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Abstract

In this paper we investigate a potential use of fluid approximation techniques
in the context of stochastic model checking of CSL formulae. We focus on
properties describing the behaviour of an individual agent in a (large) pop-
ulation of agents, exploiting a limit result known as fast simulation. In
particular, we will approximate the behaviour of a single agent with a time-
inhomogeneous CTMC, which depends on the environment and on the other
agents only through the solution of the fluid differential equation, and model
check this process. In order to achieve this goal, we will present a novel pro-
cedure to model check time-inhomogeneous CTMC against CSL formulae,
investigating also the decidability of this model checking problem. We will
then prove the asymptotic correctness of our approach in terms of satisfia-
bility of CSL formulae.

Keywords: Stochastic model checking, fluid approximation, mean field
approximation, reachability probability, time-inhomogeneous Continuous
Time Markov Chains

1. Introduction

In recent years, there has been a growing interest in fluid approxima-
tion techniques in the formal methods community [1, 2, 3, 4, 5, 6]. These
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techniques, also known as mean field approximation, are useful for analysing
quantitative models of systems based on continuous time Markov Chains
(CTMC), possibly described in process algebraic terms. They work by ap-
proximating the discrete state space of the CTMC by a continuous one, and
by approximating the stochastic dynamics of the process with a deterministic
one, expressed by means of a set of differential equations. The asymptotic
correctness of this approach is guaranteed by limit theorems [7, 8, 9], show-
ing the convergence of the CTMC to the fluid ODE for systems of increasing
size.

The notion of size can be different from domain to domain, yet in models
of interacting agents usually considered in computer science, the size has the
standard meaning of number of individuals in a population. All these fluid
approaches, in particular, require a shift from an agent-based description
to a population-based one, in which the system is represented by variables
counting the number of agents in each possible state and so individual be-
haviours are abstracted. In fact, in large systems, the individual choices of
single agents have a small impact, hence the whole system tends to evolve
according to the average behaviour of agents. Therefore, the deterministic
description of the fluid approximation is mainly related to the average be-
haviour of the model, and information about statistical properties is generally
lost, although it can be partially recovered by introducing fluid equations of
higher order moments of the stochastic process (moment closure techniques
[10, 11, 12]).

When kept discrete, quantitative systems like those described by process
algebras can be analysed using quantitative model checking. These tech-
niques have a long tradition in computer science and are powerful ways of
querying a model and extracting information about its behaviour. As far
as stochastic model checking is considered, there are some established ap-
proaches based mainly on checking Continuous Stochastic Logic (CSL) for-
mulae [13, 14, 15], which led to widely used software tools [16]. All these
methods, however, suffer (in a more or less relevant way) from the curse
of state space explosion, which severely hampers their practical applicabil-
ity. In order to mitigate these combinatorial barriers, multiple techniques
have been developed, many of them based on some notion of abstraction or
approximation of the original process [17, 18].

In this paper, we will precisely target this problem, investigating the ex-
tent to which fluid approximation techniques can be used to speed up the
model checking of CTMC. We will focus on a restricted subset of system



properties: We will consider population models in which many agents inter-
act, and then focus on the behaviour of individual agents. In fact, even if
large systems behave almost deterministically, the evolution of a single agent
in a large population is always stochastic. Single agent properties are inter-
esting in many application domains. For instance, in performance models
of computer networks, like client-server interactions, one is often interested
in the behaviour and quality-of-service metrics of a single client (or a single
server), such as the waiting time of the client or the probability of a time-out.

Single agent properties may also be interesting in other contexts. In
ecological models, one may be interested in the chances of survival or repro-
duction of an animal, or in its foraging patterns [19]. In biochemistry, there
is some interest in the stochastic properties of single molecules in a mixture
(single molecule enzyme kinetics [20, 21]). Other examples may include the
time to reach a certain location in a traffic model of a city, or the chances to
escape successfully from a building in case of emergency egress [22].

The use of fluid approximation in this restricted context is made possible
by a corollary of the fluid convergence theorems, known by the name of fast
simulation [23, 9], which provides a characterization of the behaviour of a
single agent in terms of the solution of the fluid equation: the agent senses
the rest of the population only through its “average” evolution, as given by
the fluid equation. This characterization can be proved to be asymptotically
correct.

The main idea of this paper is simply to use the CTMC for a single agent
obtained from the fluid approximation instead of the full model with N inter-
acting agents. In fact, extracting metrics from the description of the global
system can be extremely expensive from a computational point of view. Fast
simulation, instead, allows us to abstract the system and study the evolution
of a single agent (or of a subset of agents) by decoupling its evolution from
the evolution of its environment. This has the effect of drastically reducing
the dimensionality of the state space by several orders of magnitude.

Of course, in applying the mean field limit, we are introducing an error
which is difficult to control (there are error bounds but they depend on the
final time and they are very loose [9]). However, this error decreases as
the populations increase, and it is usually acceptable in practice, especially
for systems with a large pool of agents, as certified by the widespread use
of fluid approximation [24]. We stress that these are precisely the cases in
which current tools suffer severely from state space explosion, and that can
benefit most from a fluid approximation. However, we will see in the following



that in many cases the quality of the approximation is good also for small
populations.

In the rest of the paper, we will basically focus on how to analyse single
agent properties of three kinds:

• Next-state probabilities, i.e. the probability of jumping into a specific
set of states, at a specific time.

• Reachability properties, i.e. the probability of reaching a set of states
G, while avoiding unsafe states U .

• Branching temporal logic properties within a bounded amount of time,
i.e. verifying time-bounded CSL formulae.

A central feature of the abstraction based on fluid approximation is that
the limit of the model of a single agent has rates depending on time, via the
solution of the fluid ODE. Hence, the limit models are time-inhomogeneous
CTMC (ICTMC). This introduces some additional complexity in the ap-
proach, as model checking of an ICTMC is far more difficult than in the
standard time-homogeneous case. To the best of the authors’ knowledge, in
fact, there is no known algorithm to solve this problem in general, although
related work is presented in Section 2. We will discuss a general method in
Section 5, based on the solution of variants of the Kolmogorov equations,
which is expected to work for small state spaces and the controlled dynamics
of the fluid approximation. The main difficulty with CSL model checking of
ICTMC is that the truth of a formula can depend on the time at which the
formula is evaluated. Hence, we need to impose some regularity on the de-
pendency of rates on time to control the complexity of time-dependent truth.
We will see that the requirement, piecewise analyticity of rate functions, is
intimately connected not only with the decidability of the model checking
for ICTMC, but also with the lifting of convergence results from CTMC to
truth values of CSL formulae (Theorems 5.1 and 6.1).

Summarising, the main contributions of the paper are the following:

• Methodologically, we advocate the use of fluid approximation to effi-
ciently verify properties of individual agents in large population models,
dubbing this approach fluid model checking.

• We present a novel model checking algorithm for time-bounded CSL
properties on time-inhomogeneous CTMCs.



• We prove that asymptotic correctness of fluid model checking for time-
bounded CSL formulae.

The structure of the paper reflects the three main contributions listed
above. We start by discussing related work in Section 2, and by intro-
ducing preliminary notions, fixing the class of models considered (Section
3.1), presenting fluid limit and fast simulation theorems (Sections 3.2 and
3.3), and introducing Continuous Stochastic Logic (Section 3.4) and time-
inhomogeneous CTMCs (Section 3.5). In Section 4, we discuss the main idea
of fluid model checking. In Section 5, instead, we present the CSL model
checking algorithm for time-inhomogeneous CTMCs, discussing first how to
compute next state (Section 5.1) and reachability probabilities (Section 5.3),
and then how to combine these routines into an appropriate model checker
(Section 5.4). Decidability and complexity are investigated in Section 5.5,
under some constraints on rates discussed in Section 5.2. Readers interested
only in CSL model checking for ICTMC can read this section independently
from the rest of the paper, save for the required preliminary notions (Sections
3.4 and 3.5). In Sections 6 and 7, instead, we investigate the asymptotic cor-
rectness of fluid model checking. Finally, in Section 8, we discuss open issues
and future work. All the proofs of propositions, lemmas, and theorems of
the paper are presented in Appendix A. A preliminary version of this work
has appeared in [25].

2. Related work

Our work is underpinned by the notion of fast simulation, which has
previously been applied in a number of different contexts [9]. One recent case
is a study of policies to balance the load between servers in large-scale clusters
of heterogeneous processors [23]. A similar approach is adopted in [26], in the
context of Markov games. These ideas also underlie the work of Hayden et al.
in [27]. Here the authors extend the consideration of transient characteristics
as captured by the fluid approximation, to approximation of first passage
times, in the context of models generated from the stochastic process algebra
PEPA. Their approach for passage times related to individual components
is closely related to the fast simulation result and the work presented in this
paper. Through fast simulation we are able to reduce the model checking
problem on an extremely large CTMC to a model checking problem on a
relatively small ICTMC.



Model checking (time homogeneous) Continuous Time Markov Chains
(CTMC) against Continuous Stochastic Logic (CSL) specifications has a long
tradition in computer science [13, 14, 15]. At the core of our approach to
study time-bounded properties there are similarities to that developed in
[13], because we consider a transient analysis of a Markov chain whose struc-
ture has been modified to reflect the formula under consideration. But the
technical details of the transient analysis, and even the structural modifica-
tion, differ to reflect the time-inhomogeneous nature of the process we are
studying.

In contrast, the case of time-inhomogeneous CTMCs has received much
less attention. To the best of the authors’ knowledge, there has been no
previous proposal of an algorithm to model check CSL formulae on a ICTMC.
Nevertheless model checking of ICTMCs has been considered with respect to
other logics. Specifically, previous work includes model checking of Hennessy-
Milner Logic (HML) and Linear Time Logic (LTL) on ICTMC.

In [28], Katoen and Mereacre propose a model checking algorithm for
HML on ICTMC. Their work is based on the assumption of piecewise con-
stant rates (with a finite number of pieces) within the ICTMC. The model
checking algorithm is based on the computation of integrals and the solution
of algebraic equations with exponentials (for which a bound on the number
of zeros can be found).

LTL model checking for ICTMC, instead, has been proposed by Chen et
al. in [29]. The approach works for time-unbounded formulae by constructing
the product of the CTMC with a generalized Büchi automaton constructed
from the LTL formula, and then reducing the model checking problem to
computation of reachability of bottom strongly connected components in this
larger (pseudo)-CTMC. The authors also propose an algorithm for solving
time bounded reachability similar to the one considered in this paper (for
time-constant sets).

Another approach related to the work we present is the verification of
CTMC against deterministic time automata (DTA) specifications [30], in
which the verification works by taking the product of the CTMC with the
DTA, which is converted into a Piecewise Deterministic Markov Process
(PDMP, [31]), and then solving a reachability problem for the so-obtained
PDMP. This extends earlier work by Baier et al. [32] and Donatelli et al. [33].
These approaches were limited to considering only a single clock. This means
that they are able to avoid the consideration of ICTMC, in the case of [33],
through the use of supplementary variables and subordinate CTMCs.



In [34], Chen et al. consider the verification of time-homogenenous CTMC
against formulae in the the metric temporal logic (MTL). This entails finding
the probability of a set of timed paths that satisfy the formula over a fixed,
bounded time interval. The approach taken is one of approximation, based on
an estimate of the maximal number of discrete jumps that will be needed in
the CTMC, N , and timed constraints over the residence time within states
of a path with up to N steps. The probabilities are then determined by
numerically computing a multidimensional integral.

3. Preliminaries

In this section, we will introduce some backgound material needed in the
rest of the paper. First of all, we introduce a suitable notation to describe
the population models we are interested in. This is done in Section 3.1.
In particular, models will depend parametrically on the (initial) population
size, so that we are in fact defining a sequence of models. Then, in Section
3.2, we present the classic fluid limit theorem, which proves convergence of
a sequence of stochastic models to the solution of a differential equation. In
Section 3.3, instead, we describe fast simulation, a consequence of the fluid
limit theorem which connects the system view of the fluid limit to the single
agent view, providing a description of single agent behaviour in the limit. In
Section 3.4, we recall the basics of Continuous Stochastic Logic (CSL) model
checking. Finally, in Section 3.5, we present time-inhomogeneous Continuous
Time Markov Chains (ICTMC).

3.1. Modelling Language

In the following, we will describe a basic language for CTMC, in order to
fix the notation. We have in mind population models, where a population
of agents, possibly of different kinds, interact together through a finite set of
possible actions. To avoid a notational overhead, we assume that the number
of agents is constant during the simulation, and equal to N . Furthermore,
we do not explicitly distinguish between different classes of agents in the
notation.

In particular, let Y
(N)
i ∈ S represent the state of agent i, where S =

{1, 2, . . . , n} is the state space of each agent. Multiple classes of agents can be
represented in this way by suitably partitioning S into subsets, and allowing
state changes only within a single class. Notice that we made explicit the
dependence on N , the total population size.



A configuration of a system is thus represented by the tuple (Y
(N)

1 , . . . , Y
(N)
N ).

When dealing with population models, it is customary to assume that single
agents in the same internal state cannot be distinguished, hence we can move
from the agent representation to the system representation by introducing
variables counting how many agents are in each state. With this objective,
define

X
(N)
j =

N∑
i=1

1{Y (N)
i = j}, (1)

so that the system can be represented by the vector X(N) = (X
(N)
1 , . . . , X

(N)
n ),

whose dimension is independent of N . The domain of each variable X
(N)
j is

obviously {1, . . . , N}.
We will describe the evolution of the system by a set of transition rules at

this global level. This simplifies the description of synchronous interactions
between agents. The evolution from the perspective of a single agent will
be reconstructed from the system level dynamics. In particular, we assume
that X(N) is a CTMC (Continuous-Time Markov Chain), with a dynamics
described by a fixed number of transitions, collected in the set T (N). Each
transition τ ∈ T (N) is defined by a multi-set of update rules Rτ and by a
rate function r

(N)
τ . The multi-set1 Rτ contains update rules ρ ∈ Rτ of the

form i → j, where i, j ∈ S. Each rule specifies that an agent changes state
from i to j. Let mτ,i→j denote the multiplicity of the rule i → j in Rτ . We
assume that Rτ is independent of N , so that each transition involves a finite
and fixed number of individuals. Given a multi-set of update rules Rτ , we
can define the update vector vτ in the following way:

vτ =
∑

(i→j)∈Rτ

mτ,i→jej −
∑

(i→j)∈Rτ

mτ,i→jei,

where ei is the vector equal to one in position i and zero elsewhere. The
vector vτ gives the net change in the number of agents in each state i due to
the happening of a τ transition, taking multiplicities into account.

Hence, each transition changes the state from X(N) to X(N)+vτ . The rate
function r

(N)
τ (X) depends on the current state of the system, and specifies

the speed of the corresponding transition. It is assumed to be equal to zero if

1The fact that Rτ is a multi-set, allows us to model events in which agents in the same
state synchronise.
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Figure 1: Visual representation of the client server system of the running example.

there are not enough agents available to perform a τ transition. Furthermore,
it is required to be Lipschitz continuous. We indicate such a model by X (N) =
(X(N), T (N),x

(N)
0 ), where x

(N)
0 is the initial state of the model.

Given a model X (N), it is straightforward to construct the CTMC asso-
ciated with it, exhibiting its infinitesimal generator matrix. First, its state
space is D = {(x1, . . . , xn) | xi ∈ {1, . . . , N},

∑
i xi = N}. The infinitesimal

generator matrix Q, instead, is the D ×D matrix defined by

qx,x′ =
∑
{rτ (x) | τ ∈ T , x′ = x + vτ}.

We will indicate the state of such a CTMC at time t by X(t).

Example. We introduce now the main running example of the paper: we will
consider a model of a simple client-server system, in which a pool of clients
submits queries to a group of servers, waiting for a reply. In particular, the
client asks for information from a server and waits for it to reply. It can time-
out if too much time passes. The server, instead, after receiving a request
does some processing and then returns the answer. It can time-out while
processing and while it is ready to reply. After an action, it always logs data.



The client and server agents are visually depicted in Figure 1. The global
system is described by the following 8 variables:

• 4 variables for the client states: Crq, Cw, Crc, and Ct, with domain
[0, NC ], NC the total number of clients.

• 4 variables for the server states: Srq, Sp, Srp, and Sl, with domain
[0, NS], NS the total number of servers.

Furthermore, there are 9 transitions in total, corresponding to all possible
arrows of Figure 1. We list them below, stressing that synchronization be-
tween clients and servers has a rate computed using the minimum, in the
PEPA style [35], reflecting the strict pairing and handshaking nature of the
interaction.

• request: Rrequest = {Crq → Cw, Srq → Sp}, rrequest = kr ·min(Crq, Srq);

• reply: Rreply = {Cw → Ct, Srp → Sl}, rreply = min(kwCw, krpSrp);

• timeout (client): Rtimeout1 = {Cw → Crc}, rtimeout1 = ktoCw;

• recover: Rrecover = {Crc → Crq}, rrecover = krecCrc;

• think: Rthink = {Ct → Crq}, rthink = ktCt;

• logging: Rlogging = {Sl → Srq}, rlogging = klSl;

• process: Rprocess = {Sp → Srp}, rprocess = kpSp;

• timeout (server processing): Rtimeout2 = {Sp → Sl}, rtimeout2 = kstoSp;

• timeout (server replying): Rtimeout3 = {Srp → Sl}, rtimeout3 = kstoSrp;

As an example of the construction of the state change vectors vτ , we report
that for the first transition, which is equal to vrequest = eCw−eCrq+eSp−eSrq ,
i.e. 1 in the coordinates corresponding to variables Cw and Sp and -1 in the
coordinates of Crq and Srq.

The system-level models we have defined depend on the total population
N = NC +NS and on the ratio NS/NC between server and clients, which is
specified by the initial conditions. Increasing the total population N (keeping



fixed the client-server ratio), we obtain a sequence of models, and we are
interested in their limit behaviour, for N going to infinity.

In order to compare the models of such a sequence, we will normalize
them to the same scale, dividing each variable by N and thus introducing
the normalized variables X̂(N) = X(N)

N
. In the case of a constant popula-

tion, normalised variables are usually referred to as the occupancy measure,
as they represent the fraction of agents in each state. Update vectors are
scaled correspondingly, i.e. dividing them by N . Furthermore, we will also
require an appropriate scaling (in the limit) of the rate functions of the nor-
malized models. More precisely, let X (N) = (X(N), T (N),X0

(N)) be the N -th

non-normalized model and X̂ (N) = (X̂(N), T̂ (N), X̂
(N)
0 ) the corresponding nor-

malized model. We require that:

• initial conditions scale appropriately: X̂
(N)
0 = X0

(N)

N
;

• for each transition (vτ , r
(N)
τ (X)) of the non-normalized model, we let

r̂
(N)
τ (X̂) be the rate function expressed in the normalized variables (i.e.

after a change of variables). The corresponding transition in the nor-

malized model is (Rτ , r̂
(N)
τ (X̂)), with update vector equal to 1

N
vτ . We

assume that there exists a bounded and Lipschitz continuous function
fτ (X̂) : E → Rn on normalized variables (where E contains all domains

of all X̂ (N)), independent of N , such that r̂
(N)
τ (x)
N
→ fτ (x) uniformly on

E.

We will denote the state of the CTMC of the N -th non-normalized (resp.
normalized) model at time t as X(N)(t) (resp. X̂(N)(t)).

Example. Consider again the running example. If we want to scale the model
with respect to the scaling parameter N , we can increase the initial popula-
tion of clients and servers by a factor k (hence keeping the client-server ratio
constant), similarly to [36]. The condition on rates, in this case, automati-
cally holds due to their (piecewise) linear nature.

Remark 3.1. The conditions discussed in this section are necessary for the
fluid approximation theorem to hold. Fortunately, they are not very strin-
gent. Lipschitz continuity holds for most practically used rate functions,
including the minimum, the product and generalised mass action [24]. In
any case, any differentiable function defined on a compact set will be Lip-
schitz continuous. The condition on convergence of rates rescaled by N ,



furthermore, holds also in most circumstances, being trivially true for linear
functions, piecewise linear functions (e.g. defined by the minimum), multi-
affine functions [24]. For general non-linear rate functions, the convergence
of rates is usually enforced by appropriately scaling parameters with respect
to the total population N . However, the meaningfulness of such a scaling
has to be checked on a case by case basis.

3.2. Deterministic limit theorem

In order to present the “classic” deterministic limit theorem, we need to
introduce a few more concepts needed to construct the limit ODE. Consider
a sequence of normalized models X̂ (N) and let vτ be the (non-normalised)
update vectors. The drift F (N)(X̂) of X̂ is defined as

F (N)(X̂) =
∑
τ∈T̂

1

N
vτ r̂

(N)
τ (X̂) (2)

Furthermore, let fτ : E → Rn, τ ∈ T̂ be the limit rate functions of transitions
of X̂ (N). We define the limit drift of the model X̂ (N) as

F (X̂) =
∑
τ∈T̂

vτfτ (X̂) (3)

It is easily seen that the conditions of the previous subsection imply that
F (N)(x) → F (x) uniformly. The limit drift F can be seen as a vector field
in E, defining the limit ODE

dx

dt
= F (x), (4)

with initial conditions given by x(0) = x0 ∈ E. Given that F is Lipschitz in
E (as all fτ are), the ODE has a unique solution x(t) in E starting from x0.
Then, the following theorem can be proved [7, 8]:

Theorem 3.1 (Deterministic approximation [7, 8]). Let the sequence X̂(N)(t)
of Markov processes and x(t) be defined as before, and assume that there is
some point x0 ∈ E such that X̂(N)(0) → x0 in probability. Then, for any
finite time horizon T <∞, it holds that:

P
{

sup
0≤t≤T

||X̂(N)(t)− x(t)|| > ε

}
→ 0.



Notice that the theorem can be specialised to subsets E ′ ⊆ E, in which
case it can also provide an estimate of exit times from set E ′, see [8]. Fur-
thermore, if the initial conditions converge almost surely, then it also holds
that sup0≤t≤T ||X̂(N)(t)− x(t)|| → 0 almost surely [37].

3.3. Fast simulation

We now turn our attention back to a single individual in the population.
Even if the system-level dynamics, in the limit of a large population, becomes
deterministic, the dynamics of a single agent remains a stochastic process.
However, the fluid limit theorem implies that the dynamics of a single agent,
in the limit, becomes essentially dependent on the other agents only through
the global system state. This asymptotic decoupling allows us to find a
simpler Markov Chain for the evolution of the single agent. This result is
often known in the literature [9] under the name of fast simulation [23].

To explain this point formally, let us focus on a single individual Y
(N)
h ,

which is a Markov process on the state space S = {1, . . . , n}, conditional on
the global state of the population X̂(N)(t). Let Q(N)(x) be the infinitesimal

generator matrix of Y
(N)
h , described as a function of the normalized state of

the population X̂(N) = x, i.e.

P{Y (N)
h (t+ dt) = j | Y (N)

h (t) = i, X̂(N)(t) = x} = q
(N)
i,j (x)dt.

We stress that this is the exact Markov Chain for Y
(N)
h , conditional on

X̂(N)(t), and that Y
(N)
h (t) in general is not independent of X̂(N)(t).2 In fact,

without conditioning on X̂(N), Y
(N)
h (t) is not a Markov process. This means

that in order to capture its evolution in a Markovian setting, one has to
consider the Markov chain (Y

(N)
h (t), X̂(N)(t)).

Example. Consider the running example, and suppose we want to construct
the CTMC for a single client. For this purpose, we have to extract from the
specification of global transitions a set of local transitions for the client. The
state space of a client will consist of four states, Sc = {rq, w, t, rc}.

Then, we need to define its rate matrix Q(N). In order to do this, we
need to take into account all global transitions involving a client, and then
extract the rate at which a specific client can perform such a transition. As

2Independence would imply that all agents evolve independently from one another,
hence the model is in product form for any t.



a first example, consider the think transition, changing the state of a client
from t to rq. Its global rate is rthink = ktCt. As we have Ct clients in state t,
the rate at which a specific one will perform a think transition is ktCt

Ct
= kt.

Hence, we just need to divide the global rate of observing a think transition
by the total number of clients in state t. Notice that, as we are assuming
that one specific client is in state t, then Ct ≥ 1, hence we are not dividing
by zero.

Consider now a reply transition. In this case, the transition involves a
server and a client in state w. The global rate is rreply = min(kwCw, krpSrp),
and Cw ≥ 1 (in the non-normalized model with total population N). Divid-
ing this rate by Cw, we obtain min(kw, krp

Srp
Cw

), which is defined for Cw >
0. If we switch to normalised variables, we obtain a similar expression:
min(kw, krp

srp
cw

), which is independent of N . However, in taking N to the
limit we must be careful: even if in the non-normalized model Cw (and hence
cw) are always non-zero (if a specific agent is in state w), this may not be true
in the limit: if only one client is in state w, then the limit fraction of clients
in state w is zero (just take the limit of 1

N
). Hence, we need to take care of

boundary conditions, guaranteeing that the single-agent rate is defined also
in these circumstances. In this case, we can assume that the rate is zero if
srp is zero (whatever the value of cw), and that the rate is kw if cw is zero
but srp > 0.

