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Featured Application: Hair removal is a preliminary and often necessary step in the automatic process-
ing of dermoscopic images since hair can negatively affect or compromise the distinction of a lesion
region from the normal surrounding healthy skin. A featured application is skin lesion segmentation.

Abstract: In a computer-aided system for skin cancer diagnosis, hair removal is one of the main
challenges to face before applying a process of automatic skin lesion segmentation and classification.
In this paper, we propose a straightforward method to detect and remove hair from dermoscopic
images. Preliminarily, the regions to consider as candidate hair regions and the border/corner com-
ponents located on the image frame are automatically detected. Then, the hair regions are determined
using information regarding the saliency, shape and image colors. Finally, the detected hair regions
are restored by a simple inpainting method. The method is evaluated on a publicly available dataset,
comprising 340 images in total, extracted from two commonly used public databases, and on an
available specific dataset including 13 images already used by other authors for evaluation and
comparison purposes. We propose also a method for qualitative and quantitative evaluation of
a hair removal method. The results of the evaluation are promising as the detection of the hair
regions is accurate, and the performance results are satisfactory in comparison to other existing hair
removal methods.

Keywords: dermoscopy; dermoscopic image; skin lesion; lesion segmentation; pre-processing;
artifact removal; hair removal; shape; saliency; color space

1. Introduction

In almost every specialist area of medicine, including dermatology, image analysis is
transforming the diagnostic methods. In particular, computer-aided diagnosis systems for
dermoscopic images have proven to be useful tools to improve significantly the common
dermoscopic diagnostic practice, which is usually characterized by limited accuracy and
is mainly based on visual inspection. Indeed, to differentiate melanoma from other pig-
mented skin lesions, these systems display morphological features not easily perceptible
by the naked eye and support the assessment process of the human expert [1,2]. Typically,
a computer-aided system is structured in four main consecutive steps: preprocessing,
segmentation, feature extraction, and classification, each playing a key role in enabling
correct diagnosis [3]. During the preprocessing, the dermoscopic image is subjected to noise
removal, image enhancement, color quantization, and artifacts removal processes [4,5].
Noise removal and image enhancement techniques are employed to minimize the effects
due to different illumination conditions and poor resolution of the acquisition process [6].
Color quantization [7–10] is a technique of reducing the total number of unique colors in
the image often used as a preprocessing step for many applications that are carried out
more efficiently on a numerically smaller color set. For example, color quantization is em-
ployed effectively as a preliminary computation phase for skin lesion segmentation [11–15].
The removal methods of artifacts, such as bubbles, hair, shadows and reflections, aims to
eliminate their negative effect and disturbance on the diagnostic operations of the area
of interest (i.e., the skin lesion) [16]. Particularly, if the area of the skin lesion is partially
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occluded by the hair, although such occlusions may not be critical for human investiga-
tion, this presence poses major challenges for automatic image analysis method such as
segmentation and classification. Indeed, the hair removal (HR) methods and skin lesion
segmentation (SLS) methods are highly correlated. Usually, SLS methods can determine the
skin lesion region without the need to apply preliminary hair removal since these methods
can include explicitly or implicitly hair removal operations. However, it is appropriate to
consider that (a) in any case, a partial hair removal facilitates and increases the efficiency
of the segmentation step; (b) the hair presence can lead to errors in lesion detection in
some situations, especially when there is a massive presence of hair (see Figure 1); (c) for
diagnostic and therapeutic purposes, HR is helpful at least to visualize the free-hair lesion
to the expert.
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the application of saliency shape color for hair removal (HR-SSC).

To address the hair issue, several hair removal methods have been proposed. HR
methods usually consist of two steps: (a) the detection of occluding hair and generation
of the hair binary mask; (b) the removal of the detected hair. Typically, hair detection is
accomplished through object detection methods enucleating thin items, while hair removal
is obtained through standard inpainting methods. As reported in [17], at least six main hair
removal methods are widely used in the literature [18–23].

The method proposed in [18] by Lee et al., also known as Dullrazor, consists of four
steps. The hair regions are initially detected through the morphological closing operator
on each RGB color channel separately and with three structuring elements having different
directions (step 1). To generate the binary mask, a thresholding process is applied to the
absolute difference between the original color channel and the image generated by the
closing (step 2). The mask pixels undergo a bilinear interpolation between two nearby
not-mask pixels (step 3). Finally, to the resulting image, an adaptive median filter is applied
(step 4).

The method [19] by Xie et al. also consists of four steps. The hair area is improved
using a morphological closing top-hat operator (step 1). The binary image is obtained
through a statistical thresholding process (step 2). To extract the hairs, the elongate feature
property of connected regions is employed (step 3). To restore the information occluded
by the hair, they apply the image inpainting method based on partial differential equation
(PDE), which realizes the diffusion of information through the difference between pixels
(step 4).

In the method proposed in [20] by Abbas et al., there are three computational steps.
In the CIELab uniform color space, the hairs are detected by a derivative of Gaussian
(DoG) (step 1). Morphological techniques to link broken hair segments, eliminate small and
circular objects, and fill the gaps between lines are applied (step 2). The adopted inpainting
method is based on coherence transport (step 3).

The method in [21] by Huang et al. comprises three steps. To the grayscale version
of the image, a multiscale curvilinear matched filter is applied (step 1). To detect the
hair regions, hysteresis thresholding is employed (step 2). Then, region growing and the
linear discriminant analysis (LDA) technique, based on the pixel color information in the
CIELab color space, are applied to recover the missing information left by the removed
hair (step 3).
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The method [22] by Toossi et al. includes four steps. The image is converted to
a grayscale image via a principal component analysis (PCA), and the noise is filtered
with a Wiener filter (step 1). Hair is detected by using an adaptive canny edge detector
(step 2). A refining process with morphological operators to eliminate unwanted objects
and obtain a smooth hair mask is then applied (step 3). The inpainting process is carried
out by a multi-resolution transport inpainting method based on wavelets (step 4).

As with [20,21], in [23] by Bibiloni et al., hair removal is made up of three steps. The
contrast of the luminance of the image is improved with the Contrast Limited Adaptive
Histogram Equalization (CLAHE) algorithm (step 1). The hair is detected using soft color
morphology operators in the CIELab color space (step 2). The inpainting phase is based on
the arithmetic mean of the modified opening and closing morphological transformations
to recover the missing pixels (step 3). The common element of these HR methods and most
of the other existing methods, e.g., [24,25], is the employment of morphological operations
and, to a minor extent, of information derived from color. On the other hand, although
deep learning has been used successfully to solve many difficult computer vision problems,
inexplicably, to the best of our knowledge, only two very recent HR methods relying on
neural network architecture exist [26,27].

Despite the sufficiently wide variety of the existing papers, the problem of hair removal
results to be not solved satisfactorily yet. The main critical points are the failure to identify
hair accurately and the undesirable effects such as unremoved thin hair and color alteration.

We address the HR problem using information regarding the saliency, shape, and
color of the image objects. These are three elements that have proved to be extremely
useful because each of them allows capturing a fundamental aspect of the problem at hand.
Indeed, besides the shape aspects, detectable by mathematical morphology properties,
it is also appropriate to perform the hair detection based on information related to the
significant image elements and detectable by their saliency and color properties. In the
following, we refer to the proposed method as saliency shape color for hair removal, shortly
indicated as HR-SSC or simply SSC.

As described in Section 2, HR-SSC consists of five steps. The core of the method is step
4, named hair object detection, in which the hair regions are determined. The innovative
elements of this step, whose success also depends on the correctness of the results obtained
in the three previous steps, are related mainly to how the initial candidate hair components
are considered (see Section 2 for more details). In the last step, hair removal is performed
using a standard inpainting method.

The method is evaluated and compared extensively with other existing methods
since a detailed quantitative and qualitative analysis on two publicly available databases
PH2 [28] and ISIC2016 [29], usually used in dermoscopic image processing, is performed.

