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Abstract – The aim of this paper is to investigate complex dynamic networks which can model
high-voltage power grids with renewable, fluctuating energy sources. For this purpose we use the
Kuramoto model with inertia to model the network of power plants and consumers. In particular,
we analyse the synchronization transition of networks of N phase oscillators with inertia (rotators)
whose natural frequencies are bimodally distributed, corresponding to the distribution of generator
and consumer power. First, we start from globally coupled networks whose links are successively
diluted, resulting in a random Erdös-Renyi network. We focus on the changes in the hysteretic loop
while varying inertial mass and dilution. Second, we implement Gaussian white noise describing
the randomly fluctuating input power, and investigate its role in shaping the dynamics. Finally,
we briefly discuss power grid networks under the impact of both topological disorder and external
noise sources.

Copyright c© EPLA, 2018

Introduction. – One of the fundamental technological
infrastructure requirements is a reliable supply of electric
power, which affects all aspects of our life [1,2]. Nowadays
we are witnessing a time of global changes of power gen-
eration worldwide, which are mainly driven by concerns
about climate. In particular, the reduction of power gen-
eration by coal-fired power plants is one of the main con-
cepts to reduce the output of carbon dioxide, which is the
main reason for global warming. Subsequently, we expect
an increase of the inclusion of renewable energy sources
into the power grid, which will lead to the reduction of
greenhouse gases. An example of the transition towards
sustainable energy can be seen in Germany. According to
the so-called “Energiewende” one of the essential goals is
to increase the fraction of renewable energy sources in the
total power production to 80% in 2050. This implies that
the power system will undergo a shift from centralized
conventional to distributed power production. Thus, the
new challenge will be to control lots of small generation
units produced by power plants based on renewable en-
ergy sources instead of centrally controlling and distribut-
ing large amounts of power from few power plants to the
consumers [3]. It can lead to a strong spatial separation
between power sources and consumers, since the possible

locations for power plants directly depend on geographi-
cal factors. Hence the transmission lines should be able to
carry strong loads over long distances. Another important
change caused by this regime shift is the strongly fluctu-
ating power output, since it depends on uncontrollable ex-
ternal natural factors like weather conditions [4–8]. Thus,
one should name three major changes caused by the regime
shift in the power generation. These are decentralization,
spatial separation, and temporal fluctuations of the power
output. In the present work we aim to study the stability
of power grids which are affected by spatial inhomogene-
ity and fluctuations of the power output. In particular,
we will investigate complex dynamic networks, which can
model power grids based on renewable energy sources. We
will study not only the noise due to the temporal fluc-
tuations of power, but also the effect of randomness in
the network connectivity. We will discuss the similarities
and differences between the temporal noise and topologi-
cal disorder on shaping the dynamics of power grids.

The modification of the Kuramoto model by an ad-
ditional inertial term was firstly reported in refs. [9,10]
by Tanaka, Lichtenberg, and Oishi, who were inspired
by a phase oscillator model developed by Ermentrout to
mimic the synchronization mechanism observed in the

20001-p1



L. Tumash et al.

firefly Pteroptix malaccae [11]. Recently the model has
been used to investigate the self-synchronization in dis-
ordered arrays of underdamped Josephson junctions [12]
as well as to show the emergence of explosive synchro-
nization [13] in a network of oscillators whose natural
frequency is proportional to the node degree. Nowadays
the Kuramoto model with inertia is a standard mathe-
matical model used to study the dynamical behavior of
power plants and consumers [14–22]. Most of the previ-
ous studies on power grids were devoted to networks with
unimodal frequency distribution or δ-distributed bimodal
distributions [14,16–18], or, if bimodal distributions were
considered, the network was globally coupled [20,23]. In
the present work we will consider systems with bimodal
Gaussian distribution of natural frequencies, which model
energy suppliers and consumers in a more realistic way
with respect to the previously considered cases. From the
topological viewpoint we will study both globally coupled
and diluted systems. A diluted system represents a net-
work in which each node is connected only to some of the
other nodes instead of all. This introduces some random-
ness into connections thereby leading to topological disor-
der. This has already been studied by Olmi et al. [18] with
a unimodal frequency distribution. We will demonstrate
here, for the bimodal Gaussian distribution, how the re-
sults obtained for randomly diluted networks differ from
those obtained in globally coupled networks. This enables
also a comparison with the effect upon the synchronization
transition caused by external white noise.

