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ABSTRACT

We study the diffusion of ocean waves by ice bodies much smaller than a wavelength, such as pancakes and small ice floes. We argue that
inhomogeneities in the ice cover at scales comparable to that of the wavelength significantly increase diffusion, producing a contribution to
wave attenuation comparable to what is observed in the field and usually explained by viscous effects. The resulting attenuation spectrum is
characterized by a peak at the scale of the inhomogeneities in the ice cover, which could explain the rollover of the attenuation profile at
small wavelengths observed in field experiments. The proposed attenuation mechanism leads to the same behaviors that would be produced
by a viscous wave model with effective viscosity linearly dependent on the ice thickness. This may explain recent findings that viscous wave
models require a thickness-dependent viscosity to fit experimental attenuation data. Experimental validation is carried out using wave buoy
attenuation data and synthetic aperture radar image analysis.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0061374

I. INTRODUCTION

Ocean surface waves play an important role in the dynamics of
sea ice in polar regions. The effect is particularly visible in the marginal
ice zone (MIZ), which is the highly dynamical transition region sepa-
rating the ice pack from the open ocean.1 In the summer season, ero-
sion of the pack and breakup of large flows into smaller ice bodies are
the dominant processes in the region. During winter, waves infiltrating
the MIZ contribute to ice formation through the coalescence of ice
bodies into progressively larger objects.2 Global warming has led to an
increase in both the activity and the extension of the MIZ. The Arctic
in particular has seen a dramatic summertime increase in the MIZ
extension and a concomitant reduction of the ice surface.3,4 To deter-
mine how deep ocean waves can propagate into the MIZ, one must
know the sea ice contribution to wave damping. Over the years, a great
effort has been put into studying the modifications in surface wave
propagation induced by sea ice (see Squire1,5,6 for an extended review).
In particular, remote sensing analysis of the modifications to wave

propagation by sea ice has been used as a tool to infer the ice thickness
without having to resort to in situ measurements.7–14

Wave attenuation depends on the characteristic size of the ice
bodies involved. In the case of larger floes on the scale of tens to hun-
dreds of meters, scattering and diffraction,15,16 as well as flexural defor-
mations of the floes,17,18 are expected to dominate (see Li et al.19 for a
recent application of thin plate theory to wave propagation in water
covered by a continuous ice sheet). On the other hand, in the case of
smaller ice bodies, viscous effects and collisions are expected to be
dominant.20,21 The picture is complicated by the strong inhomogene-
ity of the MIZ; although small ice is prevalent at the fringes of the
MIZ, ice bodies of widely different sizes and typology can be found
anywhere in the region.22

The focus of the present paper is the modification of ocean wave
propagation produced by ice bodies much smaller than a wavelength, in
particular pancake-ice. Pancake-ice is the assembly of pancake-shaped
ice bodies of diameters ranging from 30 cm to 3 m, which populate,
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during ice formation, the outer fringes of the MIZ.23,24 It usually comes
as a component of so-called grease-pancake ice (GPI), i.e., pancake-ice
embedded in a dense slurry of ice crystals, called grease ice.

Grease ice is a strongly viscous medium, which is usually treated
as a viscous continuum.25 Over the years, various extensions of the vis-
cous model have been proposed, such as the inclusion of viscoelasticity
in the ice response26,27 and of turbulent effects in the water under the
ice28 and the treatment of pancakes as an individual layer separate
from grease ice.29

Providing a microscopic explanation for the effective viscosity of
GPI, however, has proven problematic. This is reflected in the wide varia-
tion of the values of the parameters required to fit different experimental
data sets.30,31 The difficulty is compounded by recent observations14,24,32,33

that most viscous layer models require an effective viscosity dependent on
the ice thickness to fit available experimental data. The possibility that an
intensive quantity such as the ice viscosity depends on a macroscopic
quantity such as the ice layer thickness casts doubts on whether GPI could
be treated as a simple viscous medium. Besides, there are situations in
which pancakes (or other forms of multi-year small-scale or brash ice)
float in low-viscosity grease-ice-free water.4

Another difficulty is that current viscous models are unable to
explain the rollover effect, i.e., the decrease in wave attenuation at
short wavelengths which is often observed in field measurements.
Although this phenomenon has been discussed for over four decades,
it still lacks an exhaustive explanation. The rollover effect has been so
far ascribed to instrumental noise,34 to exogenous mechanisms not
properly taken into account, such as the energy input by the wind,33

and to the effect of nonlinearities.35 A possible explanation of the phe-
nomenon was proposed by Liu and Mollo-Christensen,36 as the result
of the development of a viscous boundary layer under a continuous ice
sheet treated as a thin elastic plate. Another explanation of the phe-
nomenon was proposed by Perrie and Hu,37 who performed numeri-
cal simulations with constant wind and regular arrays of medium size
circular ice floes (diameter 20 m) , suggesting that rollover is indeed
the result of wave scattering. To our knowledge, however, scattering
theory has never been applied at pancake scales yet.

All these remarks call for a reappraisal of alternative mechanisms
of wave attenuation, such as, e.g., collisions between ice bodies,38 non-
linear forces, and turbulence induced in the surrounding water by the
ice motion.39

Purpose of the present study is to evaluate the scattering contri-
bution to wave attenuation. We show that random inhomogeneities in
the ice cover generate a coherent scattering component that can con-
tribute significantly to wave damping. The phenomenon is akin to the
enhancement of light scattering in a turbid medium. The approach we
are going to follow is common to that for larger floes and is based on
partial wave expansion of the flow disturbances generated by the inho-
mogeneities of the ice cover.40 The nature of the scattering process in
the case of floating bodies much smaller than a wavelength, however,
is fundamentally different, as bodies within a wavelength respond
coherently to the wave, and subtle near-field effects simplify the treat-
ment of the scattering dynamics.

We assume potential flow for both the incident wave and the dis-
turbances, thus disregarding viscous effects from the possible presence of
grease ice at the water surface. Small amplitude waves and linear hydro-
dynamics are assumed throughout the analysis, and for simplicity, only
the case of deep water waves is considered. We treat the ice layer as an

inextensible continuum with vanishing resistance to bending and with a
rough bottom. In the case of a spatially uniform layer and no roughness,
the dynamics reduces to that of the mass-loading model.41,42

We compare our theoretical results with experimental data from
wave buoys collected during the Sikuliaq campaign in Autumn 2015.4

By exploiting the availability of attendant satellite synthetic aperture
radar (SAR) images available, it is possible to estimate the scale of the
ice cover spatial inhomogeneities, which appears to coincide with that
of the rollover peak.

