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Abstract

A method for studying masonry vaults with the aim of furnishing a useful computational tool both
for evaluating the safety of masonry monuments and guiding the choice of restoration operations
is presented. The maximum modulus eccentricities surface playing a role analogous to that of line
of thrust for arches is defined; subsequently a spherical vault subjected to its own weight and a
point load at the crown is analyzed and the maximum modulus eccentricities surface in
correspondence of the collapse is explicitly calculated. Finalily the baptistery of Volterra cathedral
is studied, in particular the effectiveness of the existing reinforcement is checked.

1. INTRODUCTION

A numerical method for solving plane equilibrium problems of masonry solids has been proposed
in a previous work [1]. The masonry is considered to be a non-linear elastic material characterised
by the constitutive hypothesis that the total strain E is the sum of an elastic part E® and an inelastic
part E2, positive semi-definite, E = E¢ + E2 Moreover, the stress T, negative semi-definite and
orthogonal to E2, depends linearly and isotropically on E°: thus, T = 2uE¢ + A tr(E®)I, with 1
and A the Lamé moduli of the material. E? is sometimes called the fracture strain because I:ht:fbody
can be expected to crack in the regions where E* is different from zero.

The solution to equilibrium problems by the finite element method is arrived at by means of the
Newton-Raphson method, which requires explicit calculation of the derivative of stress with
respect to the total strain .

In [2] and [3] the method was extended to enable, among other enhancements, solution of
three-dimensional problems, and has been successfully applied to the study of masonry structures
in proximity to collapse as well. In particular, calculations of the lines of thrust from the stress
field determined by finite element analysis has proven to be particularly useful in the evalvation of
the safety of arches and the effectiveness which can be expected of any restoration and/or
reinforcement work.

In this paper we intend to propose a method for studying masonry vaults with the aim of
furnishing a useful computational tool both for evaluating the safety of masonry monuments and
guiding the choice of restoration operations.

Firstly, in Section 2 a surface called the maximum modulus eccentricities surface (m.m.e.s.)
is defined and several important properties which it possess are proven. In masonry vaults the
m.m.e.s. plays a role analogous to that of line of thrust for arches.

Section 3 deals with a circular plate subjected to progressively increasing loads until collapse is
reached. The m.m.e.s. is then determined from the numerically calculated stress field. Once this
surface is known the mechanism of collapse can be predicted, and some simple formulas for
calculating the collapse load can be formulated.

Section 4 is dedicated to the study of spherical vaults subjected to their own weight and a point
load at the crown. The finite element analysis confirms that the vault collapses by an “orange-



slices” mechanism and by virtue of the hypothesis that the circumferential normal force and
bending moment are null, the stress characteristics and the m.m.e.s. are explicitly determined. The
values of the m.m.e.s. turn out to be in a good agreement with those calculated numericaily.

Finally, in Section 5 the baptistery in Volterra, dating back to the X C. and currently under
restoration, is analyzed. In particular, the stress field is determined and the effectiveness of the
existing reinforcement - two chains for the vault and one for the baptistery walls - is checked.

The numerical results presented in this paper have been obtained by using the techniques
proposed in [1], [2] and [3] and implemented in the finite element code NOSA [4]; in particular we
have used a non-conforming eight-node shell element whose formulation is based on the Love-
Kirchhoff hypothesis [3].

2. THE MAXIMUM MODULUS ECCENTRICITIES SURFACE

The principles of limit analysis of masonry arches are based on three assumptions: that the material
is non-resistant to traction, has infinite compressive strength and that the voussoirs do not slide
with respect to each other [6].

From the first hypothesis it follows simply that the line of thrust must be entirely contained
within the arch in order to meet equilibrium conditions. Moreover, if a point exists where the line
of thrust intersects the boundary of the arch, that point constitutes a hinge. Therefore, when at
least four hinges whose positions alternate from intrados to extrados, are present, the structure is
labile. Since by virtue of the third hypothesis this is the only kinematically admissible mechanism
the existence of a line of thrust equilibrated and entirely contained within the arch also suffices to
guarantee stability.

