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Abstract: Cardiac amyloidosis is an uncommon restrictive cardiomyopathy featuring an unregulated
amyloid protein deposition that impairs organic function. Early cardiac amyloidosis diagnosis
is generally delayed by indistinguishable clinical findings of more frequent hypertrophic diseases.
Furthermore, amyloidosis is divided into various groups, according to a generally accepted taxonomy,
based on the proteins that make up the amyloid deposits; a careful differentiation between the
various forms of amyloidosis is necessary to undertake an adequate therapeutic treatment. Thus,
cardiac amyloidosis is thought to be underdiagnosed, which delays necessary therapeutic procedures,
diminishing quality of life and impairing clinical prognosis. The diagnostic work-up for cardiac
amyloidosis begins with the identification of clinical features, electrocardiographic and imaging
findings suggestive or compatible with cardiac amyloidosis, and often requires the histological
demonstration of amyloid deposition. One approach to overcome the difficulty of an early diagnosis
is the use of automated diagnostic algorithms. Machine learning enables the automatic extraction of
salient information from “raw data” without the need for pre-processing methods based on the a priori
knowledge of the human operator. This review attempts to assess the various diagnostic approaches
and artificial intelligence computational techniques in the detection of cardiac amyloidosis.

Keywords: cardiac amyloidosis; artificial intelligence; machine learning; deep learning; ATTRwt
amyloidosis; AL amyloidosis; hypertrophic cardiomyopathy; multiple myeloma; diagnosis

1. Introduction
General Considerations on Amyloidosis

A rare class of diseases known as amyloidoses is brought on by the extracellular
deposition of amyloid, a fibrillar material created by the organism from several precursor
proteins. These proteins harm essential organs by self-assembling into highly structured
aberrant conformations and depositing as minute insoluble fibers. A variety of proteins
can be used to create amyloid. Some varieties are passed down from one generation to
the next. Others are brought on by external factors, such as chronic kidney disease or
inflammatory disease, or they develop as a result of other disorders. Among the collection
of diverse conditions, which includes Creutzfeldt–Jakob, Alzheimer’s, Huntington’s, and
prion diseases, there are more than 20 amyloidosis diseases [1]. The affected organs
determine the type and severity of amyloidosis symptoms, as some amyloidoses are
localized, whereas others are systemic. As a result, some people only experience modest
symptoms, while others experience serious diseases that could be deadly [2]. The clinical
overlap with other illnesses is the greatest obstacle to distinguish the various amyloidoses.
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Systemic amyloidosis is divided into various groups, according to a generally ac-
cepted taxonomy, based on the proteins that make up the amyloid deposits [3]. Primary
amyloidosis (AL), often referred to as amyloidosis from light chains, is characterized by
changes in plasma cells that produce a significant amount of abnormal antibody proteins.
The most typical locations for primary amyloid deposits include the heart, liver, spleen,
tongue, kidneys, gut, arteries, skin, and nerves.

Secondary amyloidosis (AA) is due to infections, persistent inflammation, certain
types of tumors. In this case, the kidney is the organ that is most severely impacted, while
other organs may also sustain damage.

A group of uncommon genetic disorders known as hereditary amyloidosis are brought
on by abnormalities in specific blood proteins. These modified proteins are what lead to
amyloid fibrils, which have an impact on the heart, kidneys, and nervous system.

A liver-produced protein called altered transthyretin (ATTRm) is the most frequently
identified cause of amyloidosis. When ATTR-CM patients experience symptomatic heart
failure (HF), their functional status and quality of life gradually deteriorate, and their
morbidity and mortality are substantial, with high rates of hospitalization and death [4–7].

Fibrils that build up in the various organs generate ATTR-CM, a fatal disease that
progresses over time [8]. In fact, the deposition of amyloid in patients with wild-type
ATTR-CM is systemic and not restricted to the heart. As a result of multiorgan involvement,
clinical symptoms include carpal tunnel syndrome, lumbar stenosis, renal illness, and
neuropathy of variable severity [9,10]. However, to identify patients at high risk for ATTR-
CM, no validated clinical decision support (CDS) or reporting methods that take into
account the various comorbidities are currently available for use in healthcare system
databases or at the point of care.

Wild-type ATTR-CM is frequently misdiagnosed or detected late in the illness course
despite increased awareness because patients’ HF is mistakenly assigned to more widespread
causes, such as hypertension or renal disease [11,12].

AL amyloidosis is a separate type of amyloidosis, as previously mentioned. It is a
rare, severe, progressive, crippling, systemic disease that is somewhat more prevalent in
men and has a median age at diagnosis of roughly 65 years [13–16]. However, other less
frequent forms of cardiac amyloidosis have been identified (Table 1).

Table 1. Some forms of cardiac amyloidosis.

Amyloid Type Protein Distribution Etiology Diseases Associations

AL Immunoglobulin light chain Systemic and localized Acquired Plasma cell dyscrasia
AH Immunoglobulin heavy chain Systemic Acquired Plasma cell dyscrasia

ATTR Transthyretin Systemic Acquired and hereditary
ATTRwt Wild-type transthyretin Systemic Acquired Aging
ATTRv TTR gene variant Systemic Hereditary

AA Serum amyloid A Systemic Acquired Chronic inflammation
Aß2M ß2-microglobulin Systemic Acquired and hereditary Chronic hemodialysis
AANF ANF Localized Acquired Atrial fibrillation

More than 61% of fatalities are attributable to cardiac amyloid infiltration, which is also
the main factor in determining survival in individuals with AL amyloidosis. Arrhythmias
or progressive heart failure are cardiovascular events that can result in mortality; however,
the exact reason is frequently unknown [17]. Atrial or ventricular arrhythmia, heart failure,
embolism, stroke, and conduction delays, including severe atrioventricular block, are
common cardiovascular problems.