The paper is organized as follows: In Sec. II, the general theory of
scattering of gravity waves by floating bodies is reviewed. In Secs. III
and IV, we apply the theory to determine the modification to the
wavefield generated by random spatial variations in a continuous
cover. In Sec. V, the consequences of the results on wave attenuation
are discussed. In Sec. VI, the specific example of a spatially inhomoge-
neous mass loading with a rough ice-water interface is considered. In
Sec. VII, current results are contextualized to the other wave propaga-
tion models in the literature. Section VIII contains a comparison with
experimental data. Concluding remarks are reported in Sec. IX.

II. PARTIAL WAVE EXPANSION

The study of the scattering of ocean waves by solid obstacles has
a long history, which makes extensive use of techniques drawn from
the study of similar problems in electromagnetism, acoustics, and
quantum mechanics. The approach has been detailed elsewhere (see,
e.g., Peter and Meylan43). We outline here the essentials.

The wave dynamics obeys the linearized Euler equation

q@tUþrP ¼ 0; r � U ¼ 0; (1)

where Uðx; tÞ is the fluid velocity, q ’ 1025 kg m�3 is the salt water
density, Pðx; tÞ is the deviation of the pressure in the water column
from its value at hydrostatic equilibrium, and we have put the unper-
turbed water surface at x3 ¼ 0 with e3 pointing upwards. Equation (1)
implies potential flow

U ¼ �rU; r2U ¼ 0: (2)

Continuity of the pressure at the water surface, PðxðtÞ; tÞjx3¼0 ¼ 0,
where xðtÞ is the instantaneous position of the point at the water–at-
mosphere interface, leads to the boundary condition44 on Eq. (2),

@2U
@t2
þ g

@U
@x3

� �
x3¼0
¼ 0: (3)

The wave energy contains both potential and kinetic energy con-
tributions. We can eliminate the potential energy component by aver-
aging over a suitable time window w and thus get the expression for
the time averaged wave energy density

EUðx?; tÞ ¼ q
2

ð0

�1
dx3 hjUðx; tÞj2iw; (4)

where x ¼ ðx?; x3Þ and h:iw indicates time average in w. By compar-
ing Eq. (4) with Eqs. (2) and (3), we find the conservation law

@tEUþr? � JU ¼ 0; JUðx?; tÞ ¼
ð0

�1
dx3 hPðx; tÞU?ðx; tÞiw: (5)

We assume elastic scattering, which implies linearity of possible
mechanical interactions of the floating bodies; linear hydrodynamics
then implies that the scattered waves oscillate with the same frequency
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of the incident wave. In the case of a monocromatic incident wave of
frequency x, the energy current JU will satisfy

JU ¼ iqx
ð0

�1
dx3 Ur?U� � U�r?U½ �: (6)

We are interested in the scattering by ice bodies of characteristic
size R much less than a wavelength. Taking inspiration from the treat-
ment of similar problems in the case of electromagnetic radiation,45

we separate in the potential a near-field component / from disturban-
ces from bodies at distance� k�1 from x, and a remnant W contain-
ing the incident and the diffused waves:

Uðx; tÞ ¼ Wðx; tÞ þ /ðx; tÞ: (7)

A summary of the relevant scales in the problem is provided in Table I.
We are interested in the scattering by random space inhomoge-

neity of the ice cover. Let us then indicate with overbar the operation
of ensemble average with respect to the inhomogeneities of the ice
cover, with tilde fluctuation and decompose the generic physical quan-
tity f accordingly:

f ¼ �f þ ~f : (8)

Hence, �W contains the incident wave, ~W contains the diffused waves;
ensemble averaging and coarse-graining have the same filtering effect
on the small scales, therefore �U ¼ �W and / ¼ ~/. Consider a portion
A of unperturbed water surface at x? ¼ 0 and indicate with ~WA the
contribution to wave diffusion from the bodies in that region. The
geometry of the problem is sketched in Fig. 1. Let us assume a mono-
chromatic incident wave propagating to positive x1: k ¼ ke1; from
Eqs. (2) and (3), we then get the classical deep-water surface gravity
wave solution in ice-free water

�Wðx; tÞ ¼ �W0ðtÞ exp ðkx3 þ ikx1Þ ¼ �W0 exp kx3 þ iðkx1 � xtÞ½ �;
x2 ¼ kg: (9)

We can expand the incident wave in partial waves

�Wðx; tÞ ¼ �WðtÞ J0ðkx?Þ þ 2
X1
n¼1

inJnðkx?Þ cos ðnuÞ
" #

ekx3 ; (10)

and similarly for WA ¼ �W þ ~WA,

WAðx; tÞ ¼ ~WA;evaðx; tÞ þ �W0ðtÞ
"

B0J0ðkx?Þ þ C0N0ðkx?Þ

þ2
X1
n¼1

inðBnJnðkx?Þ þ iCnNnðkx?ÞÞ cos ðnuÞ
#

ekx3 ;

(11)

where cos u ¼ x1=x?, Jn and Nn are Bessel functions of the first and
second kind, respectively, and ~WA;eva contains evanescent modes,
which can be expressed in terms of modified Bessel functions Kn,
exponentially decaying at large kx?.46 The evanescent modes can be
disregarded in the far-field region, and the remaining part of WA is a
sum of outward and inward propagating modes / e6ikx? . Requiring
~WA not to contain inward propagating modes (Sommerfeld condi-
tion), together with stationarity, J �W ¼ 0, allows us to fix the coeffi-
cients in Eq. (11).47 This gives us the expression for the perturbed field
in the far-field region kx? � 1

~WAðx; tÞ ¼ �W0ðtÞ
e2idA;0�1

2
Hð1Þ0 ðkx?Þ þ

X1
n¼1

inðe2idA;n � 1Þ
"

�Hð1Þn ðkx?Þ cos ðnuÞ
#

ekx3 ; kx? � 1; (12)

where Hð1Þn ¼ Jn þ iNn are Hankel function of the first kind,46 and the
coefficients dA;n are real constants called the scattering phases.