Here our purpose is to extend these concepts to masonry vaults and apply them with the help
of the numerical techniques recalled in Section 1. To this end, we define a surface, called the
maximum modulus eccentricities surface, which for masonry vaults plays a role analogous to that
of pressure curves for arches.

Let us consider the vault element with thickness h shown in Figure 1; let i}, 1}, be an
orthogonal coordinate system, not the necessarily principal one, defined on the mean surface with

§ as the coordinate in the normal direction n. For each point having coordinates (1,, 1, {), and

for each unit vector g, = (cos@,, sine) in the plane tangent to the mean surface, where oL € (-7/2,

/2] is the angle formed by g, with direction M, in the counterclockwise direction, let us put

Ga(nla T‘Q’C) = ga(n]:\ ng) ' T(np ley c) ga(np nz) ; (21)

where T(n, Ny, {) is the stress tensor. Thus, the relations

h/2

SN, N2, O4E, M(nl,nz;a)=f Ga(M1, N2, £)5dE (2.2)
-h/2

h/2

N(T'lp 112; 05) = f

-hi2
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define the normal force and bending moment corresponding to g,. In view of the fact that T is

negative semi-definite, N(1,, N,; ) is non-positive for every .

Figure 1. Coordinates on the mean surface and stress characteristics.

Setting the point on the mean surface of the vault with coordinates (M}, M) and placitg for
each { e [-h/2, 2]V

oi(8) )
T(Q{ G , (2.3)
UE) 028
from (2.1) the relation
o (&) =0, cosZa + 6,(L) sin%a + 27({)sina cosar (2.4)
follows for each ot € (-/2, w/2]. Taking into account equation (2.2),, we then obtain
N(a) = N, cos?at + N, sino + N sin2at (2.5)
where
h/2 hi2 W2
Nl =J Gl(C)dC ’ Nz = [ GZ(C)dC ’ N];J_ = J T(QdC . (2.6)
-h/2 -h/2 /2

Analogously, setting

! In the following the dependence of T, G, N and M on (11,n7) is omitted.
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h/2 h/2 h/2
M, =[ o fdf, M, = [ o8y £dl M, = f (L) £dg , (2.7

h/2 -h/2 -h/2

in view of (2.2),, we have
M(a) = M, cos®ct + M, sin®0t + M, sin2a. . (2.8)

In the following we constantly exclude that in some point of the vault the normal force is nil in
all directions, namely that the equalities

N[ =N2=N12=0 (29)

hold. From this assumption it follows that there is at most one o € (-7/2, m/2] such that N(o) =
0. In order to check this result it is enough to consider that, in view of (2.5), N(m/2) = N, and
N(o) = cos20(N,tan2e + 2Nj,tana + Nj) for o # 7/2 and that the non-positiveness of N(a)
implies the inequality (N;)? - N\N; < 0. .

For o € (-n/2, /2], let

2 - 2 .
e(a) - M(Ot) = M[COS o + M251n o+ M1251n20ﬂ (210)
N(ot) N,cos2a + Npsinot + Nyosin20.

be the eccentricity corresponding to direction ¢. Function e(o} 1s well-defined and continuous for
each o e (-7/2, m/2], such that N(cr) = 0. We want to prove that even when there exists o' € (-

7/2, 1/2], such that N(a") = 0, e(or) can be extended continuously to o' and that its extension is
therefore well-defined and continuous in the interval (-t/2, ©/2]. To this end, we shall prove that
if there exits o' € (-7/2, /2], such that N(a") = 0, then e(0) is a constant function.

Firstly, let us observe that, by virtue of (2.2), and the negative semi-definiteness of T, N(a')
= () implies

o,(5) =0, forall £ e[-h/2, W/2]. (2.11).