This paper is organized as follows. First, we will define
the Kuramoto model with inertia. Furthermore, we will
discuss the different regimes occurring during adiabatic
increase and decrease of the coupling strength between
the nodes for a globally coupled network. Afterwards, we
will incorporate random dilution and investigate changes
in the synchronization transition. Then the same analy-
sis will be performed for stochastic systems with external
white noise sources. We will conclude by a comparison of
diluted and noisy networks.

Model. – Filatrella et al. provided the physical moti-
vation for using the Kuramoto paradigm to model power
grids [14]. They distinguished two kinds of oscillators: the
sources which deliver electrical power, and the consumers
which consume this power. This means that each element
of the power grid network either generates (P i

source > 0)
or consumes (P i

cons < 0) power. Due to this, the electri-
cal power distribution of all oscillators should be bimodal,
with a maximum at P i

source > 0 and one at P i
cons < 0.

In the dimensionless Kuramoto model this corresponds to
a bimodal frequency distribution Ωi. Hence, throughout
this work we will use bimodal distributions of frequen-
cies constructed by superposition of two Gaussians with
peaks at positive and negative frequencies, respectively.
The Kuramoto model with inertia reads

mθ̈i + θ̇i = Ωi +
K

Ni

N∑
j=1

Aij sin (θj − θi) , (1)

where θi and θ̇i = ωi are the instantaneous phase and
frequency deviation of the i-th oscillator, i = 1, . . . , N ,
relative to the collective grid frequency. The mass m > 0
indicates the value of inertia of generators and loads. K
is the coupling constant of the network, it describes the
strength of the connectivity between the nodes. A is the
connectivity matrix, whose entries Aij can be either one or
zero if the link between the oscillators i and j is present or
absent, respectively. It is a symmetric matrix Aij = Aji,
since our network represents an undirected graph. Ni is
the node degree of the i-th element, which denotes the
number of the links emanating from this node. In case
of globally coupled networks, Aij = 1 and Ni = N −
1 ≈ N , while for randomly diluted networks the degree
is set to be constant for each oscillator Ni = Nc. We
introduce a dilution parameter p = Nc

N , which denotes
the ratio of actual links per node to the number of all
possible links. Finally Ωi represents the natural frequency
of the oscillator i, and its value is chosen according to the
probability density

g(Ω) =
1

2
√

2π

[
e− (Ω−Ω0)2

2 + e− (Ω+Ω0)2

2

]
, (2)

where g(Ω) is the superposition of two Gaussians with unit
standard deviation and mean values ±Ω0. Thus, their
peaks are located at a distance 2Ω0. In the following we
will choose Ω0 = 2, i.e., the Gaussians have almost no
overlap.

In order to measure the level of synchronization between
the oscillators, we introduce the complex order parameter

r(t)eiφ(t) =
1
N

N∑
j=1

eiθj , (3)

where its modulus r(t) ∈ [0, 1] and argument φ(t) indicate
the degree of synchrony and mean phase angle, respec-
tively. In the following we will denote r(t) as global or-
der parameter. An asynchronous state is characterized by
r ≈ 0, while r = 1 corresponds to the fully synchronized
solution. Intermediate values of r correspond to states
with partial or cluster synchronization.