We confine our attention to situations in which scattering can be
considered a perturbation; the scattering phases therefore are small,
and we can linearize Eq. (12):

~WAðx; tÞ 	
X

n

~WA;nðx; tÞ ’ i �W0ðtÞ
"
dA;0Hð1Þ0 ðkx?Þ

þ 2
X1
n¼1

indA;nHð1Þn ðkx?Þ cos ðnuÞ
#

ekx3 ; kx? � 1:

(13)

Let us suppose that A contains all the bodies responsible for scattering,
or equivalently that the interference with waves scattered by bodies
outside A is negligible. In this case, the radiated energy is

I ~WA
¼
ð2p

0
du x? � J ~WA

ðxÞ; (14)

where J ~WA
is obtained from Eq. (6) by replacing U with ~WA.

Substituting Eq. (13) into Eq. (14) and exploiting the relation46

N 0nðzÞJnðzÞ � NnðzÞJ 0nðzÞ ¼ 2=ðpzÞ yields

TABLE I. Relevant scales of the problem.

Near field kL� 1 Pancake scale
L 
 R

Pancake geometry
important

Intermediate scale
L� R

Multipole expansion
approach

Wave region kL 
 1 Perturbations acquire a wave character—
assumed scale of ice inhomogeneities (k)

Far field kL� 1 Diffused waves

FIG. 1. Geometry of the problem.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 096601 (2021); doi: 10.1063/5.0061374 33, 096601-3

VC Author(s) 2021

 22 M
arch 2024 10:51:34

https://scitation.org/journal/phf


I ~WA
	
X

n

I ~WA;n
¼
ð2p

0
du x? � J ~WA

ðxÞ ’ 4qxj �W0j2

k

X1
n¼0

d2
A;n: (15)

By combining Eq. (15) with the energy flux density of the inci-
dent wave

J �W ¼ xqj �W0j2e1; (16)

we obtain the expression for the scattering cross section

rA ¼
I ~WA

J �W
’ 4k�1

X1
n¼0

d2
A;n: (17)

III. THE NEAR FIELD

Let us consider a region A at the water surface around x? ¼ 0, of
size LA sufficiently large to carry out a continuous limit, but small
compared to the wavelength: R� LA � k�1. The near-field distur-
bance by the bodies in A is a complicated superposition of propagating
and evanescent modes,40,48 which is more aptly analyzed by making
the decomposition /A ¼ /A;reg þ /A;sing , where /A;reg and /A;sing are
the regular (singular) components of / at x? ¼ 0; R; L! 0, and
both components are required to decay for x? ! 1.

The regular component can only contain Bessel functions Jn. We
therefore obtain from Eq. (13) the expression, valid for all kx?,

/A;reg 	
X

n

/A;reg;n

’ i �W0 d0J0ðkx?Þ þ 2
X1
n¼1

indnJnðkx?Þ cos ðnuÞ
" #

ekx3 : (18)

The singular component /A;sing is a superposition of Bessel
functions Nn and Kn, out of which, only the Nn component survives
in the far-field region kx? � 1, where it forms the imaginary part of
the Hankel functions in Eq. (13). Let us focus on an intermediate
region LA � x? � k�1 in the near field. We assume that the hydro-
dynamic interaction of the bodies decays sufficiently fast with their
separation. In a first approximation, the perturbed potential /A;sing
can therefore be evaluated at x? � LA using the ice-free boundary
condition in Eq. (3). In that region, /A;sing sees A as a point and is
expected to vary at scale x; since the timescale of wave disturbances
at scales x? � k�1 is much shorter than x�1, we can replace the
Robin boundary condition in Eq. (3) with the Neumann boundary
condition

@x3/A;singðx; tÞjx3
¼ 0; x? 6¼ 0: (19)

The perturbed potential /A;sing will thus behave in the intermediate
region like the electrostatic potential of a superposition of multipoles
at x ¼ 0. This allows us to do away with the evaluation of evanescent
and propagating modes in terms of Bessel functions. Linearity of the
dynamics allows us to write the perturbed potential in the form

/A;singðx; tÞ 	
X

n

/A;sing;nðx; tÞ

’ 1
2p

aA;0

x
þ aA;1 � x?

x3
þ aA;2 : x?x?

x5
þ � � �

� �
�W0ðx; tÞ;

(20)

where the aA;n’s are n-index symmetric zero-trace tensors playing a
role analogous to the polarizability of a small body in the field of an
electromagnetic wave, which enter Eq. (20) contracted with n terms
x0? and with a weigh factor x�1�2n.

We can write Eq. (20) as a surface integral at x03 ¼ 0:

/A;singðx; tÞ ¼ 1
2p

ð
A

d2x0? �Wðx0; tÞdðx0?Þ

� aA;0ðx0?Þ þ aA;1ðx0?Þ � r0? þ � � �
� �

jx � x0j�1

¼ 1
2p

ð
A

d2x0? jx � x0j�1

� aA;0ðx0?Þ � r0? � aA;1ðx0?Þ þ � � �
� �

�Wðx0; tÞdðx0?Þ;

where in the second line of the equation the horizontal gradient
r0? acts both on aA;1ðx0Þ and on the factors �Wðx0; tÞdðx0?Þ to the
right of the square brackets. The surface charge distribution
½aA;0ðx?Þ �r? � aA;1ðx?Þ þ � � �� �Wðx; tÞdðx?Þ induces the boundary
condition on the Laplace equation45r2/A;sing ¼ 0:

@x3 /A;singðx; tÞjx3¼0¼ aA;0ðx?Þ�r? �aA;1ðx?Þþ �� �
� �

�Wðx; tÞdðx?Þ:
(21)

Equation (21) tells us that the effect of the bodies in A is a local-
ized perturbation of the vertical component of the fluid velocity at the
surface. The situation is particularly clear in the case of an isolated
body. If we take A to coincide with the horizontal section of the body
at x3 ¼ 0, V3 ¼ �aA;0

�W=A will be precisely the vertical velocity of the
body relative to the water surface.

The next contribution is a dipole, which accounts for the hori-
zontal motion of the body with respect to the wave. We have

aA;1
�W0

2p
¼ � 1

2p

ð
S
dS x@n/A;singðxÞ ¼

1
2p

ð
S
dS xVnðxÞ; (22)

where nðxÞ is the normal at point x on the submerged part S of the
body surface and V is the velocity of the body relative to the wave field.
In the case of a fixed horizontal disk, such that V ¼ �U, we would have

aA;1 ’ ipkR2he1; (23)

where h and R are the draft and the radius of the disk.
Higher order multipoles take into account the effect of the non-

uniformity of the velocity field of the wave at the scale of the body and
involve additional factors kR. For small kR, they can therefore be
disregarded.

