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Abstract 

This paper describes a new approach to knowledge creation that is instrumental for 
the emerging paradigm of data-intensive science. The proposed approach enables the 
acquisition of new insights from the data by exploiting existing relationships between 
diverse types of datasets acquired through various modalities. The value of data con-
sistently improves when it can be linked to other data because linking multiple types 
of datasets allows creating novel data patterns within a scientific data space. These pat-
terns enable the exploratory data analysis, an analysis strategy that emphasizes incre-
mental and adaptive access to the datasets constituting a scientific data space while 
maintaining an open mind to alternative possibilities of data interconnectivity. A tech-
nology, the Linked Open data (LOD), was developed to enable the linking of datasets. 
We argue that the LOD technology presents several limitations that prevent the full 
exploitation of this technology to acquire new insights. In this paper, we outline a new 
approach that enables researchers to dynamically create data patterns in a research 
data space by exploiting explicit and implicit/hidden relationships between distributed 
research datasets. This dynamic creation of data patterns enables the exploratory data 
analysis strategy.

Keywords:  Data exploration, Data relationships, Data patterns, Data analyzer, Data 
publication

Introduction
Data Intensive Science is considered to be the fourth paradigm of science, after the 
empirical, theoretical and computational paradigms [1]. It is seen as a data driven sci-
ence where a set of Information Technology (IT) tools and technologies support scien-
tists in analyzing huge volumes of scientific data to discover new insights. There are two 
different scientific scenarios where the scientific data analysis is carried out. One sce-
nario is characterized by the presence of discipline-specific large databases/data ware-
houses (big data); the other scenario is characterized by the presence of small research 
groups, worldwide distributed, that produce and store large volumes of data. The first 
scenario is typical of some scientific disciplines like astronomy, high-energy physics. To 
retrieve the data to be analyzed, the scientist has to deal with a big challenge, that is, 
the inadequacy of the conventional query processing technology as the huge volumes 
of data have outgrown the capabilities of this technology. In addition, the scientist has 

*Correspondence:   
valentina.bartalesi@isti.cnr.it

Istituto di Scienza e Tecnologie 
dell’Informazione “A. Faedo” (ISTI), 
CNR, Pisa, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00702-x&domain=pdf


Page 2 of 15Thanos et al. Journal of Big Data           (2023) 10:29 

to explore the whole database even though the needed data is a small part of it. Indeed, 
the database management systems are conceived in such a way that in order to pro-
vide a complete answer to a query they have to explore the whole database. Querying 
a very large database is a very expensive and time-consuming task. Moreover, the sci-
entist, frequently, does not know exactly what kind of queries to issue. The second sce-
nario is characterized by the presence of small research groups worldwide distributed. 
These groups accumulate and store large volumes of data. In such a scenario the sci-
entist, has to interact with several database systems in order to retrieve disparate data 
sets to be analyzed. The challenge here is the need to interact with database systems 
that adopt different data models, query languages and protocols. To alleviate the prob-
lems that arise in the second scenario, the data integration technology is employed [2]. 
However, the traditional approach to data integration, based on the design of a unified 
view (global schema) is technically unfeasible. First, due to the extreme heterogene-
ity of the local schemata to be integrated, the design of a global schema is a very com-
plex task. Second, the local schemata evolve over time and therefore the global schema 
should undergo continuous restructuring. Another approach, which is alternative to the 
data integration, has been proposed the “Dataspace” approach [3]. This approach is a 
data co-existence approach. The goal is to provide through a platform base functionality 
over a large number of diverse, interrelated data sets, but having no means of managing 
them in a convenient, integrated fashion. However, this approach has never been imple-
mented. In conclusion, in both scenarios a scientist has to deal with big technological 
challenges that make her/his task, i.e. locating interesting data for his research activity 
prohibitive. To support scientists in overcoming these complex technological problems, 
a new paradigm of query processing has emerged: data exploration [4]. The data explora-
tion approach enables the incrementally and adaptively exploration of a database until a 
subset of it that satisfies an information need is obtained. Based on this new paradigm 
of data seeking also a new approach to data analysis has emerged: Exploratory Data 
Analysis (EDA). In essence, EDA is a strategy of data analysis that emphasizes main-
taining an open mind to alternative possibilities in order to gather as many insights as 
possible from the data [5]. In the first scenario, an exploratory approach to extracting 
knowledge from data, known as Knowledge Discovery in Databases (KDD), has been 
defined and employed. It is a process that aims at identifying valid, novel, potentially 
useful, and ultimately understandable patterns in data [6]. An important step of this pro-
cess is Data Mining. Data mining can be defined as the computational process of analyz-
ing large amounts of data in order to extract patterns and useful information [7]. This 
approach can be successfully employed in discovering patterns of data contained in large 
databases or data warehouses where plans and protocols can be put in place in order to 
efficiently manage and facilitate accessing the data. However, some challenges must also 
be faced, for example, the dynamicity of data that can invalidate previously discovered 
patterns, as well as the existence of complex dynamic data relationships. In the second 
scenario, an exploratory approach to extracting knowledge from data, can be conducted 
based on the Linked Open Data (LOD) technology [8]. This technology supports iden-
tification of data resources via HTTP Internationalized Resource Identifiers (IRIs), 
making them web resources. These IRIs can then be used to express knowledge about 
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these resources via one of the recommended Semantic Web languages (RDF,1 OWL2), 
and to create the links between them that constitute the patterns/graphs as the basis of 
the above described exploratory approach. In other words, RDF/OWL graphs have the 
potential to constitute data patterns needed to implement the exploratory approach to 
the creation of knowledge, based on the interconnection of research datasets. However, 
there remain some limitations that prevent the full exploitation of this technology in its 
current state. We have identified four main limitations. 