The experimental results confirm (a) the effectiveness and the utility of the employ-
ment of saliency, shape, and color information for HR; (b) that HR-SSC achieves good
quantitative results with an adequate balance and has a competitive and satisfactory perfor-
mance concerning other existing HR methods; (c) that HR-SSC implementation is simple
and rather fast since it does not require a large amount of computational power based on a
high number of parameters and of labeled training images.

Additional contributions of this work are (a) the availability of appropriate datasets
to be used for testing and comparing each new method; (b) the proposal of a method for
qualitative and quantitative evaluation of an HR method.

The paper is organized as follows: in Section 2, we describe the method HR-SSC,
detailing its main steps; in Section 3, we provide a quantitative and qualitative evalua-
tion of experimental results, also highlighting the pros and cons; finally, discussion and
conclusions are drawn in Section 4.

2. The Proposed Method

The proposed method, as mentioned above, is based on three elements: the notion
of visual saliency, shape, and color. Indeed, since the saliency of an item is the element
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for it stands out from its neighbors [30], its use allows to enucleate the most relevant
subsets and to focus on the hair regions especially. Moreover, since hair regions have a
well-defined structure, the shape-oriented operations of the mathematical morphology,
that “simplify image data, preserving their essential shape characteristics and eliminating
irrelevancies” [31], lend themselves well to detect the hair object. On the other hand,
the properties of the color model can result essential to distinguish between no-hair and
hair regions when information related to saliency and shape is not enough to manage
ambiguous cases [11].

The method consists of five main steps as described in the diagram shown in
Figure 2. The step “Hair object detection” is the main step and is preceded by three
preliminary steps, called “size reduction”, “Pseudo-Hair detection” and “Border and cor-
ner component detection” aimed respectively at reducing the image size, determining the
initial candidate regions to consider as hair regions, called pseudo-hair, and determin-
ing the components located on the frame of the image. The “Hair object detection” step
is followed by the hair removal step and the resizing called “Inpainting and rescaling”.
Specifically, the method can be briefly described as follows.
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Step 1. Size reduction—The first step is devoted to limit the computation burden of the
successive steps by reducing the size of the input image with a scale factor s
equal to the ratio of a fixed value, say Maxdim, and the number of columns. To
perform this, we resort to the classical and most common bicubic downsampling,
implemented by the Matlab command imresize with bicubic option and scale factor
s. The size reduction step is an optional but highly recommended operation since
it significantly limits the computation time.

Step 2. Pseudo-Hair detection—This step is based on top-hat transformation, i.e., a
morphological operator capable of extracting small elements and details from
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a grayscale image, commonly used for feature extraction, background equaliza-
tion, and other enhancement operations. There are two types of transformation:
the white top-hat transformation, defined as the difference between the original
image and its aperture by a structuring element, and the black top-hat transforma-
tion (or bottom-hat transformation), defined dually as the difference between the
closure by a structuring element and the original image [32,33]. Following [19,34],
to obtain the binarized version HR initially containing the pseudo-hair compo-
nents, we apply a bottom-hat filter in the red band R of the RGB image and then
the Otsu threshold method [35] by the Matlab command imbinarize. Then, if HR is
not empty, the actual hair regions are determined during the successive steps 3–5.

Indeed, the components currently detected in HR (i.e., the so-called pseudo-hair
components) can correspond to hair regions but can also correspond to portions of other
types of artifacts survived this preliminary treatment, such as marker ink signs, dark
spots belonging to the lesion, marker colored disks [34], and regions wrongly identified.
These regions not corresponding to hair regions are called no-hair regions in the following,
and if they exist, they are detected and eliminated in the successive steps. In Figure 3b
some examples of pseudo-hair are shown, where the no-hair regions are approximatively
indicated by a red arrow.

1 
 

 

Figure 3. Some examples of results obtained in the main steps of HR-SSC: (a) input image; (b) detected pseudo-hair
components; (c) border/corner components; (d) detected hair; (e) resulting image.

Step 3. Border and corner component detection—The border components are detected
based on their saliency and proximity to the image frame, by applying the follow-
ing process, named called border detection, already used in [14,15]. The saliency
map (SM) with well-defined boundaries of salient objects is computed by the
method proposed in [36]. Successively, SM is enhanced by increasing the contrast
in the following way: the values of the input intensity image are mapped to new
values obtained by saturating the bottom 1% and the top 1% of all pixel values,
by the Matlab command imadjust. Then, the saliency map SM is binarized by as-
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signing to the foreground all pixels with a saliency value greater than the average
saliency value. The connected components of SM including pixels of the image
frame are considered as border components and stored in the bidimensional array,
named BC.

Moreover, the image corner components, usually much darker than the image center,
are detected following the same procedure proposed in [34]. Specifically, the representation
of the input image in the HSV color space is examined; the channel V undergoes a thresh-
olding process by a predefined threshold value δ. Then, the components of the thresholded
V covering most of the frame or the corner area of the image are considered as image corner
components and are stored in the bidimensional array, named CC (see Figure 3c).

Step 4. Hair object detection—Preliminarily, the no-hair regions are detected and stored
in the bidimensional array, named NR, as follows. NR is initially computed as the
product S.*V and binarized by the Otsu method. Then, the salient pixels not belong-
ing to HR and BC are included in NR, the pseudo-hair regions currently detected
in HR are removed from NR, and small holes in NR are filled. Successively, if NR
has a significant extension (area), the detected no-hair regions are removed from
HR. If the current HR is not empty, border components are suitably considered
and possibly removed from HR taking also into account the gray version of the
input image Ig and a fixed gray value, say ∆, indicating a minimum reference gray
value for the hair component. Finally, corner components and eventual remaining
components corresponding to colored disks are eliminated from HR.

At the end of this step, the regions in HR are located in correspondence with the
detected hair objects and form a binary hair-mask on which to perform the next reconstruc-
tion step. See the Matlab pseudocode given below for more details. In Figure 3d, examples
of detected hair are given.

Step 4. Hair object detection

% No-hair regions detection
NR = S. *V; % Initial no-hair regions construction and storing in NR
NR = imbinarize(NR, graythresh (NR)) % Otsu binarization

NR(SM > 0 & HR == 0 & BC == 0) = 1; % insertion in NR of salient pixel not belonging to HR and BC
NR (HR > 0) = 0; % pseudo-hair elimination from NR
NR = imfill(NR,’holes’); % holes filling
% end of no-hair regions detection
if (area(NR) is significant)

HR(NR > 0) = 0; % no-hair regions removal from HR
HR = imfill(HR,’holes’); % holes filling
if (HR is not empty)

if (BC is not empty) % border and corner components management
NB = BC; % copy of BC
NB(NR > 0 & Ig > ∆) =0 ; % generation of NB without no-hair regions and too dark
regions
HR(NB >= 0 & SM > 0) % elimination of salient pixels of NB from HR
CR = (BC > 0 & NB > 0) % common regions to BC and NB
HR(CR > 0) = 0 % elimination from HR of common regions of BC and NB
CR(CR > 0 & CC > 0) = 0; % corner regions elimination from CR
BN = border_detection (CR); % border components detection in CR (as done in step 3)
if (BN is not empty)

HR(BN > 0 & Ig > ∆) = 0; % elimination of clear border regions of CR from HR
end

end
HR(NR > 0 & HR > 0 | (BC > 0 & Ig > ∆)) = 0; % colored disk and clear border component
removal

end
end
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Step 5. Inpainting and rescaling—If HR is empty, the image is considered hairless; other-
wise, the reconstruction process is applied. After a preliminary enlargement of HR
by n steps of dilation, the inpainting is carried out by calling the Matlab function
regionfill on each image channel separately, by using HR as hair-mask and then
joining the resulting channels. If the size reduction step has been performed, a
scaling is newly applied using the Matlab function imresize with the bicubic option.
In Figure 3e, examples of the resulting image are given.

Different parameter settings to achieve a trade-off between quality and performance
have been explored. The better parameter values resulting from this analysis are Maxdim = 500,
δ = 0.4, ∆ = 100, n = 3. The experimental results shown in this paper are obtained by this set-
ting. The method is implemented in Matlab using Intel® core ™ i7—6600U CPU 2.60 GHz
with 8 GB installed RAM and a 64-bit Operating System Windows 10.