Methods. – In this paper we will perform simulations
by sweeping up and down the coupling strength K, follow-
ing two different protocols. Namely, with protocol (I) we
denote the procedure where the system is initialized ran-
domly for zero coupling (we set random initial conditions
both for phases {θi} and frequencies {ωi} for each node i).
Then the coupling is increased in steps of ΔK = 0.5,
until the maximum coupling KM is reached. Thereby,
the global order parameter of the system increases, and
the maximum coupling corresponds to the achievement of
synchronization. In the case of nonzero coupling we ini-
tialize the system by taking the last configuration from
each previous simulation for all the following steps ΔK.
At each step the simulations are running for a transient
time TR followed by a time TW , over which the average
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values of the global order parameter r̄, the velocities {ω̄i}
and the maximum natural frequency of the locked oscilla-
tors ΩM are calculated. Protocol (II) denotes the reverse
procedure. The initial state corresponds to a frequency-
synchronized system. The simulations are also performed
adiabatically, i.e., the system is always initialized accord-
ing to the last configuration. We decrease the coupling
parameter in steps of ΔK = 0.5, until the system becomes
uncoupled and completely asynchronous.

In fig. 1(a) the average global order parameter r̄ is de-
picted as a function of coupling K, obtained by following
protocols (I) and (II). In the inset the standard deviation
σr of r(t) is shown as a function of K. Following the se-
quence of simulations corresponding to protocol (I) we see
that the system first exhibits an asynchronous state (AS),
where the average order parameter r̄ ≈ 1/

√
N while its

time-dependent behavior is irregular and the oscillators
are characterized by different average phase velocities ω̄i

(see fig. 1(b)). The system remains asynchronous up to a
critical value KTW , when the average global order pa-
rameter r̄ exhibits a jump to higher values such that
r̄ > 0.1. At this critical coupling, chaotically whirling
oscillators suddenly get locked into one or more clusters
of nodes drifting together with the same average phase
velocity ω̄i (see fig. 1(c)). These clusters are defined by
their maximum locking frequency ΩM and the number of
locked oscillators NL. The coexistence of locked nodes
with chaotically whirling oscillators corresponds to the
traveling wave (TW) solution. Here r(t) exhibits irreg-
ular temporal oscillations (see inset). According to Olmi
et al. [18], the amplitude of r(t) depends approximately
linearly on the number of oscillators in drifting clusters.
As the coupling parameter K continues to increase, the
clusters are growing by adding more chaotically drifting
oscillators. Thereby the oscillation amplitude of the corre-
sponding global order parameter r(t) increases. The clus-
ters continuously grow until the whole network consists of
only two symmetric clusters of locked oscillators drifting
together with opposite average phase velocities equal to
ω̄i ≈ ±Ω0 (see fig. 1(d)). In this case the number of un-
locked oscillators N − NL is vanishingly small comparing
to the total network size N . The corresponding value of
coupling required to pass into such a state is denoted in
fig. 1(a) as KSW . This regime is known as a standing wave
(SW) solution. The oscillations of r(t) achieve their max-
imum amplitude and become almost periodic (see inset),
while their period is related to the average frequency of
the clustered oscillators |Ω0| [20]. In this case the average
global order parameter is typically equal to r̄ ≈ 0.5. The
network behaves as two distinct subnetworks each corre-
sponding to a unimodal Gaussian distribution of frequen-
cies with opposite peaks: one is located at −Ω0 (loads)
while the other one is centered at +Ω0 (generators). The
coupling parameter K is further increased in steps ΔK
until the critical value KPS is reached. At this value two
drifting symmetric clusters become unstable and merge
into a unique stationary cluster with ω̄i ≈ 0 (see fig. 1(e)).

