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Abstract. We discuss some basic properties of the eigenfunctions of a class of
nonlocal operators whose model is the fractional p-Laplacian.
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1 - Introduction

This note is about eigenfunctions of some nonlocal operators of fractional or-
der s € (0,1) and summability p > 1. Namely, we consider weak solutions u of
equation

(1) —Zu = AulfPu

in a domain Q C R" with the Dirichlet condition u = 0 on #'Q = R" \ Q, where

L) =2 | Ko, pluty) — u@] () - uw) do
R"
and K belongs to a class of singular symmetric kernels modeled on the case
K(x,y) = & — y|” """ The integral is understood in the principal value sense.
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Fractional eigenfunctions are related to the problem of minimizing the nonlocal
Rayleigh quotient
[ [ s - sapr aaay

2) @) = T

J | ()| dac
'a?l
among all smooth funetions ¢ compactly supported in a Lipschitz domain Q. In the

Y | —(n+sp)

case when K = |x — , equation (1) becomes

3) (— Dou = Aufu,

where the symbol (— A); denotes the fractional p-Laplacian operator.

After being investigated first in potential theory and harmonic analysis, frac-
tional operators defined via singular integral are nowadays riveting great attention
in different research fields related to PDEs with nonlocal terms. For an elementary
introduction to this wide topic and a large list of related references we refer to [9, 10].
For a precise introduction about equation (3), the reader is referred to Lindgren and
Lindqvist [13] who first studied this eigenvalue problem. In their paper, several
remarkable properties of eigenfunctions were proved for suitably large values of p.
The limit case as p goes to infinity was also derived.

Here, we discuss such problem for any p > 1. We prove that, similarly as in the
local case, also for the fractional p-Laplacian positive eigenfunctions uniquely cor-
respond to the first eigenvalue, the one that is obtained by minimizing the Rayleigh
quotient (see Theorem 4.1 below). Moreover, we deduce that all the positive frac-
tional p-eigenfunctions corresponding to the first eigenvalue 1; are proportional
(see Theorem 4.2 below). Hopefully, that may turn out to be of some interest in view
of possible further results in this topic.

At variance with the usual linear fractional panorama, considering nonlocal op-
erators whose kernel K(x, y) is proportional to |x — | “"** leads both to nonlocal
and to nonlinear difficulties. In particular, one can not benefit from the strong s-
harmonic extension of [5]. Tools as, for instance, the barriers and density estimates
provided in [21, 20], or the commutator and energy estimates in [18, 19] make use of
the linearity. An adaptation of such techniques to the case p # 2 is not trivial. Even
the mere Hoélder continuity of eigenfunctions is not a clear consequence of the de-
finition of weak solutions of (1), except for the trivial case when p is so large to make
possible the use of Morrey’s embedding. In fact, despite the possibility of getting L?
to L via classical comparison arguments, the oscillation decay however is hardly
under control with local estimates, due to the nonlocal contributions in the integral.

On the other hand, the assumptions on the exponent p can be considerably low-
ered preserving the uniqueness of positive eigenfunctions. In this note it is shown
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how to circumvent difficulties presenting a proof which does not require any sig-
nificant information about the regularity of weak solutions of (1).

The idea dates back to [3] and its importance in homogeneous nonlinear eigen-
value problems was noticed by Belloni and Kawohl in [1] (see also [2]). What matters
for uniqueness is the convexity of the Gagliardo-type seminorm || - ||., along sui-
table curves connecting pairs of positive functions. For a detailed description of this
mechanism in the local case s = 1, we refer to the recent paper [4] by Brasco and the
first author.

The paper is organized as follows. In Section 2 below, we fix the notation by also
providing some preliminary results. In Section 3 we discuss some local and global
estimates of eigenfunctions u to problem (1). Section 4 is devoted to the proofs of
our main results for the fractional p-eigenfunctions.

2 - Preliminaries

In this section we state the general assumptions on the quantities we are dealing
with. We keep these assumptions throughout the paper.

Firstly, we recall that, for any s € (0,1) and any p > 1, the fractional Sobolev
spaces W5P(R") is defined through the norm

p
[ — J julPde + J J% ddy.

For a bounded domain 2 C R" (here always assumed with Lipschitz boundary), the
space W*5P(Q2) can be defined similarly, by replacing the domains of integrations with
Q. The homogeneous fractional Sobolev spaces Wy () is given by the closure of
C3°(€2) with respect to the norm || - ||y, (). For further details on the fractional
Sobolev spaces, we refer to [9] and the references therein.