3. Experimental Results

This section describes the image datasets and the evaluation of the experimental results
in qualitative and quantitative terms. In fact, the evaluation of the performance of the
proposed method and the comparison with other methods are very hard tasks due to the
lack of publicly available source code of the existing methods, the limited literature, and the
different evaluation methodology often employing not well-specified datasets and different
quality measures. To overcome these critical issues, (a) we select some adequate datasets
(see Section 3.1); (b) we perform qualitative evaluations/comparisons from different points
of view (see Section 3.2); (c) following [17,37], we perform quantitative evaluations and
comparisons by generating synthetic hair on skin lesion images originally hair-free in a
controlled way (see Section 3.3). Note that the controlled hair introduction modality offers
the advantage that the added hair regions are known and constituted a reference image,
i.e., a ground truth. Accordingly, since the quantitative evaluation of the performance of
an HR method requires a reference image, this modality is the unique way to evaluate the
results by comparing the added hair regions in the reference image (ground truth) with the
detected hair regions in the binary mask.

3.1. Datasets

We test our method by considering images available on two publicly available
databases of dermoscopic images: PH2 [28] and ISIC2016 [29]. PH2 is a dermoscopic
image database acquired at the Dermatology Service of Hospital Pedro Hispano to support
comparative studies on segmentation/classification methods. This database includes clini-
cal/histological diagnosis, medical annotation, and the evaluation of many dermoscopic
criteria. It provides 200 dermoscopic RGB images and the corresponding ground truth,
including 80 atypical nevi, 80 common nevi, and 40 melanomas. All the images are 8-bit
RGB and have resolution 760 × 560 pixels. ISIC2016 is one of the largest databases of
dermoscopic images of skin lesions with quality control held by the International Sympo-
sium on Biomedical Imaging (ISBI) to improve melanoma diagnosis. It includes images
representative of both benign and malignant skin lesions. For each image, the ground
truth is also available. ISIC2016 consists of 397 (75 melanomas) and 900 (173 melanomas)
annotated images as testing and training data, respectively. The images are 8-bit RGB and
have a size ranging from 542 × 718 to 2848 × 4288. PH2 and ISIC2016 databases contain
numerous images with complex backgrounds and complicated skin conditions with the
presence of hair and other artifacts/aberrations.

Since in PH2 and ISIC2016 hairless and hairy images are not distinguished, it is
not possible to evaluate the performance of an HR method on each total dataset, and it
is necessary to separate them preliminarily. Hence, from PH2 and ISIC2016 we extract
two datasets, denoted as H-data and NH-data, each constituted by 170 images, which
respectively contain images with evident hair and images without hair. These images
are selected randomly and subdivided into the two datasets according to a human visual
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inspection. These datasets, totally comprising 340 images, are available at the Github link
indicated in the section Data Availability Statement.

To accurately and comprehensively validate the goodness of detecting hair and, at
the same time, to make a deeper comparison with the published results of the existing
methods [18–23], which in the following we indicate with the name of the first author
(i.e., Lee, Xie, Huang, Abbas, Toossi, Bibiloni), we also consider a specific dataset available
in [37]. This dataset, here call NH13-data and shown in Figure 4, is constituted by 13 images
without hair. We consider also the hairy images obtained starting from NH13-data by the
GAN method [38] and HairSim method [39], that starting from a hair-free dermoscopic
image, provide a hair-occluded image and the corresponding binary hair-mask. These
datasets are available in [37], are denoted as H13GAN-data and H13Sim-data, and are shown
in Figures 5 and 6, respectively.
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Moreover, to validate the performance of the method on a larger dataset, we simulate
the presence of hair on NH-data using the HairSim method by generating the HSim-data
set. Note that for HSim-data and H-data, only the methods Lee, Xie, and HR-SSC are
considered. The choice of these methods is based on the fact that first, they are the
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only methods, including the deep learning class of methods, with an available source
code, second, they are used widely in the literature, and third, they have higher quality
measures in [37]. We consider all images of H-data and HSim-data, but, given the high
number of images, we limit to show the results for a13 images sample for each dataset,
here named sH-data and sHSim-data, respectively. To favor the visual comparison of the
results, the sNH-data from which sHSim-data are generated are shown in Figure 7, while in
Figures 8 and 9 sHSim-data and sH-data, together with the corresponding added hair, are
respectively shown. Additionally, all of these datasets are available at the above Github
link to support the possibility of comparison by other authors.
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3.2. Qualitative Evaluation

To perform a qualitative evaluation, we check, for each method under consideration,
if the set of images selected as hairy images by a method is (almost) equal to the corre-
sponding original dataset, and we verify if the appearance of the inpainted image is good.
For this purpose, we consider all the images (with and without hair) belonging to both
H-data and NH-data, and we perform the following evaluations.

(a) We check whether, in most cases, the hair determination is successful or not, i.e., that
the images are re-confirmed as belonging to H-data and NH-data, respectively. This
allows us to determine for the different considered methods how much the resulting
sets belonging to H-data or NH-data are equal to the initial ones.

(b) We verify if the appearance of the hairless resulting image is, according to human
subjective judgment, compatible with a hairless and good quality version of it. More-
over, we test whether the presence of the hair can preclude or alter a subsequent step
of skin lesion segmentation.

(c) We visually compare the obtained results by the proposed method and those directly
available in [37] or by the available implementation of Lee and Xie on H13GAN-data,
H13Sim-data, HSim-data, and H-data to determine their overall performance.

In regard to the assessment of point (a), we find that the classification error is within
25%, 65%, 10%, respectively, for Lee, Xie, and HR-SSC. As concerns the assessment of point
(b), the visual inspection of the results shows that the resulting perceptual quality is in
accordance with the percentages obtained for point (a). To verify the effectiveness of the
hair removal methods, a recent SLS method [14,15] is applied. The segmentation results
show that hair removal applied before the segmentation process involves an improvement
of about 70%, 20%, 90% for Lee, Xie, and HR-SSC, respectively. The results of the visual
comparison on the various datasets of point (c) are given in Figures 10 and 11 on H13GAN-
data and H13Sim-data, respectively. To give major visual evidence and to facilitate the
comparison, in Figures 12 and 13, the results on sHSim-data and the corresponding final
mask are respectively shown. The same is true for Figures 14 and 15, where results on
H-data with the corresponding final mask are shown.

In summary, in relation to the qualitative evaluation, from the visual examination of
the resulting images of each method available in [37] and HR-SSC on H13GAN-data and
H13Sim-data (see Figures 10 and 11), it appears that evident hair regions are not detected
by Abbas and Toossi. Limiting the comparison only to the three methods of Lee, Xie, and
HR-SSC, evident hair regions are not detected by Xie on the HSim-data and, to a lesser
extent, on H-data. See the results on the sample sHsim-data in Figure 12 and on the sample
sH-data in Figure 14. Note that HR-SSC is able also to remove the ruler marks that can be
mistaken as hair (see Figures 14 and 15).
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Figure 10. (a) Results of methods Lee, Xie, Abbas, Huang available in [37], rows 1–4, on H13GAN-data. (b) Results of methods Toossi,
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3.3. Quantitative Evaluation

We quantitatively evaluate the resulting images on the hairless image datasets to
which hair has been added (see Section 3.1) by considering the original image as ground
truth and expressing a quantitative evaluation in terms of the following:

- nine most popular quality measures: MSE, PSNR, MSE3, PSNR3, SSIM, MSSIM,
VSNR, VIFP, UQI, NQM, WSNR [40,41];

- area of the detected hair regions;
- true/false discovery rate (see the definition in Section 3.3.3).