Fig. 1: (Color online) (a) Time-averaged global order parame-
ter r̄ as a function of the coupling constant K for two series of
simulations, obtained by following the protocol (I) (upsweep,
red filled circles) and (II) (downsweep, blue empty squares)
for global coupling. The vertical dotted lines denote the crit-
ical values of coupling K for traveling waves (KTW , blue),
standing waves (KSW , purple), partial synchronization (KPS,
green) and the value at which desynchronization occurs (KDS,
yellow). Inset: standard deviation of the global order parame-
ter σr vs. K. Average phase velocity ω̄i as a function of node
i for (b) K = 2, r̄ = 0.046 (asynchronous state); (c) K = 5,
r̄ = 0.167 (traveling wave); (d) K = 34, r̄ = 0.556 (standing
wave); (e) K = 60, r̄ = 0.941 (partial synchronization). The
nodes are labeled such that the average phase velocities ω̄i are
sorted from low to high values. The insets in panels (b)–(e)
illustrate r(t) within a time interval t ∈ (0, 20). Parameters:
m = 8, p = 1.0, N = 500, TR = 5000, TW = 200.

This transition to partial synchronization (PS) can be eas-
ily identified within the synchronization transition of any
network (independently of the topology and the disorder)
since at the critical coupling KPS the average global order
parameter r̄ exhibits a rapid discontinuous jump, thereby
almost doubling its value (r̄ > 0.9). The system smoothly
approaches the fully synchronized regime by further in-
crease of coupling K. The corresponding global order pa-
rameter r(t) becomes stationary.

If we perform protocol (II) now, the system loses syn-
chrony, i.e., desynchronizes, for a coupling value KDS �=
KPS . It is remarkable that KDS < KPS , which is a
clear indication of the hysteretic nature of the synchro-
nization transition. Let us introduce Wh, which will be
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used to indicate the width of the hysteretic region, i.e.,
Wh = KPS−KDS . In the case depicted on fig. 1(a) we ob-
tain Wh = 25.5. Relating to the bifurcation analysis of the
Kuramoto mean field performed by Tanaka et al. [9,10],
this pattern is the numerical manifestation of bistability.

By using their notation we define 4
π

√
Kr̄
m = ΩP , Kr̄ = ΩD.

There are two fixed points for small K (ΩM < ΩP + Ω0):
a stable node and a saddle. At larger coupling values
KTW < K < KPS the maximum ΩM becomes also larger
(ΩM > ΩP + Ω0) and a limit cycle emerges via a homo-
clinic bifurcation. This corresponds to the coexistence of
locked and oscillatory solutions (stable limit cycle coex-
isting with the stable node). By further increasing K the
system reaches the pure oscillatory solution for ΩM > ΩD

due to a saddle-node bifurcation, in which only the limit
cycle persists. However, if we perform simulations by fol-
lowing protocol (II), the system remains stationary until
the stable fixed point solution completely disappears. This
happens if we decrease K and achieve ΩM > ΩD + Ω0.
Thereby, the system reveals oscillatory behavior due to
the limit cycle. Thus we see that the hysteretic loop Wh

depends on the inertial mass m while running protocol (I).
In contrast to that the inertial mass does not seem to play
any role for protocol (II). The observed behavior can be
explained by the fact that for K < KPS (K < KDS)
for protocol (I) (protocol (II)), the network behaves as
two independent sub-networks each characterized by a
unimodal frequency distribution, centered at ±Ω0, re-
spectively, while, for sufficiently large coupling strength,
once the system exhibits only one large cluster with
zero velocity, the network behaves like a single entity,
as for the case with a unimodal distribution centered
at zero [9,10].

Deterministic dynamics in diluted networks. –
In this section we consider synchronization transitions of
spatially disordered (diluted) networks with deterministic
dynamics for different values of mass m and dilution p.
First of all, we investigate how the width of the hysteretic
loop Wh changes if we fix the dilution parameter p = 0.25
and vary the mass (m = 1, m = 6 and m = 8), see
fig. 2(a). For all the masses we observe a clear hysteretic
behaviour obtained by simulations following protocols (I)
and (II). As expected, the width of the hysteretic loop
Wh depends on the inertial mass m. As discussed above
for globally coupled networks, smaller masses increase the

lower boundary of the interval 4
π

√
Kr̄
m , which leads to con-

traction of this interval. Also here, in diluted networks,
we observe a tiny hysteretic loop Wh for m = 1, while a
large mass m = 8 provides strong hysteresis with large Wh.
This is clear since the system is governed by the second
order differential equation mθ̈ = f(θ, θ̇). The acceleration

term θ̈ =
f(θ, θ̇)

m is inversely proportional to the inertia.
Thus, increasing mass slows down the oscillations and we
obtain larger values of critical coupling required to pass to
partial synchronization. The summary of the results for