In order to treat the previous set of cases in a homogeneous way, we make
the following assumption about rates:

Definition 3.1. Let τ ∈ T be a transition such that its update rule set
contains the rule i → j, with multiplicity mτ,i→j. The rate r

(N)
τ is single-

agent-i compatible if there exists a Lipschitz continuous function f iτ (x) on
normalized variables such that the limit rate on normalized variables fτ (x)
can be factorised as fτ (x) = xif

i
τ (x). A transition τ is single-agent compatible

if and only if it is single-agent-i compatible for any i appearing in the left-
hand side of an update rule.

Hence, the limit rate of observing a transition from i to j for a specific
agent in state i is mτ,i→jf

i
τ (x), where the factor mτ,i→j comes from the fact

that it is one out of mτ,i→j agents changing state from i to j due to τ .3

3The factor m stems from the following simple probabilistic argument: if we choose at
random m agents out of Xi, then the probability to select a specific agent is m

Xi
.



Then, assuming all transitions τ are single-agent compatible, we can de-
fine the rate q

(N)
i,j as

q
(N)
i,j (x)=

∑
τ∈T | {i→j}⊆Rτ

mτ,i→j
r

(N)
τ (x)

xi
=

∑
τ∈T̂ | {i→j}⊆Rτ

mτ,i→j
r̂

(N)
τ (x̂)

x̂i
= q

(N)
i,j (x̂).

It is then easy to check that

q
(N)
i,j (x)→ qi,j(x) =

∑
τ∈T | {i→j}⊆Rτ

mτ,i→j
fτ (x)

xi
=

∑
τ∈T̂ | {i→j}⊆Rτ

mτ,i→jf
i
τ (x).

In the following, we fix an integer k > 0 and let Z
(N)
k = (Y

(N)
1 , . . . , Y

(N)
k )

be the process tracking the state of k selected agents among the population,
with state space S = Sk. Notice that k is fixed and independent of N , so
that we will track k individuals embedded in a population that can be very
large.

Let x(t) be the solution of the fluid ODE, and assume we are under

the hypothesis of Theorem 3.1. Consider now z
(N)
k (t) and zk(t), the time-

inhomogeneous CTMCs on S defined by the following infinitesimal generators
(for any h = 1, . . . , k):

P{z(N)
k (t+dt)=(z1, . . . , j, . . . , zk) | z(N)

k (t)=(z1, . . . , i, . . . , zk)}=q
(N)
i,j (x(t))dt,

P{zk(t+ dt) = (z1, . . . , j, . . . , zk) | zk(t) = (z1, . . . , i, . . . , zk)} = qi,j(x(t))dt,

Notice that, while Z
(N)
k describes exactly the evolution of k agents, z

(N)
k

and zk do not. In fact, they are CTMCs in which the k agents evolve in-
dependently, each one with the same infinitesimal generator, depending on
the global state of the system via the fluid limit. We stress that the time-
inhomogeneity comes from the dependence of the generator on the solution
x(t) of the fluid ODE.

However, the following theorem can be proved [9]:

Theorem 3.2 (Fast simulation theorem). For any T < ∞, P{Z(N)
k (t) 6=

z
(N)
k (t), for some t ≤ T} → 0, and P{Zk(t) 6= zk(t), for some t ≤ T} → 0,

as N →∞.

This theorem states that, in the limit of an infinite population, each fixed
set of k agents will behave independently, sensing only the mean state of the



global system, described by the fluid limit x(t). Furthermore, those k agents
will evolve independently, as if there was no synchronisation between them.
This asymptotic decoupling of the system, holding for any set of k agents, is
also known in the literature under the name of propagation of chaos [6]. In
particular, this holds if we define the rate of the limit CTMC either by the
single-agent rates for population N (z

(N)
k ) or by the limit rates (zk). Note

that, when the CTMC has density dependent rates [37], then z
(N)
k (t) = zk(t),

as their infinitesimal generators will be the same.
We stress once again that the process Z

(N)
k (t) is not a Markov process.

It becomes a Markov process when considered together with X̂(N)(t). This
can be properly understood by observing that it is the projection of the
Markov process (Y

(N)
1 (t), . . . , Y

(N)
N (t)) on the first k coordinates, and recalling

that a projection of a Markov process need not be Markov (intuitively, we
can throw away some relevant information about the state of the process).

However, being the projection of a Markov process, the probability of Z
(N)
k (t)

at each time t is perfectly defined, and it can be obtained by marginalising
out the additional coordinates of (Y

(N)
1 (t), . . . , Y

(N)
N (t)).4 Nevertheless, its

non-Markovian nature has consequences for reachability probabilities and
the satisfiability of CSL formulae.

Example. Consider again the client-server example, and focus on a single
client. As said before, its state space is Sc = {rq, w, t, rc}, and the non-null
rates of the infinitesimal generator Q for the process z1 are:

• qrq,w(t) = kr min{1, srq(t)/crq(t)} (with appropriate boundary condi-
tions);

• qw,t(t) = min{kw, krpsrp(t)/cw(t)};

• qw,rc(t) = kto;

• qt,rq(t) = kt;

• qrc,rq(t) = krc.

In Figure 2, we show a comparison of the transient probabilities for the
approximating chain for a single client and the true transient probabilities,

4Formally, P{Z(N)
k (t) = (s1, . . . , sk)} =

∑
s∈SN−k P{(Y (N)

1 (t), . . . , Y
(N)
N (t)) =

(s1, . . . , sk, s)}.



estimated by Monte Carlo sampling of the CTMC, for different population
levels N . As we can see, the approximation is quite precise already for
N = 15.

Remark 3.2. Single-agent consistency is not a very restrictive condition.
However, there are cases in which it is not satisfied. One example is pas-
sive rates in PEPA [35]. In this case, in fact, the rate of the synchronization
of P = (α,>).P1 and Q = (α, r).Q1 is rXQ1{XP > 0}. In particular, the
rate is independent of the exact number of P agents. If we look at a single P -
agent, its rate equals r

XQ
XP

1{XP > 0}. Normalising variables, we get the rate

r
xQ
xP

1{xP > 0}, which approaches infinity as xP goes to zero (for xQ fixed).
Hence, it cannot be extended to a Lipschitz continuous function. However,
in the case xP = 0 and xQ > 0, if we look at a single agent, then the speed at
which P changes state is in fact infinite. We can see this by letting XP = 1
and XQ = Nq, so that the rate of the transition from the point of view of P
is Nq →∞. Thus, in the limit, the state XP = 0 becomes vanishing.

Remark 3.3. The hypothesis of constant population, i.e. the absence of birth
and death, can be relaxed. The fluid approximation continues to work also
in the presence of birth and death events, and so does the fast simulation
theorem. In our framework, birth and death can be easily introduced by
allowing rules of the form ∅ → i (for birth) and i→ ∅ (for death). In terms
of a single agent, death can be dealt with by adding a single absorbing state
to its local state space S. Birth, instead, means that we can choose the time
instant at which an agent enters the system (provided that there is a non-null
rate for birth transitions at the chosen time).

Another solution would be to assume an infinite pool of agents, among
which only finitely many can be alive, and the others are an infinite supply
of “fresh souls”. Even if this is plausible from the point of view of a global
model, it creates problems in terms of a single agent perspective (what is the
rate of birth of a soul?). A solution can be to assume a large but finite pool
of agents. But in this case birth becomes a passive action (and it introduces
discontinuities in the model, even if in many cases one can guarantee to
remain far away from the discontinuous boundary), hence we face the same
issues discussed in Remark 3.2.

3.4. Continuous Stochastic Logic

In this section we consider labelled stochastic processes. A labelled stochas-
tic process is a random process Z(t), with state space S and a labelling
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Figure 2: Comparison of the transient probability for all four states of the fluid model
of the client-server system, computed solving the Kolmogorov forward equations, and the
transient probability of CTMC models for N = 15 and N = 150 (2:1 client server ratio).
Parameters are kr = 1, kw = 100, kto = 0.01, kt = 1, krc = 100 kl = 10, kp = 0.1,
ksto = 0.005, initial conditions of the full system are Crq = n, Srq = m, while the single
client CTMC starts in state rq.



function L : S → 2P , associating with each state s ∈ S a subset of atomic
propositions L(s) ⊂ P = {a1, . . . , ak, . . .} true in that state: each atomic
proposition ai ∈ P is true in s if and only if ai ∈ L(s). We require that all
subsets of paths considered are measurable. This condition will be satisfied
by all subsets considered in the paper. It is satisfied for a CTMC or the
projection of a CTMC with constant rates, see [13]. It holds also for the
subsets of paths of the time-inhomogeneous CTMC we will work with, as we
will show in Section 5.

A path of Z(t) starting in state s0 at time t0 is a sequence

σ = s0
δ0−→ s1

δ1−→ . . . ,

such that the probability (density) of going from si to si+1 at time t0 + tσ[i],
with tσ[i] =

∑i
j=0 δj, is greater than zero. For CTMCs, this condition is

equivalent to qsi,si+1
(t0 + tσ[i]) > 0. Denote with σ@t the state of σ at time

t, with σ[i] the i-th state of σ, and with tσ[i] the time spent in the i-th state
σ[i] in σ.

A time-bounded CSL formula ϕ is defined by the following syntax:

ϕ = a | ϕ1 ∧ ϕ2 | ¬ϕ | P./ p(X[T1,T2]ϕ) | P./ p(ϕ1U
[T1,T2]ϕ2),

where T1, T2 ∈ R≥0, T1 ≤ T2 < ∞. The satisfiability relation of ϕ with
respect to a labelled stochastic process Z(t) is given by the following rules:

• s, t0 |= a if and only if a ∈ L(s);

• s, t0 |= ¬ϕ if and only if s, t0 6|= ϕ;

• s, t0 |= ϕ1 ∧ ϕ2 if and only if s, t0 |= ϕ1 and s, t0 |= ϕ2;

• s, t0 |= P./ p(X
[T1,T2]ϕ) if and only if P{σ | σ, t0 |= X[T1,T2]ϕ} ./ p.

• s, t0 |= P./p(ϕ1U
[T1,T2]ϕ2) if and only if P{σ | σ, t0 |= ϕ1U

[T1,T2]ϕ2} ./ p.

• σ, t0 |= X[T1,T2]ϕ if and only if tσ[1] ∈ [T1, T2] and σ[1], t0 + tσ[1] |= ϕ.

• σ, t0 |= ϕ1U
[T1,T2]ϕ2 if and only if ∃t̄ ∈ [t0 +T1, t0 +T2] s.t. σ@t̄, t̄ |= ϕ2

and ∀t0 ≤ t < t̄, σ@t, t |= ϕ1.



Notice that we are considering a fragment of CSL without the steady state
operator and allowing only time-bounded properties. This last restriction is
connected with the nature of convergence theorems 3.1 and 3.2, which hold
only on finite time horizons. However, see Remark 6.1 for possible relaxations
of this restriction.

Model checking of a next CSL formula P./p(X
[T1,T2]ϕ) is usually performed

by computing the next-state probability via an integral, and then compar-
ing the so-obtained value with the threshold p. Model checking of an until
CSL formula P./p(ϕ1U

[T1,T2]ϕ2) in a time-homogeneous CTMC Z(t), instead,
can be reduced to the computation of two reachability problems, which them-
selves can be solved by transient analysis [13]. In particular, consider the sets
of states U = J¬ϕ1K = {s ∈ S | s |= ¬ϕ1} and G = Jϕ2K = {s ∈ S | s |= ϕs}
and compute the probability π1

s1,s2
(T1) of going from state s1 6∈ U to a state

s2 6∈ U in T1 time units, in the CTMC in which all U -states are made ab-
sorbing. Furthermore, consider the modified CTMC in which all U and G
states are made absorbing, and denote by π2

s2,s3
(T2 − T1) the probability of

going from a state s2 6∈ U to a state s3 ∈ G in T2 − T1 units of time in
such a CTMC. Then the probability of the until formula in state s can be
computed as Ps(ϕ) =

∑
s3∈G,s2 6∈U π

1
s1,s2

(T1)π2
s2,s3

(T2 − T1). The probabilities

π1 and π2 can be computed using standard methods for transient analysis
(e.g. by uniformisation [38] or by solving the Kolmogorov equations [39]).
Then, to determine the truth value of the formula ϕ in state s, one has just
to solve the inequality Ps(ϕ) ./ p. The truth value of a generic CSL formula
can therefore be computed recursively on the structure of the formula.

3.5. Time-inhomogeneous Continuous Time Markov Chains

A time-inhomogeneous Continuous Time Markov Chain (ICTMC) is a
generalisation of a CTMC with time-dependent rates for state transitions,
so that the infinitesimal generator matrix Q(t) is dependent on time [39]. It
still satisfies the Markov property: the future behaviour depends only on the
current state and the current time, not on the history of how the state was
reached. We will denote a generic ICTMC on state space S by Z(t).

An ICTMC Z(t) is fully specified by its time-dependent infinitesimal gen-
erator matrix Q(t). From this, we can reconstruct the probability matrix
Π(t1, t2) of Z(t), whose entry πs1,s2(t1, t2) gives the probability of being in
state s2 at time t2 conditional on being in state s1 at time t1, by solving the
(generalised) Kolmogorov forward and backward equations. More specifically,
the Kolmogorov foward equation describes the time evolution of Π(t1, t2) as



a function of t2, and is written
∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2), while the back-

ward equation expresses how Π(t1, t2) varies with respect to t1, and it is
∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

For model checking purposes, we need to compute probabilities of sets of
trajectories of Z(t), which must be measurable according to the sigma-algebra
F on the set Paths of paths of Z(t). Such a sigma-algebra F , as customary,
is defined as the smallest sigma-algebra containing the cylinder sets C. Let I
be the set of non-empty intervals of R≥0 with rational endpoints. A cylinder
set Ct0(s0, I0, s1, . . . , In−1, sn), consists of all paths that are in s0 at time t0
and that jump to sj, 1 ≤ j ≤ n at a time t ∈ t0 ⊕ I0 ⊕ . . .⊕ Ij−1, where ⊕ is
the Minkowsky sum of two sets, defined as A⊕ B = {a+ b | a ∈ A, b ∈ B}.
The (countable) collection of cylinder sets starting at time t0 is called Ct0 ,
while C =

⋃
t0
Ct0 . The probability of a cylinder set Ct0(s0, I0, s1, . . . , In−1, sn)

is defined recursively as

P(Ct0(s0, I0, . . . , sn)) =

∫
t0⊕I0

qs0,s1(t)e
−Λ(t0,t)[s0]P(Ct(s1, I1, . . . , sn))dt,

where Λ(t0, t)[s] =

∫ t

t0

−qs,s(τ)dτ is the cumulative exit rate of state s from

time t0 to time t.

4. Fluid Model Checking

In this paper, we are mainly concerned with the following verification
problem:

Given a population model X (N) and a fixed subset of k agents, consider the
process Z

(N)
k (t) on the state space S = Sk. We want to check whether Z

(N)
k

satisfies a time-bounded CSL property ϕ in a state s ∈ S at time t0.

Considering the joint process (Z
(N)
k (t), X̂(N)(t)), which is a classic time-

homogeneous CTMC with state space S × D,5 we can try to solve the

5Of course, instead of X(N)(t) we can consider variables counting the state of the
remaining N − k processes, but for large N and small k, the gain in terms of number of
states is limited.



above mentioned verification problem with classic stochastic model check-
ing tools. More specifically, suppose we wish to compute the probability
of an until or a next path formula ψ. We can proceed by computing the
probability Pψ(s,x) = P{σ |= ψ | σ[0] = (s,x)} for each state (s,x) of

(Z
(N)
k , X̂(N)). As (Z

(N)
k , X̂(N)) is a time-homogeneous CTMC, this probabil-

ity is independent of the initial time, and can be computed with standard
means [13]. Now, fix a state s ∈ S of Z

(N)
k , and consider the probability

Ps,x(t | s) = P{(Z(N)
k , X̂(N))(t) = (s, x) | Z(N)

k (t) = s} of being in (s, x) at
time t, conditional on being in s, i.e.

Ps,x(t | s) = P{(Z(N)
k , X̂(N))(t) = (s, x)}/

∑
x

P{(Z(N)
k , X̂(N))(t) = (s,x)},

defined when the denominator is non-zero. Then, this is the initial distri-
bution of (Z

(N)
k , X̂(N)) that we have to take into account when computing

the path probability Pψ(s, t0) for Z
(N)
k , starting at time t0 in state s. By

marginalising X̂(N) (D̂ is the state space of X̂ in the equation below), it
follows that

Pψ(s, t0) =
∑
x∈D̂

Ps,x(t0 | s)Pψ(s,x), (5)

which depends on t0 via Ps,x(t0 | s). This has the consequence that, unlike for
standard model checking questions in time-homogeneous CTMCs, the truth
of P./ p(ψ), p ∈ [0, 1], for Z

(N)
k depends on the initial time t at which the

formula is evaluated. This immediately brings us to a choice, resulting in two
different model checking algorithms. The first possibility is to apply standard
model checking tools to the process (Z

(N)
k , X̂(N)) up to the top path formulae

(those not being subformulae of another path formula), and then apply the
marginalisation of equation (5) to them for any initial time of interest. We

will refer to this scheme as the (Z
(N)
k , X̂(N)) model checking. Alternatively,

we can marginalise the path probabilities for all path subformulae. This
latter choice, however, changes the nature of the model checking problem for
(Z

(N)
k , X̂(N)), forcing us to work with a proper time dependent satisfaction

relation while computing path probabilities of formulae containing nested
path subformulae. This means that, in a formula like ψ = ϕ1U

[T1,t2]ϕ2, the
states that satisfy ϕ1 or ϕ2 may depend on the time t at which such formulae
are evaluated. This second approach will be called the Z

(N)
k model checking.

The details of the effect of having to work with time-dependent satisfaction
relations are discussed in the next section.



It is clear that when the state space D is large, as is often the case
even for a moderate population size N , both approaches sketched above
are cursed by state space explosion. However, for large populations, the
fast simulation theorem (Theorem 3.2) tells us that Z

(N)
k (t) and zk(t) are

essentially indistinguishable for any finite time horizon. The idea of fluid
model checking is simply that of approximating the model checking problem
for Z

(N)
k (t) by replacing Z

(N)
k (t) with zk(t).

The advantage of this approach is that now we need to compute path
probabilities on the state space S, which is usually orders of magnitude
smaller than S ×D. The disadvantage is that zk(t) is a time-inhomogeneous
CTMC, and no CSL model checking algorithm is available off-the-shelf for
this class of models. Indeed, the model checking problem for ICTMC is
more difficult, especially when considering CSL formulae with nested path
operators. In fact, due to time-inhomogeneity, the satisfaction probability of
a path formula will depend on the initial time t0 at which it is evaluated, as
for Z

(N)
k (t). When comparing this probability with a bound p, we obtain that

the truth of a CSL formula in a given state can depend on the time at which
it is evaluated. This time dependency creates problems when computing
reachability probabilities for nested formulae, as the set to be reached can
change with time. A CSL model checking algorithm for ICTMC will be
discussed in Section 5.

Once we are able to check a CSL property in the limit model zk(t), the
question becomes that of understanding how the computed results relate to
the CSL model checking problem for Z

(N)
k (t). More specifically, we would

like to know whether the fact that a property ϕ is satisfied by zk(t) in state
s at time t0 tells us something about the satisfaction of the same property ϕ
by Z

(N)
k (t). A positive answer to this question will be provided in Section 6,

where we will prove that the satisfaction will be asymptotically the same, i.e.
that the fluid approximation will provide the correct answer for a sufficiently
large population size. Practical considerations and experimental results will
also be addressed.

Finally, Section 7 compares CSL model checking for (Z
(N)
k (t),X(N)(t)),

for Z
(N)
k (t), and for zk(t), showing again asymptotic consistency.

5. Model Checking ICTMC

In this section, we present the algorithmic procedures that underlie the
CSL model checking algorithm for a generic ICTMC Z(t) on state space S.



We will build up to this incrementally, focusing first on next state probabili-
ties in Section 5.1. In particular, we will show how to compute the probability
that the next state to which the chain jumps belongs to a given set of goal
states G ⊆ S, constraining the jump to happen within time [t0 +T1, t0 +T2],
where t0 is the current time. This is clearly at the basis of the computa-
tion of the probability of next path formulae. More specifically, we provide
algorithms for ICTMC, focussing on two versions of the next state proba-
bility: the case in which the set G is constant, and the case in which the
set G depends on time (i.e. a state may belong to G depending on time
t). In this latter case, we will talk about time-varying or time-dependent
sets, and we formally identify them with their (time-dependent) indicator
function G : R≥0 × S → {0, 1}, required to be measurable with respect to
the standard Borel sigma-algebra of R≥0. To ensure proper computability
of these probabilities, we will mainly work with time-varying sets enjoying
the finite variability property : G(t, s) can change value only a finite number
of time instants in any finite interval [t0, t1]. We will see how to enforce
this condition for the time-varying sets generated during the model checking
of a CSL formula by imposing an appropriate restriction on rate functions,
namely that they should be piecewise analytic, discussed in Section 5.2.

In Section 5.3, we will focus on the computation of reachability proba-
bilities. Essentially, we want to compute the probability of the set of traces
reaching some goal state G ⊆ S within T units of time, starting at time
t0 and avoiding unsafe states in U ⊆ S. Similarly to Section 5.1, we will
consider two versions of the reachability problem: one for constant goal and
unsafe sets, and one in which G and U depend on time.

Finally in Section 5.4, we will combine the previous methods into a CSL
model checking algorithm for ICTMC. As already hinted, the major conse-
quence of the time-inhomogeneity is that the truth value of ϕ in a state s
depends on the time t at which we evaluate such a formula. In particular,
ϕ may be true in state s at time t1, but false at a different time t2. Conse-
quently, the set of states that satisfy a CSL formula ϕ can be time depen-
dent, introducing an additional layer of complexity to the analysis. Indeed,
this requires the computation of next-state and reachability probabilities for
time-varying sets.

The problem of model checking CSL formulae on time-inhomogeneous
CTMC is difficult, and to the authors’ knowledge, there is no general method
in the literature. An exception is [28], in which the authors show a model
checking algorithm for the Hennessy-Milner logics, under the hypothesis of



piecewise constant rates. The method we put forward can cope with the
difficulties, but in general may require a large computational effort (for until
formulae, the systems of ODE to be solved is quadratic in the size of the state
space of the ICTMC, and it depends on the number of discontinuity points
of the sets U and G). However, we are interested in using this algorithm
to check properties of the fluid approximation zk, which is an abstract and
approximate model of the behaviour of a single or few agents. Usually, a
single agent has a very small state space; hence the given approaches to com-
pute next-state probability and reachability of time-varying sets are feasible
in practice for the application we have in mind.

5.1. Next-state Probability

We will start by defining the probabilities we want to compute.

Definition 5.1. Let Z(t) be a ICTMC with state space S and infinitesimal
generator matrix Q(t).

1. LetG ⊆ S. The constant-set next state probability Pnext(Z, t0, T1, T2, G)[s]
is the probability of the set Pathsnext(Z, s, t0, T1, T2, G) of trajectories
of Z whose first jump happens within time [t0 + T1, t0 + T2] and ends
in a state in G, starting at time t0 in state s. Pnext(Z, t0, T1, T2, G) is
the next state probability vector on S.

2. Let G : [t0, t1]×S → {0, 1} be a time-dependent set of finite variability
(identified with its indicator function, i.e. G(t) is the goal set at time t).
The time-varying-set next state probability Pnext(Z, t0, T1, T2, G(t))[s] is
the probability of the set Pathsnext(Z, s, t0, T1, T2, G) of trajectories of
Z whose first jump happens within time [t0 + T1, t0 + T2] and ends in
a state in G, starting at time t0 in state s.

In order for the previous definition to make sense, we need to show that
the sets of trajectories Pathsnext(Z, s, t0, T1, T2, G) are measurable according
to the sigma-algebra F on paths defined for ICTMC (see Section 3.5). The
proof of the following proposition involves simple measure-theoretic argu-
ments and is reported in Appendix A.