IV. THE FAR FIELD

Let us now take for A a region of size LA � k, where k is the cor-
relation length of the fluctuations in the ice cover. Since we are assum-
ing k comparable with the wavelength of the incident waves, the area
element A in Sec. III must be considered infinitesimal compared to the
one we are dealing with here. We introduce intensive quantities

vn ¼
dan

dA
ðx?Þ (24)

giving the susceptibility of the medium. We assume local isotropy of
the ice cover, so that v1 ¼ v1e1, with similar expressions holding for
higher-order multipoles.
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At scales x?� k�1, the time derivative in the boundary condition
Eq. (21) must be restored:

ðg@x3 � x2ÞWjx3¼0 ’ gv �Wjx3¼0 	 v0 �r? � ðv1
�WÞ

� �
x3¼0: (25)

Equations for the mean and the fluctuating components of W can be
obtained from Eq. (25) by following the strategy described in Howe.49

We find

r2 �W ¼ r2 ~W ¼ 0; (26)

ðg@x3 � x2Þ �Wjx3¼0 ¼ g �v �W þ ~v ~W
h i

x3¼0
; (27)

ðg@x3 � x2Þ ~Wjx3¼0 ¼ g ~v �W þ �v ~W þ ~v ~W � ~v ~W
h i

x3¼0
: (28)

For v� 1, Eqs. (27) and (28) approximate to

ðg@x3 � x2Þ �Wðx; tÞjx3¼0 ’ g�v �Wðx; tÞjx3¼0; (29)

ðg@x3 � x2Þ ~Wðx; tÞjx3¼0 ’ g~v �Wðx; tÞjx3¼0: (30)

From Eq. (29), we get the dispersion relation in the ice covered
region

kg ’ ð1þ �v=kÞx2; (31)

where 1þ �v=k ’ 1þ �v0=k� i�v1 plays the role of (average) refractive
index of the medium. For �v ¼ 0, the dispersion relation for gravity
waves in ice-free deep water, kg ¼ x2, is recovered.

A. Fluctuating component

The fluctuating component of the far-field ~W contains the dif-
fused waves. We can solve Eq. (30) by requiring in the near and far
field, equality of the values of the energy flux which would be gener-
ated by each element dA of the ice field in isolation.

Let us indicate with ddA;n and with ~adA;n ¼ ~vndA the scattering
phase and the polarizability fluctuation of the area element. The value
of the energy flux in the near-field region is obtained by combining
Eqs. (6), (18), and (20)

I/dA;n
¼ ið2� dn0Þx?qx

ð2p

0
du

� /dA;reg;n

ð0

�1
@?/�dA;sing;ndx3 � c:c:

( )
x?¼0

’ ð2nþ 1ÞinqxddA;n~a�dA;nj �W0j2

� x2þn
? Jnðkx?Þ

ð0

�1

dx3

ðx2
? þ x2

3Þ
nþ3=2

" #
x?¼0

¼ ð2nþ 1Þ
ffiffiffi
p
p

2nþ1Cðnþ 3=2ÞqxðikÞnddA;n~a�dA;nj �W0j2; (32)

where the dn0 in the first line of the equation is a Kronecker delta, and
use has been made of the expression for small values of the argument
of the Bessel function JnðzÞ ’ ðz=2Þn=Cðnþ 1Þ.46 The same flux eval-
uated in the far-field region reads, from Eq. (15),

I ~WdA;n
¼ 4qxj �W0j2

k
d2

dA;n: (33)

Requiring equality of the expressions in Eqs. (32) and (33) yields then

ddA;n ’
ð2nþ 1Þ

ffiffiffi
p
p

inknþ1~v�n
2nþ3Cðnþ 3=2Þ dA; (34)

where from reality of dn, ~v2n must be real and ~v2nþ1 purely imaginary.
For La � k, the interference of waves generated in different

regions A vanishes after ensemble averaging; the total diffused energy
is therefore the sum of the energy diffused by the individual regions.
At large distance from A, we can write from Eq. (13)

~WA;nðx; tÞ ’ inþ1ð2� d0nÞ �W0ðtÞekx3 cos ðnuÞ

�
ð

A
d2x0?

ddn

dA
ðx0?ÞHð1Þn ðkjx? � x0?jÞ

’ inþ1ð2� d0nÞ �W0ðtÞekx3 cos ðnuÞHð1Þn ðkx?Þ

�
ð

A
d2x0?

ddn

dA
ðx0?Þeik̂ �x0? ; (35)

where

k̂ ¼ k � kx?
x?

; (36)

and where the following asymptotic expression of the Hankel function
for large values of the argument has been used:

Hð1Þn ðyÞ ’
ffiffiffiffiffiffiffiffi

2
pjyj

s
exp i

�
y � ð2nþ 1Þp

4

�" #
: (37)

From Eq. (34), we have dd0=dA ¼ k~v0=4 and dd1=dA ¼ ik2~v�1=4,
which we substitute into Eq. (35) and then into Eq. (6). We thus get
the expressions for the energy density flux

x? � �JA ’
q kA x

8p
j �W0j2Xðk;/Þ; (38)

Xðk;uÞ ¼ X0ðk;uÞ þ 1þ cos ð2uÞ½ �k2X1ðk;uÞ; (39)

where

Xnðk;uÞ ¼ ð�1Þn
ð

d2x? ~vnðx?Þ~vnð0Þeik̂ �x? (40)

is the spectrum of ~vn evaluated at k̂ ¼ k̂ðk;uÞ, and where we have
exploited the condition LA � k to set A!1 in Eq. (40).

We finally substitute Eq. (38) into Eq. (15) and into Eq. (17) and
get the scattering cross-section of the ice in A:

rAðkÞ ’
kA
8p

ðp

�p
du Xðk;uÞ: (41)

V. CONSEQUENCES ON WAVE ATTENUATION

The energy transfer to the diffused waves produces spatial attenu-
ation of the incident wave with the rate

qðkÞ ¼ rAðkÞ
A
’ k

8p

ðp

�p
du Xðk;uÞ: (42)

Since we are describing wave diffusion as the result of fluctuations in
the refractive index of the ice cover, an important parameter is the
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correlation length k of the field ~v. We consider separately the two lim-
its kk� 1 and kk � 1.