Although the above quality measures are related to human perception to a small extent,
and the problem to define adequate metrics for the performance evaluation of color image
processing methods remains an open problem widely studied [41–45], most often, these
measures are extensively employed to evaluate the performance of many types of image
analysis methods, including the HR methods [17,37]. In turn, we see these quality measure
values as valid indicators since they contribute to delineate the trend of the performance of
an HR method, and, at the same time, we consider them not suitable alone to give evidence
of its effectiveness. To overcome this gap, since the determination of the effective hair area
and the true/false rate are the major critical points for the quantitative evaluation of HR
methods, we extend the performance evaluation by measuring the hair area and true/false
rate (see respective Sections 3.3.2 and 3.3.3). As mentioned above, following [17,37], we
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consider the images in which, in a controlled way, the hair regions are introduced on
input hair-free images by using suitable hair insertion methods [38,39] that provide a
hair-occluded image and the corresponding binary hair mask. The resulting binary mask is
used as ground truth to quantitatively evaluate the performance by computing the detected
area and the false discovery rate/true discovery rate (FDR/TDR).

Note that we use the hairy images used in [17] and those available at [37]. Then,
we extend the controlled hair simulation on a larger dataset, and to allow comparison
with other HR methods on the same image dataset, we made it available at the already
mentioned Github link. Indeed, currently, the direct comparison with the results shown
in another paper is in practice impossible since the experimental results are given for a
not well-specified dataset. Accordingly, we think that having a shared dataset with the
corresponding ground truth is a useful tool favoring the comparison and increasing the
quality of the performance evaluation.
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Figure 11. (a) Results of methods Lee, Xie, Abbas, Huang available in [37], rows 1–4, on H13Sim-data. (b) Results of method Toossi,
Bibiloni available in [37], rows 1–2, and results of HR-SSC, row 3, on H13Sim-data.

3.3.1. Quantitative Evaluation Based on Quality Measures

To carry out a quantitative evaluation based on quality measures, we consider the
results obtained by all methods (see Figures 10 and 11) on the image datasets H13Sim-data
and H13Sim-data (see Figures 5 and 6), and we compute the metric values by considering
the original images in NH13-data as ground truths (see Figure 4). The metric values are
shown in Tables 1 and 2. Moreover, since the cardinality of the NH13-data is too limited,
we repeat this quantitative quality evaluation also on HSim-data to verify if by varying the
insertion of the hairs and increasing the cardinality of the set of reference data, we obtain a
similar result. This quality evaluation is performed by limiting the considered methods to
Lee, Xie, and HR-SSC. For the sake of brevity, in Table 3, we show the metric values only
for sHSim-data by considering the corresponding resulting images (see Figure 12) and the
sNH_data (see Figure 7). In Table 4 we report the average quality measures referring to
H13GAN-data, H13Sim-data, sH13Sim-data, and HSim-data. The quantitative metrics for the
set HSim-data including 170 images are also available at the mentioned Github link since
they require much editing space.
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Based on the quantitative analysis using the nine metrics, the trend of the various
methods turns out to be completely different on H13GAN-data and H13Sim-Data in com-
parison with those on a set with greater cardinality HSim-data as well as on its sample
sHSim-data of 13 images. This is highlighted in Figures 16 and 17, where the trends of
each quality measure on the dataset containing 13 images belonging to different datasets
but generated by the same HairSim method for the hair simulation, i.e., H13Sim-data and
sHSim-data, are shown.
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Table 1. Quality evaluation of the results on the H13GAN-data—best results are in bold.

Img Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

IMD006 Lee 13.626 36.787 20.918 34.926 0.888 0.956 24.401 0.403 0.650 23.151 40.255
Xie 12.610 37.124 19.831 35.157 0.891 0.957 25.355 0.412 0.653 22.687 40.286

Abbas 57.555 30.530 64.073 30.064 0.856 0.898 15.260 0.354 0.608 12.372 28.927
Huang 24.283 34.278 33.481 32.883 0.860 0.926 19.601 0.301 0.534 16.305 33.955
Toossi 55.748 30.668 62.440 30.176 0.853 0.897 15.370 0.342 0.591 12.586 29.143

Bibiloni 19.653 35.197 28.070 33.648 0.867 0.943 21.588 0.328 0.589 19.411 36.740
HR-SSC 19.669 35.193 27.078 33.805 0.861 0.941 21.101 0.323 0.561 20.950 37.581

IMD010 Lee 44.373 31.660 52.734 30.910 0.855 0.939 16.990 0.352 0.659 18.189 33.261
Xie 46.305 31.475 55.898 30.657 0.859 0.931 15.853 0.364 0.665 14.288 30.576

Abbas 88.070 28.683 98.376 28.202 0.838 0.907 14.944 0.330 0.636 14.129 28.725
Huang 42.985 31.798 52.674 30.915 0.818 0.905 17.330 0.236 0.510 17.169 32.186
Toossi 90.161 28.581 100.956 28.089 0.832 0.905 15.007 0.320 0.618 13.841 28.495

Bibiloni 40.550 32.051 51.019 31.054 0.857 0.937 16.699 0.354 0.660 16.755 32.390
HR-SSC 55.952 30.653 66.185 29.923 0.827 0.920 15.203 0.293 0.579 17.837 31.972



Appl. Sci. 2021, 11, 447 19 of 28

Table 1. Cont.

Img Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

IMD017 Lee 18.625 35.430 24.645 34.213 0.881 0.957 29.130 0.445 0.711 27.359 38.837
Xie 16.228 36.028 22.790 34.553 0.884 0.955 30.411 0.455 0.714 25.465 38.191

Abbas 61.528 30.240 67.983 29.807 0.847 0.911 21.698 0.390 0.662 17.373 28.555
Huang 29.318 33.459 35.611 32.615 0.854 0.937 25.118 0.366 0.601 20.446 32.682
Toossi 62.801 30.151 68.982 29.743 0.840 0.907 21.591 0.374 0.636 17.371 28.516

Bibiloni 24.312 34.273 30.787 33.247 0.867 0.948 26.935 0.406 0.684 23.497 35.660
HR-SSC 31.007 33.216 36.943 32.455 0.850 0.934 25.550 0.371 0.632 23.808 34.512

IMD018 Lee 53.072 30.882 58.624 30.450 0.865 0.960 27.433 0.353 0.581 22.039 35.006
Xie 18.253 35.517 23.648 34.393 0.863 0.956 28.108 0.352 0.578 25.368 40.353

Abbas 112.129 27.634 117.432 27.433 0.850 0.913 17.475 0.344 0.570 14.966 28.474
Huang 65.664 29.958 71.773 29.571 0.845 0.939 22.471 0.286 0.476 18.580 32.252
Toossi 108.744 27.767 113.634 27.576 0.849 0.915 17.689 0.340 0.563 15.181 28.639

Bibiloni 54.371 30.777 60.419 30.319 0.861 0.957 26.734 0.343 0.574 21.670 34.753
HR-SSC 34.432 32.761 39.240 32.194 0.853 0.955 24.135 0.327 0.537 22.638 36.055

IMD019 Lee 40.674 32.038 49.993 31.142 0.882 0.942 24.415 0.414 0.696 21.020 35.377
Xie 41.599 31.940 51.373 31.023 0.886 0.938 24.315 0.427 0.700 19.620 34.346

Abbas 80.579 29.069 90.699 28.555 0.856 0.908 18.686 0.372 0.657 16.024 30.163
Huang 60.703 30.299 71.582 29.583 0.827 0.904 20.229 0.273 0.507 18.011 32.313
Toossi 81.503 29.019 91.594 28.512 0.846 0.904 18.662 0.355 0.634 16.105 30.222

Bibiloni 49.196 31.212 59.452 30.389 0.868 0.934 23.136 0.375 0.672 19.580 34.043
HR-SSC 56.414 30.617 65.961 29.938 0.858 0.930 21.562 0.363 0.642 18.991 33.110

IMD020 Lee 54.462 30.770 61.126 30.269 0.842 0.958 23.801 0.362 0.653 22.282 34.661
Xie 23.642 34.394 29.561 33.424 0.846 0.957 26.239 0.373 0.660 25.905 40.384

Abbas 132.080 26.922 138.996 26.701 0.803 0.883 15.764 0.306 0.604 14.074 26.834
Huang 62.554 30.168 69.851 29.689 0.815 0.936 21.317 0.303 0.564 19.108 32.275
Toossi 125.759 27.135 132.544 26.907 0.796 0.884 16.111 0.295 0.581 14.456 27.197