The cardiac stage of the illness at diagnosis affects median survival [18]. In modern
cohorts, the median survival is close to five years [19]. Patients with less severe cardiac
involvement have a median lifespan of roughly two years compared to only four months
for those with highly advanced cardiac illness [20]. The overall survival of patients has
increased because of the introduction of new therapeutic drugs and regimens as well as
early diagnosis [21–24]. Clonal plasma cell growth is the underlying cause of AL amyloi-
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dosis, which results in amyloidogenic immunoglobulin (Ig) light chains that aggregate to
form insoluble fibrils that deposit in tissues and lead to organ failure [25–28]. More than
75% of patients with AL amyloidosis experience symptoms in the heart, making it the most
frequently affected organ.

Because of its insidious onset, the rate of misdiagnosis is high, the missed diagnosis rate
is still very high, and it usually progresses to a late stage by the time it is diagnosed. Instead,
early diagnosis is important for a number of reasons: overall survival is poor once cardiac
involvement occurs; chemotherapy followed by stem cell transplantation has significantly
improved prognosis for AL amyloidosis; antibody-mediated fibril phagocytosis as well
as TTR gene silencers and protein stabilizers are emerging; and recent successful trials on
all-cause mortality and hospitalization are evidence of these developments. In order to
improve patient outcomes with this fatal condition, awareness must grow [29].

2. Machine Learning and Deep Learning

It is obvious from what has been discussed so far that the differential diagnosis of the
various kinds of amyloidosis is difficult. This is why the potential application of artificial
intelligence (AI) methods seems intriguing. In order to generate predictions or choices
without being explicitly taught to do so, machine learning (ML) algorithms construct a
mathematical model from sample data, which is also referred to as “training data”. The
most accurate human procedures are comparable in speed and precision to automated ML
analysis [30–32].

A subclass of AI, known as deep learning (DL), uses “raw data” to automatically
discover important features utilizing a hierarchy of representation levels that are not
explicitly created by humans, unlike in ML. Through the use of a number of levels of
representation, DL enables the automatic extraction of salient information from “raw data”
without the strict need for pre-processing methods based on the a priori knowledge of the
human operator. The integration of DL-based predictive analytics into clinical imaging
in the medical field follows a logical evolution, with advances in cardiovascular imaging
now producing high-fidelity datasets with more data than those obtained from older
scanner generations [33,34]. Clinical imaging integration with DL-based algorithms has the
potential to automate repetitive operations, enhance disease diagnosis and prognosis, and
reveal novel biomarkers linked to certain disease processes [35–37].

The overall structure of AI-based methods employed in the field of amyloidosis, with
information about the most common methods retrieved, is displayed in Figure 1.
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Figure 1. Main AI-based approaches employed in the field of amyloidosis.
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3. Diagnosis of Amyloidosis

Once amyloidosis is suspected, a number of tests can be performed to confirm the diag-
nosis, to look for an underlying cardiopathy, and to identify the affected organs. Ig light chain
abnormalities in serum can be found using free light chain (FLC) tests [38–40]. Immunofixation
electrophoresis assays on serum and urine are used to measure and categorize aberrant Ig light
chains or monoclonal proteins [41]. Positive outcomes from these assays would point to the
presence of multiple myeloma, indolent B cell lymphoma, Waldenström macroglobulinemia,
or AL amyloidosis [42]. In the majority of individuals with AL amyloidosis, the combination
of these assays can be quite successful in detecting amyloidogenic light chains [42].

Confirmation of the diagnosis requires Congo red staining of a tissue biopsy sample.
Amyloid deposits can be found quickly and safely with abdominal fat pad biopsies [43].
However, although the diagnosis of amyloidosis is confirmed by the presence of amyloid
deposits by Congo red staining in fat pads, their absence does not rule out illness. A
different key step in the diagnosis of AL amyloidosis is a bone marrow examination. About
85% of patients with AL amyloidosis will be detected using a combination of fat and bone
marrow biopsies [44].

As for other forms of amyloidosis, in a significant, prospective, observational analysis
of patients with ATTRwt-CM, the median diagnostic delay was 39 months, and 42%
of patients experienced a diagnosis delay of more than 4 years [45]. Delayed ATTR-CM
diagnosis can cause more advanced disease at diagnosis and result in needless consultations,
testing, and treatment before diagnosis [46,47].

Cardiac involvement is frequent in both AL and ATTR amyloidosis, is associated with
a worse prognosis, and has significant therapeutic implications [48]. CA is more likely to
occur in patients with hypertrophic cardiomyopathy (HCM), and these two disorders can
be misdiagnosed in a patient [49]. An estimated 1 in 500 to 1 in 5000 people in the general
population have HCM.

Diagnoses for patients older than 60 years of age grew from 9.2% in 2000 to 31.8%
after 2010, and the prevalence of diagnoses for patients older than 70 years of age climbed
to 10.7% after 2010. Older patients were more frequently genotype-negative and more
frequently affected by sporadic manifestations of the disease [50].

Due to major improvements in diagnostic and treatment approaches over the past
few years, interest in an early identification of the disease—traditionally regarded as
rare and incurable—has drastically transformed [51]. The most important diagnostic
advancements are in the area of ATTR-CA, whose diagnostic process has been significantly
changed by the ability to obtain a non-biopsy diagnosis by cardiac scintigraphy with bone
tracers. This method is the cornerstone of an algorithm that has been tested on a sizable
cohort of CA patients, with results showing 99% sensitivity, 86% specificity, and a positive
predictive value that is very close to 100% when used in conjunction with serum/urine
immunofixation and the detection of free light chains, which rule out the presence of
monoclonal proteins [52]. As a result, diagnoses of ATTR-CA have dramatically increased,
and patients are now identified earlier in the course of the disease.