A. Small wavenumbers

For small kk, we can carry out the k! 0 limit in Eq. (40); Eq.
(42) reduces then to

qðkÞ ’ kXðuÞ
4

; kk� 1; (43)

and if X1 ¼ 0, scattering is isotropic.
We can apply the results to a random distribution of pointlike

scattering centers of strength d0 ¼ ka0=4; d1 ¼ 0, and surface density
�n. We have the Poisson statistics result

vðx?Þvð0Þ ¼
16�nd2

0

k2
dðx?Þ; (44)

which, by substituting into Eqs. (41) and (42), gives us

qðkÞ ¼ 4�nd2
0

k
¼ �nrðkÞ; �nR2 � 1; kk� 1; (45)

where r ¼ 4d2
0=k is the cross-section of the individual scattering cen-

ter. The result coincides with what would be obtained in the case of
incoherent diffusion by scattering objects at separation larger than a
wavelength. The situation is similar to that of the scattering of the light
of the sun by air molecules, responsible for blue sky, an effect which
can identically be described as the result of Rayleigh scattering by indi-
vidual air molecules and that of refractive index fluctuations peaked at
molecular scales.

B. Large wavenumbers and possibility of rollover
effects

For large kk, scattering becomes progressively concentrated along
k. To illustrate the situation, we consider the case of Gaussian isotropic

fluctuations, ~vðx?Þ~vð0Þ ¼ ~v2ðuÞ exp ½�x2
?=ð2k2Þ�; ~v2ðuÞ 	 ~v2

0

�k2½1 þ cos ð2uÞ�~v2
1 , corresponding to the fluctuation spectrum,

Xðk;uÞ ¼ 2pk2~v2ðuÞ exp �ðkkÞ2ð1� cos uÞ
� �

: (46)

We can verify by direct substitution of Eq. (46) into Eq. (42), that, for
large kk, diffusion takes place at angles

juj 
 ðkkÞ�1: (47)

In realistic situations, however, the incident waves are not monochro-
matic; what one has instead is a distribution of waves peaked at e1, with
a finite opening angle uinc. The role of directional spreading of waves in
sea ice was recognized recently by Montiel et al.50 To obtain the attenua-
tion of the wave train, it is then necessary to consider the scattering of
waves at angles juj > uinc, since smaller angles would be associated
with a redistribution of the wave energy among modes within the wave
train. We thus replace the definition of attenuation in Eq. (42) with

qeff ðkÞ ’
k

8p

ð
juj>uinc

du Xðk;uÞ: (48)

We can substitute Eq. (46) into Eq. (48) and evaluate the resulting
integral for large k by steepest descent. We obtain

qeff ðkÞ ’
~v2ð0Þ
4kuinc

exp �ðkkuincÞ2

2

� �
; ðkkÞ�1 � uinc � 1; (49)

which signals that a rollover effect is indeed present at wavenumbers

krollðkÞ 
 ðkuincÞ�1: (50)

We note that the effect depends on our definition of qeff as a loss of
energy of waves at angles juj < uinc, without distinction of scattered
and incident components. Infinite resolution and the ability to sepa-
rate the incident and the diffused components in the wave field at
angles juj < uinc would allow us to eliminate rollover. Substitution of
Eq. (46) into Eq. (42) and evaluation of the resulting saddle point inte-
gral for kk� 1 would yield in this case

qeff ðkÞ 
 k~v2ð0Þ; uinc � ðkkÞ�1 � 1; (51)

with just a slow down of attenuation increase at large k, compared to
Eq. (43).

We point out that in realistic situations the energy spectrum of
the incident waves does not have a sharp cutoff in direction, and the
definition of the parameter uinc remains arbitrary; the only condition
that must be satisfied is uinc < p=2. This freedom in the definition of
uinc provides us with a possible test of the role of scattering in wave
attenuation, since, if wave scattering is the mechanism underlying roll-
over, attenuation of waves in the angular interval juj < uinc should
decrease in response to an increase in uinc. In the opposite limit
kk� 1, diffusion is isotropic and qeff � q irrespective of the choice of
uinc.

VI. EVALUATION OF THE SUSCEPTIBILITY FUNCTION

Determining the susceptibility functions vn requires knowledge
of the coupled wave-ice dynamics at the scale of the individual ice bod-
ies. A semi-quantitative description of the dynamics can be obtained
by modeling the ice layer as a continuum that resists compression
both horizontally and vertically but has a relatively low resistance to
bending. This is the hypothesis at the basis of the mass-loading
model,41,42,51 which implies that points at the bottom and the top of
the ice layer move with identical vertical velocity. We set indeed the
resistance to bending equal to zero, thus disregarding any contribution
to the dynamics from the bending rigidity of the ice bodies and the vis-
cous stresses in the layer. Such contributions should probably be taken
into account if the size of the ice bodies was comparable with the
wavelength.

In the present hypotheses, the vertical velocity at the bottom of
the ice layer differs by an amount

V3ðx?; tÞ ¼ �hðx?Þ@x3 U3ðx; tÞjx3¼0 ¼ �k2hðx?Þ �Wðx; tÞjx3¼0;

(52)

from its value �U 3ðx; tÞ ¼ �U 3ðx; tÞjx3¼0 þ k2 �Wðx; tÞjx3¼0hðx?Þ in the
absence of ice, where hðx?Þ is a vertical scale giving the local draft of
the ice layer. From comparison with Eqs. (21) and (25), we get
immediately

v0ðx?Þ ¼ k2hðx?Þ; (53)

which is the same susceptibility that would be produced by a distribu-
tion of non-interacting ice bodies of horizontal size R, surface number
density n 
 R�2, and polarizability a0 
 k2R2h. On the other hand,
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because of horizontal incompressibility, the horizontal velocity of
points in the ice layer is zero, and therefore

V1 ¼ �U1jx3¼0: (54)

The bottom of the ice layer is an irregular surface with characteristic
horizontal and vertical roughness scales fixed by R and h. Comparison
of Eqs. (54) and (24) tells us then that the susceptibility function has a
dipole component

v1 
 iCkhR2n; C ¼ pR2n: (55)

Since for close-packed ice C 
 1, the two contribution to susceptibility
in Eqs. (53) and (55) enter Eq. (25) at the same order in kh. We then
substitute Eqs. (53) and (55) into Eq. (31) and get the following renor-
malized version of the mass-loading model:

kg ¼ 1þ ð1þ r1Þk�h
� �

x2; (56)

where r1 is a dimensionless constant which contains information on
the local geometric structure of the ice layer and gives the strength of
the roughness contribution to dispersion.