1	 From a conceptual point of view, the number of existing types of relationships 
between datasets is far more than the relationships defined and axiomatized by exist-
ing ontologies. This is a significant limitation to the expressiveness of any linking 
mechanism.

2	 From a practical point of view, a considerable number of relationships between data-
sets are unknown or hidden/implicit. Therefore, to be expressed in an RDF/OWL 
graph, they must be inferred (discovered). We still lack a systematic study of the algo-
rithms to carry out this kind of discovery, which further limits the potential of the 
linking mechanism.

3	 The dynamic nature of the relationships existing between research data sets. In 
essence, an existing relationship between two datasets can disappear or change its 
type as a consequence of the dynamicity of the “intention” of the datasets involved in 
the relationship.

4	 A domain-specific data space organized according the LOD technology is com-
posed of a number of pre-established patterns/graphs that a researcher has to follow 
in order to obtain the information she/he is looking for. In essence, she/he has to 
traverse a static data structure. On the contrary, the exploratory activity requires a 
researcher be able to dynamically create links between datasets on the basis of her/
his cognitive state. The researcher’s cognitive state is continuously updated as the 
investigation proceeds and, therefore, new information needs that require the dis-
covery of additional relationships can arise. In essence, a researcher needs some tools 
that enable her/him to discover relationships among datasets dynamically.

In this paper, we present a new exploratory approach to knowledge production that is 
different from the previously mentioned approaches, i.e., data mining and LOD. Data 
mining aims to detect data patterns that are already present in the data. LOD establishes 
data patterns by connecting discipline-specific data sets by exploiting known relation-
ships between them that are defined by discipline-specific ontologies. The proposed 
approach has been fostered by some characteristics of big research data, i.e., high dyna-
micity, high dimensionality and high relationality. In fact, in many scientific domains 
(e.g., genomic data) the number of attributes associated with the entities described in 
a dataset can become very large (high dimensionality). The proliferation of the attrib-
utes of data entities causes also the proliferation of relationships among attributes of 
data entities. This proliferation increases the connectivity of distributed datasets. Our 

1  https://​www.​w3.​org/​TR/​rdf-​schema/
2  https://​www.​w3.​org/​TR/​owl2-​overv​iew/
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approach enables the researcher to discover existing implicit relationships (causal/
semantic/temporal/spatial) as well as correlations between scientific data sets. Then the 
researcher, by materializing them through links, creates data patterns. These data pat-
terns are dynamically created as the data exploration process proceeds. By following 
these patterns new insights can be produced. In essence, our approach can be consid-
ered as a preliminary step of the EDA. In fact, a data pattern that evidences some new 
insights would be regarded as a starting point for hypotheses generation. In essence, the 
proposed approach aims at enabling researchers to create insightful data patterns that 
allow them to build mental models of the phenomenon being studied. Finally, it must be 
stressed that an exploratory approach to knowledge creation is feasible only in the con-
text of Open Science. That is, a policy framework that prescribes the open sharing of all 
research outcomes as early as is practical in the discovery process. The European Com-
mission has endorsed the Open Science policy and all the projects funded by it must 
observe this policy.

