and the total weight of that product in the international trade. Alternatively, the RCA can be seen as the ratio 
between the market share of country c relatively to product p and the weight of country c with respect to the total 
international trade. This is the standard way, in the economic complexity literature, to remove trivial effects due 
to the size of the country and the size of the total market of the product. In this way, a natural threshold equal to 
1 can be used to establish whether country c exports product p in a competitive way or not. As a consequence, 
we define the matrix M whose binary element Mcp tells us if country c is competitive in the export of product 
p or not:

In this work we will try to predict future values of Mcp using past values of RCA. In Table 2 we report the main 
features of the country-export bipartite network described by the biadjacency matrix M (in different years). The 
minimum country degree is zero from 1996 to 2011 due to South Sudan since it gained its independence on 
2011. The minimum degree of the products is always zero because there are some products in which on some 
years none of the countries has a RCA value greater than 1.

A detailed description of the dataset we used is available  at74.

Supervised machine learning and relatedness. Before describing our approach to measure the relat-
edness, here we want to give a quick and intuitive description of how supervised machine learning works. A 
simple example consists in the construction of a binary classifier that predicts if a patient is healthy or it has 
contracted COVID-19 starting from its symptoms (called features). A simple approach consists into drawing an 
hyperspace with dimension equal to the number of features (N). Here a patient identifies a specific point in this 
space. A binary classifier could be a simple hyperplane with dimension N−1 splitting the space in two distinct 
areas. A patient is then classified as healthy or sick depending on which of the two areas he belongs to. The learn-
ing part consists in the definition of the hyperplane. During the training phase we provide to the model some 
patients with their symptoms and the information whether they contracted COVID-19 or not. By minimizing a 
suitable loss function the model finds the optimal hyperplane that separates the healthy from the sick.

This is a very simple example of the functioning of a supervised machine learning binary classifier (that usu-
ally does not perform well, except in trivial cases where the positive and negative classes can be linearly sepa-
rated). The functioning of more complex architectures like the ones we present in this paper is not so different: 
what we have is always a classifier that learns its task looking at a set of training samples and their correct output. 
In our case, we first fix a target product. Thus a sample is a country and its exported products are the features. 
Looking to past data we show to the algorithm if a country after 5 years will export the target product, and, once 
the training phase is ended, the algorithm can be used to predict whether a country will export that product 
after 5 years or not given its present exports. Then this procedure is repeated for all products, each of which thus 
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needs a different training. In Fig. 9 we show a schematic diagram with the general functioning of the machine 
learning algorithms discussed here. As a first step, the algorithm is trained receiving the matrix of the RCAs of 
countries ( Xtrain ) and the information whether these countries will export a product or not ( Ytrain ). Once the 
algorithm is trained, it receives in input the exports of countries in a year y (not used during the training stage) 
and its output is the relatedness of countries with a product.

Training and testing procedure. We want to guess which products will be exported by a country after 
� years. To do this, we exploit machine learning algorithms with the goal of (implicitly) understanding the 
capabilities needed to export a product from the analysis of the export basket of countries. Since each product 
requires a different set of capabilities, we need to train different models: in this work, we train 5040 different 
Random Forests, one for each product.

The training procedure is analogous for all the models: they have to connect the RCA values of the products 
exported by a country in year y with the element M(y+�)

cp  , which tells us if country c in year y +� is competitive 
in the export of product p.

In the general case we have export data that covers a range of years [ y0 , ylast ]. The last year is used for the 
test of the model and so the training set is built using only the years [ y0 , ylast −� ]. In this way, no information 
about the � years preceding ylast is given.

The input of the training set, that we call Xtrain , is vertical stack of the R(y) matrices from y0 to ylast − 2� (see 
Fig. 10). In such a way we can consider all countries and all years of the training set, and these export baskets will 
be compared with the corresponding presence or absence of the target product p after � years; this is because 
our machine learning procedure is supervised, that is, during the training we provide a set of answers Ytrain 
corresponding to each export basket in Xtrain . While Xtrain is the same for all the models (even if they refer to 
different products), the output of the training set Ytrain changes on the basis of the product we want to predict. 
If we consider the model associated to product p, to build Ytrain we aggregate the columns corresponding to the 
target product, C (y)p  , of the M matrices from y0 +� to ylast −� (so we use the same number of years, all shifted 
by � years with respect to Xtrain ). This is graphically represented on the extreme left side of Fig. 10.

Once the model is trained, in order to perform the test we give as input Xtest the matrix R(ylast−�) . Each model 
will give us its prediction for the column p of the matrix M(ylast ) and, putting all the results relative to the single 
products together, we reconstruct the whole matrix of scores M(ylast )

pred  , which we compare with the empirical one. 
There are various ways to compare the predictions with the actual outcomes, and these performance metrics are 
discussed in the following section.

As already mentioned, the same models can be tested against two different prediction tasks: either we can 
look to the full matrix M(ylast ) , either we can concentrate only on the possible activations, that is products that 
were not present in an export basket and countries possibly start exporting. The set of possible activations is 
defined as follows:

Table 2.  Main properties of the country-export bipartite network over the years between 1996 and 2018.

Year
Number of 
countries

Number of 
products Number of links

Min country 
degree

Max country 
degree

Avg country 
degree

Min product 
degree

Max product 
degree

Avg product 
degree

1996 169 5040 83,754 0 2082 496 0 64 16.6

1997 169 5040 83,666 0 2059 495 0 61 16.6

1998 169 5040 84,976 0 2023 503 0 64 16.9

1999 169 5040 86,071 0 2089 509 0 66 17.1

2000 169 5040 90,327 0 2171 534 0 67 17.9

2001 169 5040 89,242 0 2138 528 0 71 17.7

2002 169 5040 88,849 0 2114 526 0 73 17.7

2003 169 5040 88,153 0 2089 522 0 73 17.5

2004 169 5040 88,662 0 2148 525 0 69 17.6

2005 169 5040 90,807 0 2171 537 0 74 18.0

2006 169 5040 90,429 0 2162 535 0 69 17.9

2007 169 5040 90,152 0 2155 533 0 72 17.9

2008 169 5040 90,505 0 2230 536 0 69 18.0

2009 169 5040 89,388 0 2157 529 0 72 17.7

2010 169 5040 88,742 0 2195 525 0 71 17.6

2011 169 5040 87,801 0 2286 520 0 68 17.4

2012 169 5040 88,368 8 2253 523 0 73 17.5

2013 169 5040 87,482 5 2222 518 0 79 17.4

2014 169 5040 85,724 7 2236 507 0 80 17.0

2015 169 5040 83,151 10 2236 492 0 81 16.5

2016 169 5040 83,012 11 2260 491 0 78 16.5

2017 169 5040 82,992 13 2202 491 0 81 16.5

2018 169 5040 81,059 12 2256 480 0 91 16.0
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In other words, a pair (c,p) is a possible activation if country c has never been competitive in the export of product 
p until year ylast −� , that is its RCA values never exceeded 0.25. This selection of the test set may look too strict, 
however it is key to test our algorithms against situations in which countries really start exporting new products. 
Because of the RCA binarization, there are numerous cases in which a country noisily oscillates around RCA = 
1 and, de facto, that country is already competitive in that product; in these cases the RCA benchmark is more 
than enough for a correct prediction.

The way to train the models we just described performs better on the full matrix than in the activations. The 
reason is probably that the machine learning algorithms recognize the countries because the ones in the training 
set and the ones in the test set are the same. When the algorithms receive as input the export basket of a coun-
try they have already seen in the training data, they tend to reproduce the strong autocorrelation of the export 
matrices. To avoid this problem we used a k-fold cross validation, which means that we split the countries into k 
groups. Since the number of countries is 169, the natural choice is to use k = 13, so we randomly extract a group 
α of 13 countries from the training set, which is then composed by the remaining 156 countries, and we use 
only the countries contained in α for the test. In this way each model is meant to make predictions only on the 
countries of the group α , so to cover all the 169 countries we need to repeat the procedure 13 times, every time 
changing the countries in the group α . This different training procedure is depicted on the right part of Fig. 10. 
So there will be 13 models associated to a single product and, for this reason, the time required to make the 
training is 13 times longer. Like in the previous case, in the training set we aggregate the years in the range [ y0 , 
ylast −� ]. Xtrain is the aggregation of the RCA matrices from y0 to ylast − 2� and Ytrain is the aggregation of the 
column p of the M matrices from y0 +� to ylast −� . In both cases, the countries in the group α are removed.

When we perform the test, each models takes as Xtest the matrix RCA (ylast−�) with only the rows correspond-
ing to the 13 countries in group α and gives as output scores the elements of the matrix M(ylast )

pred  . All the 5040× 13 
models together give as output the whole matrix of scores M(ylast )

pred  that will be compared to the actual Ytest = 
M(ylast ).

Since the output of the machine learning algorithms is a probability, and most of the performance indicators 
require a binary prediction, in order to establish if we predict a value of 0 or 1 we have to introduce a threshold. 
The value of this threshold we use is the one that maximizes the F1-score. We note that the only performance 
measures that do not require a threshold are the ones that consider areas under the curves, since these curves 
are built precisely by varying the threshold value.

Figure 10 schematically shows the training procedures with and without cross validation.

(3)(c, p) ∈ activations ⇐⇒ R
(y)
cp < 0.25 ∀ y ∈ [y0, ylast −�]

Figure 9.  Schematic diagram with the functioning of machine learning algorithms to assess the relatedness 
between countries and a target product. During the training phase the model receives an Xtrain matrix with the 
training samples (countries) and their features (products) for the years from 1996 to 2008; they are compared 
with the Ytrain vector that contains the corresponding possible exports the target product in 2001–2013 (that is, 
a binary label for each sample). Once the model is trained, it can receive in input new data (that is, an export 
basket) and will provide the probability that the label (the possible export of the target product)) is 1. This 
progression score is our assessment of the relatedness.
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Performance indicators. The choice of the performance indicators is a key issue of supervised  learning61,75 
and, in general, strongly depends on the specific problem under investigation. Here we discuss the practical 
meaning of the performance indicators we used to compare the ML algorithms. For all the scores but the areas 
under curves, we need to define a threshold above which the output scores of the ML algorithms are associated 
with a positive prediction. For this purpose we choose the threshold that maximizes the F1  score76.

• Precision Precision is defined as the ratio between true positives and  positives61. In our case, we predict that 
a number of products will be competitively exported by some countries; these are the positives. The preci-
sion is the fraction that counts how many of these predicted products are actually exported by the respective 
countries after � years. A high value of precision is associated to a low number of false positives, that is if 
products that are predicted to appear they usually do so.

• mean Precision@k (mP@k) This indicator usually corresponds to the fraction of the top k positives that are 
correctly predicted. We considered only the first k predicted products separately for each country, and then 
we average on the countries. This is of practical relevance from a policy perspective, because many new 
products appear in already highly diversified countries, while we would like to be precise also in low and 
medium income countries. By using mP@k we quantify the correctness of our possible recommendations 
of k products, on average, for a country.

• Recall Recall is defined as the ratio between true positives and the sum of true positives and false negatives 
or, in other words, the total number of products that a country will export after �  years61. So a high recall is 
associated with a low number of false negatives, that is, if we predict that a country will not start exporting 
a product, that country will usually not export that product. A negative recommendation is somehow less 
usual in strategic policy choices.

• F1 Score The F1 score or F-measure59,60 is defined as the harmonic mean of precision and recall. As such, it is 
possible to obtain a high value of F1 only if both precision and recall are relatively high, so it is a very frequent 

Figure 10.  The training and testing procedure with (right) and without (left) cross validation. See the text for a 
detailed explanation.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1481  | https://doi.org/10.1038/s41598-023-28179-x

www.nature.com/scientificreports/

choice to assess the general behavior of the classificator. As mentioned before, both precision and recall can 
be trivially varied by changing the scores’ binarization threshold; however, the threshold that maximizes the 
F1 score is far from trivial, since precision and recall quantify different properties and are linked here in a 
nonlinear way. The Best F1 Score is computed by finding the threshold that maximizes the F1 score.

• Area under the PR curve It is possible to build a curve in the plane defined by precision and recall by varying 
the threshold that identifies the value above which the scores are associated to positive predictions. This value 
is not misled by the class  imbalance46.

• ROC–AUC  The Area Under the Receiving Operating Characteristic  Curve77,78 is a widespread indicator that 
aims at measuring the overall predictive power, in the sense that the user does not need to specify a threshold, 
like for Precision and Recall. On the contrary, all the scores are considered and ranked, and for each possible 
threshold both the True and the False Positive Rate (TPR and FPR, respectively) are computed. This procedure 
allows to define a curve in the TPR/FPR plane, and the area under this curve represents the probability that a 
randomly selected positive instance will receive a higher score than a randomly selected negative  instance45. 
For a random classifier, AUC = 0.5 . It is well  known46,79 that in the case of highly imbalanced data the AUC 
may give too optimistic results. This is essentially due to its focus on the overall ranking of the scores: in our 
case, misordering even a large number of not exported products does not affect the prediction performance; 
one makes correct true negative predictions only because there are a lot of negative predictions to make.