The kernel K : R" x R" — [0, 0o) is a measurable function such that

K(x,y) = K(y,x) for almost x,y € R",
(4) i < K@, y)x —y|[""P < A for almost x,y € R",

for some s € (0,1),p > 1, 1,4 > 1.1

L As noticed in [11], the assumption in (4) can be weakened as follows
2 < K@, y)lx —y|""* < A for almost ,y € R” s.t. |x —y| <1,
0 < K@, y)|x—y|"™ < M for almost x,y € R" s.t. |[x —y| > 1,

for some s, 4, 4 as above, n > 0 and M > 1. Also, the kernel symmetry can be dropped, as
seen in [6, 7].
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For any u, v € Wy"(Q2) we consider the functional
65) )= J J K, ) ucee) — up)~2u() — ) @le) — v(y)) dady,
R"R"
and the corresponding energy
(6) T (u) = K(x, )ux) — uly)’ dedy.
RVL RIL

Moreover, we define a linear operator % such that, for any » and # sufficiently
smooth, say e. g. u, n € C;°() such that w = n=0in 7°Q,

—(Zu,n) = & (u,n),

where (-, -) denotes, as usual, the dual product in the distributional sense. Thus, for
any u € Wy?(Q) we have

Su(w) =PV, J K@, ) uly) — u@)2uly) — u@) dy

(7) R
 Tim J J K, p)uly) — w@)P 2uly) — u@)dy, = e R",
7 Bg(x) R"

up to a multiplicative constant; see, e. g., Theorem 2.3 in [6]. As usual, the symbol
P.V.in the preceding formula means “in the principal value sense”.

Let A > 0, we are interested in the weak solutions u € Wg’p (2) to the following
class of integro-differential problems

(8) —Zu = uP?u inQ,

where the zero boundary condition is given in the whole complement of €, as usual
when dealing with nonlocal operators. To fix the ideas, one can keep in mind the case
when 4 coincides with the fractional p-Laplacian operator —(— A)fo, which, omitting
a multiplicative constant ¢ = c(n, p, s), is given by

() — u(y) P2 (i) — uly))
|.'X/' _ y|n+sp

(— A ulw) = P.V.

R"

dxdy,

for any s € (0,1) and any p > 1; so that the equation in (8) becomes

9) (— Diu = Aul’u.
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A function u € W;?(Q) is a weak solution to (8) if it satisfies

S = 4 | lul Hunda,
"R'l

for all test function # € C3°(22) such that # = 0 in £ Q, where £ is defined in (5).
Notice that weak solutions are defined in the whole space, since they are con-
sidered to be extended to zero outside Q. Such weak solutions deserved a special
name in the case when .4 coincides with the fractional p-Laplacian operator (see
[13, Definition 6]).

Definition 2.1. Let s €(0,1) and p € (1,00). A real number 4 is said to be
a “fractional p-eigenvalue” if equation (9) admits a non-trivial weak solution
u € WyP(Q). If that is the case, u is called a “fractional p-eigenfunction”
associated with A.

Note that eigenvalues are positive numbers. To see that, just plug the ei-
genfunction % itself in the weak formulation of (9) and note that the corre-
sponding eigenvalue A equals the Rayleigh quotient .72(u). By the same argument,
eigenvalues are bounded from below, up to a power, by the best constant for the
embedding of W;”(Q) into LP(Q). Since the latter is compact if p > 1, we can
conclude this section by recalling that there exists a nonnegative minimizer u # 0
of (6); see [13, Theorem 5] and, also, [6, Theorem 2.3].

Lemma 2.1. Lets € (0,1) and p > 1. Then there exists a nonnegative mini-
mizer u of (6) in Wg’p (Q) such that w = 0 in 2 Q. Moreover, u 1s a weak solution to
problem (8).