The paper is organized as follows: in "The scientific data space" section, the charac-
teristics of the scientific data space that mainly influence the proposed exploratory 
approach are described. In "Research data relationships" section, the different types of 
relationships, both explicit and hidden (implicit), that exist between datasets and that 
allow the creation of a linked scientific data space are described. In Exploring the scien-
tific data space section, different approaches to exploring the linked scientific data space 
are illustrated. In "Data analyzers" section, the characteristics of the data analyzers, 
that is, the software that discovers relationships between datasets are described. In "An 
example of discovering an existing extensional datarelationship between two datasets" 
section, a use case is illustrated. Finally, in "Concluding remarks" section, some conclud-
ing remarks are given. In what follows, we will consider “dataset” as a synonym of “big 
dataset”, for generality.

The scientific data space
The current Scientific Data Space is composed of a large number of research data sets 
and of relationships between them. A dataset has an intension and an extension. The 
intension of a dataset describes the structure of the dataset and is expressed as a schema 
of the particular data model that the dataset conforms to. The extension of a dataset is a 
set of data that are structured according to the dataset intension. The research datasets 
are organized and managed in various ways, depending on the scientific context within 
which these data sets have been collected or created: some are traditional relational 
databases, others are XML document repositories, others are Linked Data, and so on. In 
many cases, such as institutional repositories, more than one technology is used to man-
age the same data collection.

Research Datasets. Research data can be classified in a variety of ways. Classifying 
types of research data can be helpful for understanding the similarities and differ-
ences as well as the intended and potential use of data over time. The US National 
Science Board (NSB) [9] classifies digital research data based on way the data was 
collected or generated: observational, computational, or experimental. According 
to the NSB, observational data cannot be recollected and are archived indefinitely. 
These data are typically time and/or location dependent. The observational context, 
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including time, location, and method of collection, is essential to facilitating data 
reusability. Data that is the result of computer models or simulations (computational 
data) can be reproduced if adequate information is provided about the computer 
hardware, software, and inputs. Experimental data can often be reproduced, provided 
that the experimental conditions are known. These data are associated with a par-
ticular methodology or instrument. It must be emphasized that research datasets are 
highly dynamic; their dynamicity can be both extensional as well as intentional. By 
extensional dynamicity it is intended the changes in the extension of a dataset caused 
by a number of operations like the acquisition of more research data, or the modifi-
cation of existing data or the elimination of some data. By intentional dynamicity it 
is intended the change of the structure of real world objects represented in research 
datasets as new insights are gained in the scientific domain.

Dataset Identity. Each of above dataset classes has distinguished characteristics that 
contribute in defining the identity of a dataset. By dataset identity it is intended a 
number of characteristics that make a dataset definable and recognizable allowing, 
thus, to distinguish it from other datasets but also to discover relationships between 
different datasets [10]. Identity must be an intrinsic characteristic of the dataset and, 
therefore, independent from its structure/format which may change over time. Sev-
eral characteristics concur to establish the identity of a dataset [11]; for the purpose 
of identifying relationships between research datasets, we consider the following 
characteristics of datasets as very important:

•	 Class: as said, three main dataset classes have been identified based on the collec-
tion method: observational, computational and experimental.

•	 Relatedness: datasets are collections of data that are related to each other in sev-
eral ways. Four types of relatedness are important for our study: circumstantial 
relatedness, temporal, spatial and semantic relatedness. Circumstantial relatedness 
refers to the context within which the dataset has been created; temporal related-
ness refers to the time interval during which the dataset has been produced; spa-
tial relatedness refers to the location where the dataset has been produced; and 
semantic relatedness refers to the fact that the data contained in a dataset con-
cerns the same subject or has a common theme.

•	 Purpose: research datasets are created in order to support a scientific investiga-
tion. The purpose of this investigation constitutes a distinguished characteristic of 
a dataset.

Metadata Schemes for Research Datasets. A metadata scheme “is a logical plan showing 
the relationships between metadata elements, normally through establishing rules for 
the use and management of metadata specifically as regards the semantics, the syntax 
and the optionality of values” (ISO 23081). The metadata scheme of a research dataset 
must, formally, define those elements that concur to establish the dataset identity [12]. 
For each dataset class, the metadata scheme will contain elements that characterize this 
particular dataset class, for example, time, location, context, procedures, theme, pur-
pose. Having classified research datasets into three classes implies that, also, the associ-
ated metadata will have different features related to each category [13]. For example,
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•	 metadata schemes of observational datasets should include temporal information, 
spatial information as well as information about the observational context and the 
collection method;

•	 metadata schemes of experimental datasets should include information about the 
adopted methodology as well as the instrument employed;

•	 metadata schemes of computational datasets should include information about the 
data service (software) used as well as the necessary input in order to produce the 
dataset described by the metadata.