More interestingly, we can study the effect of spatial fluctuations
in the layer structure on wave diffusion. For simplicity, we continue to
assume a Gaussian profile for the correlations of ~v. Substituting Eqs.
(53) and (55) into Eq. (46) yields then

Xðk;uÞ ¼ 2pk4k2~h
2f1þ 1þ cos ð2uÞ½ �r2g

� exp �ðkkÞ2ð1� cos uÞ
� �

; (57)

where the dimensionless constant r2 plays with respect to fluctuations
a role analogous to that of r1 in Eq. (56). The angular dependence of
the function X is illustrated in Fig. 2. Note the increasing alignment of
the energy current at u ¼ 0 for large values of kk.

From Eq. (49), we find near the attenuation peak:

qeff ðkÞ ’
ð1þ 2r2Þk5k2~h

2

4kuinc
exp �ðkkuincÞ2

2

� �
;

ðkkÞ�1 � uinc � 1;

(58)

while for small kk we have

qðkÞ ’ pð1þ r2Þk5k2~h
2

2
; kk� 1: (59)

We compare the result in Eq. (59) with the prediction of viscous mod-
els such as the one by Keller25

qðkÞ 
 k7=2h�
g1=2

; Keller; (60)

and the close-packing (CP) model29

qðkÞ 
 g1=2k5=2h3

�
; CP; (61)

where � is the effective viscosity of the ice layer. A reasonable assump-

tion in Eq. (59) is that ~h
2 
 h2. We then see that to reproduce the

resulting quadratic scaling in h in Eq. (59), a linear scaling in h for the
effective viscosity must be assumed. The relationship is in line with
both De Carolis et al.14 and Sutherland et al.,32 who obtained constitu-
tive laws for � ¼ �ðhÞ by dimensional analysis.

We note that the wave attenuation in Eqs. (58) and (59) depends
on the horizontal size of the ice bodies only indirectly through the
dependence of the roughness coefficient r2 on the ice concentration
C ¼ pR2n. The absence of R in the equation for qeff is a consequence
of treating the ice layer as an almost featureless continuum.

This prompts us to look at diffusion as a result of the interaction
of the incident wave with clumps of ice of size k. The correlation
length k plays indeed a role analogous to that of the floe diameter in
the case of large floes. A simple two-dimensional wave scattering
model developed in Wadhams,51 in the case of floes with diameters of
the order of tens of meters, proved indeed that for larger floes the roll-
over peak is critically dependent on the floe diameter.

The dependence on R of qeff resurfaces if one considers the limit of
uniformly distributed ice, in which case the only surviving fluctuations
are those produced by Poisson statistics at the scale of the individual ice
bodies. This corresponds to making the substitution k! R in Eq. (58).
The magnitude of qeff is further reduced if one disregards the mutual
interaction of the ice bodies, which is appropriate only for C � 1. The
flow perturbation can be shown in this case to be a quadrupole field,
corresponding to the polarizability of an individual body a2 
 k2R4h.
From Eqs. (17), (34), and (45), the resulting wave would be

FIG. 2. Polar plot of the normalized energy current Xðk;uÞ=Xðk; 0Þ for different values of k and r2: (a) kk ¼ 0:4, (b) kk ¼ 1, (c) kk ¼ 2; black line; r2 ¼ 0 light line (green
online).
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qðkÞ 
 �n
k
ðk3a2Þ2 
 Ck9R6h2; C � 1; (62)

which is going to be negligible in situations of oceanographic interest.

VII. COMPARISON WITH OTHER MODELS

We can try to put some numbers in Eqs. (57) and (48) and com-
pare the resulting predictions on qeff with those by other wave attenua-
tion models. We study the Keller’s25 and the CP model,29 and the
recent scattering-based model described in Meylan et al.52 In the last
case, a computer code is provided in the reference, which we have
directly utilized in our analysis.

The results are illustrated in Fig. 3, considering ocean waves with
wavelengths ranging from 15 to above 600 m, and several values of the
parameters describing the ice layer. In this respect, we note the differ-
ent meaning taken by the ice thickness h in the different approaches:
for the model in Meylan et al.,52 h is the actual thickness of the floes;
in Keller25 and in De Santi and Olla,29 it is the effective thickness of

the ice layer, while the parameter ~h
2

fixes at most a fluctuation scale
for h in Eqs. (57).

The general trends of variation for the parameters k and uinc are
illustrated in Fig. 3, panels (a) and (b). We note the clear rollover peaks
in attenuation that are shifted to lower wavenumbers as the two
parameters k and uinc are increased.

In the scattering-based approach of Meylan et al.,52 we have
considered floes of radius R ¼ 1 m and h ¼ 0:5 m thickness, uni-
formly distributed at the water surface (hence k¼ 0, with only dis-
crete Poisson fluctuations present). In the case of Eq. (48), we have

taken values k ¼ 25 m; uinc ¼ 10�; ~h
2 ¼ 5� 10�4 m2 for the corre-

lation length of the fluctuation in the ice layer, the opening angle of
the incident wave and the ice thickness variance, respectively, and we
have set r2 ¼ 1 in Eq. (57).

The attenuation rates predicted by the two scattering-based
approaches are well-aligned only for waves longer than 200 m, for
which the flexural rigidity of 1 m radius floes is expected to be

FIG. 3. Trends of variation for the wave attenuation qeff as a function of k and uinc [panels (a) and (b)] and comparison with other viscous and scattering-based models [panels
(c) and (d)]. Black solid lines correspond to ~h

2 ¼ 5� 10�4 m2, k¼ 25m, uinc ¼ 10�, and r2 ¼ 1 in all panels.
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negligible. This behavior for very long waves is consistent with compu-
tational fluid dynamics simulations that consider the heterogeneous
sea ice material composition and account for the wave–ice interaction
dynamics.53 Numerical results therein suggest that the mechanical sea
ice response becomes independent of the detailed distribution of pan-
cakes for wavenumbers smaller than 0.016 m�1.

For wavelengths in the range 30� 200 m, of interest for oceano-
graphic applications, the effect of the ice cover inhomogeneity in Eq.
(48) becomes significant. While scattering from uniformly distributed
pancakes, as described within the approach in Meylan et al.,52 produ-
ces attenuations almost proportional to k5 over the whole range of k,
taking into account long-range fluctuations in the ice cover, as
afforded by Eq. (48), reduces the exponent in the attenuation scaling
to almost 7/2. The scaling is comparable with the one predicted by the
Keller’s model25 [see Eq. (60)], in the case of an effective viscosity
equal to that of grease ice,54 � ¼ 0:03 ms�2 and thickness of the ice
layer h ¼ 0:1 m [red curve in Fig. 3, panel (c)].