Proof. By Sobolev’s inequality and assumption (4) on the kernel K, any mini-
mizing sequence is bounded in W *(Q). Since p > 1, up to relabeling the sequence is
converging to a limit function u strongly in LP(R") and weakly in Wy (). The fact
that % is a minimizer follows then by the weak lower semicontinuity of norms.
Moreover, by possibly passing to a subsequence, one can assume the convergence to
hold pointwise almost everywhere, thus the boundary condition is also satisfied. To
see that « must not change sign, it is sufficient to notice that the inequality

u(y) — u@)| > [Ju)| — |u))|

is strict at almost all points x,y such where u(x)u(y) < 0. The last statement is
standard, since (8) is the Euler-Lagrange equation for the minimization of the
Rayleigh quotient. O
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3 - Local and global estimates

Fractional eigenfunctions are bounded. A way of seeing that is to obtain the decay
estimate for the level sets

(10) J > 8y dE < chl{u> k)"
k

for all k > 0 with the exponent ¢ = sp/n(p — 1) and a constant ¢ > 0 which depends
onn,p,s, A, Q. Evenif an account for estimate (10) seems not to be present anywhere
in the literature, we prefer to skip the details of the proof, since they follow verbatim
the technique at one’s disposal in the eigenvalue problem for the p-Laplacian, for
which we refer to [14, 15]. Due to (10), a quantitative bound of the form

[l < Cllullp:

can be obtained, see [12, Lemma 5.1, p. 71].

This kind of global bounds owe a lot to the very special features of the eigenvalue
problem. Moreover, the bounds are inherited from the Dirichlet condition # = 0 on
the complement of Q. When dealing with equations like

(11) —Zgu=f,

having right hand-side different from the nonlinearity considered in this note, one
can however hope for LP to L™ estimates. In passing, we mention a result in this
direction.

Theorem 3.1. Let 0<s<1, sp<mn, 2CR" be a bounded open set and
f € L'(Q) for some y > n/sp. If u € Wy'(Q) solves equation (11) then

K(x,y)|uy) — u@)|” dedy
{u>k}NB,(xo) {u>k}NB,(xo)
C

<@y | @R Ol > kB

Br(20)\B, (1)

SJorall k > 0 and all balls B,(x) C Br(xy) C L.

We skip the proof of Theorem 3.1, which follows a classical path based on
Stampacchia’s truncations and comparison with constants. Namely, one con-
siders the weak formulation of equation (11) and plugs in as a test function
7’ (u — k), where 7 is a standard cut-off. For a more detailed account about this
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topic and related questions in the fractional framework, we refer to the recent
papers [6, 7]. Actually, fractional Caccioppoli estimates turned out recently to be
of nice use in a slightly different context. The interested reader is referred
to [16, 17, 8].

Let us now turn to the matter. We want to prove the boundedness of eigen-
functions. The proof below is much in the spirit of classical elliptic regularity. We
point out that the linear case p = 2 has been considered in [22, Proposition 4] and
[24, Proposition 7]. In this direction, it is worth mentioning also the paper [23] where
a detailed theory for the linear fractional eigenfunctions has been discussed; see, in
particular, Proposition 9 there.

For the sake of simplicity, from now on we suppose that K(x,y) = |x — y| """
that is, the case when the operator coincides with the fractional p-Laplacian. The
general case with K satisfying (4) will follow with no severe modification.

Theorem 3.2. Lets < (0,1),p>1 andu € WS”’(.Q) be a solution to (8). Then
w € L*(R"™).

Proof. If sp > n the conclusion is a consequence of Morrey-Sobolev embed-
ding (see [9, Theorem 8.2]). Thus, from now on, we are supposing that sp < n. In
order to prove the theorem, it suffices to bound the positive part u, of u. Indeed,
since —u is also a solution, the same argument will give a bound for the negative part,
too. It is enough to prove that

(12) il <1 3f Jlugllp, <9,

where ¢ > 0 will be determined. Note that there is no restriction in that. Indeed, the
general case follows by a scaling argument, since equation (8) is homogeneous.
Now, for any integer k > 1, consider the function wy, defined as follows

wp = u— 1 =275,

By construction, wy € Wg’p () and wy, = 0 a. e.in Z'Q. Notice also that the following
inequalities

Wwi1(x) < wi(e) ae. in R”,
(13)
u(@) < @ — Dwy(w) for @ € {wy,1 > 0},

and the inclusions
{wk+1 > 0} - {wk > 27(}”1)}

hold true for all k¥ € IN.
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The following general elementary fact is also helpful: if v € Wi*(Q), then
(14) @) — @2 (04 @) — v @) (V@) — V(@) > [v4@) — v @),

forallz,y € R". To check this, assume that v(x) > v(y). There is no loss of generality
in that, since the roles of x and ¥ can be interchanged. Then, one can reduce to the
case when x € {v > 0} and y € {v < 0}, as otherwise inequality (14) is trivial. In
such a case, (14) reads as

