



# Article Hair Removal Combining Saliency, Shape and Color

Giuliana Ramella 🕩

National Research Council (CNR), Institute for the Applications of Calculus, 80131 Naples, Italy; giuliana.ramella@cnr.it

Featured Application: Hair removal is a preliminary and often necessary step in the automatic processing of dermoscopic images since hair can negatively affect or compromise the distinction of a lesion region from the normal surrounding healthy skin. A featured application is skin lesion segmentation.

**Abstract:** In a computer-aided system for skin cancer diagnosis, hair removal is one of the main challenges to face before applying a process of automatic skin lesion segmentation and classification. In this paper, we propose a straightforward method to detect and remove hair from dermoscopic images. Preliminarily, the regions to consider as candidate hair regions and the border/corner components located on the image frame are automatically detected. Then, the hair regions are determined using information regarding the saliency, shape and image colors. Finally, the detected hair regions are restored by a simple inpainting method. The method is evaluated on a publicly available dataset, comprising 340 images in total, extracted from two commonly used public databases, and on an available specific dataset including 13 images already used by other authors for evaluation and comparison purposes. We propose also a method for qualitative and quantitative evaluation of a hair removal method. The results of the evaluation are promising as the detection of the hair regions is accurate, and the performance results are satisfactory in comparison to other existing hair removal methods.

**Keywords:** dermoscopy; dermoscopic image; skin lesion; lesion segmentation; pre-processing; artifact removal; hair removal; shape; saliency; color space

## 1. Introduction

In almost every specialist area of medicine, including dermatology, image analysis is transforming the diagnostic methods. In particular, computer-aided diagnosis systems for dermoscopic images have proven to be useful tools to improve significantly the common dermoscopic diagnostic practice, which is usually characterized by limited accuracy and is mainly based on visual inspection. Indeed, to differentiate melanoma from other pigmented skin lesions, these systems display morphological features not easily perceptible by the naked eye and support the assessment process of the human expert [1,2]. Typically, a computer-aided system is structured in four main consecutive steps: preprocessing, segmentation, feature extraction, and classification, each playing a key role in enabling correct diagnosis [3]. During the preprocessing, the dermoscopic image is subjected to noise removal, image enhancement, color quantization, and artifacts removal processes [4,5]. Noise removal and image enhancement techniques are employed to minimize the effects due to different illumination conditions and poor resolution of the acquisition process [6]. Color quantization [7-10] is a technique of reducing the total number of unique colors in the image often used as a preprocessing step for many applications that are carried out more efficiently on a numerically smaller color set. For example, color quantization is employed effectively as a preliminary computation phase for skin lesion segmentation [11–15]. The removal methods of artifacts, such as bubbles, hair, shadows and reflections, aims to eliminate their negative effect and disturbance on the diagnostic operations of the area of interest (i.e., the skin lesion) [16]. Particularly, if the area of the skin lesion is partially



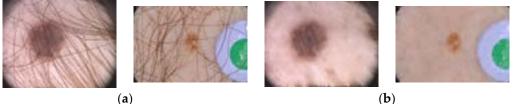
Citation: Ramella, G. Hair Removal Combining Saliency, Shape and Color. *Appl. Sci.* 2021, 11, 447. https:// doi.org/10.3390/app11010447

Received: 30 November 2020 Accepted: 29 December 2020 Published: 5 January 2021

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).


obtained in the three previous steps, are related mainly to how the initial candidate hair components are considered (see Section 2 for more details). In the last step, hair removal is performed using a standard inpainting method.

The method is evaluated and compared extensively with other existing methods Appl. Sci. 2021, 11, since a detailed quantitative and qualitative analysis on two publicly available databases PH<sup>2</sup> [28] and ISIC2016 [29], usually used in dermoscopic image processing, is performed

The experimental results confirm (a) the effectiveness and the utility of the employ-

ment of saliency, shape, and color information for HR; (b) that HR-SSC achieves good quantitative results with an the date of the study of the formance conceining bit presenting one major challenges for astomatic image analysis method such as ple and rather fast stince it does not require a large amount of computational (HR) methods and skin lesion on a high number of parameters and of large diversity correlated. Usually, SLS methods can determine the

Additional contributions of the left diaming images: Additional contributions of the left diaming images: can include explicitly or implicitly hair removal operations. However, it is appropriate to to be used for testing and comparing each new method; (b) the proposal of a method for qualitative and quantitative evaluation of an FIR method. The paper is organized as follows: In Section 2, we describe the method ffrequencies the efficiency tailing its main steps; in Section 3, we provide a quantitative and qualitative evaluations, especially when there is a massive presence of hair (see Figure 1); (c) for tailing its main steps; also highlighting the provide a quantitative evaluation of experimental results, also highlighting the pros and cons; finally, discussion and conclu-to the expert.