Fig. 2: (Color online) (a) Time-averaged global order parame-
ter r̄ as a function of coupling constant K for two series of sim-
ulations, performed by following protocols (I) and (II), denoted
by filled circles (upsweep) and empty squares (downsweep), re-
spectively, for a network with fixed dilution parameter p = 0.25
and mass m = 1 (red); m = 6 (green); m = 8 (blue). Colored
arrows indicate the width Wh of the corresponding hysteretic
region. Inset: Wh as a function of m for p = 1.0 (purple),
p = 0.50 (yellow), p = 0.25 (red), p = 0.01 (blue). Other
parameters as in fig. 1.

different masses in the range 1 ≤ m ≤ 30 is given in the
inset of fig. 2(a), indicating that this tendency holds even
for highly diluted systems with p = 0.01.

Furthermore, we investigate the changes in the synchro-
nization transitions caused by topological disorder within
the network. We fix m = 6 and consider three different
topological situations: global coupling (p = 1.0), p = 0.25
and p = 0.01 (fig. 3). Also here we observe hysteretic
behavior for all considered parameters. However, we can
see that the hysteretic loop decreases as the network topol-
ogy becomes more sparse. When we increase the dilution,
i.e., decrease p, sustaining two symmetric clusters drifting
together with opposite average phase velocites ω̄i = ±2
(standing waves) becomes quite hard. Thus, the hysteretic
region decreases. We can also see that high disorder affects
the width Wh by slightly increasing the critical coupling
KDS at which the system collapses towards asynchrony
by following protocol (II). Olmi et al. have already shown
for a unimodal frequency distribution [18] that the syn-
chronization transition remains hysteretic even for highly
disordered networks up to a very high level of dilution,
which corresponds to few links per node only. In the inset
of fig. 3 we see that the hysteretic region increases as we
increase the average connectivity of the network, for all
investigated values of inertia.

The main features of the synchronization transition pro-
file are preserved also if we perform the upsweep analysis
with respect to the universal order parameter r̄uni intro-
duced by Schröder et al. [24] as a generalization of eq. (3),
including the influence of the network topology. In partic-
ular, r̄uni and r̄ are both depicted in fig. 3(b) as functions
of K. Comparing these two curves, r̄uni generally shows
lower values than r̄ at the same K (especially for not too
low dilution parameter). Also r̄uni is non-monotonic with
increasing K, and shows discontinuous jumps and plateaus
corresponding to intermediate states.
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Fig. 3: (Color online) (a) Time-averaged global order parame-
ter r̄ as a function of coupling strength K for a network with
fixed mass m = 6 and dilution p = 0.01 (red); p = 0.25 (green);
p = 1.0 (blue). Colored arrows indicate the width Wh of the
corresponding hysteretic region. Inset: Wh as a function of
p for three different masses m = 2 (blue), m = 6 (red), and
m = 20 (yellow). Note that the abscissa is in a logarithmic
scale. (b) Time-averaged global order parameter r̄ (asterisks)
and universal global order parameter r̄uni (empty circles) vs.
K (upsweep) for p = 0.01 (blue), p = 0.1 (orange) and p = 0.2
(yellow). Other parameters as in fig. 1.

To sum up the results for deterministic dynamics, fig. 4
depicts the critical coupling strength required to pass from
a particular state to another as a function of mass m (left
column) and dilution p (right column). While the critical
coupling values at which traveling waves (KTW ) or stand-
ing waves (KSW ) emerge essentially do not depend on the
dilution level, the critical coupling at which the system
reaches partial synchronization KPS depends on the av-
erage connectivity of the network, and a smaller coupling
strength is required for very low connectivity. Moreover,
this dependence is enhanced for larger values of inertia.
On the other hand, if we keep the dilution fixed, the criti-
cal coupling increases with increasing mass; this tendency
is particular evident for KPS and it is enhanced for in-
creasing values of connectivity.