Several metadata schemes have been formally defined and some of them have been 
adopted as domain-specific standards; some other standards are under development.

Database Abstractions/Views. Research datasets contain huge amounts of data. Usu-
ally, researchers are interested only in some parts of a dataset. These parts (called sub 
datasets) are known as dataset views. Dataset views can be considered as data abstrac-
tions of an epistemological nature [14]. The epistemological approach to abstraction is 
concerned with the different levels of observation or interpretation at which a dataset 
can be studied. For example, a dataset can be observed and analyzed at different levels of 
abstraction, with regard to time, place, instrument, or object of observation. Examples of 
epistemological levels of abstraction are spatial and temporal data abstractions. A data-
set view can also be defined as a function [15] that when applied to a dataset produces 
a subset of that dataset. Obviously, each dataset view must have a well-defined identity. 
We think that each large dataset should be endowed with a number of (possibly overlap-
ping) views. In summary, we foresee that in the near future the scientific data space will 
be constituted by a large number of widely distributed dataset views interconnected by 
several kinds of relationships (explicit or hidden). A step towards this direction is the 
formal definition of domain and/or class specific metadata standards.

Data Publication. Finally, an emerging approach in the scientific communication that 
is instrumental in the discovery of datasets/views and therefore, in their interconnec-
tion is Data Publication. By Data Publication, we mean a process that allows researchers 
to discover, understand, and make assertions about the trustworthiness and fitness for 
purpose of the datasets/views in a data space. The ultimate aim of Data Publication is to 
make scientific data available for reuse both within the original disciplines and the wider 
community. Among the main functions that the data publication process performs, we 
distinguish the following two that are of paramount importance for the creation of data 
patterns: data registration and data semantic enhancement. The purpose of registration 
is to make a dataset/view citable as a unique piece of work, while the purpose of seman-
tic enrichment is to make it understandable. We expect that, in the near future, domain-
specific registries will be developed where the datasets/views produced by research 
activities will be published. Once accepted for deposit, a dataset/view should be assigned 
a “Digital Object Identifier” (DOI) for registration. A DOI [16] is a unique name (not 
a location) within the scientific data universe and provides a system for persistent and 
actionable identification of data. In addition, the dataset/view should be assigned appro-
priate metadata. An emerging best practice that supports the re-usability of research 
data is the FAIR principles [17] that aim at making research data findable, accessible, 
interoperable and re-usable.
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Research data relationships
Research data relationships are of paramount importance for the implementation of 
the exploratory approach to knowledge production. Relationships between datasets 
can exist both at the extensional and at the intentional level. Relationships at the exten-
sional level have been studied for the purpose of taking under control the proliferation 
of datasets produced in the context of a research project. By an extensional relationship 
between two datasets we mean a property that depends solely on the current data of 
these datasets In particular, assuming that two datasets are implemented as tables (rela-
tions), a number of relationships between data in spreadsheets have been identified: row 
containment, column containment, containment, sub-containment, complementation, 
equal, incompatible, and others [18]. By intentional relationship between two datasets 
we mean a relationship that exists between elements of the corresponding metadata 
schemes. This relationship can be explicit or implicit.

Explicit Dataset Relationships. An explicit relationship between two datasets exists 
when it is represented by common elements in their respective metadata schemes. For 
example, in a relational database an explicit relationship between two relations/tables 
exists when one table has a foreign key that references the primary key of the other table. 
Explicit relationships are intentionally created by the designers of database schemes. The 
establishment of explicit relationships between datasets is facilitated by the adoption of 
standard metadata schemes for each dataset class. Datasets belonging to the same class 
share the same metadata scheme and therefore, the same metadata elements. In this 
case, a query processor is able to identify a relationship between two datasets. For exam-
ple, in a relational database a query processor, based on the relational calculus, is able to 
identify existing relationships between datasets. In the case of two observational data-
sets, the existence of the element time in the corresponding metadata schemes enables 
a query processor, based on temporal logic, to discover a temporal relationship between 
the two datasets. More problematic is the discovery of relationships between datasets 
belonging to different classes and therefore having different metadata schemes. In this 
case, a query processor, in order to identify an existing relationship between two data-
sets must be supported by domain-specific ontologies and their alignment.