@) — o) o) > v(a)

which is correct since v(y) < 0 and v(x) > 0.
Now, (12) will be proved by a standard argument based on estimating the decay of
the quantity Uy, := ||wy||",. On the one hand, in view of (14) with v = u — (1 — 27F),

_ p—2 _ _
e ler < J Jlu(x) w@)[P = (ulx) — w @) (wWyes1) — Wwye41 (1)) dudy.

|9(; o y|7L+Sp

R" R"

Thus, by plugging w1 as a test function in (8) and using (13), one obtains

(15) il < J @)@ @de < A2 — 19710,

{wk11>0}

On the other hand, the left hand-side of the latter can be estimated from below by
Up,1 if (fractional) Sobolev embeddings are called into play. At this stage, it is
convenient to separately consider the case when sp < n and that when sp = n. We
first consider the former, since the limiting case sp = n only requires minor mod-
ifications. By Holder’s Inequality (with exponents p*/p and 7/(sp)) and fractional
Sobolev imbedding (see, for instance, [9 Theorem 6.7])

{wk+1 > O} |%7

(16) Ui < C||wk+1||€vs.p
0

where the constant ¢ > 0 only depends on n, p, s. Note that the mere juxtaposition of
inequalities (15) and (16) is not enough to conclude, since Uy, ; and Uy, both appear
with the same exponent but the latter has a big factor in front. On the other hand,
by (13) and Chebychev’s inequality, one has

[{wier > 0} < [{wy > 2 F )| < 22000,

Thus,
Upip < cA@EDYHT
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A similar conclusion can be drawn if sp = n. In this case Holder inequality with
different exponents and the limit embedding Wy” — L7 (with ¢ > 1) should be used.
Hence, whenever sp < n, an estimate of the form

Uen < C*U™, forall keN,
holds for a suitable constant C' > 1 and some o > 0. This will imply that
(17 leHOIO Uy,=0
provided that
luilly, = Uy < €% =: 7,

as it is easily checked. Since wy, converges to (u — 1), pointwise almost everywhere
in R", from (17) we infer that that (12) holds as desired. O

To conclude this section, we point out that the proof above is based on the com-
petition between LP and W*? norms of the truncated eigenfunctions, just as in the
local case. At variance with that, no energy inequality was involved, though. This was
possible due to the very special structure of the problem, which allows for a control
on the energy via the simple arithmetic relation (14). Moreover, no localization was
needed, due to the peculiar boundary conditions.

4 - Uniqueness of fractional p-eigenfunctions

As mentioned in the introduction, the geodesic convexity property presented
in [4] holds true for the fractional Gagliardo seminorm .77 defined by (6) when
K =[x — y|" """ Indeed, we state and prove the following

Lemma 4.1. Lets e (0,1), p > 1, and let 7 be the functional defined by (6).
For any nonnegative functions w,v € Wy'(Q), consider the function o, defined by

(18) o) == ((1 — DP@) + P @)F, ¥t €[0,1],
Then
(19) Ko < (1 —DIW) +tH W), Vte[0,1]

Proof. The proof is straightforward. Notice that

o = || (t’l’“v (1- t)%v)HKP’
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where || - ||, denotes the ¢”-norm in R?. Then, (19) follows by the triangle inequality
el = lnllo| < 1€ = nlla,

by taking &= (£/Puy),d —t)/Po(y)) and 5= (t"/Pux),d — "Px(y)) for any
x,y € R" and integrating the resulting inequality against the fractional kernel on
R"™ x R". O

Now, we are in the position to prove our main result, stated in the following

Theorem 4.1. Let s €(0,1), p > 1 and v € Wy(Q) be a solution to (8) such
that v > 01 Q. Then
h= 35 ),

where /lip(.Q) denotes the minimum of the fractional Rayleigh quotients .72 on

WyP(Q), as defined in (2).

Proof. Assumethatv € W;”(Q)is a strictly positive solution of (9). There is no
loss of generality if we assume that the function v is normalized in LP(Q). Let
u € WyP(2) be a solution of the minimum problem

i_p(.Q) = min {‘%(u,[)): u € WyP(Q), J |u(x)|Pdae = 1}.
o

To simplify the notation a little, let %, and v, denote the functions u + ¢ and v + ¢,
respectively. Set

7i@) = (tus@f + (A — o, P)’,  weQtel0,1].