Proposition 5.1. Let G : [t0, t1] × S → {0, 1} be a time-dependent set and
Z(t) an ICTMC. Then Pathsnext(Z, s, t0, T1, T2, G) is measurable. �



Consider a generic ICTMC Z(t), and focus for the moment on a constant
set G ⊆ S. For any fixed t0, the probability Pnext(Z, t0, T1, T2, G)[s] that
Z(t)’s next jump happens at time t ∈ [t0 + T1, t0 + T2] and ends in a state of
G, given that Z(t) is in state s at time t0, is given by the following integral
[40, 28]

Pnext(Z, t0, T1, T2, G)[s] =

∫ t0+T2

t0+T1

qs,G(t) · e−Λ(t0,t)[s]dt, (6)

where Λ(t0, t)[s] =

∫ t

t0

−qs,s(τ)dτ , is the cumulative exit rate of state s from

time t0 to time t, and qs,G(t) =
∑

s′∈G qs,s′(t) is the rate of jumping from s
to a state s′ ∈ G at time t.

Equation 6 holds for the following reason. Let At be the event that the
first jump is into a G-state at some time τ ∈ [t0, t]. Then At1 ⊆ At2 for

t1 ≤ t2, and P{At} =

∫ t

t0

qs,G(t) · e−Λ(t0,t)[s]dt. We are interested in the

probability of the event A = At0+T2 \ At0+T1 , which has probability

P{A} = P{At0+T2} − P{At0+T1} =

∫ t0+T2

t0+T1

qs,G(t) · e−Λ(t0,t)[s]dt.

In order to compute Pnext(Z, t0, T1, T2, G)[s] for a given t0, we can numeri-
cally compute the integral, or differentiate both sides obtaining an ODE, and
integrate it with standard numerical methods. This simplifies the treatment
of the nested integral Λ(t0, t)[s] involved in the computation of Pnext. More
specifically, we can introduce two functions, P and L, initialise P (t0+T1) = 0
and L(t0 + T1) = Λ(t0, t0 + T1), and then integrate the following two ODEs
from time t0 + T1 to time t0 + T2:

d

dt
P (t) = qs,G(t) · e−L(t)

d

dt
L(t) = −qs,s(t)

(7)

However, for CSL model checking purposes, we need to compute
Pnext(Z, t0, T1, T2, G)[s] as a function of t0: P̄s(t0) = Pnext(Z, t0, T1, T2, G)[s].
One way of doing this is to compute the integral (6) for any t0. A better
approach is to use the differential formulation of the problem, and define a



function next-state-probability(Z, G, T1, T2, t0, t1)
for all s ∈ S do

Compute P̄s(t0) by solving ODE (7)
Compute P̄s(t) for t ∈ [t0, t1] by solving ODE (8)

end for
return P̄ (t), t ∈ [t0, t1]

end function

Figure 3: Algorithm for the computation of next-state probability P̄ (t), for any state s
and t ∈ [t0, t1]. Other input parameters are as in the text.

set of ODEs with the initial time t0 as independent variable. First, observe
that the derivative of P̄s(t0) with respect to t0 is

d

dt0
P̄s(t0) = qs,G(t0 + T2) · e−Λ(t0,t0+T2) − qs,G(t0 + T1) · e−Λ(t0,t0+T1)

+

∫ t0+T2

t0+T1

∂

∂t0
qs,G(t) · e−Λ(t0,t)dt

= qs,G(t0 + T2) · e−Λ(t0,t0+T2) − qs,G(t0 + T1) · e−Λ(t0,t0+T1)

− qs,s(t0)P̄s(t0)

Consequently, we can compute the next-state probability as a function of t0
by solving the following set of ODEs:

d

dt
P̄s(t) = qs,G(t+ T2) · e−L2(t) − qs,G(t+ T1) · e−L1(t) − qs,s(t)P̄s(t)

d

dt
L1(t) = −qs,s(t) + qs,s(t+ T1)

d

dt
L2(t) = −qs,s(t) + qs,s(t+ T2)

(8)

where L1(t) = Λ(t, t+ T1) and L2(t) = Λ(t, t+ T2).
Initial conditions are Ps(t0) = Pnext(Z, t0, T1, T2, G)[s], L1(t0) = Λ(t0, t0+T1),
and L2(t0) = Λ(t0, t0 +T2), and are computed solving the equations (7). The
algorithm is sketched in Figure 3.

We turn now to discuss the case of a time-varying next-state set G(t).
In this case, the only difference with respect to the constant-set case is that
the function q·,G(t) is piecewise continuous, rather than continuous. In fact,



each time a state s′ gains or loses membership of G(t), the range of the sum
defining q·,G(t) changes, and a discontinuity can be introduced. However, as
long as these discontinuities constitute a set of measure zero (for instance,
they are finite in number), this is not a problem: the integral (6) is defined
and absolutely continuous, and so is the solution of the set of ODEs (8)
(because the functions involved are discontinuous with respect to time). It
follows that the method for computing the next-state probability for constant
sets works also for time-varying sets.

Now, if we want to use this algorithm in a model checking routine, we
need to be able also to solve the equation P̄s(t) = p, for p ∈ [0, 1] and each
s ∈ S. In particular, for obvious computability reasons, we want the number
of solutions to this equation to be finite. This is unfortunately not true in
general, as even a smooth function can be equal to zero on an uncountable
and nowhere dense set of Lebesgue measure 0 (for instance, on the Cantor
set [41]).

Consequently, we have to introduce some restrictions on the class of func-
tions that we can use. In particular, we will require that the rate functions
of Z(t) are piecewise real analytic functions.

5.2. Piecewise Real Analytic Functions

A function f : I → R, I an open subset of R, is said to be analytic [42]
in I if and only if for each point t0 of I there is an open neighbourhood of I
in which f coincides with its Taylor series expansion around t0. Hence, f is
locally a power series. For a piecewise analytic function, we intend a function
from I → R, I an interval, such that there exists I1, . . . , Ik disjoint open in-
tervals, with I =

⋃
j Īj, such that f is analytic in each Ij. A similar definition

holds for functions from Rn to R, considering their multi-dimensional Taylor
expansion.

Analytic functions are a class of functions closed under addition, prod-
uct, composition, division (for non-zero analytic functions), differentiation
and integration. Piecewise analytic functions also satisfy these closure prop-
erties, by considering the intersections of their analytic sub-domains. Many
functions are analytic: polynomials, the exponential, logarithm, sine, cosine.
Using the previous closure properties, one can show that most of the func-
tions we work with in practice are analytic.

Analytic functions have two additional properties that make them par-
ticularly suitable in this context:



1. The zeros of an analytic function f in I, different from the constant
function zero, are isolated.6 In particular, if I is bounded, then the
number of zeros is finite. This is true also for the derivatives of any
order of the function f .

2. If f is analytic in a set E, then the solution x(t) of dx/dt = f(x) in E is
also analytic (this is a consequence of the Cauchy-Kowalevski theorem
[43]).

This second property, in particular, guarantees that if the rate functions
of Z(t) are piecewise analytic, then all the probability functions computed
solving the differential equations, like those introduced above, are also piece-
wise analytic.

Example. If we consider our running example, then it is easy to check that
the rate functions defining the infinitesimal generator matrices of interest are
piecewise analytic. In fact, even if the vector field of the fluid ODE is not
analytic, due to the minimum function, the two functions g1(x) and g2(x)
of which we take the minimum are analytic. Piecewise analyticity follows
from the fact that the solutions of the associated ODE cross the surface
g1(x)− g2(x) = 0 (where the minimum is not analytic) only a finite number
of times.

5.3. Reachability

In this section, we also consider two versions of the reachability problem:
one for constant goal and unsafe sets, and one in which G and U depend on
time. We will start by defining these problems for a generic ICTMC Z(t) on
state space S:

Definition 5.2. Let Z(t) be an ICTMC with state space S and infinitesimal
generator matrix Q(t).

1. Let U,G ⊆ S. The constant-set reachability Preach(Z, t0, T,G, U)[s] is
the probability of the set Pathsreach(Z, s, t0, T,G, U) of trajectories of
Z reaching a state in G without passing through a state in U , within
T time units, starting at time t0 in state s. Preach(Z, t0, T,G, U) is the
reachability probability vector on S.

6An isolated zero of a function f : I → R is a point z0 ∈ I such that f(z0) = 0 and
there is a neighbourhood W of z0 in I with f(x) 6= 0 for all x ∈W \ {z0}.



2. Let U,G : [t0, t1] × S → {0, 1} be time-dependent sets of finite vari-
ability. The time-varying-set reachability Preach(Z, t0, T,G(t), U(t))[s]
is the probability of the set Pathsreach(Z, s, t0, T,G(t), U(t)) of trajec-
tories of Z reaching a state in G(t) at time t ∈ [t0, t0 + T ] without
passing through a state in U(t′), for t′ ∈ [t0, t], starting at time t0 in
state s.

The previous definition requires the measurability of the sets of paths
considered, formally proved in Appendix A.

Proposition 5.2. Let G,U : [t0, t1] × S → {0, 1} be time-dependent set
of finite-variability and Z(t) an ICTMC. Then Pathsreach(Z, s, t0, T,G, U),
s ∈ S, is measurable. �

5.3.1. Constant-set reachability

We now focus on constant-set reachability, according to Definition 5.2.
As previously, let Z(t) be an ICTMC on S, with rate matrix Q(t) and initial
state Z(0) = Z0 ∈ S. We will solve the reachability problem in a standard
way, by reducing it to the computation of transient probabilities in a modified
ICTMC [13]. The solution is similar to the one proposed in [29].

Recall that Π(t1, t2) is the probability matrix of Z(t), in which entry
πs1,s2(t1, t2) gives the probability of being in state s2 at time t2, given that
we were in state s1 at time t1 and the time evolution of Π(t1, t2) is described
by the Kolmogorov forward and backward equations. Specifically, the for-
ward equation is ∂Π(t1,t2)

∂t2
= Π(t1, t2)Q(t2), while the backward equation is

∂Π(t1,t2)
∂t1

= −Q(t1)Π(t1, t2).
The constant-set reachability problem, for a given initial time t0, can be

solved by integration of the forward Kolmogorov equation (with initial value
given by the identity matrix) in the modified ICTMC Z ′(t), with infinites-
imal generator matrix Q′(t), in which all unsafe states and goal states are
made absorbing [13] (i.e. q′s1,s2(t) = 0, for each s1 ∈ G ∪ U). In particular,
Preach(Z, t0, T,G, U) = Π′(t0, t0 + T )eG, where eG is an n × 1 vector equal
to 1 if s ∈ G and 0 otherwise, and Π′ is the probability matrix of the mod-
ified ICTMC Z ′.7 We emphasise that, in order for the initial value problem

7Clearly, alternative ways of computing the transient probability, like uniformization
for ICTMC [44], could also be used. However, we stick to the ODE formulation in order
to deal with the dependency on the initial time t0.



defined by the Kolmogorov forward equation to be well posed, the infinites-
imal generator matrix Q(t) has to be sufficiently regular (e.g. bounded and
integrable).

As already remarked, in contrast with time-homogeneous CTMC, the
reachability probability for ICTMC can depend on the initial time t0 at
which we start the process. Consider now the problem of computing P (t) =
Preach(Z, t, T,G, U) as a function of t ∈ [t0, t1]. To this end, we can solve the
forward equation for t0 and then use the chain rule to define a differential
equation for Π(t, t+T ), solving it using Π(t0, t0 +T ) as the initial condition,
i.e.

d

dt
Π(t, t+ T ) =

∂

∂t
Π(t, t+ T ) +

∂

∂(t+ T )
Π(t, t+ T )

d

dt
(t+ T )

= −Q(t)Π(t, t+ T ) + Π(t, t+ T )Q(t+ T ).

(9)

Using a numerical solver for the ODE, this gives an effective algorithm
(Figure 4) to compute the probability of interest (for any fixed error bound).
Furthermore, if we can guarantee that the number of zeros of the equation
P (t) − p is finite, then we also have an effective procedure to compute the
truth value of P (t) ./ p, as a function of time8, for ./∈ {<,≤,≥, >} (provided
we can find those zeros, as will be discussed in Section 5.4).

Example. We consider the time-inhomogeneous CTMC obtained by con-
structing the fluid limit of a single client in the client-server example of
Section 3.1. We consider two reachability probabilities:

1. The probability of observing a time-out before being served for the
first time within time T . This is a reachability problem with goal set
G = {rc} and unsafe set U = {rq, w}.

2. The probability of observing a timeout within time T . This is a reach-
ability problem with goal set G = {rc} and unsafe set U = ∅.9

In Figures 8(a) and 9(a), we can find these reachability probabities computed
with the method just presented, as a function of the time horizon T . In

8In fact, we can compute with arbitrary precision the times at which the truth value
changes in any state. Therefore, we can compute a truth value function which will be arbi-
trarily close to the “true” one, in a functional sense, i.e. according to a metric synchronising
nearby jumps, similar to the Skorokhod one [45].

9In fact, this is a first passage time problem.



function reachability-constant-set(Z, T , G, U , t0, t1)
Construct the CTMC in which G and U states are absorbing, with rate

matrix Q′(t).
Compute Π′(t0, t0 + T ) by solving the forward Kolmogorov ODE for

the modified CTMC.
Compute Π′(t, t+T ) for t ∈ [t0, t1] by solving ODE (9) for the modified

CTMC with initial conditions Π′(t0, t0 + T ).
return P (t) = Π′(t0, t0 + T )eG, t ∈ [t0, t1].

end function

Figure 4: Algorithm for the computation of reachability probability P (t) for t ∈ [t0, t1]
and constant goal and unsafe sets G and U . Other input parameters are as in the text.

Figures 8(c) and 9(c), instead, we plotted the reachability probability for
both problems 1 and 2 for T = 50 as a function of the initial time t0 ∈ [0, 25]
(blue solid line).

5.3.2. Time-varying set reachability

Now we turn our attention to the reachability problem for time-varying
sets. The main difficulty in this case is that, at each time Ti in which the
goal or the unsafe set changes, also the modified Markov chain that we need
to consider to compute the reachability probability changes structure. This
can have the effect of introducing a discontinuity in the probability matrix.

In particular, if at time Ti a state s becomes a goal state, then the prob-
ability πs1,s(t, Ti) suddenly needs to be added to the reachability probability
from state s1. Therefore, a change in the goal set at time Ti introduces a
discontinuity in the reachability probability at time Ti. Similarly, if a state
s was safe and then becomes unsafe, we have to discard the probability of
trajectories that are in that state at time Ti, as those trajectories become
suddenly unsafe.

As previously, let G(t) and U(t) be the goal and unsafe sets, satisfying the
finite variability property, i.e. such that the set of time points at which G or
U change value (at least in one state) is finite and equal to T1 ≤ T2 . . . ≤ Tk.
This can be enforced by requiring that rate functions are piecewise analytic.
Let T0 = t and Tk+1 = t+ T .

In order to compute the reachability probability, we can exploit the semi-
group property of the Markov process, stating that Π(T0, Tk+1) =∏k

i=0 Π(Ti, Ti+1). Then, we also need to deal appropriately with the disconti-



nuity effects at each time Ti, mentioned above. We proceed in the following
way:

1. We double the state space, letting S̃ = S ∪ S̄, where a state s̄ ∈ S̄
represents state s when it is a goal state (cf. below for the definition
of Q̃(t)). Hence, in the probability matrix Π̃, π̃s1,s̄2 is the probability
of having reached s2 avoiding unsafe states, while s2 was a goal state.

2. Consider a discontinuity time Ti and let t1 ∈ [Ti−1, Ti) and t2 ∈ (Ti, Ti+1].
Define W (t) = S \ (G(t)∪U(t)). Then, for s1 ∈ W (t1) and s2 ∈ W (t2),
the probability of being in s2 at time t2, given that we were in s1

at time t1 and avoiding both unsafe and goal sets, can be written as
π̃s1,s2(t1, t2) =

∑
s∈W (t1)∩W (t2) π̃s1,s(t1, Ti)π̃s,s2(Ti, t2). Hence, we have

to appropriately restrict the summation set at time Ti, to account for
changes in W .

3. Consider again a discontinuity time Ti and let t1 ∈ [Ti−1, Ti) and t2 ∈
(Ti, Ti+1]. Suppose s2 ∈ W (t1) and s2 ∈ G(t2). Then, the probability
of reaching the goal state s2 at time t2, given that at time t1 we were
in s1, can be written as

π̃s1,s2(t1, Ti) +
∑

s∈W (t1)∩W (t2)

π̃s1,s(t1, Ti)π̃s,s̄2(Ti, t2).

The first term is needed because all safe trajectories that are in state
s2 at time Ti suddenly become trajectories satisfying the reachability
problem, hence we have to add them to compute the reachability prob-
ability. The second term computes the probability of remaining in a
safe path from time t1 to Ti, being at time Ti in a state that remains safe
even after the discontinuous change at time Ti, and then reaching s2 via
a safe path during time [Ti, t2]. As the goal state s2 cannot be reached
in other ways during time [t1, t2], the expression above computes the
probability correctly.

All the previous remarks can be formally incorporated into the semi-group
expansion of Π̃(t, t + T ) by multiplying on the right each term Π̃(Ti, Ti+1)
by a suitable 0/1 matrix, depending only on the structural changes at time
Ti+1. Let |S| = n and let ζW (Ti) be the n × n matrix equal to 1 only on
the diagonal elements corresponding to states sj belonging to both W (T−i )
and W (T+

i ) (i.e. states that are safe and not goals both before and after



Ti), and equal to 0 elsewhere. Furthermore, let ζG(Ti) be the n × n matrix
equal to 1 in the diagonal elements corresponding to states sj belonging to
W (T−i )∩G(T+

i ), and zero elsewhere. Finally, let ζ(Ti) be the 2n×2n matrix
defined by:

ζ(Ti) =

(
ζW (Ti) ζG(Ti)

0 I

)
.

Consider now the following ICTMC Z̃ on S̃, with rate matrix Q̃(t), where

1. for s̄1 ∈ S̄ and any s2 ∈ S̃, q̃s̄1,s2(t) = 0;

2. for s1 6∈ W (t) and all s2 ∈ S̃, q̃s1,s2(t) = 0

3. for s1 ∈ W (t) and s2 ∈ S \G(t), q̃s1,s2(t) = qs1,s2(t), while q̃s1,s̄2(t) = 0;

4. for s1 ∈ W (t) and s2 ∈ G(t), q̃s1,s̄2(t) = qs1,s2(t), while q̃s1,s2(t) = 0.

In the previous chain, all unsafe and goal states are absorbing, while
transitions leading from a safe state s to a goal state are readdressed to the
copy s̄ of s. States in S̄ are absorbing, too.

Now let Π̃(t1, t2) be the probability matrix associated with the ICTMC
Q̃(t). Given the interval I = [t, t + T ], we indicate with T1, . . . , TkI the
ordered sequence of discontinuity points of goal and unsafe sets internal to
I. Let

Υ(t, t+ T ) = Π̃(t, T1)ζ(T1)Π̃(T1, T2)ζ(T2) · · · ζ(TkI )Π̃(TkI , t+ T ). (10)

Then, we have that

Ps(t) = Preach(Z, t, T,G, U)[s] =
∑
s̄1∈S̄

Υs,s̄1(t, t+ T ) + 1{s ∈ G(t)}, (11)

where the first term takes into account the probability of reaching a goal
state starting from a non-goal state, while the second term is needed to
properly account for states s ∈ G(t), for which Ps(t) has to be equal to
1 (a formal proof can be given by induction on the number of discontinuity
points). Υ(t, t+T ) can be obtained by computing each Π̃(Ti, Ti+1) solving the
associated forward Kolmogorov equation and then multiplying those matrices
and the appropriate ζ ones, according to the definition of Υ.

If we want to compute P (t) as a function of t, instead, we need a way
to compute Υ(t, t + T ) as a function of t. This can be done by observing
that Υ depends on t only from the first and last factors in the multiplica-
tion. Defining Γ(T1, Tk) = ζ(T1)Π̃(T1, T2)ζ(T2) · · · Π̃(Tk−1, Tk)ζ(Tk), writing



Υ(t, t + T ) = Π̃(t, T1)Γ(T1, Tk)Π̃(Tk, t + T ), differentiating with respect to t
and applying the forward or backward equation for Π̃, we find the following
differential equation for Υ:

dΥ(t, t+ T )

dt
= −Q̃(t)Υ(t, t+ T ) + Υ(t, t+ T )Q̃(t+ T ). (12)

This equation holds until either t or t + T becomes equal to a discontinuity
point. When this happens, the integration has to be stopped and restarted,
recomputing Υ accordingly.

Practically, to solve this problem we can proceed as follows:

1. Given an interval [t0, t1] of interest for the reachability, find all discon-
tinuity points of the sets G and U contained in [t0, t1 + T ], and let
them be t0 = T0 < T1 < . . . < Tk < Tk+1 = t1 + T . Furthermore, let
T ′i = Ti + T for i = 0, . . . , k, let pre(t) be the greatest Tj preceding t,
and post(t) the smallest Tj following t.

2. Compute Π̃(Ti, Ti+1) and Π̃(pre(T ′i ), T
′
i ) for i ≤ k, using the forward

Kolmogorov equations10. Compute also each ζ(Ti).

3. Compute Υ(t0, t0 + T ) and integrate until time t = min{T1, Tj+1 − T},
where t0 + T ∈ [Tj, Tj+1].

4. If t + T = Tj+1, multiply Υ on the right by ζ(Tj+1) and continue the
integration. If t = T1, then recompute Υ as Π̃(T1, T2)Γ(T2, Tj)Π̃(Tj, T1+
T ), where Π̃(Tj, T1 + T ) = Π̃(pre(T ′1), T ′1).

5. Integrate piecewise using the previous rules until time t1.

A more detailed algorithmic presentation of the procedure is shown in
Figure 5. Notice that, if the infinitesimal generator matrix Q(t) of Z is suf-
ficiently well-behaved (for instance, Lipschitz continuous), then the function
P (t) will be at least piecewise continuous, with a finite number of disconti-
nuity points at instants Ti and T ′i .

Remark 5.1. The precise behaviour of the G and U functions at their discon-
tinuity points (i.e. if they are left-continuous or right-continuous) is irrelevant
for the computation of Υ: the set of trajectories of Z differing in those time
points has probability 0.

10Notice, that, if Tj = pre(T ′i ), then Π̃(Tj , T
′
i ) and Π̃(Tj , Tj+1) can be computed during

the same numerical integration of the forward equation.



function reachability(Z, T , G, U , t0, t1)
Construct the CTMC on the modified state space S̃, according to the

recipe in the text.
Let t0 = T0, T1, . . . , Tk, Tk+1 = t1 + T be the time instants at which G

or U has a discontinuity.
for i = 0 to k do

Compute Π̃(Ti, Ti+1) and Π̃(pre(Ti + T ), Ti + T ) using the forward
Kolmogorov equations

end for
Compute Υ(t0, t0 + T ) according to equation (10) and P (t0) according

to equation (11)
t← t0
repeat

Ta ← post(t)
Tb ← post(t+ T )
t̄← min{Ta, Tb − T}
Compute Υ and P from t to t̄, according to ODE (12) and equation

(11), with initial conditions Υ(t, t+ T ) (previously computed).
if t̄+ T = Tb then

Υ(t̄, t̄+ T )← Υ(t̄, t̄+ T )ζ(Tb)
else if t̄ = Ta then

Υ(t̄, t̄+T )←Π̃(Ta, post(Ta))Γ(post(Ta), pre(Tb))Π̃(pre(Tb),Tb+T )
end if
t← t̄

until t ≥ t1
return [Υ(t, t+ T ), P (t)], t ∈ [t0, t1].

end function

Figure 5: Algorithm for the computation of reachability probability P (t) for t ∈ [t0, t1] and
time-varying goal and unsafe sets G(t) and U(t), with a finite number of discontinuities.
Other input parameters are as in the text.

Remark 5.2. In the previous method, we need to repeatedly integrate a set
4n2 differential equations. However, most of these variables are redundant.
In fact, we only need n2 variables for the probability transition matrix Π on
S and an additional n variables to store the reachability probability vector.
The method presented above can be easily reconfigured to this restricted set
of variables.



5.4. The CSL Model Checking Algorithm

We now combine the previous numerical routines into a CSL model check-
ing algorithm for ICTMC. Before doing this, we need to guarantee that the
set of paths involved in the definition of the semantics of CSL formulae are
measurable. This is proved in the following proposition (see Appendix A for
technical details) by combining Propositions 5.1 and 5.2 with the fact that
the piecewise analytic nature of rates preserves the finite variability property.

Proposition 5.3. Let Z(t) be a ICTMC with piecewise analytic time-dependent
rate matrix Q(t). Then

1. The time-dependent set of states JϕK = JϕK(t) that satisfy a CSL for-
mula ϕ has the finite variability property.

2. The set of paths Paths(s, t0, ψ) that satisfy a CSL path formula ϕ start-
ing in state s at time t0 is measurable. �

Consider now an until CSL formula ϕ = P./p(ϕ1U
[0,T ]ϕ2), where ϕ1 and

ϕ2 are boolean combinations of atomic propositions. The major consequence
of the time-inhomogeneity of Z(t) is that the truth value of ϕ in a state s
depends on the time t at which we evaluate such a formula. In particular, ϕ
may be true in state s at time t1, but false at a different time t2. Consequently,
the set of states that satisfy a CSL formula ϕ can be time dependent, hence
nesting ϕ into a larger temporal formula requires the computation of next-
state and reachability probabilities for time-varying sets. There is a similar
problem with next formulae of the form ϕ = P./ p(X[Ta,Tb]ϕ1), as the next-
state probability also depends on the evaluation time t.