Implicit Dataset Relationships. An implicit relationship between two datasets exists 
when there are no common elements in the metadata schemes of the two datasets, but 
there exist a relationship (for example semantic, causal, spatial) between elements of 
the corresponding metadata schemes. This type of relationship can be discovered by a 
query processor based on a logic that depends on the type of the sought relationship, for 
example, modal logic, causal logic, etc. Obviously, hidden relationships are not inten-
tionally created but they arise in a continuously way as the research datasets produced 
by research teams are dynamically created.

Here below we, briefly, describe some important intentional relationships between 
datasets.

Semantic relationships. A semantic relationship between two datasets is the asso-
ciation that exists in the domain of discourse between the objects that the datasets 
represent. Typically, these objects are represented in words/phrases contained in 
the metadata associated with the datasets, so that we can simply say that the seman-
tic relationship concerns the meanings of words/phrases contained in the metadata 
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associated with these datasets. In the literature [18] a list of 31 semantic relationships 
has been provided. Among them it is worthwhile to mention:

Inclusion relationship that describes situations where one entity comprises or con-
tains other entities. Three different types of inclusion have been identified: class, mer-
onymic, and spatial.

•	 Class inclusion is the standard subtype/supertype relationship often expressed as 
is-a, (A is-a B, where A is referred as the specific entity type of B). Other examples 
include: relationships of classification, generalization, and specialization.

•	 Meronymic inclusion is the relationship between something and its parts. Exam-
ples include the relationships: component-object, member-collection, phase-
activity, and place-area.

•	 Spatial inclusion is the relationship between an object and another object that sur-
rounds it without being part of the surrounding object.

Some other relationships have been identified that are similar to meronymic:

•	 Possession is the owner ship relationship.
•	 Attachment is the relationship in which one entity is attached or joined to another.
•	 Attribution is the relationship between one entity and its attributes.
•	 Antonyms is the relationship that indicates the mutual exclusivity between two 

attributes/entities/relationships.
•	 Synonyms is the relationship that indicates two attributes/entities/relationships 

are the same or nearly the same.

Correlation. Correlation is a statistical measure that indicates the extent to which two 
datasets or variables fluctuate together. A positive correlation indicates the extent to 
which those datasets/variables increase or decrease in parallel. A negative correlation 
indicates the extent to which one dataset/variable increases as the other decreases 
and vice versa. Many times, the correlation is close to 0; this means that there is no 
obvious relation between the two datasets/variables. It is worthwhile to note that cor-
relation does not imply causation. Correlation is very important in science [19] as it 
let researchers know if two datasets/variables are related to each other; it is becoming 
the workhorse of quantitative data analysis. Indeed, correlation analysis is arguably 
the most important technique that enables the definition of trends and making pre-
dictions. Therefore, it is important to be able to measure the correlation between two 
datasets. The statistical measure that indicates the degree to which two datasets vary 
together or oppositely is called correlation coefficient. Several algorithms have been 
proposed for measuring the correlation coefficient. These algorithms will enable the 
creation of “correlation data patterns”, that is, patterns whose links between datasets 
are constituted by correlations.

Causal relationship. Causal relationship is the relationship between cause and 
effect. In essence, causality is what connects a dataset with another dataset, where the 
objects represented in the former are partly responsible for the objects represented 
in the latter, and the latter is partly dependent on the former. In order to identify a 



Page 9 of 15Thanos et al. Journal of Big Data           (2023) 10:29 	

causal relationship between two datasets, first, a variation of the dataset assumed to 
cause the change in the other dataset must be observed, and then measure the change 
in the other dataset. Different approaches and systems have been proposed in litera-
ture in order to identify causal relationships. These systems should be guided by a 
causal logic. Such systems will enable the creation of “causal data patterns”, that is, 
patterns whose links between datasets are constituted by causal relationships.

Temporal relationship. Temporal relationship is the relation between two datasets 
that indicates the ordering in time of these objects represented in the datasets. Tem-
poral information is very important as research datasets are time varying. Examples 
of temporal relationships include: antecedent-forerunner relationship; synchronicity 
relationship; asynchrony relationship; sequential relationship. Therefore, modeling 
temporal information is of paramount importance. There are two mechanisms for 
including temporal information in a dataset, depending whether a diachronic or a 
synchronic approach is followed in the representation of data.