Stochastic dynamics with fluctuating power. – In
this section we investigate the influence of power fluctua-
tions of generators, in particular due to renewable energy,
and consumers. In a Langevin approach we add external
noise sources:

mθ̈i + θ̇i = Ωi +
K

Ni

N∑
j=1

Aij sin (θj − θi) +
√

2Dξi(t), (4)

where ξi(t) is independent Gaussian white noise with
〈ξi〉 = 0 and 〈ξi(t)ξj(s)〉 = δijδ(t − s), and D is the noise
intensity.

Fig. 4: (Color online) Critical coupling for different regimes as
a function of mass (left column) and dilution (right column).
The curves in the left column are presented for four different
network topologies: p = 1.0 (purple), p = 0.50 (yellow), p =
0.25 (red), p = 0.01 (blue), and in the right column for three
different masses: m = 2 (blue), m = 6 (red), m = 20 (yellow).
The critical values of coupling are depicted for the following
regimes: (a), (b): partial frequency synchronization (KPS);
(c), (d): standing wave (KSW ); (e), (f): traveling wave (KTW ).
Other parameters as in fig. 1.

Fig. 5: (Color online) Time-averaged global order parameter r̄
vs. coupling constant K for a globally coupled network with
stochastic dynamics, following protocol (I) (red filled circles)
and (II) (blue empty squares) for m = 8 and noise intensities
(a)

√
2D = 0; (b)

√
2D = 9; (c)

√
2D = 15; (d)

√
2D = 30.

The vertical green dashed lines indicate the boundaries of the
hysteretic region. Other parameters as in fig. 1.

The synchronization transition scenarios for stochastic
dynamics with different noise intensities

√
2D and fixed

mass m are depicted as a function of coupling strength K
in fig. 5. In order to clearly separate the effects of topo-
logical disorder and temporal noise we set p = 1 (global
coupling). We can observe that the hysteresis (bounded
between the vertical dashed green lines) notably decreases
with increasing noise intensity

√
2D. It is also remark-

able that large noise prevents intermediate states (trav-
eling and standing wave). In particular, in panel (d)
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Fig. 6: (Color online) Map of regimes in the (
√

2D, K)-plane
for (a) m = 1; (b) m = 30 for a globally coupled network with
stochastic dynamics: asynchronous state (dark blue), traveling
wave (dark green), noise-induced chimera (light green), stand-
ing wave (cyan), frequency locked (red), partial frequency syn-
chronization (orange), full synchronization (yellow). Average
phase velocity ω̄i as a function of node i of (c) Chimera state
(r̄ = 0.393: r̄− = 0.818 and r̄+ = 0.0638; m = 8;

√
2D = 9,

K = 11); (d) Frequency-locked state (r̄ = 0.618: r̄− = 0.620
and r̄+ = 0.624; m = 1;

√
2D = 60, K = 48). Other parame-

ters as in fig. 1.

we observe a synchronization transition from the asyn-
chronous state directly to partial synchronization, with-
out passing through intermediate cluster states. Thus,
we can conclude that large stochastic fluctuations perturb
the whole network, preventing it for small coupling from
leaving the asynchronous state. However, if the coupling
becomes sufficiently strong, the system jumps into par-
tial synchronization (almost full synchronization). This
can also explain why the system requires a smaller criti-
cal coupling strength to pass into partial synchronization
KPS compared to the cases in which intermediate cluster
states appear. This is an intriguing example of the con-
structive role of noise. Note also that intermediate values
of noise intensity have a comparable effect upon the dy-
namics as intermediate values of dilution.