The computation of next-state probabilities for time-varying target sets
can be done by the method presented in Section 5.1, in particular the algo-
rithm in Figure 3.

The algorithm of Section 5.3.2 for computing reachability in the presence
of piecewise constant goal and update sets, instead, is the core procedure
to compute the probability of an until formula. In fact, consider the path
formula ϕ1U

[Ta,Tb]ϕ2. To compute its probability for initial time in [t0, t1],11

we solve two reachability problems separately and then combine the results.

11The appropriate values of t0 and t1 are to be deduced from ϕ1, ϕ2 and the superformula
of the until, in a standard way [46]



The first reachability problem is for unsafe set U1 = J¬ϕ1K and empty
goal set G(t + Ta) = ∅. Let Υ1(t, t + Ta) be the probability matrix of this
reachability problem. In order for the computation of the until probability
to work, we must then discard the probability of being in an unsafe state,
essentially multiplying Υ1(t, t + Ta) by ζ1(t + Ta) on the right (see Section
5.3.2).12

The second reachability problem is for unsafe set U = J¬ϕ1K and goal set
G = Jϕ2K, and is solved for initial time t ∈ [t0 +Ta, t1 +Ta], and time horizon
Tb− Ta. Let Υ2(t+ Ta, t+ Tb) be the function computed by the algorithm in
Section 5.3.2 for this second problem. Then, for each state s, safe at time t,
we compute P (t) = Υ1(t, t + Ta)ζ

1(t + Ta)Υ
2(t + Ta, t + Tb)eS̄ , where eS̄ is

the vector equal to 1 for states s̄ ∈ S̄ and zero elsewhere. Ps(t) contains the
probability of the until formula in state s. Then, we can determine if state s
at time t satisfies P./ p(ϕ1U

[Ta,Tb]ϕ2) by solving the inequality Ps(t) ./ p.
This provides an algorithm to approximately solve the CSL model check-

ing for ICTMC recursively on the structure of the formula, provided that
the number of discontinuities of sets satisfying a formula is finite and that
we are able to find all the zeros of the computed probability functions, to
construct the proper time-dependent satisfiability sets (or approximations
thereof). The full procedure is sketched in Figure 6.

Example. As an example of the functioning of the CSL model checking for
ICTMC, we consider the client-server running example, more specifically the
time-inhomogeneous CTMC obtained by constructing the fluid limit of a sin-
gle client discussed at the end of Section 3.3. Consider the until path formula
trueU [0,50] timeout, where timeout is true only in state rc. Its probability, as
a function of the initial time, is shown in Figures 7(a), 7(b), and 7(c), for
the states rq, w, and t, respectively. In the same figures, we also show the
time-dependent truth of the CSL formula P<0.167(trueU [0,50] timeout), which
is obtained by solving the inequality Ps(t) < 0.167, where Ps(t) is a time-
dependent probability function. In this case, we can observe that for time
t0 ∈ [0, 100], there is only one solution, as the probability is monotone. This
depends on the solution of the fluid equations. In this case, in fact, they

12In fact, this reachability problem can be solved in a simpler way: it just requires
trajectories not to enter an unsafe state, and then collects the probability to be in a safe
state at the time t+Ta. In particular, we can get rid of the copy S̄ of the state space, and
define a simplified Υ function using ζW matrices instead of ζ ones.



function CSL MC(Z, ϕ, t0, t1) . Computes V (t), where
V�s(t) = I{s, t |= ϕ} for s ∈ S and t ∈ [t0, t1].

if ϕ = p then
V (t) is such that V�s(t)← I{p ∈ L(s)}, for s ∈ S

else if ϕ = ¬ϕ1 then
V1 ← CSL MC(Z, ϕ1, t0, t1)
V (t)← 1− V1(t)

else if ϕ = ϕ1 ∧ ϕ2 then
V1 ← CSL MC(Z, ϕ1, t0, t1)
V2 ← CSL MC(Z, ϕ2, t0, t1)
V (t)← min{V1(t), V2(t)}

else if ϕ = P./p(X[Ta,Tb]ϕ1) then
V1 ← CSL MC(Z, ϕ1, t0, t1)
P̄ ← next-state-probability(Z, V1, Ta, Tb, t0, t1)
V (t)← I{P̄ (t) ./ p}

else if ϕ = P./p(ϕ1U
[Ta,Tb]ϕ2) then

V1 ← CSL MC(Z,¬ϕ1, t0, t1 + Tb)
V2 ← CSL MC(Z, ϕ2, t0, t1 + Tb)
Υ1 ← reachability(Z, Ta, ∅, V1, t0, t1 + Ta)[1] . Returns Υ

component of reachability.
Υ2 ← reachability(Z, Tb − Ta, V2, V1, t0 + Ta, t1 + Tb)[1]
P (t) = Υ1(t, t+ Ta)ζ

1(t+ Ta)Υ
2(t+ Ta, t+ Tb)eS̄

V (t)← I{P (t) ./ p}
end if
return V

end function

Figure 6: Core algorithm for solving the CSL model checking problem, by computing
the satisfiability of a CSL-formula ϕ as a function of the time t ∈ [t0, t1] at which it is
evaluated. The truth value of ϕ is then the value it has in t0, which is usually 0.

converge to a steady state, hence we do expect that also the time dependent
truth value of CSL until formulae stabilises (when the fluid ODE are close to
steady state, the rates of the ICTMC are practically constant). This suggests
that in many practical cases, the number of changes of truth value of until
formulae will be very small, as in the running example. Notice that in the
case of the running example, if we had chosen a threshold bigger, say, than
0.25, then the time-dependent truth formulae would have been a constant



function.
In Figure 7(d), instead, we show the probability of the path formula

true U[0,T ](P<0.167(trueU [0,50] timeout)),

as a function of the time horizon T . In the plot, it is evident how this
probability has discontinuities at those time instants when the truth value
function of its until sub-formula changes. These discontinuities differentiate
the model checking of ICTMC from that of time-homogeneous CTMC.

5.5. Decidability of the CSL Model Checking for ICTMC

We will now consider the model checking algorithm of the previous sub-
section in more detail, focussing particularly on correctness and termination.
In this consideration we will make the following assumption about the nu-
merical algorithms that it uses.

Assumption 1. There are interval arithmetic routines that can compute bound-
ing sets for the rate functions of Z(t), in such a way that the approximation
error can be made arbitrary small. We call such functions interval com-
putable.13

Notice that this assumption is not very restrictive. It applies to all the
standard functions, and also to solutions of ODEs of functions which satisfy
it, to derivatives of these functions and to their integrals [47, 48]. In par-
ticular, if the rate functions are interval computable, then so will be all the
probabilities computed by solving reachability problems.

The approach presented above relies on, in addition to the solution of
ODEs, also two other key numerical operations: given a computable real
number p, determine if p is zero and given an analytic function f , find all the
zeros of such a function (or better an interval approximation of these zeros of
arbitrary accuracy). However, it is not clear if these two operations can be
carried out effectively for any input that we can generate (see Remark 5.4 for
further comments). Therefore, we need some further assumptions. Instead
of restricting the class of functions (which seems a difficult problem since
we have to consider the solution of differential equations), we will follow the

13More formally, for any interval computable function f : Rn → R there is an effective
algorithm that takes as input a point x ∈ Rn and an ε > 0 and returns an interval
[a, b] ⊆ R such that b− a < ε and f(x) ∈ [a, b].
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Figure 7: Figures 7(a), 7(b), and 7(c). Probability of the formula trueU[0,50] timeout, for
varying initial time, and different initial states (rq, w, and t respectively). The dotted line
shows the time varying truth function for the CSL formula P<0.167(trueU[0,50]timeout)),
which is obtained by finding the zeros of the initial-time dependent probability. Figure
7(d). Probability of the until path formula trueU[0,T ](P<0.167(trueU[0,50] timeout)), as
a function of time bound T . Vertical dotted lines show the discontinuity points of the
time-dependent truth of the until sub-formula.

approach of [49], introducing a notion of robust CSL formula and proving
decidability for this subset of formulae. This will not solve the decidability
problem in theory, but makes it quasi-decidable [49], which may be enough
in practice. As we will see, the set of CSL formulae which are not robust has
measure zero (see Theorem 5.2).



5.5.1. Robust CSL formulae

In order to introduce the concept of robust CSL formula, we first need
some ancillary notions, concerned with robustness of time-varying sets. The
first definition introduces a robust time-varying set in terms of the notion of
piecewise real analytic function. The second definition, instead, guarantees
the preservation of robustness with respect to boolean operations on time-
varying sets.

Definition 5.3. A time-dependent subset V (t) of S, t ∈ I, is robust if
and only if there is a piecewise analytic function hV : S × I → R and an
operator ./ ∈ {<,≤,≥, >}, such that for each s ∈ S, the indicator function
V�s : I → {0, 1} of s is given by 1{hV (s, t) ./ 0}, and it further satisfies:

1. the number of discontinuity pointsDisc(V ) = {(s, t̄) | V�s(t̄−) 6= V�s(t̄
+)}

is finite;

2. if hV is analytic in (s, t) and hV (s, t) = 0, then d
dt
hV (s, t) 6= 0 (zeros of

hV are simple);

3. if hV is not analytic in (s, t), then hV (s, t−) 6= 0 and hV (s, t+) 6= 0.14

In the following, we will usually indicate with V (t) both a time dependent
set V and its indicator function (with values in {0, 1}m, m = |S|), and use
hV to denote the piecewise analytic function defining it.

Definition 5.4. Two time varying sets V 1 and V 2 are compatible if and only
if they do not have a discontinuity at the same time for the same state s:
∀s ∈ S, Disc(V 1

�s) ∩Disc(V 2
�s) = ∅.

Consider now a CSL formula ϕ and let p1, . . . , pk be the constants appear-
ing in the P./p path quantifiers of next and until sub-formulae of ϕ. We will
treat ϕ = ϕ(p1, . . . , pk) as a function of those p1, . . . , pk. Furthermore, we
will call the next or until sub-formulae of ϕ top next sub-formulae or top un-
til sub-formulae if they are not sub-formulae of other next or until formulae.
The other next or until formulae will be called dependent.

14This condition states that, if hV is continuous but not analytic in (s, t), then
it cannot be equal to zero in those points, implying that first order derivatives ex-
ist and are non-null in all continuity points in which hV crosses zero. Moreover, if
hV (s, t−) 6= hV (s, t+), hV can cross zero in (s, t) only if the jump contains zero, meaning
that min{hV (s, t−), hV (s, t+)} < 0 < max{hV (s, t−), hV (s, t+)} .



Definition 5.5. A CSL formula ϕ = ϕ(p), p ∈ [0, 1]k is robust if and only if

1. There is an open neighbourhood W of p in [0, 1]k such that for each
p1 ∈ W ,

s, 0 |= ϕ(p)⇔ s, 0 |= ϕ(p1).

2. The time-varying sets of any dependent next or until sub-formula of ϕ
are robust.

3. The time-varying sets of sub-formulae of ϕ that are part of the same
until formula or of a conjunction/disjunction are compatible.

Example. The CSL formula

P>0.2(true U[0,T ](P<0.167(trueU [0,50] timeout)))

is robust. In fact, as can be easily seen from visual inspection of Figure
7(d), the probability of the top until formula at time zero is equal to 0,
which is different from 0.2. Furthermore, the time-varying set of its nested
until formula is also robust, being defined by a piecewise analytic function
(the time-dependent reachability probability for piecewise analytic rates is
piecewise analytic), which crosses the threshold 0.167 only once per state,
with non-null derivative (this can also be easily checked by visual inspection
of Figure 7).

We now prove the following theorem, which states that the CSL model
checking algorithm we put forward works at least for robust formulae:

Theorem 5.1. The CSL model checking for ICTMC, for piecewise analytic
interval computable rate functions, is decidable for a robust CSL formula
ϕ(p1, . . . , pk).

Proof Sketch: The crucial point behind the proof is to show that the time-
varying set of a robust CSL formula is robust and it can be effectively com-
puted with arbitrary precision. This means that one can encapsulate the
location of the finite number of discontinuity points with arbitrary small
precision ε > 0, using interval arithmetic routines. This in turns guarantees
that error introduced in the computation of the probability P (0) at time zero
of ϕ can be made arbitrarily small. By point 1 in the definition of robustness,
this value will be different from the threshold p with which it is compared,
meaning that for some ε > 0, the interval [P (0)− ε, P (0) + ε] will be disjoint
from p, allowing us to effectively determine the truth of ϕ. The full proof



can be found in Appendix A. �

The following corollary is a straightforward consequences of the proof of the
previous theorem:

Corollary 5.1. The algorithm for CSL model checking presented in this sec-
tion is correct for robust CSL formulae. �

5.5.2. Quasi-decidability

We turn now to characterise the set of robust formulae from a topological
and measure-theoretic point on view. We have the following

Theorem 5.2. Given a CSL formula ϕ(p), with p ∈ [0, 1]k, then the set
{p | ϕ(p) is robust} is relatively open15 in [0, 1]k and has Lebesgue measure 1.

Proof Sketch: The theorem can be proved by structural induction using tech-
nical arguments of measure theory, the most important one being Fubini’s
Theorem [45]. Intuitively, the result follows because the set of thresholds p
on which robustness fails is (roughly speaking) a finite union of manifolds of
topological dimension strictly less than k (hence of measure zero), so that
it has measure zero. The properties of piecewise analytic functions play a
crucial role in establishing this result. We refer the interested reader to Ap-
pendix A for further details. �

The openness of the set of robust thresholds for a formula allows us to
prove the following corollary about quasi-decidability. In this paper, we
consider a notion of quasi-decidability, which is slightly different from the
one defined in [49]. In fact, we take advantage of the fact that our input
values belong to a compact subset K ⊆ Rn, for which a standard notion of
measure exists.

Definition 5.6. A problem with inputs in a compact subset K ⊆ Rn of
Lebesgue measure µ`(K) > 0, is quasi-decidable if there is an algorithm that
solves it correctly for an open subset U ⊂ K, with µ`(U)/µ`(K) = 1.

Combining Theorems 5.1 and 5.2, we obtain the following:

15A set U ⊂ V is relatively open in V ⊂W , where W is a topological space, if it is open
in the subspace topology, i.e. if there exists an open subset U1 ⊆W such that U = V ∩U1.



Corollary 5.2. The CSL model checking for ICTMC, for piecewise analytic
interval computable rate functions is quasi-decidable for any formula ϕ. �

Remark 5.3. The notions of robustness and quasi-decidability have a prac-
tical side. First, the openness property of the set of robust thresholds for a
formula ϕ(p) guarantees that if we “perturb” a formula (by varying the set
p of threshold constants of the path probability operators), then the formula
remains robust. Furthermore, by the definition of robustness, also its truth
value remains the same (as the notion of quasi-decidability of [49] requires).
This explains the use of the terminology “robust”.

Secondly, the characterisation of the set R of robust thresholds for a
formula ϕ provided in Theorem 5.2, implies that if we choose thresholds at
“random”, we are likely to select a robust formula. In fact, consider the grid
of rational numbers with 1

n
in [0, 1], i.e. GRn = {m

n
| m < n,m, n ∈ N}, and

take the Cartesian product GRk
n ⊂ [0, 1]k. Let µn be the uniform distribution

in GRk
n, then µn → µ, the uniform distribution on [0, 1]k (which coincides

with the Lebesgue measure on Borel sets). Now, as R is open and has
Lebesgue measure 1, then µ(R) = 1 and µ(∂R) = 0, hence R is a continuity
set for µ. Therefore, µn(R) → µ(R) = 1 by the Portmanteau Theorem [45].
This means that, fixing ε > 0, if we choose the thresholds of the until sub-
formulas from the set GRk

n, for n large enough, the probability of choosing a
bad set of thresholds, for which the formula is not robust and the CSL model
checking algorithm may not terminate, will be less than ε.

Remark 5.4. The semi-decidability result presented here is in contrast with
the decidability result of model checking for time-homogeneous CTMC. How-
ever, in that case the result follows because Ps(0) has a special form allow-
ing the application of the Lindeman-Weierstass Theorem for transcendental
numbers (together with zero testing procedures for algebraic numbers) [50].
This, in turn, is a consequence of having constant (rational) rates. In our
case, instead, rates are piecewise analytic functions, and we cannot rely on
the method of [50] anymore. In fact, in the algorithm for computing the
probability, there are two numerical operations that are potential sources of
undecidability:

1. Given a number p, which is the analytic image of a rational, decide if
it is zero. This is a classical problem whose decidability is not known,
even restricting to expressions made up by polynomials and exponen-
tials only [51, 52]. Indeed, its decidability is connected with the truth



of the Schanuel Conjecture [51, 52], which is in turn connected with
decidability of the theory of reals extended by the exponential. How-
ever, even in case the Schanuel Conjecture holds, it is not clear if the
zero problem will be decidable for any analytic function.

2. Detecting the zeros of an analytic function with arbitrary precision.
In this case the problem is caused by non-simple zeros, i.e. points in
which the function and some of its derivatives are zero. The method
sketched in the proof of Theorem 5.1 does not work (see Appendix
A), as it relies on the fact that we can bound the derivative away
from zero on null points of the function. Furthermore, in the presence
of non-simple zeros, detecting if a compact interval is bounded away
from zero is semi-decidable (the decision procedure fails if the interval
contains a non-simple zero). Whether there is a decidable algorithm for
this problem is not known to the authors (even assuming the Schanuel
Conjecture is true). It may be possible, however, to find algorithms for
some subclass of analytic functions large enough for practical purposes.
For instance, if we know a lower bound on the radius of convergence
of power series in each analytic point, we can effectively extend the
real analytic function to an open ball in the complex plane, and then
use methods developed for complex analytic functions [53] which can
effectively compute the number of zeros in any sufficiently simple open
set, by integrating a function on its boundary with interval arithmetic
routines [54, 53].

Our conjecture is that the model checking problem for time-inhomogeneous
CTMC is not decidable in general, although it may be decidable for some re-
stricted subclass of rate functions if the Schaunel Conjecture is true. Further
investigations on this issue are required.

Remark 5.5 (Computational Complexity). Finding an upper bound on the
complexity of the approximation algorithm, when it converges, requires us to
find an upper bound on the number of zeros of the solution of a linear differ-
ential equation with piecewise analytic rates. This is a non trivial problem,
for which some results are known for linear systems with bounded analytic
rate functions [55], giving in some cases an upper bound Ψ on the number
of zeros, expressible as an elementary function of the upper bound on coef-
ficients of the ODE. However, these upper bounds are astronomically large,
and we do not expect such huge complexity in practice. For this reason, we
refrain from exploring further this direction in this paper, leaving as future



work the problem of finding tighter bounds under more restrictive hypothesis
satisfied by many practical applications.

6. Convergence results for CSL Fluid Model Checking

In this section we reconsider CSL model checking for ICTMC in the light
of fluid model checking. In particular, we will prove the asymptotic cor-
rectness of the approximation method of Section 4, when considering the
sequence Z

(N)
k and its fluid limit zk. The goal is to prove that the truth

value of a CSL formula ϕ computed in the limit model zk will be the same as
that of Z

(N)
k , for N large enough. Also in this case, we need to restrict our

attention to robust CSL formulae. In order to leverage structural induction,
as boolean operators pose no real problem, we need to concentrate on next
formulae ϕ = X[Ta,Tb]ϕ2 and on until formulae ϕ = P./p(ϕ1U

[0,T ]ϕ2), when
the time-varying sets associated with the satisfaction of ϕ1 and ϕ2 are robust.

In particular, model checking these formulas can be reduced to the compu-
tation of the next-state probabilities P̄ (N)(t) = Pnext(Z

(N)
k , t, Ta, Tb, G

(N)) and
P̄ (t) = Pnext(zk, t, Ta, Tb, G) (for next formulae) or to reachability probabil-

ities P (N)(t) = Preach(Z
(N)
k , t, T,G(N), U (N)) and P (t) = Preach(zk, t, T,G, U)

(for until formulae), where G(N)(t) (U (N)(t)) is the set of states satisfying ϕ2

(¬ϕ1) at time t for Z
(N)
k , while G and U are defined similarly for zk.

16 We
will prove convergence of P̄ (N)(t) to P̄ (t) and of P (N)(t) to P (t) in Lemmas
6.1 and 6.2.

However, in CSL model checking we are interested in truth values rather
than in probabilities, and lifting the previous convergence to truth values
is not so straightforward. Consider the path formula ψ = ϕ1U

[0,T ]ϕ2, and
the quantified state formula ϕ = P./p(ψ). The problem is that we have to
compute its probability P (t) (depending on the initial time t) for zk and then
solve the algebraic equation Ps(t) − p = 0 for each state s, to identify for
which time instants state s satisfies the formula. Now, the point is that, even
in case P (N)(t)→ P (t) uniformly, we are not guaranteed that P (N)(t) ./ p→
P (t) ./ p. For instance, if P (t) = p, and ./ is ≤, then if P (N)(t) converges to
P (t) from above, it never satisfies P (N)(t) ./ p for any N , hence convergence

16We can restrict our attention to until formulae with time between [0, T ], as intervals
[Ta, Tb] can be dealt with by essentially solving two reachability problems of this kind and
combining their solution (or better, by computing two transient probabilities and then
combining those probabilities, see [13]).



of P (N)(t) ./ p to P (t) ./ p does not hold. However, things can go wrong only
when P (t) = p, and the main point of the convergence theorem is to prove
that this happens sufficiently “rarely” not to impact on the computation of
probabilities of a next or of an until formula in which ϕ is a sub-formula.

6.1. Preliminary properties

Before establishing convergence results for next-state and reachability
probability, we need some straightforward properties of piecewise analytic
functions, and a notion of robust convergence of time-varying sets.

Proposition 6.1. Let f : I → R be a piecewise analytic function, with
I ⊆ R a compact interval. Let Ef = {x ∈ R | µ`(f−1({x})) = 0} be the set
of all values x such that f is not locally constantly equal to x, where µ` is the
Lebesgue measure. Furthermore, let Zx = f−1({x}) be the set of solutions of
f(t) = x and let DZf = {x ∈ R | ∀t ∈ Zx, f ′(t) 6= 0}. Then

1. ∀x ∈ Ef , Zx is finite.
2. µ`(Ef ∩DZf ) = 1 �

The notion of robust time-varying sets, introduced in Definition 5.3, has
a counterpart in terms of convergence of time-varying sets:

Definition 6.1. A sequence of time-varying sets V (N)(t), t ∈ I interval,
converges robustly to a robust time-varying set V (t), t ∈ I, if and only if,
for each s ∈ S and each open neighbourhood U of Disc(V�s) (i.e. the set of

discontinuity points of V�s), V
(N)
�s (t)→ V�s(t) uniformly in I \ U .17

Connecting the notions of robust set and robust convergence, we have the
following proposition, proved in Appendix A:

Proposition 6.2. Let V (N)(t) be a sequence of time varying sets converging

robustly to a robust set V (t), t ∈ I. Let D
(N)
V = {t | V (N)(t) 6= V (t)}. Then

µ`(D
(N)
V )→ 0, where µ` is the Lebesgue measure on R. �

17This notion of robust convergence is weaker than convergence according to Skorokhod
metric in the space of cadlag functions [45, 56] of the indicator functions of time-varying
sets. The difference is in the fact that we do not require that the number of jumps of the
sequence of time-varying sets to be definitively the same as in the limit set (as implied
by the time-resynchronisation operation of the Skorokhod metric), just to be very close in
time.



6.2. Convergence of next-state probability

We consider now the problem of relating the next-state probabilities for
the limit single agent process zk(t) and the sequence of single agent processes

Z
(N)
k (t) in a population of size N . In particular, we want to show that

the probability P̄
(N)
s (t) = Pnext(Z

(N)
k , t0, T1, T2, G)[s] converges to P̄s(t) =

Pnext(zk, t0, T1, T2, G)[s] uniformly for t ∈ [t0, t1], as N goes to infinity. We
will prove this result in a general setting. More specifically, we will consider
time-varying sets that can depend on N , and that converge to a robust limit
time-varying set in the sense of Definition 6.1. This is needed because the
time-varying sets we must consider are obtained by solving (for each s ∈ S)

equations of the form P̄
(N)
s (t) − p = 0 or P̄s(t) − p = 0, which are generally

different, but intuitively converge (as P̄
(N)
s (t) converges to P̄s(t)).