Therefore, in place of (2.1) we can write
g, T g,=0, foralilel-lv2, h2], (2.12)

which, again in view of the negative semi-definiteness of T, implies

T) g, =0, forall § e [-hv2, /27, (2.13)



from which we obtain
0,(5) 0,(0) -~ 1§)? =0, forall§e[-h/2, h/2]. (2.14)

If o' = 1/2, from (2.6) and (2.14) we obtain 0,(§) = 1(£) = 0, for each § e[-h/2, h/2] and then,

owing to (2.6), (2.7} and (2.10), we have e(x) = % , foreach o € (-n/2, W/2].
1

Let us now suppose that o' = 1/2, and set t' = tano'. From (2.4) and (2.11) we deduce

o,(0) + 0,0t + 2Ot =0, forall L e[-W/2, h/2] (2.15)
and then, in view of (2.14), we can write

(t'crz(i;) +({)H2=0, forall{e[-/2, h/2]. (2.16)

Then, placing ©({) = - t'0'2(§), with the help of (2.4) and (2.14) we obtain

[

0, (&) = 0,(L) (sino - t'cosa)? . (Zt 17

Now the desired result follows from (2.2), (2.10) and (2.17).
It is interesting to note that if there exists o, such that N(a'} = 0, then IN(a0)| reaches its
maximum value in the direction orthogonal to o, as can be easily derived from relation (2.17).
For each point (1, 1},) of the mean surface, let o, € (-m/2, w/2] be the value of o, not

necessarily unique, for which function le(a)l = I;II((E; reaches its maximum value'?). The
quantity

~ M

BNy M) = o) (2.18)

N(oip)

shall be called the maximum modulus eccentricity at point (n,, n,). The maximum modulus
eccentricities surface (m.m.e.s.) is then the set of all points with coordinates (1, T,, E(nl,nz)).
M(a)| . M(o) M(ay)
with = - —,
IN(o)} N(a) Nl

Where two values o, and o, exist which maximize the functicn

the m.m.e.s. is not defined.
It is important to point out that, in analogy to what occurs for the line of thrust in the case of

arches, the m.m.e.s. corresponding to a negative semi-definite stress field is entirely contained
within the vauit. In fact, we can write

2 The existence of the maximum is guaranteed by the fact that, as e(- n/2) = e(m/2), function le(oot is continuous in

the bounded and closed interval {- n/2, =/2].



h/2 h/2 h/2
Mgl = || cal5d Sf Sa(©Yd S%f oo (OlL =
-h/2 -h/2 -h/2
h/2
= % f O, (0}dY =%IN(0LO)I, (2.19)
-h/2

where the next to last step is justified by the fact that, in view of (2.1), we have G%(C) <0 for

each . The desired result follows from (2.18) and (2. 19).

[n view of (2.19), if the m.m.e.s. is tangent to the extrados or intrados along a path, this last
can be considered the site of cylindrical hinges. The corresponding rotational axis coincides with
the direction orthogonal to that for which the modulus of the eccentricity is maximum. Therefore,
by generalizing accepted practice for arches [6], it seems natural to admit that vault collapse occurs
when the m.m.e.s. is tangent to the extrados and intrados along paths so as to determine a hinge
distribution sufficient to render the vault labile.

In order to determine the maximum and minimum points of function e(c), let us calculate the
values of o € (~m/2, w/2) for which e'(et), the derivative of e with respect to ¢ is nil.

Denoting n(¢t) as the numerator of e'(Q), from (2.10) we obtain
n(er) = {(M, - M;)sin2a + 2M ,c0s20.} (N cos?aL + N,sinZct + Ny,sin2a) +
- {(N, - Np)sin2a. + 2N ,cos20,} (M cos?at + MysinZa + M psin2a) . (2.20)

Putting t = tanc., by direct calculation we obtain

n(a) = 2cosa (2 + DatZ+bt+c), (2.21)
where
alezMz—NzMn, b=NlM2-N2M1 , c=N1M12—N12M1 . (2.22)

Thus, for o € (—m/2, 1/2), we have e'(c) =0, if and only if
a sinZo, + b sing cosal + ¢ cos2a = 0 (2.23)

holds. It is easily verified that, if both a and b are nil, so is ¢, and that () is constant, as is to be
expected considering that e(/2) = e(- n/2). Ifa=0eb # 0, we have



¢'(o)=0, for o =arctan (- % ). (2.24)

In the general case for which a # 0, the values of o where e'(or) becomes zero are all and only
those for which o = arctan(z), with z, the root of the polynomial p(z) =az?+bz+c . Let us
suppose for the sake of simplicity that the reference system (1, 11,) is chosen so that N\, = 0.
Therefore, from (2.22), taking into account that N, and N, are both non-positive, we obtain

8 =b? —4ac = (N,M, - N,M )2+ 4M,)? NN, 2 0. (2.25)

Therefore, the values of o we are looking for are

b2 Vs

a (2.26)

¢, = arctan

In the particular case, frequently encountered in applications, in which the geometry of the
vault and the loads have axial symmetry, the foregoing can be simplified. In fact, if as usual we

choose coordinates (1, M,) along the parallels and meridians, we have N, = 0 and M}, = 0.
Thus, in this case it follows from (2.22) that a = ¢ = 0, and that function e(o), if not constant, has
a relative extreme at o = 0 and o, = 7/2; so the eccentricity can reach its maximum modulus only in
the direction of parallels and meridians.

3. THE CIRCULAR PLATE

In the cylindrical reference system {O, r, 8, z}, let us consider the circular plate with radius R and
thickness h,

®={(r, 062 0<r<R,0<0<2m, - "2h<z52h},

constrained along the lateral surface {r = R} in such a way that only rotations and vertical
displacements are prevented (Figure 2). The plate is subjected to a vertical pressure p, uniformly
distributed on the circle of the extrados {0 €r<b,0<6 <2, z=-"2h} and a horizontal
pressure q, uniformly distributed on the lateral surface. For the sake of simplicity, we have
ignored weight, but the corresponding generalization presents no difficulties.

A quarter plate, with R = .5 m and h = .01 m, has been discretized and analyzed through the
finite element code NOSA. After applying the horizontal pressure q = 5. 104 N/m?, the vertical
pressure p, uniformiy distributed throughout the extrados (b = R), is progressively increased by
assigning successive load increments until convergence can be reached.



b
o »

Figure 2. The circular plate.

Starting from the numerically calculated stress field corresponding to the last load incrgmem,
the m.m.e.s. shown in Figure 3 has been determined. Here the thickness of the plate has been
magnified ten times in order to better illustrate the m.m.e.s. This last is a plane region coinciding
with the extrados for 0 < r < R, and discontinuous for r = R. In fact, for 0 £r < R the eccentricity
eg cotresponding to the circumferential direction is - '+ h, and that for the radial one € is, in

absolut value, less than “2h. On the contrary, for r = R we have eg = - “2h and e, = “2h.

Figure 3. The m.m.c.s. at the instant of collapse.



From Figure 3 it is easy to arrive at the collapse mechanism, which as shown in Figure 4, is

characterised by the fact that each section, 8 = constant, rotates within its plane by angle ¢ around
the point P of the extrados. As a consequence of this rotation, the point having initial coordinates

(r, 8, z) occupies the position (r + ¢z, 8, z + @(R - 1)}.

e

a) b}

Figure 4. The plate collapse mechanism.

In particular, the points of the generic circumference having its centre on the symmetry axis,
radius 1o and height zg, are brought onto the circumference with radius ry + @(*zh + zg), at the
level zy + O(R - rp). Therefore the only circumferences whose radii remain unchanged are those of
the extrados.

By means of numerical tests similar to those described here, we have verified that the collapse
mechanism does not change for values of b less than R or even when a vertical point joad is

assigned to the centre of the plate.
Once the collapse mechanism is known, it is possible to determine the value p, of the collapse
vertical pressure explicitly. In fact, the work done by p; for the generic slice of plate with

amplitude A9 is

b
23R -
f.p=(pA9pCf F(R-Ddr = @ABPCM?RTZ—Q, 3.1)

0

whereas the corresponding work done by the lateral pressure is
Eq =- ABgRHh2 . (3.2)
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Therefore, by requiring the work of the loads at collapse to be zero, from (3.1) and (3.2) we
deduce

6qRh?

L L 3
b2(3R - 2b) (3-3)

c

Relation (3.3) can also be used to arrive at the collapse load F, for the case of a point load F
applied to the center of the plate. In fact, setting F = Tth2p, from (3.3) we have

6mqRh?
F.=—F——
= 3R -2b) (3-4)
and when b goes to zero, we obtain
F.=2ngh?; (3.5)

from which it can be seen that F,, unlike p., does not depend on R.
For the numerical example presented in this section, from relation (3.3), withb=R we obtain

2
p. = —— = 1.2102 N/m?, (3.6)

Of course, the value p, of the pressure p beyond which it is impossible to obtain the plate
equilibrium numerically, slightly depends on refinement of the mesh and the entity of final load
increments. More precisely, we have verified that, for equal load increments, by using less fine a
mesh, we obtain a higher value of p,. Thus for exarple, with 1200 and 4800 elements we get p;
= 1.3 102 N/m? and p, = 1.1 102 N/m?, respectively.

We now intend to furnish an approximate evaluation of eccentricity e, in the radial direction for
0 <r <R at the moment of collapse by limiting the treatment to the case of b =R. By imposing the
radial force equilibrium of the plate element shown in Figure 5, we obtain

R
I n{rydr = qR. (3.7)
0

i1



TR
L n(rhdrdd” B h
qhRas A | ;
1/, p,RA%

Figure 5. Forces acting on a slice of plate,

Function n(r) is indeterminate, but on the other hand, from the numerical results it seems quite
realistic to suppose it to be constant, at least in the case of b = R. Under such an assumption, from
(3.7) we obtain n(r) = q and therefore, the circumferential normal force is Ng(r) =-gh, for0sr=<
R. Since by virtue of the foregoing analysis of the collapse mechanism we have eg = -'2h, in view
of (2.10) the circumferential bending moment is

Mgy(r) = “4qh?, for O<r<R. (3.8)

For M,(r) and Q(r) respectively the radial bending moment and the shear force per unit length
(Figure 6), we can write the indefinite equilibrium equation [9]

M(r) + 1 dh’;;(r) ~My(D) +r Q) =0, (3.9)

where,

12



Q(r) = 2p, for 0<r<R.

dQ
dMsgp hQ+ dr dr

(3.10)

44

NN,
T\

'—-—dr———"Q

|

i

Figure 6. Stress characteristics.

Therefore, in view of (3.8) and (3.10) and from (3.9), we obtain

dM(r h?
;()_,_%_Mr(r):q_z;_-%pr, for 0<r<R.

d

For ry > 0 the solution of (3.11) in the interval [ry, R] is known to be

' 2
M,(r) = M{(rp) exp(-A(r)) + exp(-A(r)) [ (% - Yapr) exp(A(s)) ds ,

To

where

r
A@) = [ las=mfE.
e

L

Thus we have

3
M(r) = M(rp) 2 + “5qh%(1 -r-rQ)+%—C(51€l-r2), for p<r<R;

when r goes to zero, accounting for relation (3.3), with b = R, we obtain

— an2{l_1% <
M(r) = gh (2 Rz), for 0sr<R.

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

By imposing the horizontal force equilibrium of the plate section traced in Figure 6, and taking
into account that we have supposed Ng(r) = - gh, we deduce that the radial normal force N, is also

13



constant,
N() = -qh, for 0<r<R. (3.16)

From relations (3.15) and (3.16), we can immediately calculate the eccentricity value in the radial
direction,

- Mdo) _ 1_r? <rg
o) = g = -h(2 Rz), for 0<r<R. (3.17)

Owing to axial symmetry of both plate and load, equalities Mg = N, = 0 hold; then in view of
(2.10), (3.8), (3.15) and (3.16), for each point (r, 8) of the mean surface of the plate, the value of
the eccentricity e(c) relative to the direction which forms angle o with the radial direction is

. (3.18)

2 )
e(e) = - M,(r)cosat + Mg(r)sin“ct - 1 (l, 2

IZ cos?q
gh 2 R?

Figure 7 presents the radial eccentricity e, as function of r for the considered examﬁle: the
dotted line has been calculated from the numerically determined stress field, while the continuous
line has been obtained using relation (3.17).

Figure 7. Radial eccentricity ey vs. I.
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4. THE SPHERICAL VAULT

In the spherical reference system {O, r, 8, ©}, let us consider the spherical vault V' with mean
radius R and constant thickness h,

U={r0, @ IR-“h<r<R+%h 06«2, 050 sin}.

This is fixed at the springing and subjected to its own weight and a point load P applied at the
crown. A vault, with R = 1 m, h = .16 m and specific weight v = 2. 104 N/m3, has been
discretized and analysed by means of the finite element code NOSA.

Figure 8 shows the m.m.e.s. for the vault subjected to its own weight alone. In order to best
appreciate the significance of m.m.e.s., Figure 9 presents the circumferential normal force, while
Figure 10 depicts the eccentricity in the meridian direction &, (continuous line) and circumferential
eg (dotted line). As proven in Section 2, in the region where the normal force vanishes the two

eccentricities coincide. Moreover, as seen towards the end of Section 2, function le(ot)l reaches its
maximum value in correspondence to the meridian or the parallel; therefore for the maximum value
of the modulus eccentricity we have € = €, if legl 2 legl, while ¢ = ey, if legl <legl. .

Figure 8. The m.m.e.s. for the vault subjected to its own weight.

15



1.6-10° N/m

1.00 - 141-16° N/m
0.96 ~ .
0.90 N 1.05 - 1 O N/m
3

0.31-10°N/m

Figure 9. Circumferential normal force for the vault subjected to its own weight.

Then, point load P is increased by increments until reaching the value beyond which it is no
longer possible to obtain convergence. The corresponding eccentricity in the meridian direction is
shown in Figure 11.

From the numerical analysis it can be seen that for this load value, the circumferential normal
force Ny and the circumferential bending moment Mg vanish everywhere except at the crown and
springings; it therefore seems natural to suppose that the collapse of the vault is due to an “orange
slice” mechanism, namely, that slices of infinitesimal size behave like arches. Once the collapse
mechanism is known, the value P, of the load at collapse can be determined through simple
considerations of rigid-body kinematics, as described in [2]. For the case at hand, proceeding in
this way we obtain P, = 6230 N.

Now we intend to determine the m.m.c.s. explicitly. Since the circumferential normal force is
nil, as proven in Section 2, the eccentricity throughout is independent of the choice of direction in
the plane tangent to the mean surface; therefore the m.m.e.s. is completely characterised by the
eccentricity corresponding to the meridian direction.

16



Figure 11. Eccentricity ¢, for the vault at collapse.
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Denoting q as the weight of the vault per unit area, N and M as the meridian normal force and
bending moment, respectively, and Q as the shear, we can write the indefinite equilibrium
equations [7] for Ng =0, Mg =0,

dN()

sing + N(@)cos® - Q(®)sing + R q sin?p = 0, (4.1)
N(g)sing + d(ifpcp) sing + Q(p)cos® + R gsingcosp = 0, (4.2)
idl\%sin(p + M(p)coso - Q@) Rsing = 0. (4.3)

Moreover, by imposing the vertical force equilibrium of the spherical bowl with amplitude ¢, we
obtain

21 R N(9)sin2@ + 21t R Q(@)cos@ sing + T(¢) = 0 (4.4)
where, for P, the collapse value of point load P,
T(p) = 2n RZ q(1 - cosp) + P, (4.5)

is the total load acting on the spherical bowl. Taking Q(¢) from (4.4) and substituting it into (4. 1)
we get

dN(p) . 21 R N(9) sin’ + T(¢) -
= 4.6
sing + N{p)coso + 2T R o0 + Rqsin‘g = 0, (4.6)
from which
dN(¢@) . N(®) _ Raq(cosq - cos sin’p -1 - pc) @)
do sing cosq sing cosg ’ '

where we have put

= P (4.8)
2r R%q

Pec

For each @, > 0, the solution of (4.7) in the interval [@g, V2m] is

18



tan R . .
t %, X9 {sin@ - sin@ - (1 + p.){tan@ - tan@y)} , (4.9)

N = NOo) o e

which has a singularity at ¢ = 0. On the other hand, for each ¢ > 0, we take the vault lacking the
spherical bowl of amplitude @g and extract a slice of amplitude AB; imposing the horizontal force
equilibrium of this latter, we obtain

R AB {N(@g)cos@g singg - Q(@g)sin?gy + Q(vzm)} = 0. (4.10)

From this relation we deduce that, when @, tends towards zero, N{Qg)sin®, goes to - Q(27);
therefore the desired solution of (4.7) in the interval (0, \27] is

Q(V2m) cosQ

R -1- . .
09 + R g{cos¢ pe) 4.11)

N(g) = -

From the previous relation, with the help of (4.4) and (4.5) we can easily deduce the expression

for shear

R g (1 + p; - cos®) cosQ (4.12)
sing ' '

Q@) = Q(2m) -

As Q(¢) is known, it is now possible to integrate equation (4.3), by following a procedure similar

to that used for determining N(¢). In this way we obtain

M(p) = ﬁ {M(4T) - R Q(“3m)cos@ +

in
+q R2[“2p + 145in20 - (1 + posing + 1 + p. - 47} . (4.13)

The two constants Q(/2®) and M(“47) can be easily determined by assuming that at collapse
two hinges form at the extrados, the former at the crown and the latter at the springing. Then,
recalling that h is the thickness of the vault, we have

0 =MO . b g = O = (4.14)

O N(/57)
Using these relations and placing

t = | (4.15)
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we obtain

Q(am) = qR (1 +pc+4(1"+ 5 ), (4.16)

M(vem) = qRU (1 +p.), (4.17)

which, in turn, enables us to finally arrive at the expressions for the normal force and bending
moment at the instant of collapse. In fact, from (4.11), (4.13), (4.16) and (4.17), we obtain

_9qR X
sin(p{(l-'-pC 4(1+1)

N(@) yeos® + (1 + p, - cos@)sin@} , ‘ 4.18)

il

i

qR? _ _x

+ (20 + sin2@) - (1 + psing + (1 +p. - 4m)} . (4.19)

s

Therefore, the eccentricity, which as already mentioned depends only on the angle @, is

_ M) _
e(g) = N©)
(t- sin@)(1 + pe) - (1 +pe- —2—) cos@ + Y4 (2¢ + sin2¢) + 1 + pc -47
- -R 41 +t) (420
.= . :
(1 +pe i +t))c:oscp+ (1 + pc - cos@) sinQ

In Figure 12 the eccentricity derived from the stress field calculated numerically for the instant
of collapse (dotted line) and shown in Figure 11 is compared to the eccentricity obtained from
relation (4.20) (continuous line).

It is interesting to point out that the collapse load can be determined with the help of (4.20) by
observing that it coincides with the maximum value of p, for which relation le(@)| < h holds for
all ¢ € [0, “4®]; in the current example we obtain p, = .31, which of course corresponds to the
value of P, = 6230 N, determined through rigid-body kinematics.
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Figure 12, Eccentricity e vs. z = R cos @ at collapse.

5. THE BAPTISTERY OF VOLTERRA CATHEDRAL

The Romanesque baptistery in Volterra, dating from the X Century, has an octagonal floor plan
(Figures. 13 a and 13 b).

The current dome crowning the baptistery is not the original roof. The original had probably
another form quite unlike today's structure. In about the year 1427, the current cupola of the
baptistery was constructed in brick masonry of thickness varying from 0.6 m at the keystone to
0.9 m at the springing [8]. It has since undergone cracking on the vauit itself, as well as on the
walls of the baptistery octagon, and these latter have consequently been raised by 2.75 m. Finally,
in 1930 restoration and reinforcement was carried out which included, among other measures, the
application to the cupola of two chains of cross-section .04 x .07 m2 and .03 x.06 m? at distances
of 1.2 m and 3.4 m from the springing, respectively (Figure 13 c). Another chain was placed on
the octagon walls just above the upper windows. The positioning of the chains was decided upon
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by considering the material to be linear elastic and applying the calculation procedures described in
[9]. More precisely, a 22.5° wedge of arch was considered and subdivided into 13 blocks, each
1.2 m in length. It was assumed that the force normal to the lateral face of the blocks was exerted
upon the baricenters of the block faces themselves. Furthermore, the line of thrust was constrained
to pass through the baricenter of all the blocks. Using this procedure, it was deduced that the
circumferential compressive force increased from the crown down to a certain height, after which
it dwindles to zero at the parallel at 24° from the springing plane. It was therefore decided to chain
the cupola at this same paralle] and place another near the springing.

- 14,45

Figure 13 a. View of the baptistery.
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Figure 13 b. Baptistery floor-plan.
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Figure 13 c. View of the baptistery vault with chains.
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The baptistery is currently undergoing restoration work which includes refacing of the vault
covering, as it has been damaged by rainwater seepage. The baptistery has been studied with the
NOSA code, assuming that the material does not support tension.

In a first treatment, only the chain on the octagon walls was considered. Figure | presents the
line of thrust corresponding to one vaulting rib. The minimum distance of the line of thrust from
the intrados is 0.22 m, at a height of 3.12 m, while the line's minimum distance from the extrados
is 0.12 m at a height of 8.64 m.

Figure 14. Line of thrust in a vault rib without chains.

The analysis was then repeated to account for the presence of the two chains reinforcing the
vanlt itself. The relative line of thrust, depicted in figure 15, is almost entirely contained within the
dome's middle third. The sustaining effect of the chains is therefore evident. Figure 16 shows the
pattern of the normal circumferential force along a single vault rib.

The tensile forces on the chains reach their maximums in correspondence to the apothem,
where their values are 5548 N and 10984 N for the upper and lower chain, respectively. The chain
reinforcing the baptistery octagon walls experiences a maximum traction of 19400 N near the
window, precisely in the area where cracking has occurred. The importance of this chain can be
deduced from the fact that without it, tensile forces on the two vanlt chains would reach levels of
25960 N and 49990 N, respectively for the upper and lower chains.

A further determination was carried out with the aim of checking the results obtained by means
of the method proposed in [9]. This analysis consisted of numerically calculating the stress in the
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dome under the assumption that the material is linear elastic. Figure 17 presents the distribution of
the normal circumferential force along a vault rib. It can be seen that this value is negative solely
up to an angle of 40°, as measured from the springing; which corresponds to a height of 5.2 m.
On the basis of these results, analysis of the baptistery vault was performed once again under the
assumption that the upper chain were placed at a height of 5.2 m, rather than the actual 3.4 m.

Figure 15. Line of thrust in a vault rib in the presence of two chains.

For the sake of comparison, figure 18 shows the results calculated under the foregoing
assumptions (dotted line) together with those obtained using the actual placement of the chains
(continuous line). It can be seen that, despite inaccurate assessment of the normal force, the
placement of the chains turns out to be quite good. Then, it should be emphasized that the criterion
used in choosing the paraliel at which to position the chain, (i.e. where the normal force falls to
zero) is not the most appropriate. A more suitable procedure would instead be to chain at the
parallel corresponding to the exertion point of the resultant of tensile forces as calculated through
linear elastic analysis.
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Figure 16. The normal circumferential force in a vault rib in the presence of two chains.
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Figure 17. The normal circumferential force along a vault rib assuming the material to be linear elastic.
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Figure 18. Eccentricity along a vault rib as a function of height.
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