Bibiloni 59.850 30.360 67.234 29.855 0.828 0.951 22.518 0.329 0.630 20.985 33.649
HR-SSC 43.098 31.786 48.657 31.259 0.817 0.949 22.203 0.316 0.590 23.641 36.222

IMD030 Lee 50.827 31.070 57.665 30.522 0.864 0.952 19.959 0.398 0.660 18.341 32.244
Xie 16.425 35.976 23.671 34.389 0.869 0.959 26.493 0.413 0.669 25.476 39.857

Abbas 70.112 29.673 76.885 29.272 0.838 0.917 18.528 0.352 0.623 15.447 29.300
Huang 50.556 31.093 57.620 30.525 0.847 0.941 20.743 0.347 0.599 19.632 32.935
Toossi 72.517 29.526 79.211 29.143 0.830 0.912 18.330 0.337 0.600 15.616 29.428

Bibiloni 45.920 31.511 53.062 30.883 0.855 0.949 21.692 0.372 0.647 19.680 33.360
HR-SSC 59.202 30.407 66.783 29.884 0.786 0.904 17.204 0.252 0.468 19.009 31.509

IMD033 Lee 29.071 33.496 36.028 32.564 0.858 0.948 23.146 0.348 0.623 20.946 37.195
Xie 20.680 34.975 27.696 33.707 0.874 0.954 26.280 0.389 0.646 20.928 38.139

Abbas 87.505 28.710 94.489 28.377 0.825 0.894 16.762 0.302 0.574 12.081 28.385
Huang 33.270 32.910 40.516 32.055 0.836 0.926 21.584 0.280 0.523 18.372 34.461
Toossi 86.218 28.775 93.278 28.433 0.815 0.890 16.783 0.286 0.547 12.324 28.584

Bibiloni 38.722 32.251 45.577 31.543 0.839 0.932 20.980 0.296 0.588 18.178 34.092
HR-SSC 56.659 30.598 64.342 30.046 0.785 0.894 18.590 0.207 0.451 16.917 32.624

IMD044 Lee 47.457 31.368 53.355 30.859 0.863 0.943 17.641 0.421 0.738 16.903 29.594
Xie 18.590 35.438 27.085 33.804 0.887 0.964 25.971 0.494 0.774 23.188 36.594

Abbas 72.923 29.502 78.288 29.194 0.867 0.926 16.276 0.457 0.750 12.369 25.924
Huang 105.875 27.883 110.178 27.710 0.745 0.835 12.993 0.210 0.484 12.174 23.933
Toossi 73.452 29.471 78.674 29.172 0.859 0.923 16.110 0.440 0.736 12.445 25.910

Bibiloni 96.722 28.276 101.895 28.049 0.763 0.867 13.711 0.242 0.561 13.030 24.693
HR-SSC 176.341 25.667 179.590 25.588 0.673 0.734 11.356 0.143 0.345 9.157 20.718
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Table 1. Cont.

Img Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

IMD050 Lee 35.787 32.594 41.721 31.927 0.880 0.954 18.895 0.335 0.578 17.676 31.938
Xie 22.695 34.572 28.814 33.535 0.881 0.953 22.280 0.337 0.578 19.716 34.639

Abbas 49.806 31.158 55.624 30.678 0.859 0.898 18.094 0.314 0.554 12.763 28.703
Huang 22.682 34.574 29.144 33.485 0.852 0.932 22.328 0.232 0.453 18.434 34.242
Toossi 49.658 31.171 55.452 30.692 0.856 0.897 18.151 0.300 0.536 12.899 28.805

Bibiloni 24.683 34.207 30.624 33.270 0.876 0.949 20.898 0.335 0.575 19.338 33.924
HR-SSC 32.032 33.075 38.428 32.284 0.863 0.944 21.815 0.269 0.507 19.705 34.589

IMD061 Lee 200.137 25.118 206.683 24.978 0.818 0.913 16.492 0.340 0.655 14.269 24.901
Xie 31.045 33.211 39.240 32.194 0.853 0.947 28.493 0.401 0.701 24.189 35.438

Abbas 162.905 26.011 170.740 25.807 0.774 0.862 19.898 0.262 0.585 17.621 27.216
Huang 118.122 27.408 125.806 27.134 0.824 0.930 19.472 0.341 0.641 18.026 28.664
Toossi 160.195 26.084 168.469 25.866 0.759 0.856 19.691 0.248 0.552 17.752 27.250

Bibiloni 132.368 26.913 139.485 26.686 0.816 0.918 18.707 0.319 0.651 15.911 26.804
HR-SSC 123.964 27.198 132.643 26.904 0.730 0.877 21.104 0.222 0.459 19.312 28.617

IMD063 Lee 73.087 29.492 78.056 29.207 0.868 0.949 16.458 0.395 0.638 18.376 27.193
Xie 15.333 36.274 23.189 34.478 0.871 0.955 30.726 0.405 0.644 27.486 38.241

Abbas 75.404 29.357 82.451 28.969 0.849 0.914 19.238 0.372 0.619 16.239 25.970
Huang 82.506 28.966 87.606 28.705 0.846 0.931 15.781 0.328 0.563 16.786 25.992
Toossi 74.619 29.402 81.598 29.014 0.847 0.914 19.316 0.364 0.608 16.268 25.989

Bibiloni 74.387 29.416 80.223 29.088 0.861 0.948 16.314 0.374 0.626 18.402 27.149
HR-SSC 38.011 32.332 44.806 31.617 0.852 0.945 25.076 0.355 0.586 21.399 30.795

IMD075 Lee 98.538 28.195 107.530 27.816 0.860 0.948 16.524 0.354 0.624 15.793 27.594
Xie 18.342 35.496 29.230 33.473 0.866 0.952 26.945 0.373 0.635 24.586 38.198

Abbas 73.194 29.486 82.107 28.987 0.845 0.926 18.078 0.336 0.606 16.732 28.717
Huang 112.433 27.622 122.341 27.255 0.821 0.917 15.514 0.251 0.486 14.620 26.485
Toossi 71.889 29.564 80.600 29.067 0.841 0.926 18.156 0.325 0.590 16.955 28.867

Bibiloni 93.923 28.403 103.663 27.975 0.855 0.948 17.089 0.344 0.618 15.988 27.807
HR-SSC 45.132 31.586 53.234 30.869 0.814 0.925 20.687 0.256 0.491 19.150 31.981

Table 2. Quality evaluation of the results on the H13Sim-data—best results are in bold.

Img Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

IMD006 Lee 5.443 40.773 6.400 40.069 0.978 0.985 25.044 0.873 0.938 23.320 40.853
Xie 6.105 40.274 8.712 38.730 0.998 0.971 22.402 0.898 0.944 18.362 36.300

Abbas 146.175 26.482 149.923 26.372 0.920 0.836 9.709 0.747 0.877 6.777 23.447
Huang 14.654 36.471 17.000 35.826 0.964 0.971 20.263 0.817 0.905 16.575 34.655
Toossi 147.390 26.446 151.565 26.325 0.913 0.831 9.707 0.715 0.857 6.726 23.421

Bibiloni 14.087 36.642 19.991 35.123 0.937 0.960 21.615 0.536 0.830 18.990 36.561
HR-SSC 17.983 35.582 22.252 34.657 0.882 0.961 21.630 0.373 0.637 20.652 37.497

IMD010 Lee 44.462 31.651 45.490 31.552 0.960 0.969 15.108 0.844 0.935 14.718 30.440
Xie 7.632 39.304 10.396 37.962 0.999 0.979 20.231 0.924 0.967 19.061 35.559

Abbas 93.505 28.422 96.605 28.281 0.935 0.894 12.548 0.769 0.904 10.231 25.941
Huang 21.230 34.861 22.192 34.669 0.962 0.967 20.111 0.819 0.919 17.995 33.880
Toossi 94.868 28.360 99.195 28.166 0.926 0.889 12.520 0.734 0.882 10.253 25.956

Bibiloni 49.427 31.191 55.047 30.723 0.973 0.971 16.917 0.850 0.953 14.449 30.158
HR-SSC 54.625 30.757 61.890 30.215 0.856 0.937 15.234 0.353 0.666 17.575 31.736

IMD017 Lee 9.535 38.338 9.855 38.194 0.981 0.988 29.519 0.905 0.967 28.643 39.534
Xie 11.082 37.684 16.277 36.015 0.997 0.986 27.386 0.955 0.979 21.083 32.729

Abbas 64.666 30.024 67.694 29.825 0.941 0.934 20.432 0.758 0.902 15.536 26.897
Huang 13.747 36.749 14.357 36.560 0.978 0.986 26.004 0.896 0.944 21.100 33.753
Toossi 66.238 29.920 69.393 29.718 0.930 0.928 20.432 0.714 0.871 15.469 26.880

Bibiloni 17.438 35.716 19.820 35.160 0.950 0.972 26.695 0.648 0.904 23.420 35.196
HR-SSC 28.231 33.624 31.105 33.202 0.881 0.954 26.097 0.437 0.727 24.092 34.710
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Table 2. Cont.

Img Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

IMD018 Lee 41.735 31.926 42.896 31.807 0.982 0.988 28.284 0.899 0.944 21.864 34.994
Xie 31.009 33.216 43.166 31.779 0.993 0.987 28.252 0.895 0.942 21.820 34.947

Abbas 43.583 31.738 44.880 31.610 0.972 0.983 27.268 0.829 0.921 21.782 34.845
Huang 41.980 31.900 43.166 31.779 0.981 0.987 28.252 0.895 0.942 21.820 34.947
Toossi 246.045 24.221 251.091 24.132 0.936 0.831 11.292 0.841 0.911 9.424 23.138

Bibiloni 44.101 31.686 45.648 31.537 0.972 0.983 27.226 0.792 0.930 21.523 34.748
HR-SSC 29.831 33.384 31.740 33.115 0.886 0.978 25.032 0.396 0.652 23.172 36.610

IMD019 Lee 34.227 32.787 37.125 32.434 0.954 0.968 23.690 0.770 0.908 21.101 35.203
Xie 30.434 33.297 42.538 31.843 0.986 0.939 21.001 0.863 0.930 17.517 32.120

Abbas 311.608 23.195 326.342 22.994 0.888 0.797 10.687 0.636 0.835 8.627 22.541
Huang 44.906 31.608 47.752 31.341 0.945 0.960 20.896 0.739 0.874 17.755 32.540
Toossi 314.691 23.152 330.173 22.943 0.873 0.790 10.693 0.587 0.799 8.581 22.515

Bibiloni 51.861 30.982 56.227 30.631 0.921 0.946 21.807 0.561 0.846 18.834 32.594
HR-SSC 46.419 31.464 49.458 31.188 0.897 0.960 22.956 0.454 0.754 20.611 34.265

IMD020 Lee 39.130 32.206 41.418 31.959 0.974 0.988 24.516 0.883 0.951 22.135 34.724
Xie 5.025 41.120 7.099 39.619 0.998 0.981 26.952 0.933 0.965 23.517 38.794

Abbas 151.333 26.331 157.032 26.171 0.919 0.864 13.518 0.709 0.879 11.620 24.574
Huang 40.210 32.087 42.343 31.863 0.976 0.986 23.483 0.900 0.947 19.376 32.999
Toossi 157.470 26.159 163.807 25.987 0.905 0.859 13.468 0.661 0.848 11.482 24.465

Bibiloni 46.316 31.474 49.423 31.192 0.956 0.978 22.775 0.695 0.922 20.401 33.376
HR-SSC 39.242 32.193 41.779 31.921 0.857 0.967 22.515 0.383 0.693 22.956 36.159

IMD030 Lee 40.468 32.060 40.968 32.006 0.970 0.979 19.777 0.861 0.945 18.713 32.452
Xie 4.286 41.810 6.163 40.233 0.998 0.987 26.467 0.927 0.969 23.432 37.889

Abbas 81.085 29.041 83.086 28.936 0.938 0.915 16.712 0.743 0.897 12.585 26.889
Huang 36.536 32.504 36.838 32.468 0.982 0.986 21.820 0.911 0.960 20.087 33.643
Toossi 84.981 28.838 87.182 28.727 0.925 0.908 16.518 0.697 0.867 12.657 26.939

Bibiloni 36.763 32.477 39.569 32.157 0.954 0.971 21.777 0.675 0.913 19.905 33.500
HR-SSC 63.601 30.096 68.802 29.755 0.782 0.901 16.937 0.245 0.462 17.583 30.554

IMD033 Lee 24.454 34.247 26.046 33.973 0.947 0.968 21.830 0.757 0.907 20.112 36.196
Xie 22.402 34.628 31.323 33.172 0.995 0.958 20.109 0.915 0.952 13.498 30.916

Abbas 189.799 25.348 194.689 25.237 0.901 0.855 12.471 0.662 0.853 6.665 23.295
Huang 18.819 35.385 19.675 35.192 0.956 0.966 22.401 0.828 0.918 18.761 35.305
Toossi 169.486 25.839 174.635 25.709 0.890 0.852 12.952 0.624 0.823 7.391 23.923

Bibiloni 69.269 29.725 73.560 29.464 0.902 0.910 16.689 0.466 0.815 11.935 28.549
HR-SSC 50.811 31.071 55.613 30.679 0.816 0.921 19.280 0.264 0.552 17.666 33.302

IMD044 Lee 49.270 31.205 47.786 31.338 0.927 0.943 16.197 0.684 0.890 14.864 27.824
Xie 7.508 39.376 10.183 38.052 0.998 0.980 23.052 0.924 0.973 18.344 32.600

Abbas 39.651 32.148 39.209 32.197 0.955 0.945 17.653 0.790 0.934 13.447 27.293
Huang 73.354 29.477 71.510 29.587 0.891 0.901 14.120 0.594 0.813 12.372 25.252
Toossi 44.653 31.632 44.317 31.665 0.941 0.938 17.253 0.734 0.911 13.250 26.963

Bibiloni 124.034 27.195 127.439 27.078 0.764 0.829 12.416 0.221 0.562 11.719 22.787
HR-SSC 214.183 24.823 214.147 24.824 0.671 0.718 10.498 0.142 0.342 8.445 19.567

IMD050 Lee 21.355 34.836 21.807 34.745 0.976 0.984 20.082 0.860 0.930 19.013 33.138
Xie 5.561 40.680 7.855 39.179 0.998 0.970 25.606 0.874 0.934 19.433 36.204

Abbas 121.210 27.295 122.357 27.255 0.930 0.838 12.242 0.790 0.895 7.594 23.528
Huang 10.580 37.886 11.262 37.615 0.965 0.979 23.658 0.821 0.915 19.415 35.929
Toossi 120.022 27.338 121.174 27.297 0.927 0.837 12.359 0.769 0.886 7.647 23.580

Bibiloni 37.044 32.444 40.803 32.024 0.969 0.971 18.740 0.817 0.920 16.150 30.032
HR-SSC 28.878 33.525 32.355 33.031 0.893 0.964 22.466 0.344 0.632 20.099 34.948
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Table 2. Cont.