The following lemma will be one of the key ingredients to prove the in-
ductive step in the convergence for truth of CSL formulae in Section 6.4.

Lemma 6.1. Let X (N) be a sequence of CTMC models, as defined in Sec-
tion 3.1, and let Z

(N)
k and zk be defined from X (N) as in Section 3.3, with

piecewise real analytic rates, in a compact interval [0, T ′], for T ′ > t1 + Tb.
Let G(t), t ∈ [t0, t1 + Tb] be a robust time-varying set, and let G(N)(t) be
a sequence of time-varying sets converging robustly to G. Furthermore, let
P̄ (t) = Pnext(zk, t, Ta, Tb, G) and P̄ (N)(t) = Pnext(Z

(N)
k , t, Ta, Tb, G

(N)), t ∈
[t0, t1]. Finally, fix p ∈ [0, 1], ./∈ {≤, <,>,≥}, and let Vp(t) = 1{P̄ (t) ./ p},
V

(N)
p (t) = 1{P̄ (N)(t) ./ p}. Then

1. P̄ (N)(t)→ P̄ (t), uniformly in t ∈ [t0, t1].

2. For almost every p ∈ [0, 1], Vp is robust and the sequence V
(N)
p converges

robustly to Vp.

Proof Sketch: The proof of point 1 combines two main arguments. The
first is that, after coupling, convergence in probability of Z

(N)
k to zk implies

that, for N large enough, at least a fraction 1 − ε of the trajectories of the
two processes coincide for the first T units of time. Conditioning on these
trajectories, the conclusive argument is that a sequence of time-varying sets
that converges robustly differs from the limit set only in a neighbourhood W
of the discontinuity points, which can be made as small as desired for large
N (by Proposition 6.1), and that the probability of a process doing its first
jump in a time t ∈ W can also be made as small as desired. Point 2 follows
easily after discarding all those values of p for which P̄ (t) has non-simple



zeros or that are equal to the value of P̄ (t) in a point of non-analyticity, and
noting that the set of these thresholds is finite. A more formal treatment can
be found in Appendix A. �

6.3. Convergence of reachability probability

We turn now our attention to the convergence of reachability probabili-
ties. We will first start with the simpler scenario in which goal and unsafe
sets are constant, and then extend this result to time-varying sets.

6.3.1. Constant set reachability

Consider now the sequence of processes Z
(N)
k defined in Section 3.3. We

are interested in the asymptotic behaviour of Preach(Z
(N)
k , t, T,G, U) for con-

stant sets G and U . The following result is an immediate consequence of
Theorem 3.2:

Proposition 6.3. Let X (N) be a sequence of CTMC models, as defined in
Section 3.1, and let Z

(N)
k and zk be defined from X (N) as in Section 3.3.

Assume that the infinitesimal generator matrix Q(t) of zk is bounded and

integrable in every compact interval [0, T ]. Then Preach(Z
(N)
k , t, T,G, U) →

Preach(zk, t, T,G, U) uniformly in [t0, t1] as N →∞, i.e.

sup
t∈[t0,t1]

‖Preach(Z(N)
k , t, T,G, U)− Preach(zk, t, T,G, U)‖ → 0.

�

The previous proposition shows that the reachability probability for Z
(N)
k

converges to the reachability probability for zk, hence for large N we can
approximate the former with the latter. Notice also that the hypotheses of
the proposition are weaker than those of Lemma 6.1, due to the fact that we
consider constant sets.

Example. We consider again the client-server example of Section 3.1 and the
two reachability probabilities for a single client discussed in Section 5.3.1,
which we report here for convenience:

1. The probability of observing a time-out before being served for the first
time within time T .



2. The probability of observing a timeout within time T .

In Figures 8(a), 8(b), 9(a) and 9(b) we can observe a comparison between

the values computed for the limit ICTMC zk and the exact ICTMC Z
(N)
k , for

N = 15 or N = 150 (with a client-server ratio of 2:1), as a function of the time
horizon T . As can be seen, the probability for zk is in very good agreement
with that of Z

(N)
k (computed using a statistical approach, from a sample of

10000 traces) even for N relatively small. As far as running time is concerned,
the fluid model checking is 100 times faster for N = 15, and 1000 times faster
for N = 150, than the stochastic simulation. What is even more important
is that the complexity of the fluid approach is independent of N , hence its
computational cost (on the order of 200 milliseconds for all cases considered
here) can scale to much larger systems. Furthermore, another advantage of
the fluid approach is that, by solving a set of differential equations, we are
computing the reachability probability for each t ∈ [0, T ] (or better for any
finite grid of points in [0, T ]), while a method based on uniformisation (as in
PRISM [16]) has to deal with each time point separately.

In Figures 8(c), 8(d), 9(c) and 9(d), instead, we focus on the reachability
probability for both problem 1 and 2 for T = 50 as a function of the ini-
tial time t0 ∈ [0, 25]. The value for the fluid model is compared with the

probability of Z
(N)
k obtained by simulating the full CTMC up to time t0 and

then focussing attention on a specific client in state request and starting the
computation of the reachability probability.18 As we can see, the agreement
is good also in this case.

Finally, in Figures 8(e), 8(f), 9(e) and 9(f), we compare the reachability
probability for T = 100 (reachability problem 1) or T = 250 (reachability
problem 2) of the ICTMC for different populations N and different propor-
tions of clients (n) and servers (m), with the fluid limit. This data confirms
that the agreement is good also for small populations for this model.

6.3.2. Time-varying set reachability

We consider now the limit behaviour of time-varying reachability proba-
bility for Z

(N)
k , proving that it converges (almost everywhere) to that of zk.

As in Section 5.1, we state this result in a more general form, assuming that

18This is done by using two indicator variables XG and XU that are set equal to one
when a trajectory reaches a goal or an unsafe set, respectively. Then, we estimate the
reachability probability by the sample mean of XG at the desired time.
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Figure 8: Client-Server model of Section 3.1, single client CTMC. First line: comparison
of time-out before being served probability (property 1) for fluid and CTMC models as
a function of time horizon T . Second line: comparison of time-out before being served
probability (property 1) for fixed time horizon T = 50 and variable initial time t0. Third
line: time-out before being served probability (property 1) at time T = 250, and variable
number of client and servers.
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Figure 9: Client-Server model of Section 3.1, single client CTMC. First line: comparison
of time-out probability (property 2) for fluid and CTMC models as a function of time
horizon T . Second line: comparison of time-out probability (property 2) for fixed time
horizon T = 50 and variable initial time t0. Third line: comparison of time-out probability
(property 2) at time T = 250, and variable number of client and servers.



also the goal and unsafe sets depend on N , and converge robustly to some
robust limit sets G and U . Furthermore, we require that G and U are com-
patible in the sense of Definition 5.4, i.e. that they do not have a discontinuity
at the same time for the same state s: ∀s ∈ S, Disc(Gs) ∩ Disc(Us) = ∅.
The following lemma, which is also the basic inductive step to prove con-
vergence for CSL model checking formulae, relies on the functions involved
being piecewise analytic.

Lemma 6.2. Let X (N) be a sequence of CTMC models, as defined in Section
3.1, and let Z

(N)
k and zk be defined from X (N) as in Section 3.3, with piecewise

analytic rates, in a compact interval [0, T ′], for T ′ sufficiently large.
Let G(t), U(t), t ∈ [t0, t1 + T ] be compatible and robust time-varying sets,
and let G(N)(t), U (N)(t) be sequences of time-varying sets converging robustly
to G and U , respectively.
Furthermore, let P (t) = Preach(zk, t, T,G, U) and

P (N)(t) = Preach(Z
(N)
k , t, T,G(N), U (N)), t ∈ [t0, t1].

Finally, fix p ∈ [0, 1], ./∈ {≤, <,>,≥}, and let Vp(t) = 1{P (t) ./ p},
V

(N)
p (t) = 1{P (N)(t) ./ p}. Then

1. For all but finitely many t ∈ [t0, t1], P (N)(t) → P (t), with uniform
speed (i.e. independently of t).

2. For almost every p ∈ [0, 1], Vp is robust and the sequence V
(N)
p converges

robustly to Vp.

Proof Sketch: The proof, reported in Appendix A, is very similar to the one
of Lemma 6.1. The only difference is that convergence to P (t) can fail in all
those time instants t in which the goal or the unsafe sets have a discontinuity,
which are finite. This extra level of complexity is reflected in statement 1. �

6.4. Convergence for CSL formulae

We are now ready to state a convergence result for CSL model checking.
Also in this case, we will restrict our attention to robust CSL formulae. This
is reasonable, as we want to use Lemmas 6.1 and 6.2, which require robustness
of time-varying sets.

In particular, we can reduce this problem to the computation of the next-
state probabilities P̄ (N)(t) = Pnext(Z

(N)
k , t, Ta, Tb, G

(N)) and P̄ (t) = Pnext(zk,
t, Ta, Tb, G) (for next formulae) or to reachability probabilities P (N)(t) =



Preach(Z
(N)
k , t, T,G(N), U (N)) and P (t) = Preach(zk, t, T,G, U) (for until for-

mulae), where G(N)(t) (U (N)(t)) is the set of states satisfying ϕ2 (¬ϕ1) at

time t for Z
(N)
k , while G and U are defined similarly for zk.

19 Then, we may
resort to Lemmas 6.1 and 6.2 to prove convergence of P̄ (N)(t) to P̄ (t) and of
P (N)(t) to P (t).

Theorem 6.1. Let X (N) be a sequence of CTMC models, as defined in Sec-
tion 3.1, and let Z

(N)
k and zk be defined from X (N) as in Section 3.3.

Assume that Z
(N)
k , zk have piecewise analytic infinitesimal generator matri-

ces.
Let ϕ(p1, . . . , pk) be a robust CSL formula. Then, there exists an N0 such
that, for N ≥ N0 and each s ∈ S

s, 0 �
Z

(N)
k

ϕ⇔ s, 0 �zk ϕ.

Proof Sketch: The proof proceeds by structural induction, using Lemmas
6.1 and 6.2 to prove the inductive steps for path formulae, and leveraging
the fact that the time dependent satisfaction of a subformula of a robust
CSL formula is robust in the sense of Definition 5.3. The fact that at time 0
truth values converge is due to one of the properties of robust CSL formulae,
requiring that the values of top path formulae at time zero are different from
the thresholds they are compared to, hence a sequence converging to this
value will definitively be greater or smaller than such a threshold. The full
proof is in Appendix A. �

Corollary 6.1. Given a CSL formula ϕ(p), with p ∈ [0, 1]k, then the subset
of [0, 1]k in which convergence holds has Lebesgue measure 1 and is open in
[0, 1]k. �

The previous theorem shows that the results that we obtain abstracting
a single agent in a population of size N with the fluid approximation is
consistent. However, the theorem excludes the sets of constants p for which
the formula is not robust. Interestingly, this is the same condition required
for decidability of the model checking problem for ICTMC, a fact that shows

19As previously remarked in footnote 16, we can restrict our attention to until formulae
with time between [0, T ].



how these two aspects are intimately connected. Notice that, contrary to
decidability, this limitation is unavoidable and is present also in the case of
sequences of processes converging to a time-homogeneous CTMC. In this
case, in fact, the next-state and reachability probabilities are constant with
respect to the initial time, and their value p (in the limit model) can cause
convergence of truth values to fail.

However, notice that the constants p appearing in a formula that can make
convergence fail depend only on the limit CTMC zk. Hence we can detect
potentially dangerous situations while solving the CSL model checking for
the limit process (in these cases the model checking algorithm may fail to
provide an answer).

Remark 6.1. In this paper, we are considering only time bounded operators.
This limitation is a consequence of the very nature of the approximation
Theorem 3.2, which holds only for a finite time horizon. However, there are
situations in which we can extend the validity of the theorem to the whole
time domain, but this extension depends on properties of the phase space of
the fluid ODE [57, 58, 59].

In those cases, we can prove convergence of the steady state behaviour
of Z

(N)
k to that of zk, hence we can incorporate also operators dealing with

steady state properties (see [60, 61] for a discussion of this issue).
In order to deal with time unbounded operators, instead, convergence

to steady state is not enough. We also need to ensure that the equation
P (t) − p has a finite number of zeros on the whole positive time axis. The
piecewise analytic property is not sufficient in this case (think about sine and
cosine), and stronger conditions have to be required. However, for periodic
functions, we may reason similarly to [29], if we can prove that periodicity
of rate functions implies periodicity in the reachability probabilities as a
function of initial time.

7. Comparison of CSL model checking for Z
(N)
k and (Z

(N)
k , X̂(N))

In this paper we have considered two possible descriptions of a single agent
at a fixed population level N , i.e. Z

(N)
k (t) and (Z

(N)
k (t), X̂(N)(t)). From the

discussion in Sections 3.3 and 4 we already know that, while (Z
(N)
k (t), X̂(N)(t))

is a CTMC with finite (but extremely large) state space, Z
(N)
k (t) has a much

smaller state space but is not a Markov process. Furthermore, its behaviour
is time dependent. The non-Markovian nature of Z

(N)
k (t) has consequences



for its reachability probability (see Section 4), meaning that its value is de-
pendent on the initial time at which we compute it. This implies that the
satisfiability of a CSL formula (with the truth value of atomic propositions

depending only on S) for Z
(N)
k (t) can depend on the time at which we eval-

uate it. Hence we need to consider time-dependent sets to compute the
probabilities of next or until path formulae. But time-dependent sets can
introduce discontinuities in such probabilities, as discussed in Section 5.3.2.
On the other hand, (Z

(N)
k (t), X̂(N)(t)) is a time-homogeneous CTMC, hence

its next-state and reachability probabilities do not depend on time and no
time-dependent notion of satisfaction has to be considered in this case. In
particular, when considering (Z

(N)
k (t), X̂(N)(t)), its reachability probability

is always a continuous function. This implies that the truth value of a CSL
formula containing nested next or until sub-formulae, can be different if we
consider its satisfiability with respect to Z

(N)
k (t) or (Z

(N)
k (t), X̂(N)(t)).

However, despite this discrepancy for finite N , we will prove that the
satisfiability for Z

(N)
k (t) and (Z

(N)
k (t), X̂(N)(t)) is asymptotically the same,

at least if we restrict to robust CSL formulae. In order to show this, we
will combine the convergence results of the previous sections with additional
results relative to (Z

(N)
k (t), X̂(N)(t)) and (z(t),x(t)).

Example. If we observe Figures 9(c) and 9(d), we can easily convince ourselves

that the reachability probability for Z
(N)
k in the running example for the for-

mula ϕ1 = true U[0,50] timeout depends on the initial time. Hence it gives rise
to a time-dependent set for the satisfiability of the formula ϕ2 = P<0.167(ϕ1).

This implies that for Z
(N)
k , the probability of the formula ϕ = true U[0,T ] ϕ2

will have discontinuities as a function of T , similarly to the case for zk. How-
ever, if we compute the reachability probability for ϕ in (Z

(N)
k , X̂(N)), in a

state s,x0, this will be a continuous function of T , hence the two probabilities
are different.

We will now prove the convergence of the standard CSL model checking
for Y(N)(t) = (Z

(N)
k (t), X̂(N)(t)) in state s,x0, to the CSL model check-

ing procedure for y(t) = (zk(t),x(t)), which is equivalent to the one for
zk(t) alone. This procedure requires us to compute, given a next formula
ϕ = X[Ta,Tb]ϕ1 or an until formula ϕ = ϕ1U

[Ta,Tb]ϕ2, its probability P (s,x)
starting from time 0, in each point (s,x) of the state space S × E of y(t),
and then solve the inequality P (s,x) ./ p, to determine the truth of P./p(ϕ)
in (s,x). This defines a subset of S × E where P./p(ϕ) is true.

The intuition behind the proof is that the truth value of an until formula



in a state (s,x0) for y(t) does not depend on the whole state space S×E, but
only on the points of E intersected by the solution of the fluid ODE starting
in x0, i.e. on S × Φ([0, T ],x0), where Φ(t,x0) is the flow of the differential
equation20. Furthermore, the convergence of X̂(N)(t) to x(t) allows us to
restrict attention to an arbitrary small neighbourhood of Φ([0, T ],x0), in
order to solve the model checking problem for Y(N)(t), for N large enough.

In the following, we need some additional concepts and definitions.
Consider the domain D̂(N) ⊂ E of X̂(N). With each point x ∈ E, we as-

sociate a point ν(N)(x) ∈ D̂(N), such that ‖x− ν(N)(x)‖ < n
N

. The existence
of such a point is guaranteed by the definition of E. Now, we further assume
that, given a point (s,x) ∈ E, the initial state Y(N)(0) is (s, ν(N)(x)), so that
Y(N)(0) converges to (s,x) uniformly in space. This choice of Y(N)(0) guar-
antees uniform bounds in space for Kurtz theorem and the fast simulation
theorem, for convergence in probability.21.

Now, consider the fluid limit differential equation, and let Φ(t,x0) be its
flow. We assume that Φ(t,x0) is a piecewise analytic function with respect
to t and x. The T, ε-flow tube for x0 is the set E0 ⊂ E, defined by E0 =
Φ([0, T ], Bε(x0)), i.e. the set of all trajectories up to time T starting in a ball
of radius ε centred in x0. Now, consider a T, ε-flow tube E0 for x0. For any
x ∈ E0, let T+

x = T+
x (E0) = sup{t | Φ([0, t],x) ∈ E0} be the time at which

the trajectory starting in x leaves E0. Furthermore, let T−x = T−x (E0) =
inf{t | Φ([t, 0],x) ∈ E0} be the time at which the trajectory starting in x
enters E0.

A subset D ⊆ S × E0 is a d-set for E0 if and only if, (i) D is closed
(in S × E0), (ii) D is the union of a finite number of smooth manifolds22

of dimension n − 1 or less, and (iii) for each x ∈ E0, it holds that {s} ×
Φ([T−x (E0), T+

x (E0)],x) ∩ D contains at most k points in each state s. In
other words, a d-set is a union of piecewise analytic manifolds that intersects
each trajectory in at most k points. It can be easily checked that each d-set
has (Lebesgue) measure zero.23

20The solution of the fluid ODE at time t starting in x0 at time 0.
21The speed of convergence to the fluid limit depends on the initial conditions only

through ‖X̂(N)(0) − x(0)‖; the choice of ν(N)(x) guarantees the uniform convergence of
this quantity with respect to x.

22A smooth manifold is the zero set of a sufficiently smooth function, in this paper at
least having continuous first-order derivatives.

23Any set of topological dimension n− 1 or less has Lebesgue measure zero in Rn.



We also introduce a notion of robust subset of S × E0, for a T, ε-flow
tube E0 in x0. Consider a subset V ⊂ S × E0. We say that V is robust in
S × E0 if and only if, (i) its boundary ∂V is a d-set in S × E0, and (ii) for
each (s,x) ∈ S × E0, the time-varying set Vx[s](t) = 1{(s,Φ(t,x)) ∈ V },
T−x < t < T+

x , is robust in the sense of Definition 5.3 (notice that it contains
at most k <∞ discontinuity points, where k does not depend on x, as ∂V is
a d-set). We sometimes denote ∂V by Disc(V ). We also say that two robust
subsets V1 and V2 of S × E0 are compatible if ∂V1 ∩ ∂V2 = ∅.

Similarly to Section 5.3.2, we say that a sequence of sets V (N) ⊂ S × E0

converges robustly to a robust set V ⊆ S×E0, with E0 a T, ε-flow tube in x0,
if and only if, for each open neighbourhood U of Disc(V ), there is N0 > 0
such that, ∀N ≥ N0 and all (s,x) ∈ (S × E0) \ U , (s,x) ∈ V (N) if and only
if (s,x) ∈ V .

We are now ready to state the following lemmas, which are space-versions
of Lemmas 6.1 and 6.2 on time-varying sets, and are the key to the induction
step of Lemma 7.4.

Lemma 7.1. Let E0 ⊂ E be a T, ε0-flow tube for x0. Let G be a robust
subset of S ×E0, and G(N) be a sequence of subsets of S ×E0 that converge
robustly to G.

Let P̄ (s,x) = Pnext(y, s,x, Ta, Tb, G) be the probability that the first jump
of y(t) is into a state in G and happens at a time t ∈ [Ta, Tb], given that
y started at time t = 0 in state (s,x) ∈ S × E0, and let P̄ (N)(s,x) =

P
(N)
next(Y

(N), s, ν(N)(x), Ta, Tb, G
(N)) be defined similarly, with G and x re-

placed by G(N) and ν(N)(x), respectively. Furthermore, define V =
{(s,x) | P̄ (s,x) ./ p} and V (N) = {(s,x) | P̄ (N)(s,x) ./ p}. Then there
exists ε1 > 0 such that, in E1, the (T − Tb), ε1-flow tube for x0:

1. P̄ (N)(s,x)→ P̄ (s,x) for all x ∈ E1, uniformly in (s,x).

2. If Vx0(t), t ∈ [T−x0
(E1), T+

x0
(E1)], is a robust time-varying set, then V is

robust in E1 and V (N) converges robustly to V .

Proof Sketch: The proof is similar in spirit to that of Lemma 6.1, but with
an extra level of complexity caused by the fact that now we need to take
into account the spatial dimension in addition to the temporal one. Here we
rely on the fact that, by robust convergence of G(N) to G, choosing a small
neighbourhood W of the d-set Disc(G), the time spent by X̂(N) or x in W
can be made arbitrarily small, so that with very high probability Y(N) and y
will end up doing the first jump of the s-component outside it. More details



can be found in Appendix A. �

Lemma 7.2. Let E0 ⊂ E be a T, ε0-flow tube for x0. Let U and G two robust
and compatible subsets of S × E0, and U (N), G(N) be sequences of subsets of
S × E0 that converge robustly to U and G, respectively.

Let P (s,x) = Preach(y, s,x, T1, T2, U,G) be the probability that y(t) reaches
a state in G within time [Ta, Tb], avoiding any unsafe state in U , given that
y started at time t = 0 in state (s,x) ∈ S × E0, and let P (N)(s,x) =

P
(N)
reach(Y

(N), s, ν(N)(x), Ta, Tb, U
(N), G(N)) be defined similarly, with G, U , x

replaced by G(N), U (N), and ν(N)(x), respectively.
Furthermore, we define V = {(s,x) | P (s,x) ./ p} and V (N) =
{(s,x) | P (N)(s,x) ./ p}. Then there exists ε1 > 0 such that, in E1, the
(T − Tb), ε1-flow tube for x0:

1. P (N)(s,x)→ P (s,x) for all x ∈ E1 \D, where D is a d-set, uniformly
in (s,x).

2. If Vx0(t), t ∈ [T−x0
(E1), T+

x0
(E1)], is a robust time-varying set, then V is

robust in E1 and V (N) converges robustly to V .

Proof Sketch: Similarly to Lemma 7.1, this is the spatial counterpart of
Lemma 6.2, and this is reflected in a similar but more complex proof. In par-
ticular, also in this case convergence of P (N)(s,x) to P (s,x) fails at points
(s,x) belonging to the boundary of the two robust sets U and G. A detailed
proof can be found in Appendix A. �

The previous lemmas are the key arguments used in the structural induc-
tion to prove the following result.

Lemma 7.3. Let X (N) be a sequence of CTMC models, as defined in Section
3.1, and let Z

(N)
k and zk be defined from X (N) as in Section 3.3.

Assume that there is a flow tube E0 of x0 such that all trajectories in E0 are
piecewise analytic.
Let ϕ = ϕ(p) be a robust CSL formula for the trajectory Φ(t,x0). Then,
there is an N0 such that, for all N ≥ N0,

s,x0 |=y ϕ ⇔ s, ν(N)(x0) |=Y(N) ϕ.

Proof Sketch: The proof goes by structural induction on the CSL formula.
The essential point is to show that, under the imposed restrictions, the sat-
isfaction sets of subformulae converge robustly to the limit satisfaction set.



This property is propagated upwards in the formula tree by Lemmas 7.1 and
7.2 applied to path subformulae; see Appendix A. �

We now turn to consider the relationship between the model checking
problem of a CSL formula ϕ for zk(t) and the model checking problem for
the same formula with respect to y(t). In this case, it is easy to see that a
formula is true for zk(t) if and only if it is true for y(t). In fact, in this process
the truth value of a formula in state (s,x0) depends only on the trajectory
Φ(t,x0) starting in x0. Furthermore, if we fix a time t̄ and consider the point
xt̄ = Φ(t̄,x0), then the process z̄k(t), defined with respect to the trajectory
Φ(t,xt̄) starting in point xt̄ at time zero, equals the process zk(t+ t̄), starting
in x0 at time zero, due to the semi-group property of the flow Φ(·, ·). Hence,
any reachability probability for zk with respect to the initial time t̄ equals
the reachability probability for z̄k at time 0: We can always turn a time-
dependent reachability problem into a more classical space-dependent one.
From the previous discussion, the following lemma follows:

Lemma 7.4. Let X (N) be a sequence of CTMC models, as defined in Section
3.1, and let Z

(N)
k and zk be defined from X (N) as in Section 3.3.