The identification of clinical features, electrocardiographic (ECG), and imaging find-
ings suggestive or compatible with CA is the first step in the diagnostic process. Amyloid
deposition must frequently be shown histologically, with the exception of cases where
diphosphonate scintigraphy reveals a significant increase in myocardial uptake without the
presence of a monoclonal gammopathy (Perugini scores 2–3) [2]. Cardiovascular magnetic
resonance (CMR) has a special ability that makes it possible to characterize cardiac tissue,
although its function in this diagnostic flowchart is not entirely clear [52]. A pattern of fluc-
tuating biventricular pseudohypertrophy with widespread subendocardial-to-transmural
late gadolinium enhancement (LGE) is one of several CMR findings that are quite distinc-
tive for CA. The extent of LGE and the degree of wall thickness growth are related to the
level of amyloid fiber infiltration in the myocardium. In fact, in individuals with early
disease stages, amyloid deposition is restricted to the sub-endocardium of a small number
of cardiac segments and becomes increasingly diffuse [53]. The myocardial and blood-pool
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gadolinium kinetics are entirely disrupted in the final phases of amyloid infiltration, with
diffuse gadolinium retention in the myocardium and a faster gadolinium washout from
the blood pool. This could make it difficult to determine the ideal myocardial inversion
time (TI) in post-contrast pictures in order to get acceptable LGE images. For these situa-
tions, TI-scout sequences [54], early-to-late enhancement acquisitions [55], phase-sensitive
inversion recovery (PSIR) LGE sequences [56], native T1 mapping [57], and extracellular
volume fraction (ECV) [58] may be useful in making the diagnosis and identifying the stage
of the disease.

The following sections will attempt to assess the various diagnostic approaches and
their applicability in the detection of cardiac amyloidosis.

3.1. Electrocardiographic Evaluation in the Diagnostic Work-Up for CA

Even though the left ventricular wall width is thicker, the presence of a low-voltage
electrocardiographic signal strongly suggests CA and can distinguish it from hypertensive
or hypertrophic cardiomyopathy [59]. However, only 25% to 40% of ATTR-CA patients
match the low-voltage criteria and may even meet the requirements for left ventricular
hypertrophy [60]. Unknown factors may have caused the low-voltage ECG. Myocyte
shrinkage and cardiac toxicity brought on by circulating light chains are potential contribut-
ing factors in AL amyloidosis [61]. In descriptive studies, more than half of the affected
patients had an absence of R progression, sometimes known as a pseudo-infarction pattern,
in the anterior precordial leads. However, only around 25% of patients had both a low ECG
voltage and a pseudo-infarct pattern [62].

Artificial intelligence methods have been effective in deciphering electrocardiographic
data to diagnose CA. A study obtained electrocardiographic maps of CA patients using
ECG imaging. The complicated data sets collected from ECG data were then decoded
using an ML approach, which also assisted in the creation of a straightforward surface
ECG-based diagnostic algorithm for the identification of CA [63]. Two distinctive patterns
were visible in the respective surface ECG leads. An ECG-based tool was created using
thorough electroanatomic mapping of CA patients and an ML methodology. The ECG
algorithm is straightforward and has been shown to be useful in detecting CA without the
assistance of cutting-edge imaging modalities.

3.2. Echocardiography Evaluation in the Diagnostic Work-Up for CA

As reported above, CA is fatal, has a poor prognosis, and is frequently misdiagnosed as
hypertrophic cardiomyopathy, which delays diagnosis [64]. The automated differentiation
of two conditions using speckle tracking echocardiography was proposed. A recent study
reported the findings of a great multicenter study assessing the diagnostic precision of
a combination of traditional (non-deformation) and strain-derived echocardiographic
variables in subjects with suspected CA. Authors derived two simple multiparametric
scores to either identify or exclude CA in two different clinical settings: among subjects with
established systemic AL amyloidosis or in subjects with a hypertrophic cardiac phenotype.
Finally, they ascertained the functional and structural changes across the spectrum of
gravity of amyloid deposition [65].

In order to assess the diagnostic benefit produced by AI techniques in the echocardio-
graphic diagnosis of CA, patients with pathologically confirmed monoclonal immunoglob-
ulin light chain cardiac amyloidosis and patients with hypertrophic cardiomyopathy were
enrolled in a study. The most important indicators were found using ML models built using
both conventional and cutting-edge technologies. The receiver operating characteristic
curve (ROC) and area under the curve (AUC) were used to assess the performance. All
models demonstrated excellent discriminative performance using clinical and echocardio-
graphy data. Support vector machine (AUC 0.95, p = 0.477), random forest (AUC 0.97,
p = 0.31), and gradient boosting machine (AUC 0.98) showed comparable capacity to differ-
entiate cardiac amyloidosis and hypertrophic cardiomyopathy when compared to logistic
regression (AUC 0.91) [66]. The ability of data-driven machine learning to distinguish be-
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tween two circumstances has been impressive. It can also automatically integrate a wealth
of information to find the most discriminating predictors without making any assumptions.
Automated ML can help identify patients with cardiac amyloidosis and enable prompt and
efficient intervention, improving the prognosis in the big data era.

A different study sought to create machine learning models with robust generalizabil-
ity across numerous cohorts to detect HCM and distinguish it from other heart diseases
using ECGs and echocardiograms [67]. On a data set with a realistic HCM prevalence,
automated detection and manual interpretation were tested. The models distinguished
between HCM and aortic stenosis, hypertension, and cardiac amyloidosis. Compared to car-
diologists, automated HCM identification had a greater sensitivity in electrocardiography–
echocardiography paired data analysis [67].

Finally, several other studies have attempted to automatically identify patients with
unexplained left ventricular hypertrophy in electronic health record (EHR) data using
computer methods such as text mining and ML [68–70].

3.3. Magnetic Resonance Evaluation in the Diagnostic Work-Up for CA

A common method for imaging the cardiovascular system for diagnosis and interven-
tion is cardiac MRI (CMR). In addition to visualizing the anatomy, CMR has improved to
the point that it can now be utilized to provide detailed quantitative measurements of the
myocardium. These include physiologic measurements for mapping myocardial perfusion
and blood volume, as well as relaxometry T1, T2, and T2* measures for the assessment
of fibrosis, oedema, and iron as well as for assessment of tissue composition for the fat
fraction [71]. A variety of disease states, such as diffuse interstitial or replacement fibrosis,
oedema, or infiltrative diseases, can benefit from myocardial T1 mapping [72].

While in-patient regional or even temporal variations in native T1 may be informative
of disease development or progression, cross-patient comparisons are less relevant due
to the considerable overlap in myocardial native T1 levels between health and disease.
The diagnostic value of T1 mapping for the quick identification of myocardial illness
without the use of contrast agents would be improved by a method that could make use
of the wealth of information included in myocardial T1 maps. The segmented anatomical
volumes are converted into quantitative radiomic characteristics that, by examining the
spatial relationship between (dis-)similar voxels (akin to terrain mapping), reveal details
about tissue volume, shape, and texture [73–79].

The left ventricle is used as the main chamber for validating diagnoses. Recent re-
search, however, has demonstrated that cardiac strain has discriminative value for all cardiac
chambers and may help distinguish CA from HCM and healthy controls (CTRL) [80]. An
experiment tested the hypothesis that strain measurements of the diagnostically less common
cardiac chambers combined with general cardiac functional parameters may achieve a high
CA diagnostic accuracy. This hypothesis was based on prior observations [81–84] and the
desire to optimize CMR diagnostic accuracy for CA detection. The right ventricle and atria
would therefore be the only sources of cardiac strain metrics.

By putting cardiac function and multi-chamber strain into supervised ML algorithms,
the work challenges CA diagnoses [85]. CMR imaging was performed on CA patients, HCM
participants, and healthy volunteers. Using the strain values for the left, right, and right
ventricular atriums as well as heart function, the decision trees (DT), k-nearest neighbor
(KNN), SVM linear, and SVM radial basis function (RBF) kernel algorithms developed a
41-feature matrix. Using linear SVM and RBF, a 10-feature principal component analysis
(PCA) was carried out [85]. As a result, under supervised conditions, the SVM RBF kernel
obtained competitive diagnostic accuracies. For non-contrast clinical decision-support
systems in CA diagnostics, ML of multi-chamber cardiac strain and function may present
unique perspectives.

However, other new demands are simultaneously placed on image analysis and
reporting by CMR capabilities, opening up new prospects [86–91]. AI methods could
speed up analysis times in addition to improving diagnostic accuracy. Higher patient
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throughputs, better objectivity, and reproducibility are all benefits of a fully automated
solution. Cardiologists still primarily use manual delineation in clinical settings to evaluate
heart function, viability, and tissue characteristics [92]. An expert’s thorough manual
analysis can take between 9 and 19 minutes, according to recent research [93]. Convolutional
neural networks (CNNs) in particular have been developed as DL models to automate
CMR analysis and greatly shorten analysis times. CNN measurements have shown better
reliability in multicenter studies [94], and they can be used to automatically interpret cardiac
cine images to quantify the ejection fraction and other parameters with a performance
level comparable to experienced readers. CNNs have been used to interpret and report on
cardiac perfusion pictures obtained from MRI scanners [95]. In tests involving multiple
centers, CNNs have also been constructed to measure LV function [96]. In a study, the
LV blood volume and myocardium were segmented using a completely automated ML
algorithm that was trained using 1923 images [97]. Performance of an ML algorithm was
compared to that of three physicians (the “human”) and a commercial tool (cvi42, Circle
Cardiovascular Imaging). Human analysis took longer (20 s per patient) than machine
analysis (13 min). The combined dataset’s overall machine mis-segmentation rate was
1 in 479 pictures, which largely occurred in rare diseases that were not observed during
training. Without correcting these segmentation errors, machine analysis outperformed
three physicians in terms of precision, which resulted in a 46% decrease in the trial sample
size needed to use an LVEF objective [97]. Consequently, a fully automated approach that
outperforms human performance in terms of speed and accuracy can be used to measure
LV structure and global systolic function.

The superiority of AI techniques was supported by additional investigations [98].
Using non-contrast cine CMR images, a study was conducted to see if texture analysis (TA)
and ML-based classifications might be used in the differential diagnosis of CA [99]. Cine
pictures were used to extract texture features. Nine ML models were created based on
regression analysis with the least absolute shrinkage and selection operator (LASSO), and
their diagnostic performance was assessed. The combined model including traditional MR
metrics and radiomics texture characteristics performed better in terms of discrimination
than the traditional MR metrics model. Additionally, the findings demonstrated that gray
level non-uniformity (GLevNonU) levels in HCM patients were considerably greater than
levels in CA patients and control groups. It has been proven that GLevNonU 25 can distin-
guish between CA and HCM patients. The discriminatory performance can be enhanced
using the radiomics-MR combined model, and TA can be used to evaluate the changes in
myocardial microstructure that take place across various phases of cardiomyopathies.

Another analysis produced similar outcomes. It was investigated in a study [100]
whether radiomic characteristics from T1 maps obtained by CMR may improve the diagnos-
tic utility of T1 mapping in separating health from disease and categorizing cardiac disease
phenotypes. The type of heart illness was clearly associated with the first three major T1
radiomic components. The population’s unsupervised hierarchical grouping by myocardial
T1 radiomics was substantially correlated with the type of cardiac illness [100].

In a subsequent investigation, CMR was carried out on participants who had suspected
CA [101]. Three networks analyzed two-chamber, four-chamber, and short-axis LGE
pictures (DL algorithms). When the average probability of CA from the three networks was
50% or less, the tags “amyloidosis present” or “absence” were assigned accordingly. The DL
approach was contrasted with an ML algorithm taking into account all manually derived
features to mimic an expert operator reading an exam. The DL approach demonstrated
appropriate diagnostic precision. The diagnostic yield of an ML algorithm that took into
account every CMR feature was comparable to a DL technique [101]. An ML-based strategy
that simulates CMR reading by skilled operators and a DL approach evaluating LGE
acquisitions both demonstrated comparable diagnostic performance for CA. However,
there are a number of limitations to this study that must be acknowledged, including the
fact that CA prevalence was very high. The study would also have benefited from an
external validation cohort with a good representation of patients with hypertensive heart
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disease, hypertrophic cardiomyopathy, cardiac sarcoidosis, and other pathologies that could
be mistaken for CA, as well as other limitations that are important to note. Additionally,
because there were so few patients in the study, AL and ATTR cardiomyopathies were
combined into a single diagnostic entity (CA).

Finally, three-dimensional myocardial deformation analysis, for example, has been
incorporated into the computational analysis for the detection of the CA (3D-MDA). This
parameter may provide suitable features for the training of ML-based models because it
has been validated to provide uniform descriptors of cardiac architecture and deformation.
Using automated disease identification to distinguish HCM from states that mirror it,
such as CA, Anderson–Fabry disease, and hypertensive cardiomyopathy, was the goal of
one study (HTNcm). To distinguish between HCM and other situations, a fully connected
layer feed-forward neural network was developed [102]. This study revealed that it is
possible to diagnose cardiomyopathy states using only 3D-MDA and that it is capable of
differentiating between HCM and similar disease states. These results point to a promising
future for computer-assisted diagnosis in clinical settings, and this finding that regional
deformation factors add to global architectural and global functional aspects in determining
illness etiology is in line with new data showing that these measures are closely related
to underlying tissue characteristics [103]. In patients with HCM [104–107] and CA [108],
as well as in non-hypertrophic conditions such as ischemic and dilated cardiomyopathy,
strain-based markers have demonstrated a strong regional connection with underlying
signs of fibrosis (i.e., interstitial expansion). As a result, there is potential for regionally
encoded deformation indicators to offer novel insights into underlying myocardial tissue
health and, in turn, provide pertinent data for the classification of illness genesis.

3.4. Mass Spectrometry Evaluation in the Diagnostic Work-Up for CA

Immunohistochemical examination of biopsies from the affected organ or tissue has
historically been used to determine the sub-type of the amyloidogenic protein [109,110].
However, because of its low sensitivity and low specificity [111–113], the latter of which is
probably related to unspecific staining, this approach has been abandoned by many clinical
pathology departments. However, utilizing immunohistochemistry (IHC), certain diagnos-
tic facilities consistently attain a sensitivity higher than 90% [114]. Other recent techniques
for classifying amyloidosis include mass-spectrometry-based shotgun proteome analyses
of biopsies [115] and laser microdissection (LMD) of amyloid deposits visualized by Congo
red staining combined with MS or immune electron microscopy (IEM) for the classification
of localized amyloidosis [115–117]. In addition to measuring the amyloidogenic protein in
question, mass-spectrometry-based approaches for amyloidosis subtyping also assess an
amyloid protein signature that is common to all amyloidosis subtypes in distinct tissues in
a very specific and quantitative manner.

A method for the objective detection of biopsies containing amyloid and amyloidosis
subtyping was created by a study with the use of statistical models [118]. Clusterin, fibulin-
1, vitronectin, complement component C9, three collagen proteins, as well as the well-
known amyloid signature proteins apolipoprotein E, apolipoprotein A4, and serum amyloid
P were discovered as novel “amyloid signature” proteins using a Boruta method applied on
a random forest classifier to proteomics data obtained from the mass spectrometric analysis
of Congo-red-positive amyloid-containing biopsies and Congo-red-negative biopsies in
order to train an SVM learning system. When used on a blinded mass spectrometry
validation data set of amyloid-containing biopsies that had been obtained, the trained
algorithm outperformed controls in the distinction of amyloid-containing biopsies from
controls, with an accuracy of 1.0. Additionally, in 102 out of 103 blinded cases, this
technique successfully diagnosed amyloidosis patients according to the subtype [118].
With the objective and trustworthy classification of amyloid deposits and of the particular
amyloid subtype, this model-assisted technique found novel amyloid-related proteins and
proved the application of mass-spectrometry-based data in clinical diagnostics of disease
(Table 2).
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Table 2. Possible ML approaches in the diagnosis of cardiac amyloidosis.

Technique Parameters Population IA Method Ref.

Electrocardiographic
evaluation R-peak time Treatment-naïve patients with CA Unsupervised machine

learning approach [63]

Echocardiography data Speckle tracking
echocardiography

Monoclonal immunoglobulin light
chain cardiac amyloidosis and

patients with
hypertrophic cardiomyopathy

Support vector machine, random
forest, and gradient
boosting machine

[66]

Time series of voltages
recorded for 10 seconds

at 250 Hz
Echo videos standardized

to 30 frames with
30 frames per second

Patients with hypertrophic
cardiomyopathy A federated learning approach [67]

Magnetic resonance Multi-chamber strain and
heart function

Patients with hypertrophic
cardiomyopathy

Decision tree, k-nearest neighbor,
SVM linear, and SVM radial basis

function kernel
algorithm processing

[85]

Left ventricular cavity and
myocardium

right ventricle

Adenosine stress and rest
perfusion scans A convolutional neural network [95]

Cine MRI images of
left ventricle Data from three major MR vendors Convolutional neural networks [96]

Left ventricle blood
volume and myocardium

Images from 1932 patients with
multiple diseases from multiple

centers
Convolutional neural networks [97]

Left ventricular volume in
the end-systolic images

Patients with CA, HCM, and
normal subjects

K-nearest neighbor, random forest,
naïve Bayes, support vector

machine, logistic regression, and
artificial neural networks

[99]

T1 mapping

Normal subjects, patients with left
ventricular hypertrophy of various

causes, patients with HCM, and
patients with known
cardiac amyloidosis

A random forest machine
learning algorithm [100]

Biventricular
systolic function

Subjects with suspected CA,
unexplained left ventricular

hypertrophy with blood dyscrasia
and suspected light-chain

amyloidosis

Three base convolutional neural
networks [101]

Volumetric and
strain markers

Patients from the Cardiovascular
Imaging Registry of Canada A neural-network-based model [102]

Mass spectrometry
Clusterin1, fibulin-1,

vitronectin, complement,
apolipoprotein E

Congo-red-positive and -negative
amyloid-containing biopsies

A Boruta method applied on a
random forest classifier [118]

Finally, immunoelectron microscopy is a specific and extremely sensitive method for
amyloid typing; it employs gold-labelled antibodies binding to amyloid fibrils. It can be
utilized on formalin-fixed, paraffin-embedded material and is believed to be a new gold
standard for amyloid typing next to mass spectrometry [119].

3.5. Medical Data and Radiomics in the Diagnostic Work-Up for CA

Beyond adopting a specific diagnostic method to identify CA, AI may be advantageous
in using patient data for accurate and speedy diagnosis. Inpatient and outpatient hospital
data, demographics, diagnoses, patient interactions and medical practices, prescriptions,
laboratory tests, and charges are all included in the medical database, which is based in
hospitals [120–123]. According to a study, using information from medical claims, a random
forest machine learning model may spot prospective cases of wild-type transthyretin
amyloid cardiomyopathy. In 1071 cases and 1071 non-amyloid heart failure controls,
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authors developed an ML model. Three nationally representative cohorts (9412 cases
and 9412 matched controls) and a sizable single-center electronic health record-based
cohort (261 cases and 39,393 controls) were used to validate the model [124]. The authors
demonstrated that the ML model had good performance for detecting individuals with
cCA in the derivation cohort and all four validation cohorts, giving a structured framework
to raise suspicion of transthyretin CA in patients with heart failure.

An alternative study was conducted to create a routinely calculated set of laboratory-
parameters-based expert-independent ML prediction model for CA [125]. The authors
first created logistic-regression-based baseline linear models. In a subsequent phase, they
performed non-linear prediction and enhanced their linear prediction model using an ML
technique based on gradient tree boosting. The effectiveness of each diagnostic algorithm
was then compared. A training cohort of patients with established CA and HF patients
unrelated to amyloidosis served as the basis for all prediction models. The ROC AUC score
for this model was 0.86, with sensitivity and specificity of 89.2% and 78.2%, respectively.
This study reveals how ML enables the generation of a differentiated CA-related HF profile
in comparison to HF patients without a CA connection using standard laboratory measures.
This proof-of-concept study offers a potential new direction in the investigation of CA’s
diagnosis and could support doctors’ clinical judgment.

4. Computational Methods for Amyloid Fibril Identification

The identification of the amyloid molecule is a critical step in the diagnostic procedure
of a suspected amyloidosis. Immunohistochemistry and laser capture are the two most
popular techniques for classifying amyloid fibrils, and mass spectrometry is then used to
determine the amyloid subtype [114,115].

The amyloid fibrils appear to share a same structure regardless of the type of amyloid
protein that makes them up. Therefore, it can be examined in vitro using X-ray diffraction
techniques, electron microscopy, and certain chemical stains [126]. Due to the high volume
of protein data generated by sequencing, computational approaches for detecting and
forecasting fibrils have just recently evolved. However, these methods have cost and
time constraints. Currently used protein sequencing methods run millions of reactions
simultaneously while gathering enormous volumes of data.

The computational investigations have given us important atomic understanding. The
“dock-and-lock” mechanism is a widely accepted explanation for fibril elongation that has
been supported by extensive computational studies. In this mechanism, soluble monomers
are quickly adsorbed on the fibril ends, primarily as a result of the entropy effect. This is
followed by a slow structural rearrangement of the bound monomers, which is hampered
by the need to break interactions between the monomers or misaligned monomer–fibril
interactions. The process of the more recent discovery of fibril-dependent secondary
nucleation is less well understood computationally. A proper interaction strength between
the peptides and the fibril surface, the preference of the bound peptides for amyloidogenic
conformations, the unrestricted movement of the peptides on the fibril surface, and their
simple detachment for a quick turn-over are some of the key elements that simulation
studies have so far identified as being crucial for an efficient secondary nucleation [127].

Doing more than just offering a molecular explanation for experimental findings
regarding aggregation mechanisms is the ultimate goal of computational investigations.

Tian et al. [128] introduced the Prediction of the Amyloid Fibril-Forming Segment
(Pafg) approach for finding fibril-forming segments in proteins based on a support vector
machine (SVM). The Amino Acid Index database’s 41 physicochemical attributes were
employed in their model (AAindex) [129]. With a Matthews correlation coefficient of 0.63,
Pafg achieved an overall accuracy of 81%, a specificity of 80%, and a sensitivity of 82% [128].

Employing a different approach, RFAmyloid, a web server based on the SVMProt
188-D feature representation, the pse-in-one feature representation, and the random forest
classifier, was presented as a method to discover amyloid proteins [130]. The Matthews
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correlation coefficient, sensitivity, specificity, and F-measure were 0.739, 0.781, 0.927, and
0.891, respectively, while the accuracy was 89.19%.

Building an ML-based prediction model known as the PredAmylmultilayer perceptron
led to similar outcomes. The authors integrated SVMProt-188D, tripeptide composition,
and seven feature extraction techniques [131]. Other experiments used an accessible ReRF-
Pred, a novel machine-learning approach based on a multi-feature encoding strategy to
identify amyloidogenic regions utilizing the composition of tripeptides and pseudo amino
acids [132–134]. A further attempt was performed using a linear SVM architecture on the
Waltz database of 1415 total hexapeptides to classify amyloidogenicity patterns based on
the short parts known as hot spots that might cause aggregation [135–137].

Because the datasets used in the literature are almost always unbalanced, a study was
conducted to assess the classifier’s behavior solely on balanced amyloid fibril datasets. The
automated learning of the various ML algorithms is influenced by the performance on
balanced or unbalanced datasets [138]. More than 4000 chemical descriptors were used in
the development of this new classifier, dubbed ENTAIL. With an accuracy on the test set of
81.80%, a sensibility of 100%, and a specificity of 63.63% on a balanced dataset, ENTAIL
was based on the Naive Bayes Classifier with Unbounded Support and Gaussian Kernel
Type. The investigation that was carried out showed that performance is superior in terms
of performance on a balanced dataset [139] despite the various configurations of the tests.

In addition, researchers have predicted the solubility and located the aggregation hotspots
within amyloid-forming proteins using sequence-based aggregation-scoring algorithms such
as GAP, TANGO, WALTZ, PASTA, Aggrescan, FoldAmyloid, ANuPP, etc. [140–148]. These
algorithms have made use of sequence- and structure-based properties, including patterns
of hydrophobic and polar residues, charges, the capacity to form cross-motifs, scales for
aggregation propensity derived from experimental data, solvent-exposed hydrophobic patches
on molecular surfaces, and others. These algorithms’ benefits and drawbacks have been
discussed elsewhere [149]. It has become widely accepted as a result of this research that the
existence of an aggregation-prone region (APR) may be a prerequisite but not a necessary
condition for protein aggregation. Other important parameters include the position of APRs in
protein structure, the conformational stability of the native state, the conditions in the solution,
and the kinetics of the aggregation process [150–156].