•	 In the diachronic approach, the same dataset contains data collected at different 
time units, a fact that is reflected by labelling data in the dataset with time infor-
mation. The labeling mechanism is based on time-stamping. By time-stamping it 
is intended the addition of a temporal entity t, that labels data in the dataset.

•	 In the synchronic approach, a dataset is organized in a number of snapshots each 
containing data collected at the same time unit. Each time the dataset is changed 
(for example when new data are inserted/deleted) a new snapshot, or version, of 
the dataset is created and the previous snapshot is stored somewhere.

There are two main dimensions of temporal information: valid and transaction times. 
Valid time is the time when a dataset is valid; transaction time is the time when a 
dataset is actually created. The versioning approach is more appropriate for capturing 
the transaction time, while the labeling approach is used for representing valid time. 
Adding time in data models and implementing them in temporal DBMSs is an active 
research area. Temporal graphs, based, for example, on labeling mechanisms, can be 
created where the arcs are labeled with their interval of validity.

Spatial relationship. A spatial relationship is the relationship between two data-
sets that the objects represented in the datasets are connected by a topological, or 
a distance, or a directional relation, amongst the others. A topological relationship 
describes a relationship between datasets in space. For example, the relationship, 
between two marine datasets collected in the Aegean and Tyrrhenian seas.

Data Assimilation. Data Assimilation is a set of statistical techniques whereby data-
sets collected by observations are combined with datasets produced by simulation 
or from numerical models, to estimate better the evolving state of a complex system 
such as, for example, the atmosphere. In essence, data assimilation enables to improve 
the knowledge of the future states of a system by jointly using experimental data and 
the theoretical (a priori) knowledge on the system. Several methods, including the 
statistical one, have been proposed in literature and several data assimilation systems 
have been implemented.
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Obviously, the type of data relationships between data sets is domain-specific. Finally, 
it must be emphasized that also the dataset relationships are dynamic. In fact, both the 
extensional dynamicity as well as the intentional dynamicity of a dataset could impact 
on existing relationships between this dataset and other datasets. In essence, an existing 
relationship between two datasets can disappear or change its type as a consequence of 
the intentional/extensional dynamicity of one of the datasets involved in the relation-
ship. A new relationship could also be established between this dataset and another 
dataset. Therefore, upon an intentional/extensional change of a dataset, if it is linked 
with another dataset by a specific relationship, the validity of this relationship has to be 
checked.

Data patterns. Discovering inter-dataset relationships, and making them explicit for 
instance through a linking mechanism, allows the creation of an interconnected data 
space. In fact, the existence of relationships between datasets enables the establishment 
of data patterns. By a data pattern we intend a directed graph whose nodes are datasets 
and whose arcs represent relationships between datasets. A data pattern may be cyclic 
or acyclic, depending on the relationship represented by the arcs. For instance, causal or 
mereonymic relationships typically give raise to acyclic data patterns, while intrinsically 
symmetric relationships, such as proximity or similarity relationships may give raise to 
cyclic data patterns. These data patterns contain implicit and often previously unknown 
information, i.e., knowledge. In essence, they constitute knowledge patterns [7]. It could 
be possible to create data patterns that are characterized by the type of relationship rep-
resented by the links between the datasets involved in the patterns.

Exploring the scientific data space
The information exploration (data seeking) in a scientific data space can be carried out 
in two modes: navigational querying or navigational browsing [20].

•	 In the navigational querying mode, the data seeking occurs in an intentional way, 
that is, the researcher has a specific target in mind that is described via a linguistic 
expression, known as query; the query is submitted to the system that manages a 
dataset of the data space; by processing the query, the system produces a subset of the 
queried dataset containing all and only the data of the dataset that satisfy the given 
description. Successively, the user can refine her/his query, based on the information 
contained in the subset so far obtained. This refined query can be issued against the 
same dataset or any other dataset of the data space obtaining, thus, another subset 
that is more closed to her/his information needs. This mechanism can be iterated 
until the researcher succeeds to obtain the exact information she/he is looking for. 
This mode of data exploration is known as “navigational querying”.