The result is non-trivial, suggesting that scattering by pancake-ice
in the presence of long-range fluctuations in the ice-cover could
lead to a wave damping comparable to the one due to pure viscous
effects. We note the smallness of the thickness variance utilized,

~h
2 ¼ 5� 10�4 m2, which could rise at most to ~h

2 ¼ 1:5� 10�3 m2 if
the effect of roughness was neglected by setting r2 ¼ 0 in Eq. (48). The

smallness of ~h
2

is a further indication that the effect of fluctuations in
the ice cover a priori should not be overlooked. The fact that the wave
damping due to a fluctuation level of few centimeters is comparable
with the one predicted by Keller’s model could at least partially explain
the high values for the effective viscosity required by viscous models to
reproduce experimental data.30,31

The effect on qeff of varying ~h
2

is shown in Fig. 3, panel (d). A
larger thickness variance in Eq. (48) has the same effect on attenuation
as a larger effective thickness of the ice layer in Keller’s model. It is
indeed possible to make the curves for the two models almost overlap
[black dashed-dotted line and red continuous line in Fig. 3, panel (b)].
The same operation does not seem to be possible with the CP model.

VIII. COMPARISON WITH EXPERIMENTS: ARCTIC SEA
STATE PROGRAM DATA

We compare the predictions on wave attenuation derived in Secs.
V–VII, with experimental data from wave-buoy deployed in ice fields
in the Arctic.

The data considered in this section were collected in Autumn
2015 in the Beaufort Sea, as part of the Arctic Sea State program.4

Wave data were supplemented by information on the properties of the
ice cover (size, thickness, concentration, and composition of the ice
bodies), which were supplied by the Arctic Shipborne Sea Ice
Standardization Tool (ASSIST)55 and sampling of the ice surface.
Concurrently, the sea ice extension and its temporal evolution were
monitored using satellite images acquired by synthetic aperture radar
(SAR) systems.

SAR observations play a crucial role in the present analysis as
they provide estimates of the correlation length of the ice field. Indeed,
SAR images are generally two-dimensional maps of the Earth surface,
which supply a description of the different targets in the scene with
details imposed by the geometric resolution of the imaging sensor.
The signal backscattered by the surface carries primary information

on both the roughness of the surface at the scale of the impinging elec-
tromagnetic radiation and the dielectric properties of the imaged target
as well.56 As sea ice and water have well distinct roughness and dielec-
tric properties,57 SAR sensors can provide a synoptic view of the field
composition.22

Although for the MIZ a direct relation between the SAR signal
and ice properties has not been established yet, there is evidence of a
correlation between the ice thickness, surface roughness, and the radar
cross section (i.e., the SAR signal).58 Information on the correlation
structure of the fluctuations in the ice cover can therefore be obtained
through the analysis of the correlation function of the radar cross sec-
tion. A robust technique to estimate the correlation function from
SAR is based on evaluating the inverse fast Fourier transform (IFFT)
of the power spectral density (PSD) computed from the two-
dimensional radar cross section.59 In order to remove the contribution
of speckle noise at lag 0, a Butterworth filter is applied to the PSD
before performing the IFFT.14,60

We focus on observations on the 1 November because of the
availability of two SAR images acquired 2 h apart over the area where
the array of wave buoys was in operation. The first acquisition is per-
formed by the X-band (9.6 GHz) SAR system on-board satellite num-
ber 3 of the Cosmo-SkyMed (CSK) constellation at 15:46 UTC; the
second one by the C-band (9.6 GHz) SAR operated by the Sentinel-1A
(S1) belonging to the Copernicus mission at 17:20 UTC. The two SAR
acquisitions are shown together with the location of the wave buoys in
Fig. 4 and reveal a MIZ composed of grease, pancake, and small ice
floes.

For the blue-highlighted regions shown in Fig. 4, the SAR spectral
analysis is performed to determine the correlation functions along the

FIG. 4. Top panel: Cosmo-SkyMed image acquired at 15:46 UTC. Bottom panel:
Sentinel-1A SAR image acquired at 17:20 UTC. Superimposed are the wave buoy
locations at 15:30 UTC and 17:30 UTC, respectively. The cyano array indicates the
incoming wave peak direction. Blue rectangles highlight the area in which sea ice
properties are inferred. For both images, the spatial subset (�159.6� E, �159.25�
E) � (72.60� N, 72.81� N) is shown in the figure.
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directions of the waves coming from the open ocean (�224� N).61

As shown in Fig. 5, they are well fitted by Gaussian distributions of
width k ¼ 26:83 and k ¼ 19:52 m for the CSK and S1 acquisitions,
respectively. It is worth noting that although the incoming dominant
waves induce a quasi-periodic modulation of the microwave signal
about 110 m long, the inferred k is well separated from this
wavelength.

As shown in Fig. 4, buoy WB02 lies farthest inside the MIZ and
is therefore taken as downstream reference buoy. However, none of
the buoy pairs is aligned with the dominant wave direction (cyan
arrow). The dotted lines identify the wavefronts at the location of the
buoys; their distance to buoy WB02 defines the optical path along
which wave attenuation is going to be evaluated. The sea ice properties
in the transect between the wavefronts of the upstream buoys and
buoy WB02 (blue region in Fig. 4), determine the measured wave
attenuation.

Let us make the hypothesis that wave diffusion is the only attenu-
ation mechanism for the incident waves. We can then use the value of
k from analysis of the SAR images to carry out a best-fit of the buoy
data on wave attenuation with Eqs. (57) and (48), to retrieve the values

of the remaining parameters uinc and ~h
2

,

min
~h

2
;uinc

X
i

qmðkiÞ � qeff ðki; ~h
2
;uinc; kÞ

h i2

; (63)

where qm are the measured data, obtained as described in Cheng
et al.,30 and reanalyzed to clear the data from any unwanted instru-
mental noise energy.34 The procedure is detailed in the Appendix. We
continue to assume r2 ¼ 1 in Eq. (48). Best-fit samples of wave attenu-
ation for measures close to the SAR acquisitions are reported in Fig. 6.
Red circles represent the wave-buoy attenuation rates qm. Black lines
show attenuation rates computed with Eqs. (48) and (57). The top
panels show the attenuation rates measured at 15:30 UTC and are
thus related to the CSK acquisition, while the bottom panels show the
attenuation rates measured at 17:00 UTC and 17:30 UTC and are
related to the S1 acquisition.