High individual antibody diversity is a significant problem for AL amyloidosis predic-
tion and treatment. Although there are techniques for high-throughput antibody repertoire
sequencing, it is not practical to experimentally determine each antibody’s amyloidogenic-
ity. Therefore, it is essential to create computational techniques for quick and precise
prediction of aggregating light chains. The scientific community needs to develop the
computational algorithms now in use because they are not effective enough to estimate the
solubility of antibodies and, in certain cases, only weakly correlate with conformational
stability [157,158].

Common architecture and well-known binding locations in antibody light chains can
offer crucial details for the prediction of amyloidogenicity under physiological settings. In a
study, authors compared the hydrophobicity, presence of gatekeeper residues, disorderness,
and other traditional sequence-based, aggregation-related features calculated for the CDR,
FR, or VL regions of amyloidogenic and non-amyloidogenic antibody light chains. They
then implemented the findings in a machine-learning-based webserver called “VLAmY-
Pred” (https://web.iitm.ac.in/bioinfo2/vlamy, accessed on 21 February 2023). On a
dataset of 1828 variable region sequences of the antibody light chains, the model exhibited
a prediction accuracy of 79.7% (sensitivity of 78.7% and specificity of 79.9%) with a ROC
value of 0.88 [159].

This model will be useful for a better understanding of the prognosis for patients who
may likely have diseases brought on by light chain amyloidosis, for large-scale in silico
analysis of antibody sequences produced by next generation sequencing, and, finally, for
rational engineering of aggregation-resistant antibodies (Table 3).

https://web.iitm.ac.in/bioinfo2/vlamy
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Table 3. Computational methods for amyloid fibril identification.

Method Target IA Results Ref.

Pafig Hexpeptides associated with
amyloid fibrillar aggregates

Support vector
machine

Accuracy of 81% and Matthews
correlation coefficient of 0.63 [128]

Pse-in-One DNA, RNA, and
protein sequences

Support vector
machine and

neural network

Matthews correlation coefficient
0.739, sensitivity 0.781,

specificity 0.927, F-measure
0.891, and accuracy 89.19%

[130]

PredAmylmultilayer Protein sequences Waikato environment
for knowledge analysis

Accuracy 91.59%, specificity
0.950, and sensitivity 0.836 [131]

ReRF-Pred Composition of tripeptides
and pseudo amino acids Amyloidogenic regions

Accuracy 0.828, specificity 0.921,
and Matthew correlation

coefficient 0.619
[132]

ENTAIL Protein precursors Machine learning Accuracy 81.80%, sensibility
100%, and specificity 63.63% [139]

VLAmY-Pred Tripeptides composition Random forest Accuracy 79.7%, sensitivity
78.7%, and specificity 79.9% [159]

5. Prognosis

Prognostic risk can also be determined by computational analysis carried out utilizing
artificial intelligence tools. In order to identify patterns that correlate with amyloidosis type
and prognosis, a study used an automated method to aggregate individual patients with car-
diac amyloidosis as defined by 24 prespecified clinical characteristics [160]. The researchers
gathered information from 1394 consecutive patients. The cohort included patients with
AL, ATTRv, ATTRwt, and no definitive amyloidosis diagnosis. The 24 domains chosen for
phenotyping the patients broadly defined their characteristics, including demographics
(sex, age, and race), biometrics (body mass index and blood pressure), cardiovascular risk
factors, New York Heart Association (NYHA) functional class, cardiac biomarkers, renal
function, anemia, electrocardiographic features (low voltage and arrhythmia), echocar-
diographic variables (septal wall thickness, LV ejection fraction, and global longitudinal
strain), and evidence of sarcoidosis. Diagnostic characteristics of ATTR amyloidosis and
AL amyloidosis were also among the variables selected for characterization (scintigraphy
uptake or cardiac fixation). Data were first transformed using principal component analysis
to account for variations in qualitative and quantitative variables in order to produce
continuous scores. Following this, the data were subjected to an unsupervised clustering
analysis to produce self-organized maps from which a total of seven discrete clusters were
defined. After being placed on these clusters, patients with known amyloid types had
their prognosis (4-year mortality) reported. Low global longitudinal strain (mean 8.4%)
and LV ejection percent (mean 41%), low voltage, and monoclonal gammopathy were the
characteristics of Cluster 1, which also had the highest levels of cardiac biomarkers and
the highest NYHA functional class. Unsurprisingly, Cluster 1 had AL amyloidosis in 88%,
accounting for 67% of all patients with AL amyloidosis. Older males, soft tissue deposits,
the thickest LV septum, and the highest rates of bone-seeking radiotracer uptake were
all present in Clusters 2 to 4. Clusters 2, 3, and 4 received the majority of the mapping
for ATTRwt patients. These clusters differed from one another, allowing for additional
differentiation. While Cluster 3 patients had arrhythmia but fewer cardiovascular risk
factors, Cluster 4 patients had a high proportion of risk factors but preserved biochemical
and functional parameters, and Cluster 2 patients had a higher proportion of cardiovascular
risk factors and impaired biochemical and functional parameters. When survival was taken
into account, these variations became significant. Comparing Clusters 3 and 4 (about 55%
survival) to Cluster 2, ATTRwt patients had a 20% survival rate. In actuality, the survival
rate for ATTRwt patients in Cluster 2 was lower (42% survival) than that of AL patients
in Cluster 1. Patients with ATTRv amyloidosis were more uniformly spread out among



Int. J. Mol. Sci. 2023, 24, 5680 14 of 23

Clusters 2 to 4 as well as Cluster 6, which reflects the variation in phenotypic manifestation
(cardiomyopathy and neuropathy) between the various TTR variants and the ages of AT-
TRv patients. Patients with nonamyloid disease were discovered in Clusters 5 to 7, with
Cluster 7 standing out because patients there had greater body mass indices, diabetes, and
dyslipidemia than in the other clusters, which is consistent with the profile of metabolic
heart disease. In Cluster 7, the four-year death rate was 31% (69% survival) [160]. It is
important to note the study’s shortcomings. First, the investigators admitted that a sizeable
amount of the missing data (up to 33% for scintigraphy) was handled via imputation,
which is formally correct but could eventually draw spurious results. Second, using the
same dataset, the clustering analysis was created and then examined for relationships with
amyloid type. Third, not all of the analyses were unsupervised. Fourth, no information
about the medical care obtained is provided. Without understanding the medicines used
and their results, it is challenging to assess survival data [161].