•	 In the navigational browsing mode, the researcher is moving through the data space 
without a clear target in mind. Actually, the researcher is not able to formulate her/
his information need as a query, but she/he can recognize relevant information when 
find it. In the browsing mode the data seeking occurs in an extensional way. The 
researcher navigates in the data space following different data patterns in the hope 
that she/he might find datasets that contain relevant information.
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In the proposed exploratory strategy, a researcher is enabled to explore the scientific 
data space in the hope that she/he might find relevant information, i.e., she/he has not 
a specific target in mind. The exploration activity is performed by navigating in the sci-
entific data space and by dynamically choosing the route of navigation. Here there is an 
apparent contradiction between the responsibility for selecting routes, implied by the 
concept of navigation, and the absence of a definite target. Actually, the choice of the 
route depends on the cognitive state of the researcher that is continuously updated 
as the exploratory action proceeds. A route of navigation is a data pattern that the 
researcher dynamically creates by linking different datasets on the basis of relationships 
that exist among them and that are of interest for her/his research activity. In essence, 
the researcher starts the exploration by establishing a link between a starting dataset 
and another dataset. The link materializes a specific relationship that exists between the 
two datasets. If the information gained by accessing the linked dataset is relevant for the 
research activity conducted by the researcher, then she/he can iterate this process creat-
ing, thus, a data pattern functional for her/his research activity. If the information con-
tained in the linked dataset is not relevant, then the researcher has the option to activate 
another link between the starting dataset and another dataset on the basis of another 
type of relationship between these datasets. Again, the researcher can iterate this pro-
cess creating a different data pattern.

We can call this information exploration mode mediated browsing. In essence, the 
researcher is not able to formulate queries but she/he is able to formulate request for 
different types of relationships between datasets. Once a link between two datasets has 
been established, the researcher can browse the linked dataset for relevant information.

Data analyzers
The automatic discovery of relationships between research datasets is of paramount 
importance for the successful implementation of an exploratory approach to knowledge 
production [21]. Therefore, the development of software able to discover data relation-
ships to establish interconnections between datasets must be hastened. A data analyzer 
should calculate a measure of dependence between variables in pairs of datasets. Most 
of the data relationships can be modeled as functions, but not all are well modeled by 
a function. The modeling of data relationships is a domain-specific task and it must be 
supported by domain-specific vocabularies. Some prototypes have already been imple-
mented [22]. We envision the development, in the near future, of software analyzers 
specific for each type of relationship. This kind of software will enable the creation of 
“specialized “data patterns.

Data Analyzers must be adequately described in order to enable potential users to 
find them. The data analyzers should be described at three distinct levels [23]: the com-
putational, the algorithmic and the implementation levels. At the computational level, 
the logic of the abstract computational model is described. In essence, at this level, the 
goal of the computation is described as the identification of a certain type of relationship 
between variables contained in the schemata of two dataset views. As said in "Research 
data relationships" section, several types of relationships can exist between these vari-
ables. The computational model, in essence, implements an appropriate logic that must 
guide the discovery of a particular type of relationship sought by a user. Examples of 
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logics, that can be adopted, include conventional, modal, causal, temporal, etc. At the 
algorithmic level, the representation of certain variables of dataset/view schemata are 
described (the values of these variables constitute the input to the analyzer) as well 
as the representation of the output (existence or absence of a certain type of relation-
ship between the input variables). At the implementational level, the data analyzer is 
described as a software with a discoverable and invocable interface. All these three levels 
of description are included in the metadata of the analyzer.

As for the datasets/views, also the data analyzers must be published in order to 
make them discoverable. This means that domain-specific data analyzer catalogues 
have to be developed. These catalogues should include, at least, for each data analyzer:

•	 a description that is contained in the metadata;
•	 an identifier DAI (Data Analyzer Identifier);
•	 the type of the data analyzer;
•	 how to request the data analyzer;
•	 how the data analyzer delivery is fulfilled.

An example of discovering an existing extensional data relationship 
between two datasets
Let’s consider two datasets containing information about marine species: IUCN 
RedList [24] and Global Record of Stocks and Fisheries (GRSF) [25]. For the sake of 
the example, we assume that the two datasets are implemented as tables and that fish 
species are identified in the same way in them. These assumptions will simplify the 
example and are without loss of generality: in fact, (a) file-based scientific data are 
typically organized as tables, such as spreadsheets, and (b) common identifiers for 
species have been specified by standardization bodies and are largely in use.