• Matthews coefficient Matthews’ correlation  coefficient80 takes into account all the four classes of the confusion 
matrix and the class imbalance  issue81,82.

• Accuracy Accuracy is the ratio between correct predictions (true positives and true negatives) and the total 
number of predictions (true positives, false positives, false negatives and true negatives)61. In our prediction 
exercise we find relatively high values of accuracy essentially because of the overwhelming number of (trivi-
ally) true negatives (see Table 1).

• Negative predictive value Negative predictive value is defined as the ratio between true negatives and negatives, 
that are the products we predict will not be exported by a  country61. Also in this case, a major role is played 
by the very large number of true negatives, that are however less significant from a policy perspective.

Libraries for the ML models. Most of the models are implemented with scikit-learn 0.24.0 and, as 
described in the Supplementary Information, we performed a carefully hyperparameter optimization; in par-
ticular we used (the unspecified hyperparameters values are the default ones):

• sklearn.ensemble.RandomForestClassifier(n_estimators = 100, min_samples_leaf = 7)
• sklearn.svm.SVC(kernel = “rbf ”)
• sklearn.linear_model.LogisticRegression(solver = “newton-cg”)
• sklearn.tree.DecisionTreeClassifier()
• sklearn.tree.ExtraTreesClassifier(n_estimators = 100, min_samples_leaf = 8)
• sklearn.ensemble.AdaBoostClassifier(n_estimators = 3)
• sklearn.naive_bayes.GaussianNB()
• xgboost.XGBClassifier(n_estimators = 15, min_child_weight = 45, reg_lambda = 1.5)

XGBoost is implemented using the library xgboost 1.3.1.
Finally, the neural network is implemented using keras 2.4.3. It consists on two layers with 64 neurons and 

activation function RELU and a final layer with a single neuron and sigmoid activation. We used rmsprop as 
optimizer, binary_crossentropy as loss function, accuracy as loss metric and we stopped the training at 10 epochs.

For a detailed explanation about the choice of the hyperparameters the reader is referred to the supplementary 
information. Note that in our case tree-based models perform better and it is known in the literature that the 
random forest default values already provide very good  results79,83,84. In our case, the hyperparameters optimiza-
tion increased our prediction performances of about 10%; in particular, it decreased the number of false positives.

Comparison with other works. Here we compare our Random Forest model with the other approaches 
presented in literature that we cited in the introduction section, using a consistent testing framework (4-digits 
classification, comparison between the relatedness computed in 2013 and the actual new exported products in 
2018 that had RCA<0.25 from 1996 to 2013).

• Hidalgo et al. in 2007 define the Product  Space26 that is still widely used to measure  relatedness37. It is a 
projection of the country-product bipartite network into the layer of the products (thus defining a proximity 
network of the products). The relatedness between a country and a product is defined as the density of the 
former around the latter in the Product Space;

• O’Clery et al. in 2021 introduce a new approach to define the proximity network of the products called 
 EcoSpace32. From this network they define the Ecosystem density—that is the likelihood of the appearance 
of a product in a country—as a relatedness measure;

• Medo et al. compare different approaches to perform a link prediction on bipartite nested networks finding 
that the two most performing techniques are the Number of violations of the nestedness property (NViol)85 
and the preferential attachment (prefA), where the relatedness is the product of the diversification of the 
country with the ubiquity of the  product36 .
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In Table 3 we show the AUC-PR, AUC-ROC, Best F1 and mean precision@5 of the different models. We find 
that the Random Forest outperforms the other approaches independently from the specific performance metric 
used in the comparison.

Data availibility
The data that support the findings of this study are available from UN-COMTRADE but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from the authors upon reasonable request to the corresponding author and with 
permission of UN-COMTRADE. An anonymized and processed version of the data is available at https:// github. 
com/ giamb a95/ Sapli ngSim ilari ty/ tree/ main/ data/ RCA to permit the full replicability of our study.
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