Furthermore, we present maps of regimes in the
(
√

2D, K)-plane for two different masses m = 1 and
m = 30 (fig. 6(a) and (b); upsweep). This provides
general insight into the interplay of noise intensity

√
2D,

coupling K, and mass m in shaping the dynamics of the
system. We observe that the dark blue area (asynchronous

regime) becomes larger as the noise intensity
√

2D in-
creases. A network with small m is usually characterized
by a small hysteretic region, in which we mostly even do
not observe traveling waves. Moreover, we observe a tiny
light green island corresponding to chimera states [25–32]
for 7.5 <

√
2D < 12 (fig. 6(c)). This state is defined by

the spatial coexistence of a frequency synchronized part
(characterized by a partial order parameter r̄−) and a com-
pletely incoherent part (characterized by a partial order
parameter r̄+). In our case the two parts correspond to
loads (negative Ω class) and generators (positive Ω class),
respectively. There is also a noise-induced frequency-locked
regime for large noise intensities (fig. 6(d)). This regime is
characterized by high values of r̄ although the correspond-
ing ω̄i profile is not constant but slightly tilted. Finally, an
extended parameter region is characterized by the partial
and full synchronization states that are easily accessible
for low values of inertia. On the other hand, for m = 30
the influence of white noise is weaker; it is not capable to
destroy the intermediate cluster states. Therefore the map
of regimes exhibits a very large region where traveling and
standing waves are observable. Noise-induced chimera and
frequency-locked states are observable also in this limit of
high value of inertia. Synchronization is more difficult to
reach due to the large m value.

Finally, we have also examined a network under the si-
multaneous impact of both topological disorder and ex-
ternal white noise. If an intermediate level of noise is
chosen, we find that, irrespectively of the used dilution p,
the synchronization transition profile remains hysteretic.
However, the synchronization becomes more difficult to
achieve as we increase noise.

Conclusions. – We have investigated how topological
disorder and temporal power fluctuations affect the sce-
narios of synchronization transitions in power grids. Di-
lution of the links (topological disorder), noise (temporal
fluctuations), and small values of inertia are typical for
power grids with renewable energy sources as opposed to
conventional generators. We have verified the hysteretic
behaviour of the synchronization transition for different
inertial masses and dilution of the network connectivity.
The system reveals larger hysteretic loops as we either in-
crease inertial mass or reduce topological disorder. The
cluster states occurring during the transition from com-
plete incoherence to complete coherence with increasing
coupling strength were classified and illustrated: traveling
waves, standing waves and partial synchronization. Fi-
nally, we have presented critical values of the coupling
strength required to pass into those various states in de-
pendence of dilution and mass. The most evident ten-
dency was observed for partial synchronization, which
requires stronger coupling for larger values of mass and
weaker dilution. Since synchronized states are mandatory
for stable operation of power grids, our work suggests that
special attention must be paid in tuning the capacity of
an existing grid or designing new power grid networks.
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Moreover, we have considered the Kuramoto model with
white noise modelling stochastic power fluctuations typical
for renewable energies [22,33], and computed the synchro-
nization transition scenarios. Similar to topological disor-
der (dilution), noise leads to a decrease of the hysteretic
region within the synchronization scenario. In contrast to
dilution, larger noise intensities are able to induce incoher-
ence in the velocities and their average values within one
cluster, giving rise to a frequency-locked state. For inter-
mediate noise intensities, noise can induce chimera states.
In particular we have provided maps of regimes of two sys-
tems with different values of inertia under the impact of
noise. We have found that noise suppresses intermediate
cluster states, and, for large noise intensities, the synchro-
nization scenario proceeds directly from the asynchronous
state to the almost fully synchronized state. Finally, we
have found that noise may have a constructive role in de-
creasing the critical coupling strength necessary to reach
partial or full synchronization.

In the future it would be challenging to extend this anal-
ysis to more realistic types of noise, e.g., intermittent or
non-Gaussian, and more realistic natural frequency distri-
butions. For long distances between power generators and
consumers delay effects should be taken into account.
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