In all cases, the fitting procedure can reproduce the structure
of the rollover peak. We find in particular good agreement
between the values of uinc estimated by the fitting procedure and

the ones from analysis of the angular spectrum from buoy data
(see Fig. 7).

The inferred values for the variance, ~h
2 ¼ 0:04–0:12 m2, instead,

are large compared to the expected values of the sea-ice thickness
h � 0:1 m at 16:54 UTC and h � 0:15 m at 18:00 UTC, reported in
the region of interest by the Arctic Shipborne Sea Ice Standardization
Tool (ASSIST).55 At the present stage, it is not clear whether the diffi-
culty could be solved by a redefinition of h and r2, or is a signal of
actual smallness of the diffusion contribution to wave attenuation.

As shown in Fig. 7, the inferred uinc well separates the dominant
wave from another wave packet coming further from the west. The
amplitude of the second wave packet increases with time, while
the energy and the opening angle of the dominant wave decrease
with time. It is worth noting that the directional spectra measured at
the same time by different upstream buoys show significant differ-
ences, despite the buoy locations being sufficiently tight (see Fig. 4).
The temporal evolution of the directional spectra of WB02 (red curves
in Fig. 4), in particular, is difficult to interpret, with the peak wave
energy at 17:00 UTC higher than the one of the other time stamps and
the one of the upstream buoys.

IX. CONCLUSION

We have studied the diffusion of gravity waves generated in a
pancake-ice covered inviscid water column, with special focus on the
role of random spatial variations in the thickness and the concentra-
tion of the ice layer. We have modeled pancake-ice as a horizontally
inextensible, but otherwise stress-free continuum. At the scale of the
individual ice body, the dynamics is realized most simply by assuming
that the bodies are in close contact without the possibility of rafting.

Two mechanisms in the generation of wave radiation can be iden-
tified: vertical motions of the bodies, which generate radial waves, and
horizontal motions of the bodies, which generate a dipole field with
lobes along the direction of propagation of the incident wave (both
motions defined relative to the unperturbed wave field). The contribu-
tion from higher order multipoles appears to be negligible for bodies
much smaller than a wavelength. The dipole radiation is itself negligible
if instead of a layer composed of many ice bodies, we have a continuous
ice slab with an immersed surface of vanishing roughness.
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We have evaluated the contribution to wave attenuation from
diffusion in terms of the fraction of the diffused energy that is radiated
at angles exceeding the opening angle uinc of the incident wave.

We have found that wave diffusion is stronger for waves with
wavelength comparable to the correlation length k of the fluctuations
in the ice layer. The phenomenon is associated with a contribution to
wave attenuation, which is itself maximum near k, thus providing a
mechanism for rollover similar to the one described in Wadhams,51

where the role of the parameter k was played by the radius of the indi-
vidual floes. For k close to the observed rollover peak, it is indeed pos-
sible, with reasonable values of the amplitude of the fluctuations in the
ice thickness and concentration, to generate an attenuation of the inci-
dent waves comparable to what is observed in field experiments. One
may expect that similar phenomena could play a role in wave energy
harvesting by large assemblies of wave energy converters.62 The contri-
bution to diffusion from the discreteness of the ice bodies, instead, is
negligible for bodies much smaller than a wavelength and is further
reduced if the mutual interaction of the bodies is not taken into
account.

We have compared the results of the theory with buoy data from
the Sikuliaq campaign in Autumn 2015 in the Arctic,4 and SAR images
available in that region in the same period.14 We have followed the

approach by Thomson et al.34 to eliminate spurious instrumental noise
contributions to the development of a rollover peak, and we have
found that rollover persists in all analyzed data. We have found that
the roughness map of the SAR images is characterized by spatial fluc-
tuations peaked in the rollover region, which furnishes indirect evi-
dence to possible inhomogeneity of the ice cover at that scale.

We have carried out a best-fit analysis of the attenuation data
with the inferred value of k, in the assumption that wave diffusion is
the only mechanism at play. The resulting fluctuation levels of h are
somewhat large, but not to the point of dismissing the possibility of an
important role of diffusion in the attenuation process. A more definite
statement would require going beyond the qualitative description of
the layer structure afforded in Sec. VI.

Attenuation by diffusion could also explain the puzzling observa-
tion that fitting experimental data by viscous models requires an effec-
tive viscosity dependent on the ice thickness. As illustrated in Sec. VII,
we see in fact that the small wavenumber scaling of the attenuation
obtained by a diffusion-based model can be reproduced by viscous
models such as the one by Keller and the CP model only by assuming
an effective viscosity � linearly proportional to the ice thickness.14

The analysis in this paper is based on rough modeling assump-
tions on the dynamics of the ice layer, which are not too different from

FIG. 6. Examples of wave buoys’ attenuation data fitted by minimizing Eq. (63) for measurements concomitant with SAR acquisitions.
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those at the basis of the mass-loading model.41,42,51 The average wave
dynamics obtained in the present theory coincides in fact with what
would be obtained using a mass-loading model. An obvious question
is whether the inextensibility hypothesis adopted in the present paper
would still hold if the ice bodies in the layer interacted hydrodynami-
cally rather than by contact forces. A numerical study of the matter is
under way, following the approach detailed by Kagemoto and Yue40

and adopted more recently by Meylan et al.52
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APPENDIX: DATA ANALYSIS PROCEDURE

The spectral noise energy EnðkÞ is assumed to follow the
power-law k�2 in the spectral tail above the peak with equivalent
noise height Hn ¼ 0:1 m. The attenuation rates, qm, can be esti-
mated from the measured attenuation, qb, as follows:

qmðkÞ ¼ qbðkÞ þ
1
D

1þ EnðkÞ=EDðkÞ
1þ EnðkÞ=EUðkÞ

� �
; (A1)

where EU and ED are the noise-free, omni-directional wave energy
spectra of the upstream and the downstream buoy, respectively, and
D is the distance traveled by the waves between the couple of buoys.
Note that the energy bias negligibly affected the attenuation rates
qm, meaning that data processing performed by Ref. 30 already
properly accounted for noise contamination.

FIG. 7. Wave energy spectra of the upstream buoys (black curves) and the downstream buoy (red curves) integrated over wavenumber k. Circles indicate the values of uinc
obtained by minimizing Eq. (63). The buoy pairs reported are the same as in Fig. 6.
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