Let ϕ = ϕ(p) be a robust CSL formula for the piecewise analytic trajectory
Φ(t,x0), and let zk be the ICTMC defined on S with respect to trajectory
Φ(t,x0). Then,

s,x0 |=y ϕ ⇔ s |=zk ϕ.

�

Using the previous lemmas, we can show the following theorem.

Theorem 7.1. Let X (N) be a sequence of CTMC models, as defined in Sec-
tion 3.1. Assume that there is a flow tube E0 of x0 such that all trajectories
in E0 are piecewise analytic.
Let ϕ = ϕ(p) be a robust CSL formula for the trajectory Φ(t,x0), let Z

(N)
k (t)

and zk(t) be the stochastic processes on S defined as in Section 3.3, and let
y(t) and Y(N)(t) be defined as in this section. Then, there is an N0 such
that, for all N ≥ N0,

s |=
Z

(N)
k

ϕ ⇔ s, ν(N)(x0) |=Y(N) ϕ.



Proof. There exists an N0, such that, for all N ≥ N0,

s |=
Z

(N)
k

ϕ ⇔ s |=zk ϕ ⇔ s,x0 |=y ϕ ⇔ s, ν(N)(x0) |=Y(N) ϕ,

where the first equivalence follows from Theorem 6.1, the second equivalence
from Lemma 7.4, and the third equivalence from Lemma 7.3, while N0 can
be chosen as the largest one between that of Theorem 6.1 and that of Lemma
7.4. �

Inspecting the proof of the previous theorem, the following corollary is
straightforward.

Corollary 7.1. Let ϕ = ϕ(p) be a robust CSL formula for the trajectory
Φ(t,x0). Then, there is an N0 such that, for all N ≥ N0,

s, ν(N)(x0) |=Y(N) ϕ ⇔ s |=zk ϕ.

�

8. Conclusions

Summary. In this paper we exploited a corollary of fluid limit theorems to
approximate properties of the behaviour of single agents in large popula-
tion models. In particular, we focussed on reachability and stochastic model
checking of CSL formulae. The method proposed requires us to model check
a time-inhomogeneous CTMC of size equal to the number of internal states
of the agent (which is usually rather small). Hence, it gives a large improve-
ment in terms of computational efficiency. This is the main methodological
contribution of the paper (Section 4).

The first theoretical result of this paper is a CSL model checking algo-
rithm for ICTMC (Section 5). We first provided algorithms for the next
state (Section 5.1) reachability problems (Section 5.3) for ICTMC, both in
the case of time-constant and time-varying sets, and then combined them
into a proper model checking algorithm for the time-bounded fragment of
CSL (Section 5.4). We also gave a quasi-decidability result, showing that the
algorithm works for all robust formulae, where the set of non-robust formulae
has measure zero (Section 5.5).

The second theoretical contribution of the paper is a proof of correctness
of the fluid approximation for CSL properties of individual agents (Section 6):



we first proved convergence of the next state (Section 6.2) and reachability
probabilities (Section 6.3) computed for the single agent in a finite population
of size N to those of the limit fluid CTMC, and then lifted this to the
convergence of the truth value of CSL formulae (Section 6.4).

Practical considerations. The method presented in this paper is non-trivial,
and relies on several assumptions. Here we will collect the various comments
on the practical side, arguing that, despite the theoretical intricacies, the CSL
model checking should work well at least for the application that brought us
to investigate it, namely fluid model checking.

• One important requirement of the approach is the piecewise analyticity
of rates. This is used to theoretically enforce that reachability or next
state probabilities cross a threshold p only a finite number of times, i.e.
that the solutions of P (t) − p = 0 are finite. Practically, most of the
functions used in actual models (e.g. minimum, polynomials, rational
functions, exponentials, logarithms) are piecewise analytic. Hence this
is not very restrictive. However, our method should work, whenever the
finiteness condition on time-varying satisfaction sets holds or for non-
nested properties, under milder continuity hypothesis (i.e. Lipschitz
continuity of rates, although piecewise smooth functions can be treated
as well in some cases, see [62]).

• The complexity of ICTMC CSL model checking depends on several
factors. One is the size n of the state space: We need to solve a
non-autonomous linear system of differential equations quadratic in n.
However, the algorithm we presented was designed with fluid model
checking in mind. Here the state space is that of a single agent in a
population model. Hence, in this context n will be really small, usually
less than 10. Hence, solving such a system of ODEs not only is expected
to be feasible, but also extremely fast. Another source of complexity,
when nesting properties, depends on the number of solutions of the
equation P (t) − p = 0 and on the levels of nesting. However, in most
practical cases we do not expect to have to deal with many zeros of the
previous equation. In all models we studied (see also [60]), this number
was one or two per state. As for the nesting, one can safely argue that
in practical applications nested properties are rare, and with at most
one level of nesting being usual (see the illuminating discussion of [63]).



Summarising, the model checking algorithm presented in this paper is
designed for the fluid approximation of individual agents in large population
models. In these situations, we expect it not only to be computationally
efficient in practice, but to be the only computationally feasible method to
check such properties.

Future work. There are many issues that we wish to tackle in the future.
First, we would like to better understand the quality of convergence. This
can be accomplished by trying to derive theoretical error bounds (which may
be too loose to be of practical interest) or by running many experiments to
identify situations in which the approximation performs well (in terms of both
classes of formulae and model structure). In addition, we would like to pro-
vide a working implementation of the model checking algorithm for ICTMC,
studying its computational cost empirically (and exploring how easy it is in
practice to find a non computable instance). Furthermore, we want to in-
vestigate the connections between single agent properties and system level
properties. We believe this approach can become a powerful tool to investi-
gate the relationship between microscopic and macroscopic characterisations
of systems, and to understand their emergent behaviour.

As far as CSL model checking for ICTMC is concerned, we aim to extend
it to include time unbounded and steady state operators, at least for those
subsets of rate functions in which the algorithm can be shown to be decidable.
We also need to consider rewards, at least for a finite time horizon (here we
expect their inclusion to be relatively straightforward). Then, we would like
to show convergence results also for this larger subset of CSL, under the
hypothesis required for steady state convergence of the fluid approximation.

Another line of investigation would be to consider different temporal log-
ics, such as MTL. For this logic, asymptotic correctness is relatively easy
to prove, along the lines of Proposition 6.3. What is more difficult is to
find an effective algorithm to model check MTL properties for ICTMC. One
possibility may be to combine the approaches of [34, 29, 30], and exploit
algorithms and techniques to compute reachability of PDMP [31].
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Appendix A. Proofs

In this appendix, we present the proofs of propositions, lemmas, and
theorems of the paper. We will start by showing measurability of next state
probabilities and reachability probabilities for ICTMC, turning then to prove
their convergence for the fluid approximation. This will provide some key
tools that are helpful to prove the quasi-decidability of CSL model checking
for ICTMC. Convergence of CSL model checking will come next. The final
part of the appendix will be devoted to showing the results of Section 7.

Appendix A.1. Measurability of Path Sets for ICTMC

Fix a ICTMC Z(t) on state space S with infinitesimal generator matrix
Q(t). We will start by recalling the definition of the sigma-algebra on the
set Paths of paths of Z(t). Let I be the set of non-empty intervals of R≥0

with rational endpoints. For I ∈ I, denote T−I and T+
I the upper and lower

bounds of I. The sigma-algebra F on Paths is the smallest sigma-algebra
containing all the cylinder sets Ct0(s0, I0, s1, . . . , In−1, sn), consisting of all
paths that are in s0 at time t0 and that jump to sj, 1 ≤ j ≤ n at a time
t ∈ t0 ⊕ I0 ⊕ . . . ⊕ Ij−1, where ⊕ is the Minkowsky sum. The collection
of cylinder sets starting at time t0 is called Ct0 and it is countable. The
collection of all cylinder sets is denoted by C. In accordance to the notation
of Section 5, the probability of a cylinder set Ct0(s0, I0, s1, . . . , In−1, sn) is
defined recursively as

P(Ct0(s0, I0, . . . , sn)) =

∫
t0⊕I0

qs0,s1(t)e
−Λ(t0,t)[s0]P(Ct(s1, I1, . . . , sn))dt

We now list some basic measurability properties for ICTMCs, which will
be used in the following.

Proposition Appendix A.1. Let Z(t), Paths, and F be defined as above.
Call Σ+ the set of sequences of states S of finite length. The following facts
hold:

1. The function τt0,n : Paths→ R≥0 ∪{∞} returning the time of the n-th
jump after t0, relative to t0 (and ∞ for Zeno paths exploding before t0)
is measurable.

2. For W ⊆ Σ+, the set Paths(t0,W ) of paths such that their sequence of
states, starting in t0, belongs to W is measurable.



3. For W ⊆ Σ+, the set Paths(t0, t1,W ) of paths such that their sequence
of states during time (t0, t1) belongs to W is measurable.

Proof. To prove point 1, note that, as the intervals I generate the Borel
sigma-algebra on R≥0, we just need to show that τ−1

t0,n(I) ∈ F for I ∈ I.24

Given a cylinder set Ct0(s0, I0, . . . , sn), denote by T−n the minimum time
of the n-th jump, relative to t0 (i.e. T−n =

∑
j<n T

−
Ij

) and with T+
n the

maximum time of the n-th jump. Let Ct0,n,I ⊂ C contain all cylinder sets
Ct0(s0, I0, . . . , sn) such that T−n = T−I and T+

n = T+
I , i.e. such that their n-th

jump happens at time t ∈ I, relative to t0. Then τ−1
t0,n(I) =

⋃
C∈Ct0,n,I

C ∈ F
(as Ct0 is countable).
Point 2 follows from the fact that W is countable, and that we can express
Paths(t0,W ) as the union of the cylinder sets of Ct0 whose sequence of states
is in W .
Point 3 follows similarly to point 2, expressing Paths(t0, t1,W ) as the union
of cylinder sets Ct0(s0, I0, . . . , sn, In, sn+1) of Ct0 such that s0 . . . sn ∈ W and
T−n+1 ≥ t1− t0.25 �

We are now ready to prove the propositions about measurability in the
paper.

Proposition (5.1). Let G : [t0, t1]×S → {0, 1} be a time-dependent set and
Z(t) an ICTMC. Then Pathsnext(Z, s0, t0, T1, T2, G) is measurable.

Proof. Fix s ∈ S and let Ws0,s = {s0s} ⊂ Σ+ be the singleton set containing
the sequence s0s. Furthermore, consider the measurable function G(·, s) :
[t0, t1]→ {0, 1}. Then, the set As = G(·, s)−1([t0+T1, t0+T2])	t0, containing
the time instants relative to t0 such that s is in G, is measurable. We can
express Pathnext(Z, t0, T1, T2, G) as

Pathsnext(Z, s0, t0, T1, T2, G) =
⋃
s∈S

(
τ−1
t0,1

(As) ∩ Paths(t0,Ws0,s)
)
.

24The set of paths exploding before t0 is also measurable, so we avoid treating it explicitly
for simplicity.

25To be more precise, we need to treat separately the case of trajectories whose n+ 1-th
jump after t0 happens exactly at time t1. In fact, t1−t0 can be irrational, hence necessarily
T−n+1 > t1 − t0. But such a set of trajectories is measurable due to point 1, hence this
poses no problem.



The expression on the right is measurable, and it is the union for s ∈ S of
the set of paths such that the first jump after t0 ends in state s and happens
at a time in which s is in G. �

Proposition (5.2). Let G,U : [t0, t1] × S → {0, 1} be time-dependent set
of finite-variability and Z(t) an ICTMC. Then Pathsreach(Z, s, t0, T,G, U),
s ∈ S, is measurable.

Proof. Let T0 = t0, T1, T2, . . . , Tn = T0+T be all the time instants in which G
or U are discontinuous for some state s ∈ S. Hence, in the interval (Ti, Ti+1),
the sets G and U are constant. Now we define the following subsets of paths:
Safe(I), of paths that visit only safe and non-goal states during the interval
I ⊂ [t0, t1], and SafeGoal(I), the set of paths that, when restricting to times
in I, visit safe sets and then reach a goal state. By proposition Appendix A.1,
these sets are measurable for any I ⊆ (Ti, Ti+1) (just define the appropriate
subsets W of sequences Σ+, i.e. made of all safe and non-goal sets, or of safe
sets until reaching a goal one, and visiting arbitrary states afterwards). By
measurability of finite dimensional projections, Safe(I) and SafeGoal(I)
are measurable also for single time instants, I = {t}. Then also

Safei = Safei−1 ∩ Safe({Ti−1}) ∩ Safe((Ti−1, Ti)),

0 < i ≤ n, is measurable for 0 < i ≤ n, with Safe0 = Safe({T0}), and so
are

Reachi = Safei ∩ ((Safe({Ti}) ∩ SafeGoal((Ti, Ti+1))) ∪ SafeGoal({Ti}))

for 0 ≤ i < n and

Pathsreach(Z, s, t0, T,G, U) =

(⋃
j<n

Reachj

)
∪ (Safen ∩ SafeGoal({Tn})) .

�

Proposition (5.3). Let Z(t) be a ICTMC with piecewise analytic time-
dependent rate matrix Q(t). Then

1. The time-dependent set of states JϕK = JϕK(t) that satisfy a CSL for-
mula ϕ has the finite variability property.



2. The set of paths Paths(s, t0, ψ) that satisfy a CSL path formula ϕ start-
ing in state s at time t0 is measurable.

Proof. The proof proceeds by structural induction on formulae. Point 1 for
atomic boolean state formulae is trivial, while for quantified state formu-
lae follows by the piecewise analyticity of the time dependent probabilities
P (t) for next and until path formulae, which guarantees that the inequality
P (s, t)− p ./ 0 changes truth status a finite number of times in any bounded
interval. Point 2 for next path formulae follows from Proposition 5.1, while
for until path formulae follows from a straightforward modification of Propo-
sition 5.2. �

Appendix A.2. Convergence of Next-State Probability

Proposition (6.1). Let f : I → R be a piecewise analytic function, with
I ⊆ R a compact interval. Let Ef = {x ∈ R | µ`(f−1({x}) = 0} be the set of
all values x such that f is not locally constantly equal to x, where µ` is the
Lebesgue measure. Furthermore, let Zx = f−1({x}) be the set of solutions of
f(t) = x and let DZf = {x ∈ R | ∀t ∈ Zx, f ′(t) 6= 0}. Then

1. ∀x ∈ Ef , Zx is finite.

2. µ`(Ef ∩DZf ) = 1

Proof. Point 1 follows from basic properties of the piecewise analytic func-
tion (f − x): in any analytic piece, either the function is constantly equal to
zero, or it has only a finite number of zeros. Point 2, instead, follows from
the fact that the derivative f ′(t) of t is piecewise analytic, hence has only
a finite number of zeros (in the analytic pieces in which f is not constant). �

Proposition (6.2). Let V (N)(t) be a sequence of time varying sets converging

robustly to a robust set V (t), t ∈ I. Let D
(N)
V = {t | V (N)(t) 6= V (t)}. Then

µ`(D
(N)
V )→ 0, where µ` is the Lebesgue measure on R.

Proof. A straightforward consequence of the definition of robust convergence
is that, for each open neighbourhood U of Disc(V ), there exists an N0 such
that, for all N ≥ N0, V (N)(t) = V (t) for t ∈ I \U . Now, as V is robust, then
|Disc(V )| = m < ∞. Fix ε > 0 and define Uε =

⋃
t̄∈Disc(V ) B(t̄, ε), where

B(t̄, ε) is the open ball centred at t̄ of radius ε. Then µ`(Uε) ≤ 2mε. Now, fix
εk → 0. For each k, there is an Nk such that, for all N ≥ Nk, V

(N)(t) = V (t)



for t ∈ I \ Uεk , and therefore D
(N)
V ⊆ Uεk . �

Lemma (6.1). Let X (N) be a sequence of CTMC models, as defined in Sec-

tion 3.1, and let Z
(N)
k and zk be defined from X (N) as in Section 3.3, with

piecewise real analytic rates, in a compact interval [0, T ′], for T ′ > t1 + Tb.
Let G(t), t ∈ [t0, t1 + Tb] be a robust time-varying set, and let G(N)(t) be a
sequence of time-varying sets converging robustly to G.
Furthermore, let P̄ (t) = Pnext(zk, t, Ta, Tb, G) and P̄ (N)(t) =

Pnext(Z
(N)
k , t, Ta, Tb, G), t ∈ [t0, t1].

Finally, fix p ∈ [0, 1], ./∈ {≤, <,>,≥}, and let Vp(t) = 1{P̄ (t) ./ p},
V

(N)
p (t) = 1{P̄ (N)(t) ./ p}. Then

1. P̄ (N)(t)→ P̄ (t), uniformly in t ∈ [t0, t1].

2. For almost every p ∈ [0, 1], Vp is robust and the sequence V
(N)
p converges

robustly to Vp.

Proof. By a standard coupling argument, assume that zk and Z
(N)
k are defined

on the same probability space Ω. Then, letting Y be either zk or Z
(N)
k , for

ω ∈ Ω, let χ(t, Y (ω)) be equal to one if trajectory Y (ω)’s first jump, starting
at time t, is into a state of G at time t′ ∈ [t+ Ta, t+ Tb], and zero otherwise.
Similarly, let χ(N)(t, Y (ω)) be 1 if Y (ω)’s first jump, starting at time t, is into
G(N) at time t′ ∈ [t+Ta, t+Tb], and zero otherwise. Then P̄ (t) = E[χ(t, zk)],

and P̄ (N)(t) = E[χ(N)(t, Z
(N)
k )]. It follows that

|E[χ(t, zk)]− E[χ(N)(t, Z
(N)
k )]| ≤ E[|χ(t, zk)− χ(N)(t, zk)|]︸ ︷︷ ︸

(1)

+ E[|χ(N)(t, zk)− χ(N)(t, Z
(N)
k )|]︸ ︷︷ ︸

(2)

Consider term (2) above. We can partition trajectories into two mea-

surable subsets: Ω1 = {ω ∈ Ω | zk(t, ω) = Z
(N)
k (t, ω), t ≤ t1 + Tb} and

Ω0 = Ω\Ω1. Let µΩ be the probability measure in Ω. Applying Theorem 3.2

up to time t1 + Tb, we have that χ(N)(t, Z
(N)
k (ω)) = χ(N)(t, zk(ω)) for ω ∈ Ω1



and P(Ω0) ≤ εN . Hence, for any t ∈ [t0, t1],

E[|χ(N)(t, Z
(N)
k )− χ(N)(t, zk)|] =

∫
Ω1

|χ(N)(t, Z
(N)
k )− χ(N)(t, zk)|dµΩ

+

∫
Ω0

|χ(N)(t, Z
(N)
k )− χ(N)(t, zk)|dµΩ

≤ εN → 0.

Notice that εN does not depend on t.
Let us focus now on term (1) in the inequality above. Let T1 < T2 <

. . . < Th be all the points in Disc(G) (which are finite in number as G is
robust). Fix t ∈ [t0, t1]. As G(N) converges robustly to G, for N ≥ N0 they
differ only in disjoint balls B(Ti, ε), for ε small enough. Furthermore, if G
has a discontinuity for state s in Ti, then the value of G on the left of B(Ti, ε)
is different from the value of G on the right of B(Ti, ε).

It follows that the only trajectories of zk for which χ(t, zk) 6= χ(N)(t, zk)

are those jumping within the set D
(N)
G (intersected with [t, t + Tb]).

26 As
the rate functions of zk are piecewise analytic, they are bounded by a con-
stant Λ, thus the probability of a trajectory jumping in D

(N)
G is bounded by∫

D
(N)
G

Λe−Λtdt ≤
∫
D

(N)
G

Λdt = Λµ`(D
(N)
G ) → 0 (independently of t). It follows

that
|E[χ(t, zk)]− E[χ(N)(t, Z

(N)
k )]| ≤ δN ,

with δN = εN + Λµ`(D
(N)
G ) → 0 independently of t, which proves uniform

convergence of P (N)(t) to P (t) .
Let us turn now to point 2 of the lemma.

Consider the set HP̄ of values p ∈ [0, 1] for which either (i) P̄ (t) is constantly
equal to p in one analytic piece of P̄ , or (ii) P̄ (t) = p and P̄ ′(t) = 0 for some
t, or (iii) P̄ (t) = p and P̄ is not analytic in t. By Prop. 6.1 and the definition
of piecewise analytic functions, the set HP̄ is finite. Fix a p 6∈ HP̄ . For such
a p, the function P̄ (t)− p defines a robust time-varying set, as it has a finite
number of simple zeros, all in analytic points of P̄ .
Call A the set of points in which Vp has a discontinuity, which is finite. Fix ε
and define Aε to be

⋃
t∈AB(t, ε), where Bε(t) = (t− ε, t+ ε). Now, if W is a

neighbourhood of A, then for a small ε > 0, Aε ⊂ W . Let fp(t) = |P̄ (t)− p|

26Notice that robustness of G is not necessary for this proof, but we enforce it for
uniformity with the convergence of reachability probabilities in Section 5.3.



and consider the set Iε = I \ Aε. Now, Iε is compact and fp(t) is different
from zero in Iε, so that min{fp(t) | t ∈ Iε} = mε > 0 (by the Weierstrass
Theorem [41]). As P̄ (N) converges uniformly to P̄ , there is N0 such that, for
all N ≥ N0 and all t ∈ Iε, |P̄ (N)(t)−P̄ (t)| ≤ mε

2
, hence for all N ≥ N0 and all

t ∈ Iε, Vp(t) = V
(N)
p (t). It follows that V

(N)
p (t) converges robustly to Vp(t). �

Appendix A.3. Convergence of Reachability Probability
Proposition (6.3). Let X (N) be a sequence of CTMC models, as defined in

Section 3.1, and let Z
(N)
k and zk be defined from X (N) as in Section 3.3.

Assume that the infinitesimal generator matrix Q(t) of zk is bounded and
integrable in every compact interval [0, T ]. Then

Preach(Z
(N)
k , t, T,G, U)→ Preach(zk, t, T,G, U), uniformly in [t0, t1], as N →∞

i.e. supt∈[t0,t1] ‖Preach(Z
(N)
k , t, T,G, U)− Preach(zk, t, T,G, U)‖ → 0.

Proof. The proposition follows from a similar argument to that used in the
first part of the proof of Lemma 6.1. By a standard coupling argument, we
can assume that the processes Z

(N)
k and zk are defined on the same probability

space Ω. Therefore, there exists a sequence εN ∈ R+, εN → 0, such that

P{ω ∈ Ω | ∀t ≤ T ′, Z
(N)
k (ω, t) = zk(ω, t)} ≥ 1 − εN . This means that with

probability 1 − εN , the trajectories of the two processes are the same up to
time T ′.

Now, we can define a (measurable) function χ = χt,T,G,U on the trajecto-
ries of the CTMCs which is equal to 1 if they satisfy the reachability property,
and 0 otherwise. Therefore, it holds that
Preach(Z

(N)
k , t, T,G, U) = E[χ(Z

(N)
k )], and similarly for zk. With a similar

notation as in Lemma 6.1, let Ω1 = {ω | Z(N)
k (t, ω) = zk(t, ω),∀t ≤ t0 + T},

Ω0 = {ω | Z(N)
k (t, ω) 6= zk(t, ω)}, and µΩ be the probability measure in

Ω (i.e. in the trajectory space). Observe that χ(Z
(N)
k ) = χ(zk) on Ω1 and

P(Ω0) ≤ εN , hence

|E[χ(Z
(N)
k )]− E[χ(zk)]| ≤ E[|χ(Z

(N)
k )− χ(zk)|]

=

∫
Ω1

|χ(Z
(N)
k )− χ(zk)|dµΩ

+

∫
Ω0

|χ(Z
(N)
k )− χ(zk)|dµΩ

≤ εN → 0.



Uniform convergence follows from the fact that the sequence εN does not
depend on the initial or the final time of the reachability property, if they
are both less than T + t1. �

Lemma (6.2). Let X (N) be a sequence of CTMC models, as defined in Section

3.1, and let Z
(N)
k and zk be defined from X (N) as in Section 3.3, with piecewise

analytic rates, in a compact interval [0, T ′], for T ′ sufficiently large.
Let G(t), U(t), t ∈ [t0, t1 + T ] be compatible and robust time-varying sets,
and let G(N)(t), U (N)(t) be sequences of time-varying sets converging robustly
to G and U , respectively.
Furthermore, let P (t) = Preach(zk, t, T,G, U) and

P (N)(t) = Preach(Z
(N)
k , t, T,G(N), U (N)), t ∈ [t0, t1].