6. Conclusions

Although there has been significant progress in the diagnosis and management of
cardiac amyloidosis, there are still significant knowledge and diagnostic process gaps.
Nuclear scintigraphy utilizing technetium-labelled bone-seeking radiotracers for ATTR
cardiac amyloidosis has become widely available, which has facilitated diagnoses, although
improper patient selection and interpretation continue to happen, leading to erroneous
and/or missing diagnoses [162,163]. Furthermore, there is significant phenotypic overlap
in the echocardiographic, cardiac magnetic resonance, and biomarker profiles of the most
prevalent cardiac amyloidosis types of AL, ATTRwt, and variant transthyretin [ATTRv],
which makes proper adjudication difficult.

A conclusive diagnosis of HCM is made using an echocardiography as well as cardiac
MRI [164]. Due to the underdiagnosis of HCM, typical workflows involving these diagnos-
tic modalities are obviously insufficient. This is due to factors such as cost, the subtlety of
early disease findings, the invasiveness of the approach, the availability of the modality,
as well as the requirement that non-specialist providers either remember the necessary
diagnostic steps or make a timely referral. HCM can also be identified by distinctive ECG
alterations [165–169], a method that is more generally accessible.

Several studies have developed ML strategies to detect HCM from both electrocardio-
graphy and echocardiography [170–173], but to date, these approaches have only involved
a single modality and have only been evaluated at single centers.

Unfortunately, CA lacks a large amount of data when compared to other cardiovascular
conditions, making the development of reliable AI-based models difficult and somewhat
poorly scalable and generalizable. However, new frontiers of AI are advancing in this sense,
with the development of novel principles and the practical application of well-grounded
methods that are yet neglected or poorly used in medicine, which can promote a full
adoption of AI in CA. Such methods, which are of different natures, include, for example,
transfer learning, commonly used in scientific and technological realms, or federated
learning, which enables huge amounts of data to be collected from various sources and
also features overall superior safety and security for patients and their sensitive data.

Increased generalizability requires the use of vast amounts of data from various insti-
tutions. However, training data in the medical area could include personally identifiable
information, making sharing difficult. An ML technique known as federated learning
enables the training of an ML model using data sets from other institutions without shar-
ing the raw data. Such an approach was never explored directly in CA, but the success
demonstrated in HCM detection and differential diagnosis with respect to cardiac disor-
ders featuring somewhat similar clinical characteristics, including CA, suggests its likely
application in future studies dealing with CA [67]. This would benefit researchers and
clinicians from several points of view, including greater data availability and the possibility
to guarantee the patients whose data are collected with higher degrees of data protection
and privacy regulations.
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Accurate diagnosis is a prerequisite for individualized medicine, which necessitates
analysis that goes beyond the data encoded in the systems utilized in clinical practice [174].
Clinical researchers have taken a keen interest in this area with the surge of electronic
health records (EHRs), as the comprehensive and extensive use of clinical datasets holds
enormous promise for revolutionizing the healthcare system. For instance, nursing records
give information on patient conditions, and the data frequently reflects nurses’ cumu-
lative knowledge of how to evaluate physiological and psychological signs to identify
patient deterioration.

The learning and training approaches of the algorithm are based on the inpatient
clinical (medical and nursing) records employed for a study. The strategy involved treating
the data produced by each admission and discharge occurrence as data vectors in order to
facilitate data aggregation. The high dimensionality of the data was inferred by the vast
number of clinical histories, and the absence of a diagnosis resulted in a significant class
imbalance because the condition was not common. Despite the small number of patients
with amyloidosis in this study, the suggested method shows that it is still possible to learn
from clinical records in the absence of data. The algorithm originally used data from the
overall research population during the validation phase. Then, it was used on a sample of
people with heart failure. The findings showed that when data vectors profile each disease
occurrence, the algorithm may detect disease. The prediction levels demonstrated that this
method may be helpful in illness screening procedures on a particular group [175].

Given the trends noticed in medicine concerning the use of AI, and in particular in
the cardiovascular field and in the CA diagnosis and detection, it is hypothesized that
the number of scientific products related to this subject is probably destined to grow in
the next few years. However, aside to the important scaling up of AI-related research,
which is particularly useful to lead to new discoveries and important novelties and insights
about physiopathological and etiopathological signs of the disease, important gaps are still
present in the translation from bench to bedside of AI and technological advancements
in general in every sector of medicine [176]. However, with the advent of new AI-based
tools, which are pervasively entering everyday life (e.g., ChatGPT or similar programs), it
is predictable that such novel approaches will be more often scaled into the clinical practice
in the next few years, which will have significant benefits for the clinical community.

In conclusion, for the two most prevalent kinds of cardiac amyloidoses (ATTR and
amyloidogenic light chain), disease-modifying therapies are now available, and earlier treat-
ment in the course of the disease may be associated with a higher treatment response [177].
Therefore, it is crucial to diagnose cardiac amyloidosis early and more thoroughly. In any
event, it is crucial to diagnose CA as soon as possible since, if left untreated, the median
survival time after the onset of HF is just 6 months [178], even if contemporary treatments
can prolong life by several years and put the disease into a protracted remission [179]. The
prognosis of patients with AL-CA has significantly improved as a result of the availability
of proteosome-inhibiting drugs, particularly bortezomib, which is frequently coupled with
dexamethasone and low-dose cyclophosphamide. These factors make early identification
of the illness a crucial clinical requirement. In the past few years, early diagnoses of the
disease have resulted from the active screening for CA using new AI techniques [180]. This
approach could guarantee an overall more adequate management of the pathology.
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