IUCN RedList provides a wealth of useful information on marine species including 
their vulnerability status. Far more than a list of species and their status, it is a power-
ful tool to inform and catalyze action for biodiversity conservation and policy change, 
critical to protecting the natural resources we need to survive. It provides informa-
tion about range, population size, habitat and ecology, use and/or trade, threats, and 
conservation actions that will help inform necessary conservation decisions. Global 
Record of Stocks and Fisheries provides the fishing areas where certain marine spe-
cies are fished. Its main purpose is to provide registered users with an environment 
and tools for accessing stocks and fisheries information.

As already mentioned in "Research data relationships" section, several relationships 
can be identified between these two datasets. For the purpose of the proposed exam-
ple, the following relationships between the two datasets are of interest:

•	 Column containment: because the data contained in a GRSF column is a subset of 
the data contained in a RedList column.

•	 Complement: because the unmatched columns of GRSF and RedList provide com-
plementary information about the marine species.
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In the literature, algorithms for the identification of the containment relationships 
between datasets have been proposed and implemented [26]. Once discovered, these 
relationships can be represented as statements in some data description language 
(for instance, as data dependencies in SQL or as axioms in OWL). As a case in point, 
suppose that a researcher has the following information need:

“Find the vulnerability status of the marine species present in a given fishing area 
X”

This need can be clearly satisfied by appropriately combining the information in 
the two datasets [27]. However, it can be expressed as a query only if case two condi-
tions are met: 

1	 species are identified in both tables in the same way, so that the identifiers selected in 
one dataset can be used to access the other;

2	 the researcher performing the query knows exactly the attributes of each table and 
their semantics.

If these conditions are satisfied, it is not difficult to derive the query Q that expresses 
the above information need and obtain the sought answer by executing Q.

However, it is well-known that the above situation is very hard to find in reality, 
since each dataset is the product of an investment made by a community with spe-
cific objectives, and this condition results in a great heterogeneity of the data space.

Under these circumstances, we can safely assume only that each dataset provides 
an API conforming to some standard, so that it is possible to develop a specific pro-
cedure that takes the name of the fishing area (X) as the input and interacts with the 
dataset APIs’ as follows: 

1	 the procedure processor extracts the set I of the identifiers of the marine species 
fished in X by executing a specific query on the GRSF API.

2	 from the containment relationship between the two datasets (GRSF, RedList), it 
infers that these species are a subset of species listed in RedList

3	 for each species s in I, the procedure uses the RedList API to extract the vulnerability 
status vs of s. Each pair (s, vs) is part of the answer to the information need above.

This procedure can be standardized as a SPARQL query over an OWL 2 DL ontol-
ogy by modeling each dataset as a class, endowed with properties that reflect the 
structure of the dataset. In this case, the semantic containment relationship between 
the two datasets can be captured as a subclass axiom given by (in the functional 
OWL 2 DL [28] notation):

SubClassOf(GRSF, RedList).
By virtue of this axiom the superclass, RedList, inherits all species of the subclass, 

GRSF. It then suffices to query RedList to obtain the desired information. In essence, 
a so enriched query processor is able to exploit an implicit data relationship repre-
sented as a logical axiom and answer a query that depends on this relationship.
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Concluding remarks
In this paper, we have outlined a new approach to the knowledge creation based on 
the exploitation of the knowledge hidden in huge data volumes of research data. This 
data is the outcome of several domain-specific research activities carried out by sci-
entists. The proposed approach is framed within a scientific context that has been 
revolutionized during the last years. The main characteristics of this new scientific 
context are: (i) the widespread digitization of the research results; (ii) the produc-
tion of big research data; (iii) an increasingly data intensive science; (iv) an increas-
ingly multidisciplinary science; (v) an increasingly e-science; and (vi) an increasingly 
open science. All these characteristics have motivated our effort for a new approach 
to knowledge creation based on the exploration of the scientific information space 
(data patterns driven). Realizing this approach implies the implementation of data 
infrastructures and the development of tools for the automatic discovery of hidden 
data relationships. The data infrastructures should provide: (i) linking services to 
allow the creation of linked information spaces; (ii) intermediary services to make the 
holdings of data centers, digital libraries, institutional repositories, etc. discoverable, 
accessible, understandable and reusable; (iii) navigational services to allow research-
ers to navigate the linked scientific information space; and (iv) workflow services to 
draw patterns of interest within the linked scientific information space. Concerning 
the tools for the automatic discovery of data relationships, we have already discussed 
in "Data analyzers" section the need for specialized data analysis software. We envi-
sion that in the near future these pre-conditions will be fully implemented enabling, 
thus, an exploratory approach to the knowledge creation.
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