Finally, fix p ∈ [0, 1], ./∈ {≤, <,>,≥}, and let Vp(t) = 1{P (t) ./ p},
V

(N)
p (t) = 1{P (N)(t) ./ p}. Then

1. For all but finitely many t ∈ [t0, t1], P (N)(t) → P (t), with uniform
speed (i.e. independently of t).

2. For almost every p ∈ [0, 1], Vp is robust and the sequence V
(N)
p converges

robustly to Vp.

Proof. As in the proof of Lemma 6.1, by a standard coupling argument as-
sume that zk and Z

(N)
k are defined on the same probability space Ω. Then,

letting Y be either zk or Z
(N)
k , for ω ∈ Ω, let χ(t, Y (ω)) be equal to 1 if

trajectory Y (ω) satisfies the reachability problem with respect to G and U
and zero otherwise, starting at time t and χ(N)(t, Y (ω)) be 1 if Y (ω) satisfies
the reachability problem for G(N), U (N), and zero otherwise, starting at time
t. Then P (t) = E[χ(t, zk)], and P (N)(t) = E[χ(N)(t, Z

(N)
k )], and

|E[χ(t, zk)]− E[χ(N)(t, Z
(N)
k )]| ≤ E[|χ(t, zk)− χ(N)(t, zk)|]︸ ︷︷ ︸

(1)

+ E[|χ(N)(t, zk)− χ(N)(t, Z
(N)
k )|]︸ ︷︷ ︸

(2)

Term (2) above is bounded by εN → 0, as in Lemma 6.1, by a straigh-
forward application of Theorem 3.2. Term (1) is also treated similarly to
Lemma 6.1, with an extra argument to deal with pointwise discontinuities
in the reachability probability. Let T1 < T2 < . . . < Th be all the points



in Disc(G) ∪ Disc(U) (which is finite as G and U are robust). If we sup-
pose neither t nor t + T coincide with one of the previous points (i.e. all
discontinuities are internal in the time domain), then by robust convergence
of G(N) (resp. U (N)) to G (resp. U), for N ≥ N0 they differ only in small
disjoint balls B(Ti, ε) internal to [t, t + T ]. Reasoning as in Lemma 6.1, it
follows that the only trajectories of zk for which χ(t, zk) 6= χ(N)(t, zk) are

those jumping within the set D(N) = D
(N)
G ∪ D(N)

U .27 As the rate functions
of zk are piecewise analytic, they are bounded by a constant Λ, thus the
probability of a trajectory jumping in D(N) is bounded by

∫
D(N) Λe−Λtdt ≤∫

D(N) Λdt = Λµ`(D
(N)) → 0 (independently of t). It follows that, if t 6∈ Td,

with Td = {T1, . . . , Th, T1 − T, . . . , Th − T}, then

|E[χ(t, zk)]− E[χ(N)(t, Z
(N)
k )]| ≤ δN ,

with δN = εN + Λµ`(D
(N))→ 0.

On the contrary, if t ∈ Td, then a discontinuity of G or U happens exactly
at the boundary of the time domain [t, t+ T ] in which we have to verify the
formula. In this case, the value of sets G(N) and G (or U (N) and U) may
never be the same at this extreme point t∗, whatever small neighbourhood
of t∗ in [t, t+ T ] one takes into account (e.g. if t∗ = Ti is the left extreme of
the time domain, it may happen that all changes of G(N) occur before this
point). Therefore, there can be a set of trajectories of measure > 0 that
are accepted by χ(N) and refused by χ (or vice versa). In particular, this
can happen if and only if P (t) has a discontinuity in one of those points
(otherwise, convergence follows by continuity). Hence, in these time points,
convergence may not hold. However, the set Td is finite, hence point 1 of the
Lemma is proved.

Let us turn now to point 2 of the lemma, which is similar to Lemma 6.1,
with extra care for the discontinuities of P .
As in Lemma 6.1, construct the set HP̄ of values p ∈ [0, 1] for which either
(i) P̄ (t) is constantly equal to p in one analytic piece of P̄ , or (ii) P̄ (t) = p
and P̄ ′(t) = 0 for some t, or (iii) P̄ (t) = p and P̄ is not analytic in t. This

27If G or U are not robust, then even if they have a finite number of discontinuity points,
the previous argument may not hold. In fact, they may have a discontinuity point Ti such
that Gs(Ti) = 1 but Gs(t) = 0 in a neighbourhood W \ {Ti} of Ti. In this case, it is

possible that G
(N)
s (t) = 0 on all W , which implies that χ(t, zk)) 6= χ(N)(t, zk) for all those

trajectories that are in state s at time Ti.



set is finite, and for p 6∈ HP̄ , the function P̄ (t) − p is easily seen to define
a robust time-varying set, as it has a finite number of simple zeros, all in
analytic points of P̄ . Consider now the set A of discontinuity points of Vp.
Fix ε and define Aε to be

⋃
t∈AB(t, ε), where Bε(t) = (t − ε, t + ε). By

reasoning as in the last part of the proof of Lemma 6.1, letting Iε = I \ Aε
and min{|P (t) − p| | t ∈ Iε} = mε > 0, as P (N)(t) converges in Iε to P (t)
with uniform speed, there is N0 such that, for all N ≥ N0 and all t ∈ Iε,
|P (N)(t)− P (t)| ≤ mε

2
, hence for all N ≥ N0 and all t ∈ Iε, Vp(t) = V

(N)
p (t).

It follows that V
(N)
p (t) converges robustly to Vp(t).

However, here we need extra care as the set Iε may contain time instants
t̃ in which the convergence of P (N) to P does not hold, but that do not
generate a discontinuity in Vp, because P (t̃+) and P (t̃−) are both greater or
both less than p. These points do not create problems, essentially because
the function P (N), for N large, remains close to P . In fact, convergence at t̃
fails because the jumps in G(N) and U (N) happen at time instants converging
to the ones of jumps in G and U , but not necessarily at t̃. This slightly puts
out of synchronization the time at which the discontinuity happens, but the
values of P (N) and P around such a discontinuity are close. This implies that,
for N large, P (N) will remain below p if both P (t̃+) and P (t̃−) are below it,
and similarly for the symmetric case.

A formalisation of this argument requires a more careful inspection of the
behaviour of G(N) (respectively U (N)) near a discontinuity of G (respectively
U), and a clarification of the connection between discontinuities in G and
U and discontinuities in P . For the former point, note that by the robust
convergence property of G(N) to G, if G has a discontinuity for state s at
time t, say from 0 to 1, then G(N) also has a discontinuity of the same kind
near t. In fact, it can do more than one jump around t, but for sure, for any
small ε > 0 and N large, it will equal 0 before t − ε and 1 after t + ε. The
point is that these additional jumps do not matter, as they happen so close
to each other that almost no probability mass moves in between, hence they
have a vanishing effect on P (N) (as N grows). As for the connection between
discontinuities in G and U and the function P , observe that we can have
a discontinuity in P at time t only if either G or U has a discontinuity at
time t or at time t + T (they cannot both have such a discontinuity, due to
the compatibility condition). There are many cases to take into account (a
change from goal to non-goal, or from non-goal to goal, and so on), but only
a few of them induce a discontinuity, specifically a change from non-goal to



goal of a safe state s at time t+ T (inducing a discontinuity in any safe and
non-goal state at time t), a change from goal to non-goal of a safe state s or
from unsafe to safe of a non-goal state s at time t (inducing a discontinuity
in s), and a change in the goal status of an unsafe state at time t. In the
first case, we can have a discontinuous increase in P . In the second case, the
value of P in s can drop from 1 to a value p′ < 1. In the third case, the value
of P can increase from 0 to a value p′ > 0. In the fourth case, which is a
rather strange case, the value of P changes from 0 to 1, or vice versa.
To understand the connection between P , P (N), G and G(N), consider a
situation of the first kind, in which one or more safe states s change from
non-goal to goal at time t + T . This creates a discontinuity in P (t) for any
safe state s′, such that there is a non null-probability of going from s′ to s
along a safe and non-goal path from t to t + T . This probability, in fact,
is added to Ps′(t), according to the discussion in Section 5.3. Suppose for
simplicity that only a single state s changes status in t+ T from non-goal to
goal. Then this happens close to t + T also in G(N). In fact, s can change
status many times in G(N), near t + T , but only the first one really matters
for the discontinuity of P (N). This happens because the probability added
to P

(N)
s′ for subsequent jumps of s from non-goal to goal state close to t+ T

is only the probability of jumping into s from another safe state in the short
time interval in which s is non-goal. To be more concrete, if s jumps from
non-goal to goal at time t

(N)
1 +T , then from goal to non-goal at time t

(N)
2 +T

and back to goal at time t
(N)
3 +T , then the probability added to P

(N)
s′ (t

(N)
3 ) is

bounded by the amount of probability mass that can flow into s in between
times t

(N)
2 + T and t

(N)
3 + T , which is of the order of t

(N)
3 − t(N)

2 . Hence it

vanishes as N grows (as t
(N)
2 and t

(N)
3 collapse to t). More precisely, if Λ is

an upper bound for the exit rate of the single agent (uniform in N , which

can be found as the exit rate of Z
(N)
k converges to the exit rate of zk, which

is itself uniformly bounded), then the jump size at time t
(N)
3 is bounded by

2Λ(t
(N)
3 − t(N)

2 ). Furthermore, the speed at which P
(N)
s′ can increase or de-

crease, excluding jumps, is also bounded by 2Λ, so that the value of P
(N)
s′

cannot vary too much after the first jump in a small time interval of size
∆t around t. In fact, combining these two arguments, the total variation
(after the first jump) is bounded by 2Λ∆t.

28 Note that, if more than one

28The factor 2 comes from the fact that we are working with a combination of the
backward and forward equation, both giving an upper bound of Λ on the rate of change



safe state changes goal status at time t + T in G, then in G(N) these events
can happen asynchronously, hence to see the full increase in P

(N)
s′ we need

to wait until all those states have changed value in G(N). Yet the bound in
terms of Λ and ∆t remains valid. The other discontinuous jump types are
treated analogously (with the exception of the jump from 0 to 1 or from 1 to
0, which however contains any threshold p in its interior). We can now give
a formal argument that discontinuities in Iε are not a problem. Assume that
P has a discontinuity at t̃ such that µ = max{Ps′(t̃+), Ps′(t̃

−)} < p, and call
ε = p− µ. Now, choose δ such that 4δΛ < ε/4, ‖Ps′(t̃− δ)− Ps′(t̃−)‖ < ε/4,
and ‖Ps′(t̃+ δ)−Ps′(t̃+)‖ < ε/4. Then, choose an N0 such that, for N ≥ N0,
all the jumps of G(N) are closer than δ to the jumps of G, and such that
‖P (N)

s′ (t̃ ± δ) − Ps′(t̃ ± δ)‖ < ε/4. Then, using the previous reasoning, we

can see that supt∈]t̃−δ,t̃+δ[ P
(N)
s′ (t) < max{P (N)

s′ (t̃ + δ), P
(N)
s′ (t̃ − δ)} + 4δΛ ≤

µ+3/4ε < p. The first inequality holds because max{P (N)
s′ (t̃+δ), P

(N)
s′ (t̃−δ)}

is a value close to the value of P (N) after the first jump, and is combined
with the bound 4δΛ on the variation. Hence P

(N)
s′ ultimately does not cross

the line p around t̃. The case in which min{Ps′(t̃+), Ps′(t̃
−)} > p is dealt with

similarly. �

Appendix A.4. CSL model checking

Theorem (5.1). The CSL model checking for ICTMC, for piecewise analytic
interval computable rate functions, is decidable for a robust CSL formula
ϕ(p1, . . . , pk).

Proof. First of all, we prove that we can approximate the function P (t) for
any top next or until formula ϕ with arbitrary small precision. To start,
notice that procedures for integrating ODEs and doing matrix multiplica-
tion (which are at the basis of the methods in Sections 5.1 and 5.3) can be
computed with arbitrary precision, due to the assumptions of interval com-
putability. Hence, let us focus on the set of zeros of P (t)−p, for a dependent
next or until formula ϕ1. We want to prove that we can find those zeros
with arbitrary precision, and that in doing this we will be able to compute
the probability of any next or until formula which contains ϕ1 as a sub-
formula with arbitrary precision. If ϕ is robust, then the time-varying truth

of probability mass.



of formula ϕ1 is robust. This means that P (t) − p has a finite number of
simple zeros (i.e. their derivatives are not zero). Hence, it is possible to effec-
tively encapsulate them in disjoint intervals of size as small as desired [64]29.
Therefore, we can compute the time-varying truth value of the set of states
satisfying the formula ϕ1 with arbitrary precision, in the sense that for each
ε > 0 small enough, we can provide intervals of size at most ε, each contain-
ing a single discontinuity point of the set in which one or more states change
truth status. The condition on compatibility ensures that we can combine
such approximation of time-varying sets and still obtain robust sets. (This
may fail if we take the minimum (conjunction) of two truth sets which have a
discontinuity for s in the same time point T : we can obtain a function which
is neither left nor right continuous, a situation that cannot originate from a
simple zero.) Furthermore we have the further property that we can always
assume that there is a zero in every approximation interval30. Consider now
the problem of computing the probability of an until formula, having two
approximations of time-varying truth as described above. Reasoning as in
the proof of Lemma 6.2, we can see that if we choose an arbitrary point in
each interval wrapping a discontinuity point in spite of the correct one, we
commit an error in computing the probability of the until which is uniformly
bounded by the total size of the approximation intervals. Hence, we can
make such error as small as desired. A similar conclusion can be drawn for a
next formula, invoking the line of reasoning of Lemma 6.1. Reasoning induc-
tively, we can therefore compute with any arbitrary precision the probability
P (0) of any top until formula.

29As the number of zeros is finite and their first-order derivative is non-zero, the function
fp(t) = P (t) − p crosses zero in those points. Furthermore, notice that the absolute
minimum value of the derivative in those zero points is > 0. Hence, there is an ε such that
each interval of size ε containing a zero point has different signs at the extremes and the
derivative is provably different from zero. By iterated bisection, we can always find such
intervals after a finite number of steps. Furthermore, all intervals J not containing a zero
can be eventually discarded by bisection, computing an upper bound L on the absolute
value of the derivative in such intervals and bisecting them until we can prove that they
are disjoint from zero using the Lipschitz condition with Lipschitz constant L (compute
fp on a single point x in J of length δ, and discard J if |fp(x)| − Lδ > 0).

30If we take the minimum (conjunction) of two truth sets which have a discontinuity
for s in the same time point T , then even if the conjunction is robust, when we have an
approximation of the time-varying truth function, we can never know if both discontinuities
happen in the same time point or in different ones.



Given this value, we then have to solve the inequality Ps(0) < pi (or
Ps(0) > pi) for any s and any top next or until formula ϕi. By the robustness
of the CSL formula ϕ, it cannot be that Ps(0) = pi, hence we can effectively
solve that problem by computing Ps(0) with precision εi < |Ps(0) − pi|. As
we are doing interval arithmetic computations, we can increase the precision
until each pi will be outside the approximation interval for Ps(0). This proves
that the algorithm presented is effective for robust formulae and eventually
computes the exact answer. �

Theorem (5.2). Given a CSL formula ϕ(p), with p ∈ [0, 1]k, then the set
{p | ϕ(p) is robust} is relatively open31 in [0, 1]k and has Lebesgue measure
1.

Proof. We will prove the theorem by structural induction on the formula
ϕ. We first need some preliminary definitions. Consider an until formula
ϕ = P./p(ϕ1U

[T1,T2]ϕ2) or a next formula ϕ = P./p(X[Ta,Tb]ϕ1) and call q
a generic tuple of values for the thresholds on which ϕ1 and (in the until
case) ϕ2 depend. Fix a q such that the time-varying sets for ϕ1 and ϕ2

are robust. An open neighbourhood Uq of q is robust if the time-varying
sets for ϕ1 and ϕ2 are robust for each q′ ∈ Uq. Observe that in Uq the
number of discontinuities of time-varying truth sets of ϕ1 and ϕ2 does not
change (ϕj is robust for each point in U , and a change in the number of
discontinuities can happen only at a non-robust point) and the time-instants
at which such discontinuities happen depend continuously on q. Now, we
define the set-valued function b : Uq → 2[0,1] in the following way: Given q′,
b(q′) is the set of values p which causes the time-varying truth set of ϕ to
be non-robust. Therefore, b(q′) contains the values of Ps(t) for which P ′s(t)
is zero, the values Ps(t

−) and Ps(t
+) for each non-analytic point t of P , and

the values of constant pieces of Ps, plus the value Ps(0). Hence it is finite.
By possibly restricting Uq, we can also assume that the number of points
in b(q′) is bounded by |b(q)| in Uq

32 and the value of such points depends

31A set U ⊂ V is relatively open in V ⊂W , where W is a topological space, if it is open
in the subspace topology, i.e. if there exists an open subset U1 ⊆W such that U = V ∩U1.

32We have to restrict U to avoid the appearance of further zeros of the derivatives away
from current zeros. Note also that if a value p ∈ b(q) corresponds to a non-simple zero
at a time t0 in which the derivative has a maximum or a minimum, a small perturbation
of q can split it in two, or make it disappear. Just think about raising or lowering a



continuously on q′. Therefore, the set-valued map b : Uq → 2[0,1] is upper-
semicontinuous in Uq, i.e. for each neighbourhood Ub(x) of b(x) in [0, 1], there
is a neighbourhood Ux of x in Uq such that b(Ux) ⊆ Ub(x).
Given a formula ϕ = ϕ(p), p ∈ [0, 1]k, we define the set Rϕ ⊂ [0, 1]k of all
robust thresholds, i.e. p0 ∈ Rϕ if and only if ϕ(p0) is robust for ϕ. Hence,
our goal is to show that Rϕ is open and has measure 1 for any formula ϕ.
We are now ready for the inductive argument.

Base case: The base case corresponds to (boolean combinations of) atomic
formulae, which are robust for each p ∈ [0, 1]k.

Boolean combinations: The only non-trivial cases are the conjunctions
or disjunctions of until or next formulae. In these cases, we have to
enforce the compatibility condition by guaranteeing that the disconti-
nuity times of truth-valued functions are disjoint for each pair of until
or next formulae. Consider two until or next formulae ϕ1 and ϕ2, and
let p = (q1, p1,q2, p2), where pj is the threshold for formula ϕj and qj

is the set of constants which ϕj depends on. By inductive hypothesis,
the robust sets Rj = Rϕj for ϕj are open and have measure 1. Now, let
Pj = Pj(t,qj) be the probability of the until or next path formula in
ϕj, and fix a robust point q = (q1, p1,q2). Let g(q) be the set valued
function g(q) = P2({t | P1(t,q1) = p1},q2)∪ b2(q2), where b2 is the set
of non-robust points for ϕ2, as defined above. The set g(q) contains
all thresholds for ϕ2 for which ϕ2 is non-robust and all thresholds that
would make the boolean combination non-robust. By properties of the
analytic functions, it follows that g(q) is finite. Hence by arguments
similar to the ones above, the function g is upper-semicontinuous33 in
a neighbourhood U of q. Therefore, letting p2 6∈ g(q) and V ∩g(q) = ∅

curve having a local maximum or minimum with value zero. However, split zeros will be
at points t1 and t2 arbitrarily close to t0, and therefore, by continuity of Ps(t,q) with
respect to q, the values of Ps(ti,q

′), for q′ close to q will be close to Ps(t0,q). Zeros that
disappear are not a problem for semicontinuity, as the empty set is contained in any set.
Hence, we need to count those points twice in |b(q)|.

33The number of solutions of P1(t,q1) = p1 in a sufficiently small neighbourhood U1

of (p1,q1) is constant and hence the set-valued function g1(p1,q1) = {t | P1(t,q1) =
p1} is upper semicontinuous. Furthermore, in a sufficiently small neighbourhood U2 of
q2, the function P2(t,q2) is continuous in q2 for each continuity point t of P2(t,q2).
Points for which P2(t,q2) is not continuous are covered by b, hence both P2(t+,q2) and
P2(t−,q2) are in g(q). Now, for each neighbourhood V of g(q), by piecewise analyticity



a neighbourhood of p2 in [0, 1], we can find a neighbourhood U of q
such that g(U)∩V = ∅, so that W = U ×V is an open neighbourhood
of p = (q1, p1,q2, p2) which contains only robust points, which proves
that R = Rϕ is open.
Furthermore, R is a fortiori measurable. Now, let hR : [0, 1]k1+k2 →
{0, 1} be the indicator function of the set R in which the boolean com-
bination ϕ of ϕ1 and ϕ2 is robust. Note that R ⊆ R1 × R2, and call
R′2 the set of thresholds q2 for which sub-formulae of ϕ2 are robust,
which is open and has measure 1 in [0, 1]k2−1 by inductive hypothesis.
By Fubini’s Theorem:

µ`(R) =

∫
[0,1]k1+k2

hR(q1, p1,q2, p2)µ`(dq1, dp1, dq2, dp2)

=

∫
[0,1]k1+k2−1

∫
[0,1]

hR(q1, p1,q2, p2)µ`(dp2)µ`(dq1, dp1, dq2)

=

∫
R1×R′2

µ`(dq1, dp1, dq2) =

∫
R1

µ`(dq1, dp1)

∫
R′2

µ`(dq2) = 1,

which proves that R has measure 1.
If we have a boolean combination of j > 2 until formulae, we simply
reason pairwise and then take the intersection of the so-obtained robust
sets, thus getting an open set of measure 1.

Until formulae: Let ϕ = P./pk(ϕ1U
[T1,T2]ϕ2). By inductive hypothesis, the

set Rϕ1 × Rϕ2 ⊂ [0, 1]k−1 for which ϕ1 and ϕ2 are robust is open and
has measure 1. By reasoning as in the boolean combination case (and
considering all until and next conjunct/disjuncts of ϕ1 and ϕ2), we can
immediately conclude that the set R′ ⊆ Rϕ1 × Rϕ2 in which the time
varying sets of ϕ1 and ϕ2 are robust and compatible is open and has
measure 1.

Now, fix a point q ∈ R′, let U ⊆ R′ be a robust neighbourhood of q, and
consider the set valued function b : U → 2[0,1] as defined above. Now fix

and right/left continuity of P2, we can find a neighbourhood U2 of q2 and a neighbourhood
V1 of g1(p1,q1) such that b2(U2) ⊆ V and both {p | p = P2(t+,q2), t ∈ V1} ⊆ V and {p |
p = P2(t−,q2), t ∈ V1} ⊆ V . Now, by upper-semicontinuity of g1, there is a neighbourhood
U1 of (q1, p1) such that g1(U1) ⊆ V1. It follows that g(U1 × U2) ⊆ V , hence g is upper-
semicontinuous in q.



p 6∈ b(q), and choose a neighbourhood V of p such that V ∩b(q) = ∅. As
b is upper-semicontinuous, there exists W ⊂ U such that b(W )∩V = ∅,
hence ϕ is robust in W × V . By the arbitrary choice of p = (q, p), it
follows that R = Rϕ is open, and hence measurable. Now, let hR :
[0, 1]k → {0, 1} be the indicator function of the set R in which ϕ is
robust. By Fubini’s theorem, it follows that R has measure 1.

Next formulae: The argument for a next formula ϕ = P./pk(X[Ta,Tb]ϕ1) is
essentially the same as for until formulae, with the only difference that
the inductive hypothesis is applied only to ϕ1 and there is no need to
ensure compatibility. �

Theorem (6.1). Let X (N) be a sequence of CTMC models, as defined in Sec-

tion 3.1, and let Z
(N)
k and zk be defined from X (N) as in Section 3.3.

Assume that Z
(N)
k , zk have piecewise analytic infinitesimal generator matri-

ces.
Let ϕ(p1, . . . , pk) be a robust CSL formula. Then, there exists an N0 such
that, for N ≥ N0 and each s ∈ S

s, 0 �
Z

(N)
k

ϕ⇔ s, 0 �zk ϕ.

Proof. We use structural induction to prove that, for each formula ϕ, the
time-varying truth sets V

(N)
ϕ of ϕ in Z

(N)
k converge robustly to the robust

time-varying truth set Vϕ of ϕ in zk.

Base case: The case for atomic propositions is trivial, as V
(N)
ϕ and Vϕ are

constant and equal.

Negation: Let ϕ = ¬ϕ1. The result follows because Vϕ(t) = 1 − Vϕ1 and

V
(N)
ϕ (t) = 1− V (N)

ϕ1 .

Conjunction/Disjunction: Let ϕ = ϕ1◦ϕ2, ◦ ∈ {∧,∨}. Due to the com-
patibility condition of robustness of ϕ with respect to zk, the set Vϕ(t) =
mm{Vϕ1(t), Vϕ2(t)}, mm ∈ {min,max} is robust, with Disc(Vϕ) ⊆
Disc(Vϕ1) ∪ Disc(Vϕ2). Using the inductive hypothesis, it easily fol-

lows that V
(N)
ϕ (t) = mm{V (N)

ϕ1 (t), V
(N)
ϕ2 (t)} converges robustly to Vϕ(t).