Img Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

IMD061 Lee 199.214 25.138 197.816 25.168 0.918 0.934 15.841 0.705 0.881 14.097 24.753
Xie 13.371 36.869 18.984 35.347 0.994 0.973 25.671 0.915 0.962 21.197 32.801

Abbas 231.503 24.485 238.370 24.358 0.869 0.848 17.243 0.568 0.811 12.035 22.788
Huang 92.491 28.470 92.932 28.449 0.965 0.979 19.645 0.871 0.939 17.979 28.910
Toossi 230.406 24.506 237.676 24.371 0.853 0.839 17.117 0.526 0.778 11.960 22.729

Bibiloni 125.200 27.155 127.409 27.079 0.919 0.937 18.203 0.551 0.875 15.407 26.464
HR-SSC 120.609 27.317 126.001 27.127 0.760 0.895 21.122 0.254 0.535 19.579 28.808

IMD063 Lee 62.239 30.190 60.750 30.295 0.984 0.977 16.040 0.902 0.959 18.381 27.253
Xie 6.407 40.064 9.620 38.299 0.996 0.982 27.252 0.931 0.968 22.772 33.216

Abbas 88.233 28.674 89.376 28.619 0.961 0.937 15.611 0.820 0.927 14.729 24.462
Huang 67.139 29.861 65.432 29.973 0.975 0.975 15.731 0.871 0.937 16.992 26.398
Toossi 94.791 28.363 95.625 28.325 0.954 0.934 15.164 0.784 0.909 14.397 24.068

Bibiloni 63.394 30.110 63.387 30.111 0.972 0.977 16.033 0.778 0.937 18.206 27.103
HR-SSC 37.731 32.364 41.061 31.997 0.880 0.963 25.120 0.395 0.671 20.784 30.350

IMD075 Lee 84.834 28.845 86.173 28.777 0.979 0.983 16.386 0.880 0.951 15.894 27.734
Xie 4.125 41.977 5.986 40.359 0.999 0.986 27.081 0.932 0.969 23.102 37.372

Abbas 123.562 27.212 123.997 27.197 0.951 0.917 14.234 0.803 0.920 11.946 24.537
Huang 92.738 28.458 93.963 28.401 0.970 0.977 15.607 0.851 0.934 14.744 26.916
Toossi 131.867 26.929 132.950 26.894 0.942 0.913 13.898 0.762 0.897 11.703 24.251

Bibiloni 77.560 29.234 79.014 29.154 0.976 0.982 16.953 0.825 0.949 16.059 28.034
HR-SSC 42.993 31.797 46.676 31.440 0.829 0.944 21.012 0.286 0.539 19.158 32.117

Table 3. Quality evaluation of the results on the sHSim-data—best results are in bold.

Img Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

ISIC_0000040 Lee 284.167 23.595 378.463 22.351 0.976 0.952 8.877 0.712 0.916 0.702 19.995
Xie 184.397 25.473 295.277 23.429 0.977 0.874 3.327 0.562 0.923 2.318 19.575

HR-SSC 114.313 27.550 158.448 26.132 0.982 0.985 8.688 0.697 0.611 15.389 31.447

ISIC_0000096 Lee 8.604 38.784 13.237 36.913 0.997 0.983 16.692 0.905 0.956 14.830 36.493
Xie 164.330 25.974 236.750 24.388 0.985 0.917 3.736 0.818 0.950 2.842 21.224

HR-SSC 5.160 41.005 12.589 37.131 0.996 0.961 20.198 0.716 0.614 16.606 39.021

ISIC_0000184 Lee 26.720 33.862 39.355 32.181 0.995 0.959 20.266 0.815 0.915 16.444 31.995
Xie 391.069 22.208 580.441 20.493 0.966 0.848 9.115 0.711 0.903 4.434 17.907

HR-SSC 12.844 37.044 19.339 35.267 0.995 0.966 24.759 0.728 0.801 19.208 34.899

ISIC_0000257 Lee 14.885 36.403 20.021 35.116 0.993 0.974 14.336 0.750 0.922 10.323 32.190
Xie 244.908 24.241 326.325 22.994 0.966 0.854 1.574 0.528 0.911 1.219 17.999

HR-SSC 1.094 47.739 1.910 45.320 0.998 0.994 31.166 0.845 0.652 23.113 46.466

ISIC_0000410 Lee 11.893 37.378 16.306 36.007 0.989 0.986 14.863 0.831 0.957 12.455 33.225
Xie 138.029 26.731 186.638 25.421 0.975 0.923 3.274 0.690 0.953 3.516 21.231

HR-SSC 2.346 44.427 4.869 41.257 0.971 0.976 22.008 0.620 0.354 20.210 41.823

ISIC_0010503 Lee 14.655 36.471 21.322 34.843 0.987 0.970 18.175 0.771 0.923 15.295 33.283
Xie 209.160 24.926 297.527 23.396 0.961 0.877 5.627 0.644 0.913 3.655 19.156

HR-SSC 3.716 42.430 5.489 40.736 0.992 0.987 27.291 0.673 0.646 21.392 39.927

ISIC_0006982 Lee 4.379 41.717 6.318 40.125 0.997 0.991 17.597 0.896 0.968 17.799 39.600
Xie 78.818 29.165 106.018 27.877 0.990 0.950 3.448 0.840 0.957 4.028 23.575

HR-SSC 15.341 36.272 23.827 34.360 0.990 0.947 10.670 0.479 0.342 8.234 32.009
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Table 3. Cont.

Img Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

ISIC_0007693 Lee 11.965 37.352 16.412 35.979 0.988 0.986 11.822 0.786 0.959 10.848 33.922
Xie 137.389 26.751 187.715 25.396 0.974 0.926 1.848 0.595 0.949 2.385 21.840

HR-SSC 3.157 43.138 4.986 41.153 0.983 0.981 15.156 0.527 0.298 18.922 40.392

ISIC_0009993 Lee 33.238 32.914 44.902 31.608 0.989 0.969 21.622 0.765 0.909 10.981 31.791
Xie 567.510 20.591 757.976 19.334 0.949 0.823 11.120 0.566 0.890 1.901 17.733

HR-SSC 3.807 42.325 5.871 40.444 0.996 0.983 26.823 0.831 0.801 18.435 40.775

ISIC_0010182 Lee 41.090 31.993 55.472 30.690 0.963 0.947 14.732 0.596 0.885 7.949 29.978
Xie 523.315 20.943 703.673 19.657 0.930 0.771 4.603 0.423 0.879 0.568 16.851

HR-SSC 1.097 47.727 1.875 45.401 0.992 0.992 29.604 0.909 0.690 22.147 46.114

ISIC_0010226 Lee 52.791 30.905 68.491 29.774 0.983 0.945 12.075 0.719 0.908 4.659 29.058
Xie 565.808 20.604 729.467 19.501 0.952 0.791 4.894 0.556 0.898 0.354 17.064

HR-SSC 2.754 43.731 4.069 42.035 0.992 0.989 27.022 0.680 0.526 23.257 49.042

ISIC_0010584 Lee 11.216 37.632 15.213 36.309 0.994 0.979 15.329 0.879 0.944 12.649 34.171
Xie 201.006 25.099 267.899 23.851 0.974 0.889 2.207 0.771 0.936 1.850 19.196

HR-SSC 2.362 44.397 3.562 42.613 0.997 0.987 25.250 0.855 0.855 18.605 41.457

ISIC_0011323 Lee 30.361 33.308 40.709 32.034 0.984 0.968 14.807 0.809 0.938 11.530 30.180
Xie 263.791 23.918 353.511 22.647 0.961 0.872 5.395 0.686 0.935 3.013 19.455

HR-SSC 1.922 45.294 2.683 43.844 0.985 0.993 30.951 0.775 0.666 27.842 47.033

Table 4. Average quality evaluation of the results on H13GAN-data, H13Sim-data, sH13Sim-data, and HSim-data—best results
are in bold.

Dataset Met. MSE PSNR MSE3 PSNR3 SSIM MSSIM VSNR VIFP UQI NQM WSNR

H13GAN-data Lee 58.441 31.454 65.314 30.752 0.863 0.948 21.176 0.379 0.651 19.719 32.927
Xie 23.211 34.802 30.925 33.445 0.872 0.952 25.959 0.400 0.663 22.993 37.326

HR-SSC 59.378 31.161 66.453 30.521 0.813 0.912 20.430 0.284 0.527 19.424 32.329

H13Sim-data Lee 50.490 32.631 51.118 32.486 0.964 0.973 20.947 0.833 0.931 19.450 32.700
Xie 11.919 38.485 16.792 36.968 0.996 0.975 24.728 0.914 0.958 20.241 34.727

HR-SSC 59.626 31.384 63.298 31.012 0.838 0.928 20.762 0.333 0.605 19.413 32.356

sH13Sim-data Lee 41.997 34.793 56.632 33.379 0.987 0.970 15.476 0.787 0.931 12.147 31.991
Xie 282.272 24.356 386.863 22.953 0.966 0.870 4.628 0.645 0.923 2.833 19.447

HR-SSC 13.070 41.775 19.194 39.669 0.990 0.980 23.045 0.718 0.604 19.489 40.800

HSim-data Lee 56.748 32.693 77.344 31.310 0.984 0.959 16.709 0.773 0.918 11.184 30.038
Xie 376.331 23.049 509.629 21.717 0.958 0.853 7.000 0.650 0.911 3.202 18.552

HR-SSC 24.525 38.001 35.450 36.237 0.988 0.972 21.952 0.714 0.677 16.212 35.725
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3.3.2. Quantitative Evaluation Based on the Area of the Detected Hair Regions

To perform a quantitative evaluation based on area, we compare the area values
obtained by the methods Lee, Xie, and HR-SSC on HSim-data, that is, the dataset in which
hair is added in a controlled way. In detail, for each image I, we calculate the hair area
introduced by the HairSim method, indicated as AI, and we compare this value with the
area identified by each method, indicated as AL, Ax, AR, respectively for Lee, Xie, and
HR-SSC. For the sake of brevity, in Table 5, we show the resulting area values for sHSim-data.
Moreover, we compare the average hair area <AI > introduced in HSim-data by the HairSim
method with the average hair area detected by each method (Table 6).

Table 5. Hair area on sHSim-data—best results are in bold.

Img AI AL Ax AR

ISIC_0000040 47,608 77,001 1,665,451 51,985
ISIC_0000096 66,463 86,920 3,106,080 78,198
ISIC_0000184 32,827 42,115 733,964 33,815
ISIC_0000257 26,069 33,456 768,308 28,057
ISIC_0000410 86,133 110,826 4,541,149 105,109
ISIC_0000503 27,411 33,822 724,917 28,063
ISIC_0006982 73,066 110,461 6,010,208 106,147
ISIC_0007693 100,975 131,136 5,984,212 135,523
ISIC_0009993 35,991 47,248 766,116 38,432
ISIC_0010182 36,257 44,818 764,856 38,127
ISIC_0010226 33,226 41,208 770,008 34,677
ISIC_0010584 21,630 27,634 774,687 22,792
ISIC_0011323 20,309 27,615 774,768 22,041

Table 6. Average hair area values on the HSim-data to compare with < AI > = 42648—best results are
in bold.

Dataset <AL> <Ax> <AR>

Hsim-data 61,045 1,594,363 48,830
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Since in our experiment <AI > = 42648, from Table 6, it can be observed that the
average hair area computed by HR-SSC is the one that comes closest to <AI >, while the
average hair area computed by Xie is by far the most distant. This evaluation trend in
terms of area on HSim-data and sHSim-data confirms the trend indicated in Section 3.3.1.

3.3.3. Quantitative Evaluation in Terms of True/False Discovery Rate

We evaluate the quality of the resulting images also in terms of true discovery rate
(TDR) and false discovery rate (FDR), defined as the following:

FDR =
FP

FP + TP
TDR = 1 − FDR

where FP and TP denote false positive and true positive assessments, respectively. For the
sake of brevity, in Table 7, we show the resulting FDR and TDR values only for sHSim-data.
Moreover, the average <FDR> and <TDR> values of each method for HSim-data are shown
in Table 8. From the examination of Tables 7 and 8, a lower value of FDR and a higher
value of TDR for HR-SSC, an intermediate value of FDR and TDR for Lee, and a higher
value of FDR and a lower value of TDR for Xie can be observed. With respect to Lee,
HR-SSC reports the percentage improvements of TDR and FDR equal to 35% and 27%,
respectively, on Hsim-data, and equal to 33% and 27%, respectively, on sHSim-data. This eval-
uation trend in terms of FDR/TDR on Hsim-data, sHSim-data confirms the trend indicated
in Section 3.3.1.

Table 7. False discovery rate (FDR) and true discovery rate (TDR) on sHSim-data—best results are in bold.

Img Met. FDR TDR Img Met. FDR TDR

ISIC_0000040 Lee 0.326 0.674 ISIC_0007693 Lee 0.651 0.349
Xie 0.980 0.020 Xie 0.992 0.008

HR-SSC 0.202 0.798 HR-SSC 0.469 0.531

ISIC_0000096 Lee 0.303 0.697 ISIC_0009993 Lee 0.641 0.359
Xie 0.985 0.015 Xie 0.992 0.008

HR-SSC 0.206 0.794 HR-SSC 0.456 0.544

ISIC_0000184 Lee 0.293 0.707 ISIC_0010182 Lee 0.631 0.369
Xie 0.988 0.012 Xie 0.992 0.008

HR-SSC 0.217 0.783 HR-SSC 0.444 0.556

Table 7. Cont.

Img Met. FDR TDR Img Met. FDR TDR

ISIC_0000257 Lee 0.311 0.689 ISIC_0010226 Lee 0.628 0.372
Xie 0.987 0.013 Xie 0.992 0.008

HR-SSC 0.211 0.789 HR-SSC 0.439 0.561

ISIC_0000410 Lee 0.299 0.701 ISIC_0010584 Lee 0.618 0.382
Xie 0.989 0.011 Xie 0.992 0.008

HR-SSC 0.243 0.757 HR-SSC 0.427 0.573

ISIC_0000503 Lee 0.281 0.719 ISIC_0011323 Lee 0.608 0.392
Xie 0.991 0.009 Xie 0.992 0.008

HR-SSC 0.276 0.724 HR-SSC 0.416 0.584

ISIC_0006982 Lee 0.654 0.346
Xie 0.992 0.008

HR-SSC 0.464 0.536
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Table 8. Average FDR and TDR on the HSim-data—best results are in bold.

<FDR> <TDR>

Lee 0.503 0.497
Xie 0.990 0.010

HR-SSC 0.360 0.640

4. Discussion and Conclusions

In this paper, we propose the method HR-SSC based on the combined use of saliency,
shape, and color. Initially, the computation burden of the hair removal process is low-
ered optionally by reducing the size of the image. Then, pseudo-hair regions and bor-
der/corner components are determined and employed in the successive process of hair
mask detection. Successively, the image is restored by an inpainting process. A further
contribution of this paper includes the proposal of a method for qualitative and quantita-
tive evaluation of an HR method, and the availability of appropriate datasets to be used
for testing and comparing by others. According to the proposed evaluation method, we
perform a detailed quantitative and qualitative analysis of the experimental results on
these datasets. Specifically, we qualitatively evaluate the performance of the proposed
method and six state-of-the-art methods. We quantitatively evaluate the performance of
HR methods under examination using a hair simulation technique applied on available
dermoscopic image datasets, nine commonly adopted quality measures, area criteria, and
FDR/TDR indicators.

Based on the experimental results and the performance evaluation, HR-SSC detects
and removes the hair from the dermoscopic image by preserving the image features for
its subsequent image segmentation process. Moreover, HR-SSC has a competitive and
satisfactory performance concerning other considered methods as the probability of missing
hair regions and/or detecting false hair regions is low. This is visually evident from the
evaluation carried out, but it is to a lesser extent if we restrict the analysis to NH13-data.
Indeed, as also reported in [17], the quantitative results on H13GAN-data and H13Sim-data
(see Tables 1 and 2) indicate that the method Xie statistically outperforms the other methods
under consideration, including HR-SSC. However, this experimental evidence does not
match the qualitative/quantitative results obtained on the larger dataset HSim-data and on
its sample, which, on the contrary, indicate a better performance of the proposed method.
This trend is validated also by the qualitative evaluation based on area and TDR/FDR as
reported respectively in Sections 3.3.2 and 3.3.3.

In summary, according to the performance evaluation, HR-SSC achieves good qualita-
tive and quantitative results with an adequate balance. Moreover, it detects hair regions
rapidly by processes with limited complexity. The results have also demonstrated the
effectiveness and the utility of the employment of saliency, shape, and color information for
hair removal problems. Finally, the implementation does not require any extensive learning
based on a high number of parameters and labeled training images, and its execution time
is quite fast.

In future investigations, there is room to extend the comparative studies with other ex-
isting methods and to improve this work by applying more efficient and efficacy inpainting
methods to increase the performance quality.
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