By Lemma 4.1, t — ¢f is a curve of functions belonging to W*?(£2) along which the
energy is convex. Hence

Jjai(x)—ai(y)lp dedy — J Jv(aﬁ)—v(y)l’o dedy,

xr— n+sp x— n+sp
R"R" | y| R™ R" ‘ y|
lu(x) — uly)” [v(x) — v(y)|
<o | [Fampe v | | S asy
R"R R"R

= (4, - 7).

forallt € [0,1] and all ¢ < 1. By the (standard) convexity of the map t+ |z, the left



[11] FRACTIONAL p-EIGENVALUES 383

hand-side in the latter can be estimated from below as follows

|o5@) — o)l Jjwm—mwp
3§ ( o—gpre FWT ] ) e S
R" R" BrRe
> J J (@) — v’ 2@ (y) — v(@)) q

|x _ y|n+sp

xdy

R™ R"

% (ot — (c3(@) — () — v(a) ) dady,

forallt € [0,1]and ¢ < 1. Moreover, since u, v € Wg’p (€), the function o} also belong
to W*P(Q). Thus, it does make sense to plug ¢ = of — v, as a test function into the
Euler-Lagrange equation which holds for the eigenfunction v, whence the identity

_ p—2 _
Wm'ﬁ{ﬁﬂ)“m@m%@m—m@—mmﬁMy

R" R”

= Jv(z)pfl (0i(2) — v(2)) dz,

Q

follows for all ¢ < 1. Here the fact that v(y) — v(x) = v.(y) — v.(x) was used. Thus,

j Jv(z)p’l M de < 25,(@) — 4,
Q

for all £ € [0,1], and all ¢ <« 1. Note that by the concavity of the p-th root, the in-
tegrand in the latter is estimated pointwise almost everywhere in Q from below by
the function

v (u) — (),

which does belong to L'(Q). Hence, we can apply Fatou’s Lemma and get

p-1
(arss)  er-ner)e
Q

< Jliminf | v(z)’~ dz < 2] (Q)— 4,
t—0+ P

Q

105(2) — v,(2)
t

for all ¢ small enough, since

d

dt

0@) = 20,1 (1, — 0, 2P).
t=0 p

Now comes the importance of the assumption v > 0. By Dominated Convergence



384 GIOVANNI FRANZINA and GIAMPIERO PALATUCCI [12]

Theorem, sending ¢ — 0% yields

(u@)P —v(z)P)dz < M p(Q) — 2.

supp(v)

Since supp(v) = £, by the normalization in L”(Q2) of both the functions u, v the left

integral is equal to zero. Then
A< 74 ,(Q)

and the desired conclusion follows, since )jp(Q) is the least possible fractional p-
eigenvalue and the converse inequality is obvious. O

We point out that the proof above does not require the functions u,v to be con-
tinuous. On the other hand, the fact that v > 0 has to be assumed, unless a strong
minimum principle for weak eigenfunctions is valid. In the case of the local p-
Laplacian the latter is a consequence, for instance, of Harnack inequality. Since in
this note we do not investigate about analogous results for the fractional p-Laplacian,
we prefer to keep v > 0 as an assumption. However, we can similarly conclude with
the following result about the first eigenvalue.

Theorem 4.2. Let s € (0,1) and p > 1. Then all the positive eigenfunctions
corresponding to /l'i,p(Q) are proportional.

Proof. Letwu,vbetwo positive normalized functions WS”’ () and o; denote the
usual constant speed geodesic connecting » to v. Recall the convexity inequality of

Lemma 4.1
T (o) < (A =07 W)+t ().

If the equality holds, then for almost all x,% € R" the triangle inequality
el = Inllw] < 1€ = nlls,
holds as an inequality with the choice
&= (truly), L — ), 1= (tru), 1 — ).
Since p > 1 there exists a(x,y) € R such that
u(y) = o, yulx),  vy) = ale,yo),

for almost all ¢,y € R". Therefore
u) _uw)
oy) v

and there is a constant f such that « = fv almost everywhere. O
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It is worth noticing that the results are partial, since first eigenfunctions are
assumed to be strictly positive. A strong minimum principle, keeping nonnegative
eigenfunctions from vanishing anywhere, is at one’s disposal for any continuous
weak solution u. Indeed, such eigenfunctions % also solve the equation (9) in a
viscosity sense (see [13]) and the implication

u>0=u>0

easily follows by the definition of viscosity supersolutions, for which we refer to [13].

Acknowledgments. The authors would like to thank Peter Lindqvist for the
stimulating discussions.
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