Next: Let ϕ = P./p(X[Ta,Tb]ϕ1). By inductive hypothesis, we can apply

Lemma 6.1 and deduce that Vϕ is robust and V
(N)
ϕ converges robustly

to Vϕ.

Until: Let ϕ = P./p(ϕ1U
[Ta,Tb]ϕ2). By inductive hypothesis (and the com-

patibility condition in the definition of robustness of ϕ), we can apply

Lemma 6.234 and deduce that Vϕ is robust and V
(N)
ϕ converges robustly

to Vϕ.

The fact that V
(N)
ϕ converges robustly to the robust set Vϕ, combined with

property 1 of robustness of ϕ, let us conclude that the truth value of ϕ at
level N converges to the truth value of the limit ICTMC at time zero (if 0 was
a point in which convergence of probability fails, then a small perturbation
in p could change the truth value of ϕ in the limit ICTMC, contradicting
the robustness of ϕ; furthermore, robustness of ϕ forbids that Ps(0) = p). �

Appendix A.4.1. Comparison of CSL model checking for Z
(N)
k and (Z

(N)
k , X̂

(N)
k )

We will prove now the lemmas in Section 7 of the paper. We will start by
an auxiliary result, which is needed to adapt the proof style of Lemmas 6.1
and 6.2 to the processes (Z

(N)
k , X̂

(N)
k ) and (zk, x̂k) discussed in this section.

In particular, in Lemmas 6.1 and 6.2 we used the fact that processes jump
with a small probability in a small temporal neighbourhood of the discon-
tinuity points of time-varying sets. In the space-based setting, however, we
need to consider neighbourhoods of the boundaries of goals and unsafe sets.
Therefore, to use the same proof style, we need to bound the time trajec-
tories spend in such a neighbourhood, in a uniform way in space. The key
point is that, as the convergence results we are interested in depend only on
a neighbourhood of the trajectory Φ([0, T ],x0), we can always choose a small
flow tube such that the velocity with which a trajectory crosses the boundary

34We need to apply it twice for the two reachability problems involved in computing
the probability of an until formula, noticing that the probability of the path formula
within ϕ is an analytic combination of the two so-computed probabilities. Robustness of

Vϕ and robust convergence of V
(N)
ϕ to Vϕ follows from the same arguments of Lemma

6.2. Alternatively, one can modify Lemma 6.2 and tailor it to the reachability involved
in the until case (which reduces the time window in which one can reach the goal set),
by a straightforward modification of the definition of χ(N) and χ and adaptation of the
arguments for robust convergence.



of a goal or an unsafe set is close to that of Φ([0, T ],x0), and so will be the
time spent in a neighbourhood around such boundary. In the following, we
will make this intuition formal.

First of all, observe that the notion of robust set V implies that when a
trajectory crosses the boundary ∂V in a point x, the function h defining the
smooth manifold of the d-set ∂V around x changes sign.
We will now prove an upper bound for the time spent by a trajectory in a
neighbourhood of the d-set D = ∂G of a robust set G in S ×E0, a T, ε0-flow
tube of Φ([0, T ],x0).

For each trajectory Φ([T−x (E0), T+
x (E0)],x), x ∈ E0, consider the points

Disc(s,x) = {(s,x1) ∈ D | x1 ∈ Φ([T−x (E0), T+
x (E0)],x)} in which it inter-

sects D.
We define the ε-neighbourhood ofD in S×E0 asDε =

⋃
(s,x)∈D∩(S×E0) Bε(s,x),

which is an open set. Note that Dε =
⋃

(s,x)∈S×E0

⋃
(s,x1)∈Disc(s,x) Bε(s,x1),

as S × E0 is the union of a set of trajectories.
Now, by the robustness property ofG in S×E0, we have that |Disc(s,x)| ≤

k. Furthermore, by the robustness of G, the trajectory Φ([0, T ],x0) will cross
D moving from the interior of G to the interior of its complement, or vice
versa, for any point (s,xsi ) ∈ Disc(s,x0) and any s ∈ S. Consider a neigh-
bourhood W of (s,xsi ) in which D = ∂G is a smooth manifold. Therefore,
there is a sufficiently smooth function h in W such that D ∩W is the zero
set of h. By the robustness property of G, the function h(Φ(t,x0)) equals 0
at ti (the time such that Φ(t,x0) = xsi ), and changes sign around ti (i.e. it
is positive at ti − δ and negative at ti + δ, for a δ > 0). It follows that the
derivative of h(Φ(t,x0)) in ti is non-null. As it equals ∇h(xsi ) · F (xsi ), we

have that ∇h(xsi ) 6= 0, and hence | ∇h(xsi )

‖∇h(xsi )‖
· F (xsi )| > 0.

Now, by choosing a suitably small neighbourhood W1 ⊂ W of (s,xsi ) (we
need to ensure that the manifold containing (s,xsi ) is the closest one in
W1, among those constituting D), we obtain that the function ρ(t,x) =
dist((s,Φ(t,x)), ∂G) = inf(s,y)∈∂G ‖Φ(t,x)− y‖ is differentiable (in t and x),

and its derivative in (0,xsi ) is ρ′(0,xsi ) =
∂ρ(0,xsi )

∂t
=

∇h(xsi )

‖∇h(xsi )‖
· F (xsi ), i.e. it is

the projection of the vector field along the normal to the surface {h = 0}.
Now, by continuity of ρ′, we find a neighbourhood W2 ⊂ W1 of (s,xsi ) such
that |ρ′(0,x)| ≥ ρsi/2, where ρsi = |ρ′(0,xsi )|.

Now, choose ε1 < ε0 and ε̄ that satisfies: (i) the number of intersections
between D and a trajectory in S × E1 is constant and equal to the number
k of intersections of S × Φ([0, T ],x0) with D (this is possible because the



flow tube S ×E1 is a small neighbourhood of S ×Φ([0, T ],x0)), and (ii) Dε̄,
the ε̄-neighbourhood of D in the T, ε1-flow tube S × E1, is contained in the
neighbourhood W2 of (s,xsi ) identified above, for any s ∈ S and i ≤ k.
By the choice of W2, it follows that the speed at which each trajectory of
S ×E1 travels in Dε̄ (with respect to the distance from D) is bounded below
by ρ0 = mins,i ρ

s
i/2, and hence the total time τε̄ a trajectory of S×E1 spends

in Dε̄ is bounded above by 2ε̄k
ρ0

, as it has to travel a total distance of 2ε̄k with
speed no less than ρ0. Notice that this bound is independent of the specific
trajectory considered.

With the previous discussion, we have proved the following

Lemma Appendix A.1. Let E0 ⊂ E be a T, ε0-flow tube for x0. Let G
be a robust subset of S × E0. Then, there are positive constants ε1, ε̄, and
ρ0 such that, for any ε′ < ε̄, the total time τε′ a trajectory in S × E1 (E1

the T, ε1-flow tube for x0) spends in Dε′, the ε′ neighbourhood of D = ∂G,
satisfies τε′ ≤ 2ε′k

ρ0
, where k is the number of intersections of any trajectory

with D.

Equipped with this lemma, we can now prove the following one.

Lemma (7.1). Let E0 ⊂ E be a T, ε0-flow tube for x0. Let G be a robust
subset of S ×E0, and G(N) be a sequence of subsets of S ×E0 that converge
robustly to G.

Let P̄ (s,x) = Pnext(y, s,x, Ta, Tb, G) be the probability that the first jump
of y(t) is into a state in G and happens at a time t ∈ [T1, T2], given that
y started at time t = 0 in state (s,x) ∈ S × E0, and let P̄ (N)(s,x) =

P
(N)
next(Y

(N), s, ν(N)(x), Ta, Tb, G
(N)) be defined similarly, with G and x re-

placed by G(N) and ν(N)(x), respectively.
Furthermore, define V = {(s,x) | P̄ (s,x) ./ p} and
V (N) = {(s,x) | P̄ (N)(s,x) ./ p}. Then there exists ε1 > 0 such that, in E1,
the (T − Tb), ε1-flow tube for x0:

1. P̄ (N)(s,x)→ P̄ (s,x) for all x ∈ E1, uniformly in (s,x).

2. If Vx0(t), t ∈ [T−x0
(E1), T+

x0
(E1)], is a robust time-varying set, then V is

robust in E1 and V (N) converges robustly to V .

Proof. First, notice that we can always restrict to an arbitrary small neigh-
bourhood of Φ(t,x0), i.e. to a T, ε1-flow tube E1 for x0, with ε1 as small as
desired. This follows from the convergence in probability implied by Kurtz
Theorem 3.1. Given δ > 0, this guarantees that we can find an index N0



such that, for any N > N0, with probability at least 1 − δ, the trajectories
of X̂(N)(t) are contained in E1. Furthermore, we can choose such an index
N0 independently of x. Hence, given E0, if we consider a flow tube E1 for x0

with radius ε1 < ε0/2, each flow tube of radius ε1 wrapping a trajectory in
E1 will be contained in E0. This guarantees that the next-step probability
for Y(N) for any point in S ×E1 will ultimately depend only on the goal sets
G(N) within S × E0.

We first prove point 1 of the lemma in a (T − Tb), ε1-flow tube E1 for x0,
for an ε1 < ε0/2 to be fixed in the following. We will prove convergence of
P̄ (N) to P̄ for each (s,x) ∈ S × E1.

We will now use an argument similar to the one of Lemma 6.1. Couple y
and Y(N) on the same probability space Ω, and let χ (resp. χ(N)) be random
variables defined on sample trajectories and equal to one if the trajectory’s
first jump of the s component is in G (resp. G(N)). Then, as P (s,x) =
E[χ(s,x,y(ω))], where y(0) = (s,x), and similarly for P (N)(s,x), to show
convergence we just need to prove that |E[χ(s,x,y)]−E[χ(N)(s,x,Y(N))]| →
0. It holds that:

|E[χ(s,x,y)]− E[χ(N)(s,x,Y(N))]| ≤ E[|χ(s,x,y)− χ(N)(s,x,y)|]︸ ︷︷ ︸
(1)

+ E[|χ(N)(s,x,y)− χ(N)(s,x,Y(N))|],︸ ︷︷ ︸
(2)

To treat term (1), invoke Lemma Appendix A.1, assume ε1 is smaller
than the one required by the lemma, and let ε̄ and ρ0 the other two constants
obtained from it. Now, as in Lemma 6.1, observe that for each ε′ < ε̄, the
only trajectories of y for which χ and χ(N) can have a different value are
those jumping at a time at which y(t) is in Dε′ . Now, the total amount
of time y spends in Dε′ is uniformly bounded by τε′ ≤ 2ε′k

ρ0
, where k is the

number of intersections of a trajectory in S × E1 with D. It follows that
term (1) can be bounded by 2ε′Λk

ρ0
, where Λ is an upper bound for the jump

rate of zk in S × E0.
The bound on term (2), instead, follows from the convergence of Y(N) to

y, but it requires a slightly different treatment than in Lemma 6.1, as now the
time varying sets for Y(N) depend on the sample trajectories of X̂(N), hence
they are random quantities. Call G

(N)

x,X̂(N)
(t) the time-varying sets relative to

G(N), but defined with respect to trajectories of Y(N)(t). The time varying



sets for y, with respect to G(N), are denoted by G
(N)
x (t), while that relative

to G is Gx(t). We will need now to control two things: first, we will construct
a neighbourhood of D in such a way that all the time varying sets are the
same outside it, for N large enough. Then, we will bound the time taken by
X̂(N)(t) to cross such a neighbourhood (again for N large enough).

Assume ε′ < ε̄/2, and consider the ε′-neighbourhood Dε′ of D. Invoking
robust convergence, choose N0 such that for N ≥ N0, G(N) coincides with
G outside Dε′ . We now want to find a neighbourhood [t̄ − τ ′, t̄ + τ ′] of the
time t̄ in which x̂(t̄) ∈ D, such that we are guaranteed that if t falls outside
this neighbourhood, both x̂(t) and X̂(N)(t) are outside Dε′ . For any such

time t, it clearly holds that G
(N)

x,X̂(N)
(t) and G

(N)
x (t) coincide. To find such a

neighbourhood of t̄, let N1 be such that, for N ≥ N1, ‖X̂(N)(t) − x̂(t)‖ is
less than ε′ with probability 1 − δ (δ to be fixed later). Call this event Ωε′ .
Condition on it and consider D2ε′ . If x̂(t) 6∈ D2ε′ , then it follows that X̂(N)(t)
will not belong to Dε′ . Hence, we just need to bound the time τ2ε′ that x̂(t)
spends in D2ε′ . By Lemma Appendix A.1, this time is no more than 4ε′k

ρ0
.

Now, using Theorem 3.2, choose an N2 such that, for N ≥ N2, Z
(N)
k (t)

coincides in [0, T ] with zk(t) with probability at least 1− δ. To bound term

2, observe that if Z
(N)
k and zk are the same, and conditional on event Ωε′ , if

both Z
(N)
k and zk jump at time instants in which x̂(t) is outside D2ε′ , then

χ(N)(s,x,y) and χ(N)(s,x,Y(N)) will have the same value.
Therefore, we can bound term (2) by the probability of χ(N)(s,x,y) 6=

χ(N)(s,x,Y(N)), which is itself bounded by

P{zk jumps in D2ε′}+ P{Ωc
ε′}+ P{Z(N)

k 6= zk} ≤
4ε′Λk

ρ0

+ 2δ.

Now, fix ε > 0 and choose ε′ < min{ε̄/4, ερ0
12Λk
}, and δ < ε/4. By combining

the bounds on term (1) and term (2), we obtain that

lim sup
N→∞

|E[χ(s,x,y)]− E[χ(N)(s,x,Y(N))]| ≤ 6ε′Λk

ρ0

+ 2δ ≤ ε

2
+
ε

2
= ε,

which by the arbitrariness of ε implies that

lim
N→∞

|E[χ(s,x,y)]− E[χ(N)(s,x,Y(N))]| = 0.

Therefore, we obtain that P̄ (N)(s,x) → P̄ (s,x), and this convergence is
uniform with respect to (s,x) ∈ S × E1, as the bound derived above is
independent of it.



As for point 2 of the lemma, observe that by the fact that the time-
varying set Vx0(t) associated with the fluid trajectory Φ(t,x0) is robust, and
by piecewise analyticity of P̄ , we can choose an ε1 sufficiently small not only
to satisfy the constraints to derive convergence discussed above, but also such
that all trajectories in the flow tube E1 are robust, i.e. their time varying
set with respect to P̄ are robust (just observe that the function P̄ (s,Φ(t,x))
is piecewise analytic in t and x for each s). Furthermore, we have chosen
ε1 so that the number of intersections of Φ(t,x) with V in each state s, i.e.
the number of times P̄ (s,Φ(t,x)) − p changes sign, is the same as that of
Φ(t,x0). Now, consider the boundary ∂V in S ×E1, which is the zero set of
the function h(s,x) = P̄ (s,x)− p. By continuity of P̄ and by the robustness
property of Vx0(t), we have that the trajectory (s,Φ([0, T ],x0)) intersects ∂V
in points xsi in which the function P̄ is analytic. Hence, P̄ will be analytic
in a neighbourhood of xsi , and, by a suitable choice of ε1, P̄ will be analytic
in the whole component of ∂V containing xsi . It follows that ∂V is the union
of smooth manifolds (analytic in this case).
Thus, by choosing ε1 suitably small, ∂V is a d-set and V is robust.
As for the robust convergence of V (N) to V , by the uniform convergence of
P̄ (N) to P̄ outside an open neighbourhood of ∂V , we obtain the robust con-
vergence of V (N) to V . �

Lemma (7.2). Let E0 ⊂ E be a T, ε0-flow tube for x0. Let U and G two
robust and compatible subsets of S × E0, and U (N), G(N) be sequences of
subsets of S × E0 that converge robustly to U and G, respectively.

Let P (s,x) = Preach(y, s,x, Ta, Tb, U,G) be the probability that y(t) reaches
a state in G within time [Ta, Tb], avoiding any unsafe state in U , given that
y started at time t = 0 in state (s,x) ∈ S × E0, and let P (N)(s,x) =

P
(N)
reach(Y

(N), s, ν(N)(x), Ta, Tb, U
(N), G(N)) be defined similarly, with G, U , x

replaced by G(N), U (N), and ν(N)(x), respectively. Furthermore, define V =
{(s,x) | P (s,x) ./ p} and V (N) = {(s,x) | P (N)(s,x) ./ p}. Then there
exists ε1 > 0 such that, in E1, the (T − Tb), ε1-flow tube for x0:

1. P (N)(s,x)→ P (s,x) for all x ∈ E1 \D, where D is a d-set, uniformly
in (s,x).

2. If Vx0(t), t ∈ [T−x0
(E1), T+

x0
(E1)], is a robust time-varying set, then V is

robust in E1 and V (N) converges robustly to V .

Proof. First, notice that, as in Lemma 7.1, we can always restrict on an



arbitrary small neighbourhood of Φ(t,x0), i.e. on a T, ε1-flow tube E1 for x0,
with ε1 as small as desired, implying that the reachability problem for Y(N)

for any point in S × E1 will eventually depend only on the goal sets G(N)

and U (N) within S × E0.
We first prove point 1 of the lemma in a (T − Tb), ε1-flow tube E1 for

x0, for an ε1 < ε0/2 (ε1 will be fixed in the following). Consider the set
D in E0, D = Disc(G) ∪Disc(U) ∪ Φ−1(Ta, Disc(G)) ∪ Φ−1(Ta, Disc(U)) ∪
Φ−1(Tb, Disc(G)) ∪ Φ−1(Tb, Disc(U)), containing the discontinuity points of
G and U and all points that are mapped by the flow to Disc(G) ∪Disc(U)
after Ta or Tb units of time. D is easily seen to be a d-set. In fact, it is closed
and it intersects each trajectory a finite number of times, as Disc(G) and
Disc(U) are d-sets. Furthermore, each smooth manifold of G or U , defined
as the zero set of the function h(x), will be mapped by Φ−1(Tj, ·), j = a, b,
into the smooth manifold defined by the function h(Φ(tj,x)). This function
is smooth as Φ(t,x) is piecewise analytic and it is at least of class C1.

Differently from Lemma 7.1, we will prove convergence of P (N) to P for
each (s,x) ∈ (S × E1) \D.
Consider now the setD0 = Disc(G)∪Disc(U), and define the ε-neighbourhood
of D0, Dε, as done in Lemma 7.1. It clearly holds that Dε → D0, as ε→ 0.

We will now use an argument similar to the one of Lemma 6.2. Let χ
(resp. χ(N)) be random variables defined on sample trajectories and equal
to one if the trajectory satisfies the reachability problem of the Lemma with
respect to G,U (resp. G(N), U (N)). Then, as P (s,x) = E[χ(s,x,y(ω))], where
y(0) = (s,x), and similarly for P (N)(s,x), to show convergence we just need
to prove that |E[χ(s,x,y)]− E[χ(N)(s,x,Y(N))]| → 0. It holds that:

|E[χ(s,x,y)]− E[χ(N)(s,x,Y(N))]| ≤ E[|χ(s,x,y)− χ(N)(s,x,y)|]︸ ︷︷ ︸
(1)

+ E[|χ(N)(s,x,y)− χ(N)(s,x,Y(N))|],︸ ︷︷ ︸
(2)

From Lemma Appendix A.1, we obtain constants ε̄1 and ε̄ that bound
the size of the flow tube E1, and of the Dε′ neighbourhood of D0. Under
these constraints, we can reason exactly as in the proof of Lemma 7.1 to
bound terms (1) and (2) by 6ε′Λk

ρ0
+ 2δ, where δ and ε′ < ε̄/2 can be chosen

arbitrary small for N large enough, concluding that |P (N)(s,x) − P (s,x)|
converges to zero, uniformly in (S × E1) \D.



As for point 2 of the lemma, robustness of V follows by the same ar-
gument as Lemma 7.1. Notice that Disc(V ) is closed, as it is the union
of the zero sets of continuous functions (the analytic pieces of P ), plus the
subset Dp of discontinuity points of P such that lim inf P (s,x) ≤ p and
lim supP (s,x) ≥ p, which is also closed. Furthermore, by robustness of
Vx0(t), we can choose ε1 such that all points in Dp satisfy lim inf P (s,x) < p
and lim supP (s,x) > p (we need this because Vx(t) has to be robust for all
x in S × E1). For the robust convergence of V (N) to V , Disc(V ) is a d-set,
hence we can use uniform convergence of P (N) to P outside an open neigh-
bourhood of Disc(V ). Additionally, notice that, as in the proof of Lemma
6.2, the points in which we do not have convergence of P (N) to P and that
are not in Disc(V ), do not create problems, as in a small neighbourhood of
those points, P is always strictly above or below p, and the lim sup or the
lim inf of P (N) in those points will uniformly satisfy the inequality defining
V (N) (thanks to the compatibility condition of G and U). �

Lemma (7.3). Let X (N) be a sequence of CTMC models, as defined in Section

3.1, and let Z
(N)
k and zk be defined from X (N) as in Section 3.3.

Assume that there is a flow tube E0 of x0 such that all trajectories in E0 are
piecewise analytic.
Let ϕ = ϕ(p) be a robust CSL formula for the trajectory Φ(t,x0). Then,
there is an N0 such that, for all N ≥ N0,

s,x0 |=y ϕ ⇔ s, ν(N)(x0) |=Y(N) ϕ.

Proof. We will prove by structural induction on the formula ϕ, that there is
a T, ε-flow tube Eϕ of x0 such that V

(N)
ϕ converges to Vϕ robustly, where Vϕ

is the set of points (s,x) ∈ S × Eϕ such that s,x |=y ϕ and V
(N)
ϕ is the set

of points (s,x) ∈ S × Eϕ such that s, ν(N)(x0) |=Y(N) ϕ.

Base case: the result for atomic formulae is trivial as their truth value de-
pends only on s, hence we can choose Eϕ = E0 and Vϕ = V

(N)
ϕ =

Sϕ × E0, where Sϕ = {s | s |= ϕ}.

Negation: If ϕ = ¬ϕ1, we can choose Eϕ = Eϕ1 , and simply observe that

robust convergence of V
(N)
ϕ1 to Vϕ1 implies robust convergence of V

(N)
ϕ =

Eϕ1 \ V
(N)
ϕ1 to Vϕ = Eϕ1 \ Vϕ1 .



Conjunction and Disjunction: If ϕ = ϕ1◦ϕ2, ◦ ∈ {∧,∨}, consider Eϕi , a

T, εi-flow tube, and sets V
(N)
ϕi → Vϕi . As ϕ is robust for the trajectory

starting in x0 and x0 ∈ Eϕi , by the compatibility condition of ϕ there
exists an ε such that the d-sets of Vϕ1 and Vϕ2 are disjoint in S × Eϕ,
for Eϕ the T, ε-flow tube in x0. It easily follows that Vϕ = Vϕ1 • Vϕ2 is

robust in S × Eϕ, • ∈ {∩,∪}, and V
(N)
ϕ1 • V

(N)
ϕ2 → Vϕ1 • Vϕ2 robustly.

Next: If ϕ = P./p(X[T1,T2]ϕ1), let Eϕ1 be a T, ε-flow tube for ϕ1 and let Vϕ1

be a robust set, such that V
(N)
ϕ1 → Vϕ1 robustly. By considering the

ε, T -flow tube Ej for x0, and using the robustness of ϕ, we satisfy the
hypothesis of Lemma 7.1, hence there is an (T − T2), ε-flow tube Eϕ
for x0 such that Vϕ is robust in S × Eϕ and V

(N)
ϕ → Vϕ robustly.

Until: If ϕ = P./p(ϕ1U
[T1,T2]ϕ2), let Eϕi be T, εi-flow tubes for ϕi, i = 1, 2,

and robust sets Vϕi , such that V
(N)
ϕi → Vϕi robustly. By letting ε0 <

min{ε1, ε2}, such that ∂Vϕi ∩ ∂Vϕ2 = ∅ (which can be found by the
compatibility condition enforced by robustness of ϕ), considering the
ε0, T -flow tube Ej for x0, and using the robustness of ϕ, we satisfy the
hypothesis of Lemma 7.2, hence there is an (T − T2), ε-flow tube Eϕ
for x0 such that Vϕ is robust in S × Eϕ and V

(N)
ϕ → Vϕ robustly.

Given a formula ϕ, and the flow-tube Eϕ for x0, such that Vϕ is robust in

S × Eϕ and V
(N)
ϕ → Vϕ robustly, then the lemma follows by observing that,

due to robustness of ϕ, x0 does not belong to the d-set ∂Vϕ, hence there is

an N0 such that, for all N ≥ N0, (s,x0) ∈ V (N)
ϕ ⇔ (s,x0) ∈ Vϕ. �


