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Abstract. Everyday, ideas, information as well as viruses spread over
complex social tissues described by our interpersonal relations. So far,
the network contexts upon which diffusive phenomena unfold have usu-
ally considered static, composed by a fixed set of nodes and edges. Re-
cent studies describe social networks as rapidly changing topologies. In
this work – following a data-driven approach – we compare the behav-
iors of classical spreading models when used to analyze a given social
network whose topological dynamics are observed at different temporal-
granularities. Our goal is to shed some light on the impacts that the
adoption of a static topology has on spreading simulations as well as to
provide an alternative formulation of two classical diffusion models.

Keywords: Diffusion processes, Information Spreading, Dynamic Networks

1 Introduction

Since the last decade we are living two lives at the same time: one offline and
one online. One of the facilities the WWW has granted us is the dismantling of
physical distances, thus impacting the way diffusive phenomena evolve.
In the real world, we are used discussing the spread of viruses such as pas-
sive contagion processes that do not require active agents to unfold. The dif-
fusion of ideas, conversely, is an example of active process: each can choose to
adopt/advertise a new idea or not. When we move to the online world, we can
experience both passive and active diffusion. These processes occur on top of
social structures that have often been considered static. However, both passive
and active processes require a direct contact with a content to spread from an
already infected person to a susceptible one. Social interactions have a limited
duration so that they dynamically shape the topology of our social graph.
In this work, we tackle the problem of understanding if, and how, dynamic net-
work topology affects the diffusion of information. Is a static social network rep-
resentation enough to simulate information spreading? Must topology dynamics
be taken into account to understand the real diffusive phenomena better?



2 Related Works

Two different, yet related topics need to be reviewed and discussed: information
spreading and dynamic social networks analysis.
Information Spreading. When we use the word “spreading” we think to conta-
gious diseases caused by biological pathogens. However, a plethora of phenomena
can be linked to the concept of the epidemic: such as the spread of computer
viruses [1], mobile phone virus [2], or the diffusion of knowledge in an online
social network [3]. Here, we focus on the diffusion of innovations/idea. Rogers
developed the diffusion of innovation theory in 1962 [4]: it aims to explain how
an idea or product diffuses through a specific population or social system.
Dynamic Social Networks. With the explosion of human-generated data, the
time has started representing a non-negligible entity. During the last decade,
several works have provided novel interpretations of known problems, porting
them from static to temporal networks: motifs mining [5], Link prediction [6],
community discovery [7] are only a few examples. Indeed, [8] showed that it
is mandatory to consider different granularity of temporal abstraction. Once
understood the importance of ties dynamics for the overall network topology it
becomes natural to study how they affect spreading phenomena.
Spreading on Dynamic Networks. Recently, the analysis of diffusive pro-
cesses in dynamic networks has started to capture the attention of the research
community, such as in [9] or [10] where the authors used the SI and SIR model
respectively in dynamic contests. [11] and [12] are some of the few investigations
of how dynamic networks affects the spread of information. Finally, in [13] a data-
driven study similar to ours was performed. However, the authors were forced
to synthesize network topology evolution thus making impossible to observe the
impact of characteristic phenomenon events on the diffusive process.

3 Problem definition

Our analysis will be focused on answering the following questions:

Q1: can analyzing spreading phenomena on a static social graph lead to an over-
estimate of the real volume of its diffusion?

Q2: do the choices made to keep track of topology dynamics impact the speed
of diffusive processes?

Q3: is it safe to assume that spreading phenomena on a dynamic network topol-
ogy unfold at a constant rate? Do the variations, as the diffusion progresses,
of the number of nodes/edges impact the overall diffusion process?

To address such questions, we define three different scenarios. We model a net-
work as an undirected graph denoted as G = (V,E), where V is the set of the
nodes and E is a set of interactions (edges), i.e., a triplet (u, v, t) where u, v ∈ V
and t ∈ N identify the time at which an interaction occurs between nodes u to
v. We allow the presence of multiple interactions among the same pair of nodes.
In the following, we will denote with Etj the set of interactions that appears in
the graph at time tj . We can formalize the problem in the following way:



Network Nodes Interactions Edges #Observation

WEIBO 1 656 615 6 759 012 3 394 566 90 days
FB07 19 561 304 392 67 077 365 days
Table 1. Base statistics of the analyzed interaction graphs.

Definition 1 (Spreading problem). Given a network G = (V,E) observed
for k consecutive snapshots, a diffusion model D, and a set It0 = {n1, n2, ..., nj} ⊆
V identifying the initial infected nodes we define the result of D(G, It0) as the
ordered sequence I = {It1 , ..., Itk} of the nodes infected during each snapshot.

The scenarios we will analyze in our data-driven investigation are:
–S1 – Static topology. For each time ti with i = 1, ..., k, we applied D to the full
network G = (V,E) using as infected node set at time ti the result of D(G, Iti−1

).
The set of edges will be E = Et1 ∪ Et2 ∪ ... ∪ Etk .
–S2 – Snapshot Evolution. For each time ti with i = 1, ..., k we computeD(Gti , Iti−1)
where Gti = (V,Eti).
–S3 – Interaction Dynamics. For each time ti with i = 1, ..., k we apply D incre-
mentally to the ordered stream of interaction in Eti .
In S1 a network will be built flattening all the interactions occurred in a single
one, thus describing dynamic phenomena with a static structure. In S2 a net-
work will be built for each snapshot and the spreading process computed on each
one of them starting, incrementally, from the previous infection status. Finally,
in S3 all the interactions among nodes that occur during each snapshot will be
analyzed in their temporal ordering: no network will be explicitly built.

4 Data Driven Study

To address our research questions, we used the following datasets:
WEIBO3: it is based on data from the popular Chinese micro-blog service
WEIBO4. An interaction represents a direct message from two users. We selected
the first 90 days of the year 2011.
Facebook: the FB07 network is a sample of the WOSN2009 [14] dataset and
describes online interactions between Facebook users during 2007.
In Table 1 are reported the main statistics of the networks.
On such datasets, we simulated two classical compartmental models SI and
SIR detailed in 4.1. For each scenario, in 4.2 we compared the diffusion trends
obtained while varying network dynamic and the model’s parameters; in 5 we
discuss our results and underline their relations with the topology dynamic.

4.1 Diffusion models

We chose SI and SIR to describe two different information diffusion scenarios:
D1 – Continuous advertising: after having adopted an idea/innovation an

3 http://www.wise2012.cs.ucy.ac.cy/challenge.html
4 http://weibo.com



Algorithm 1 Interaction-based SI
Require: It0 : set of initial infected node

1: for each ti in {1,...,k} do
2: Iti = Iti−1

3: for each interation (u, v, ti) in Eti
do

4: if v in Iti−1
then

5: p = rand(0, 1) . Random value in [0,1]
6: if β > p then
7: add u to Iti
8: end if
9: end if
10: end for
11: yield Iti . Return daily status

12: end for

agent continue to advertise it to its neighbors during each interaction;
D2 – Diminishing advertising: after having adopted an idea/innovation an
agent can decide to stop advertising it to its neighbors.
Since both models have been described for complete networks and static graphs,
we will describe the modifications to apply them to the S2 and S3 scenarios.

SI: this model was introduced in 1927 by Kermack [15]. During the epidemics an
individual can belong to two states, infected (I) and susceptible (S); we adopt
SI to simulate diffusion scenario D1. SI assumes that if a susceptible node comes
into contact with an infected one, it becomes infected with probability β.

S1: Static network. For every day ti each node u ∈ V having at least an
infected neighbor is evaluated to decide if it will become infected or not. SI sets
the probability of infection for a node having n infected neighbors as nβ: the
more the infected neighbors a node has the higher its chance to join the I set.

S2: Snapshot-based evolution. The model applied at day ti will use Iti−1
and

Eti−1
. Therefore, the node sets and the interactions of consecutive snapshot could

vary. Naturally, the nodes not present during ti not take part in the diffusion
process at time ti. The probability of infection for a node u is ntiβ with nti ≤ n
restricting the set of infected neighbors to the ones that are present at time ti.

S3: Interaction-based evolution. We can imagine such scenario as word of
mouth spreading phenomena in which an idea or behavior can be shared/adopted
only through a direct contact. We implement streaming SI as shown in Algo-
rithm 1. In this model an actor u involved into m interactions with infected
nodes during the day ti has a probability of infection equal to

∑m
i=1 β.

SIR: this model represents a variation of the previous one. Each node belongs to
three states during the epidemics: the state infected I, susceptible S and removed
R. We adopt SIR to simulate diffusion scenario D2.

S1: Static network. We applied the classical formulation of the model on
the flattened static graph. In SIR the idea/innovation is adopted with a nβ
probability. Moreover, during each iteration, the probability that an infected
node decides to stop advertising to its neighbors – thus joining the R set – is γ.

S2-S3: Dynamic networks. To comply with the topology dynamics described
by S2 and S3, we adopted the SIR model with the same rationales used for SI.
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(a) WEIBO - S1
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(c) WEIBO - S3
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(e) FB07 - S2
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(f) FB07 - S3

Fig. 1. Simulation of SI models on both WEIBO and FB07: the curves represent the
average percentage of infected nodes over time while varying the model parameter.

We omit the pseudocode for the interaction-based version of SIR since it differs
from the one reported in Algorithm 1 solely for the evaluation of the removal
probability γ.

4.2 Diffusion Analysis

We organized our simulations as follow:
-i: for each dataset we randomly selected 10 sets of nodes each one covering

5% of the V : such sets identify It0 ;
-ii: for each dataset, scenario and initially infected status we executed the SI

and SIR models while setting their parameters;
-iii: we build the infection trend as the iteration wise average of the runs

over the 10 executions performed varying the initially infected nodes.
D1 - Continuous advertising. Figure 1 shows the results obtained by the
simulation of the SI model on the two datasets.

Scenario S1. In WEIBO, Figure 1(a), setting β = 0.01 leads to an epidemic
state covering almost 70% of the nodes. Increasing the values a significant speed
up in the diffusion process allows reaching almost the 80% of the nodes, after
only 15-20 iterations. In FB07, Figure 1(d), the impact of β is more evident: a
slight increase double the number of nodes infected after the first 50 iterations.

Scenario S2. This scenario leads to a significant reduction of the diffusion
speed; in both WEIBO and FB07 the infection trends do not reach saturation.
Observing the FB07 trend, Figure 1(e), only for β = 0.5 we can reach a final
percentage of infected nodes “comparable” to the lowest one obtained by the
same model on S1. In WEIBO, Figure 1(b), the pattern is similar.
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(b) WEIBO - S2 - β = 0, 5
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(c) WEIBO - S3 - β = 0, 5
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(d) FB07 - S1 - β = 0, 01
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(e) FB07 - S2 - β = 0, 5

0 50 100 150 200 250 300 350
Days

0.0

0.1

0.2

0.3

0.4

0.5

N
o
d
e
s 

In
fe

ct
e
d

γ= 0. 01

γ= 0. 05

γ= 0. 1

γ= 0. 15

γ= 0. 2

γ= 0. 25

(f) FB07 - S3 - β = 0, 5

Fig. 2. Simulation of SIR models on both WEIBO and FB07: the curves represent the
average percentage of infected nodes over time while varying the model parameters.

Scenario S3. We observe a behavior similar to the one identified in S2; how-
ever, in this scenario the infection trends grow always faster than the ones in S2.
Such speedup is due to the different way the probability of infection is calculated:
in S2 a node having n infected neighbors is subject to a nβ probability of being
infected, in S3 the probability equals to

∑m
i=1 β (where m ≥ n since during the

same day multiple interactions can occur among the same pair of nodes).
D2 - Diminishing advertising. Figure 2 shows the results obtained by the

simulation of the SIR model.
Scenario S1. In the simulation with SI, the diffusion reached in S1 with

β = 0.01 is reachable in S2 and S3 when β = 0.5; so, we instantiate SIR
fixing β = 0.01. In both datasets we observe, Figure 2(a,d), the classic decay
experienced by the infection trend in a SIR model. With lower values of γ
(γ = 0.01) we found a rapid growth in the first period followed that a rapidly
decreased. For γ >> β the growing phase is not present since all the initial
infected nodes are more likely to being removed than to spread the infection.

Scenarios S2-S3. In Figure 2(b,c,e,f) we report for S2 and S3 the infection
trends for β = 0.5. Similar to what happened in S1, for values of γ comparable
to the β ones the trend curves steadily die out. However, the velocity of both
infection and recovery diffusions are extremely lower w.r.t. the ones in S1.

5 Discussion

Our results suggest that the particular characteristics possessed by a dynamic
system deeply affect the way a word of mouth diffusion of an idea/innovation will
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Fig. 3. (a) Daily trends in the WEIBO. Vertical lines identify Sundays. (b,c) Delta
infection trend in SI (a) and SIR (b). The trends compare models having the following
parameter settings - SI: S1 β = 0.01, S2-S3 β = 0.5; SIR: S1 β = 0.01 γ = 0.01, S2-S3:
β = 0.5 γ = 0.01

spread. Now we concentrate our analysis on the WEIBO dataset. In Figure 3(a)
are shown the patterns of daily interactions and node presences of the WEIBO
interaction network. Such trends show an overall increase in the number of in-
teractions and nodes. We identify the Sundays with vertical lines; the WEIBO
users tend to diminish their presence during the weekends. We can also observe a
sharp peak in the number of interactions and nodes on the 34th day: such day, 3
February 2011, identified the Chinese New Year. If we examine Figures 1(a,b,c)
and 2(a,b,c), we can notice that in both S2 and S3, for all the tested parameters,
a “small” jump highlight a sudden increase in the infected nodes while in S1
such behavior is not present. Therefore, adopting a flattened graph as in S1, not
only we get an overestimate of the percentage of infected but also we do not
capture the presence of special events. Such observations are confirmed by the
prevalence plots shown in Figure 3 (b,c) where are reported for each day the
number of novel infected nodes for SI and SIR respectively.
Once compared the diffusion trends in the three identified scenarios we can now
provide answers to the research questions raised in Section 3:

A1: Yes, using an aggregate, static graph lead to an overestimate of the real
network connectivity and, as a consequence, of all the diffusion processes.

A2: Yes, different temporal granularities for topology dynamics aggregation (e.g.,
snapshots and interactions) cause different spreading velocity.

A3: No, peculiar topology evolution patterns or the chosen diffusion model affect
the rate of infection. In particular, cyclic patterns (weekend/weekdays) or
special events (the Chinese New Year) characterize the rate at which diffusion
occurs in SI, while the former loses their relevance with a SIR model.

6 Conclusions

In this work, we analyzed diffusive phenomena on dynamic social interaction
graphs. We performed a data-driven study aimed to underline the real impact
of network dynamics. After having modeled three different scenarios, we studied
their impact on the outcome produced by classical compartmental models that



we redefined to handle topology dynamics5. Our results show that analyzing
diffusive phenomena not considering topology dynamic lead to relevant over
estimate of the real speed and not capture the presence of special events.

As future work, we plan to study the other side of the problem, namely the
impact diffusive processes have on network topology.
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