(a)



Figure 1. (a) iguna bloo ) Examples (1) 11000 gen (1) 11000 002875) Gillo (2873) sivily represented in the second of the second se the application of patients and the opplication of patients the patients of the patient of the p

2. The Proposed Methaddress the hair issue, several hair removal methods have been proposed. HR The proposed hoch usually remains of two steps: (a) the detection of oscillating hair and generation visual saliency, of the hair binney mask (b) the removal of the detected hair elever ally hair detection is accomplished through object detection methods enucleating thin items, while hair removal is obtained through standard inpainting methods. As reported in [17], at least six main hair removal methods are widely used in the literature [18–23].

The method proposed in [18] by Lee et al., also known as Dullrazor, consists of four steps. The hair regions are initially detected through the morphological closing operator on each RGB color channel separately and with three structuring elements having different directions (step 1). To generate the binary mask, a thresholding process is applied to the absolute difference between the original color channel and the image generated by the closing (step 2). The mask pixels undergo a bilinear interpolation between two nearby not-mask pixels (step 3). Finally, to the resulting image, an adaptive median filter is applied (step 4).

The method [19] by Xie et al. also consists of four steps. The hair area is improved using a morphological closing top-hat operator (step 1). The binary image is obtained through a statistical thresholding process (step 2). To extract the hairs, the elongate feature property of connected regions is employed (step 3). To restore the information occluded by the hair, they apply the image inpainting method based on partial differential equation (PDE), which realizes the diffusion of information through the difference between pixels (step 4).

In the method proposed in [20] by Abbas et al., there are three computational steps. In the CIELab uniform color space, the hairs are detected by a derivative of Gaussian (DoG) (step 1). Morphological techniques to link broken hair segments, eliminate small and circular objects, and fill the gaps between lines are applied (step 2). The adopted inpainting method is based on coherence transport (step 3).

The method in [21] by Huang et al. comprises three steps. To the grayscale version of the image, a multiscale curvilinear matched filter is applied (step 1). To detect the hair regions, hysteresis thresholding is employed (step 2). Then, region growing and the linear discriminant analysis (LDA) technique, based on the pixel color information in the CIELab color space, are applied to recover the missing information left by the removed hair (step 3).

The method [22] by Toossi et al. includes four steps. The image is converted to a grayscale image via a principal component analysis (PCA), and the noise is filtered with a Wiener filter (step 1). Hair is detected by using an adaptive canny edge detector (step 2). A refining process with morphological operators to eliminate unwanted objects and obtain a smooth hair mask is then applied (step 3). The inpainting process is carried out by a multi-resolution transport inpainting method based on wavelets (step 4).

As with [20,21], in [23] by Bibiloni et al., hair removal is made up of three steps. The contrast of the luminance of the image is improved with the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm (step 1). The hair is detected using soft color morphology operators in the CIELab color space (step 2). The inpainting phase is based on the arithmetic mean of the modified opening and closing morphological transformations to recover the missing pixels (step 3). The common element of these HR methods and most of the other existing methods, e.g., [24,25], is the employment of morphological operations and, to a minor extent, of information derived from color. On the other hand, although deep learning has been used successfully to solve many difficult computer vision problems, inexplicably, to the best of our knowledge, only two very recent HR methods relying on neural network architecture exist [26,27].

Despite the sufficiently wide variety of the existing papers, the problem of hair removal results to be not solved satisfactorily yet. The main critical points are the failure to identify hair accurately and the undesirable effects such as unremoved thin hair and color alteration.

We address the HR problem using information regarding the saliency, shape, and color of the image objects. These are three elements that have proved to be extremely useful because each of them allows capturing a fundamental aspect of the problem at hand. Indeed, besides the shape aspects, detectable by mathematical morphology properties, it is also appropriate to perform the hair detection based on information related to the significant image elements and detectable by their saliency and color properties. In the following, we refer to the proposed method as saliency shape color for hair removal, shortly indicated as HR-SSC or simply SSC.

As described in Section 2, HR-SSC consists of five steps. The core of the method is step 4, named hair object detection, in which the hair regions are determined. The innovative elements of this step, whose success also depends on the correctness of the results obtained in the three previous steps, are related mainly to how the initial candidate hair components are considered (see Section 2 for more details). In the last step, hair removal is performed using a standard inpainting method.

The method is evaluated and compared extensively with other existing methods since a detailed quantitative and qualitative analysis on two publicly available databases PH<sup>2</sup> [28] and ISIC2016 [29], usually used in dermoscopic image processing, is performed.

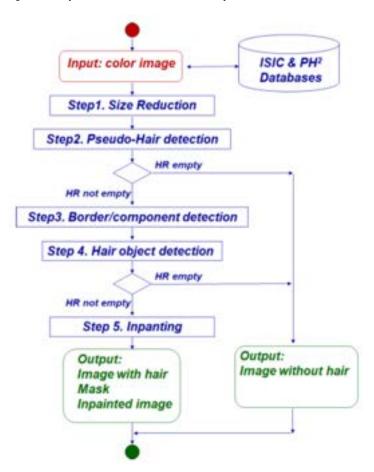
The experimental results confirm (a) the effectiveness and the utility of the employment of saliency, shape, and color information for HR; (b) that HR-SSC achieves good quantitative results with an adequate balance and has a competitive and satisfactory performance concerning other existing HR methods; (c) that HR-SSC implementation is simple and rather fast since it does not require a large amount of computational power based on a high number of parameters and of labeled training images.

Additional contributions of this work are (a) the availability of appropriate datasets to be used for testing and comparing each new method; (b) the proposal of a method for qualitative and quantitative evaluation of an HR method.

The paper is organized as follows: in Section 2, we describe the method HR-SSC, detailing its main steps; in Section 3, we provide a quantitative and qualitative evaluation of experimental results, also highlighting the pros and cons; finally, discussion and conclusions are drawn in Section 4.

## 2. The Proposed Method

The proposed method, as mentioned above, is based on three elements: the notion of visual saliency, shape, and color. Indeed, since the saliency of an item is the element

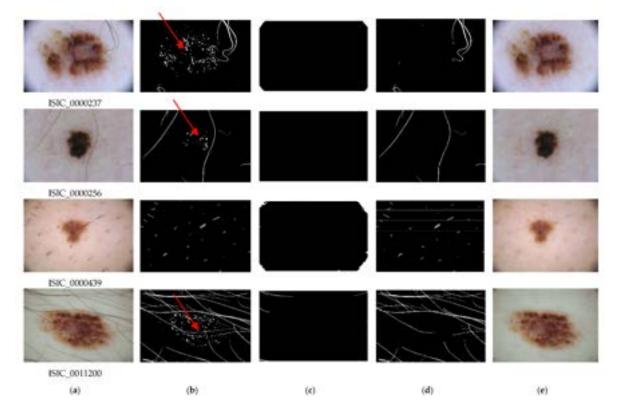

Appl. Sci. 2021, 11, 447

value. The connected components of SM including pixels of the image frame are considered as border components and stored in the bidimensional array, named  $B\mathcal{G}_{of 28}$ 

Moreover, the image corner components, usually much darker than the image center, are detected following the same procedure proposed in [34]. Specifically, the representa-

tion of the input image in the HSV color space is examined: the channel V undergoes a for it stands out from its neighbors [30], its use allows to enucleate the most relevant thresholding process by a predefined threshold value  $\delta$ . Then, the components of the subsets and to focus on the hair regions especially. Moreover, since hair regions have a thresholded V covering most of the frame or the corner area of the image are considered well-defined structure, the shape-oriented operations of the mathematical morphology, that simplify image data, preserving their essential shape characteristics and ethimating interevancies" [31], lend themselves well to detect the hair object. On the other hand, **Step4** of the correction of the frame or result essential to distinguish between no-hair stored in the bidimensional array, the no-hair regions are detected and hair regions when information result essential to distinguish between no-hair and hair regions when information result of safetier of the safetier of the safetier of the safetier of the ambifuence of the corner area of the safetier of the safetier of the safetier of the safetier of the stored in the bidimensional array of the safetier of the safetier of the safetier of the ambifuence of the corner area of the safetier of the s

Engine in the Condists of included in SPS the resultable in the analytic the supervised of the supervi




# Figure 2. Withwith the PIRE proposed method (HR-SSC).

- **Step 1. Size reduction**—The first step is devoted to limit the computation burden of the successive steps by reducing the size of the input image with a scale factor *s* equal to the ratio of a fixed value, say *Maxdim*, and the number of columns. To perform this, we resort to the classical and most common bicubic downsampling, implemented by the Matlab command *imresize* with bicubic option and scale factor *s*. The size reduction step is an optional but highly recommended operation since it significantly limits the computation time.
- Step 2. Pseudo-Hair detection—This step is based on top-hat transformation, i.e., a morphological operator capable of extracting small elements and details from

a grayscale image, commonly used for feature extraction, background equalization, and other enhancement operations. There are two types of transformation: the white top-hat transformation, defined as the difference between the original image and its aperture by a structuring element, and the black top-hat transformation (or bottom-hat transformation), defined dually as the difference between the closure by a structuring element and the original image [32,33]. Following [19,34], to obtain the binarized version HR initially containing the pseudo-hair components, we apply a bottom-hat filter in the red band R of the RGB image and then the Otsu threshold method [35] by the Matlab command *imbinarize*. Then, if HR is not empty, the actual hair regions are determined during the successive steps 3–5.

Indeed, the components currently detected in HR (i.e., the so-called pseudo-hair components) can correspond to hair regions but can also correspond to portions of other types of artifacts survived this preliminary treatment, such as marker ink signs, dark spots belonging to the lesion, marker colored disks [34], and regions wrongly identified. These regions not corresponding to hair regions are called no-hair regions in the following, and if they exist, they are detected and eliminated in the successive steps. In Figure 3b some examples of pseudo-hair are shown, where the no-hair regions are approximatively indicated by a red arrow.



**Figure 3.** Some examples of results obtained in the main steps of HR-SSC: (**a**) input image; (**b**) detected pseudo-hair components; (**c**) border/corner components; (**d**) detected hair; (**e**) resulting image.

**Step 3. Border and corner component detection**—The border components are detected based on their saliency and proximity to the image frame, by applying the following process, named called border detection, already used in [14,15]. The saliency map (SM) with well-defined boundaries of salient objects is computed by the method proposed in [36]. Successively, SM is enhanced by increasing the contrast in the following way: the values of the input intensity image are mapped to new values obtained by saturating the bottom 1% and the top 1% of all pixel values, by the Matlab command *imadjust*. Then, the saliency map SM is binarized by as-

signing to the foreground all pixels with a saliency value greater than the average saliency value. The connected components of SM including pixels of the image frame are considered as border components and stored in the bidimensional array, named BC.

Moreover, the image corner components, usually much darker than the image center, are detected following the same procedure proposed in [34]. Specifically, the representation of the input image in the HSV color space is examined; the channel V undergoes a thresholding process by a predefined threshold value  $\delta$ . Then, the components of the thresholded V covering most of the frame or the corner area of the image are considered as image corner components and are stored in the bidimensional array, named CC (see Figure 3c).

Step 4. Hair object detection—Preliminarily, the no-hair regions are detected and stored in the bidimensional array, named NR, as follows. NR is initially computed as the product S.\*V and binarized by the Otsu method. Then, the salient pixels not belonging to HR and BC are included in NR, the pseudo-hair regions currently detected in HR are removed from NR, and small holes in NR are filled. Successively, if NR has a significant extension (area), the detected no-hair regions are removed from HR. If the current HR is not empty, border components are suitably considered and possibly removed from HR taking also into account the gray version of the input image Ig and a fixed gray value, say  $\Delta$ , indicating a minimum reference gray value for the hair component. Finally, corner components and eventual remaining components corresponding to colored disks are eliminated from HR.

At the end of this step, the regions in HR are located in correspondence with the detected hair objects and form a binary hair-mask on which to perform the next reconstruction step. See the Matlab pseudocode given below for more details. In Figure 3d, examples of detected hair are given.

#### Step 4. Hair object detection

% No-hair regions detection NR = S. \*V; % Initial no-hair regions construction and storing in NR NR = imbinarize(NR, graythresh (NR)) % Otsu binarization NR(SM > 0 & HR == 0 & BC == 0) = 1; % insertion in NR of salient pixel not belonging to HR and BC NR (HR > 0) = 0; % pseudo-hair elimination from NR NR = imfill(NR,'holes'); % holes filling % end of no-hair regions detection if (area(NR) is significant) HR(NR > 0) = 0; % no-hair regions removal from HRHR = imfill(HR,'holes'); % holes filling if (HR is not empty) if (BC is not empty) % border and corner components management NB = BC; % copy of BCNB(NR > 0 & Ig >  $\Delta$ ) =0; % generation of NB without no-hair regions and too dark regions  $HR(NB \ge 0 \& SM \ge 0) \%$  elimination of salient pixels of NB from HR CR = (BC > 0 & NB > 0) % common regions to BC and NB HR(CR > 0) = 0 % elimination from HR of common regions of BC and NB CR(CR > 0 & CC > 0) = 0; % corner regions elimination from CR BN = border\_detection (CR); % border components detection in CR (as done in step 3) if (BN is not empty)  $HR(BN > 0 \& Ig > \Delta) = 0$ ; % elimination of clear border regions of CR from HR end end  $HR(NR > 0 \& HR > 0 | (BC > 0 \& Ig > \Delta)) = 0$ ; % colored disk and clear border component removal end end

**Step 5. Inpainting and rescaling**—If HR is empty, the image is considered hairless; otherwise, the reconstruction process is applied. After a preliminary enlargement of HR by n steps of dilation, the inpainting is carried out by calling the Matlab function *regionfill* on each image channel separately, by using HR as hair-mask and then joining the resulting channels. If the size reduction step has been performed, a scaling is newly applied using the Matlab function *imresize* with the bicubic option. In Figure 3e, examples of the resulting image are given.

Different parameter settings to achieve a trade-off between quality and performance have been explored. The better parameter values resulting from this analysis are *Maxdim* = 500,  $\delta = 0.4$ ,  $\Delta = 100$ , n = 3. The experimental results shown in this paper are obtained by this setting. The method is implemented in Matlab using Intel<sup>®</sup> core <sup>TM</sup> i7—6600U CPU 2.60 GHz with 8 GB installed RAM and a 64-bit Operating System Windows 10.

## 3. Experimental Results

This section describes the image datasets and the evaluation of the experimental results in qualitative and quantitative terms. In fact, the evaluation of the performance of the proposed method and the comparison with other methods are very hard tasks due to the lack of publicly available source code of the existing methods, the limited literature, and the different evaluation methodology often employing not well-specified datasets and different quality measures. To overcome these critical issues, (a) we select some adequate datasets (see Section 3.1); (b) we perform qualitative evaluations/comparisons from different points of view (see Section 3.2); (c) following [17,37], we perform quantitative evaluations and comparisons by generating synthetic hair on skin lesion images originally hair-free in a controlled way (see Section 3.3). Note that the controlled hair introduction modality offers the advantage that the added hair regions are known and constituted a reference image, i.e., a ground truth. Accordingly, since the quantitative evaluation of the performance of an HR method requires a reference image, this modality is the unique way to evaluate the results by comparing the added hair regions in the reference image (ground truth) with the detected hair regions in the binary mask.

#### 3.1. Datasets

We test our method by considering images available on two publicly available databases of dermoscopic images: PH<sup>2</sup> [28] and ISIC2016 [29]. PH<sup>2</sup> is a dermoscopic image database acquired at the Dermatology Service of Hospital Pedro Hispano to support comparative studies on segmentation/classification methods. This database includes clinical/histological diagnosis, medical annotation, and the evaluation of many dermoscopic criteria. It provides 200 dermoscopic RGB images and the corresponding ground truth, including 80 atypical nevi, 80 common nevi, and 40 melanomas. All the images are 8-bit RGB and have resolution  $760 \times 560$  pixels. ISIC2016 is one of the largest databases of dermoscopic images of skin lesions with quality control held by the International Symposium on Biomedical Imaging (ISBI) to improve melanoma diagnosis. It includes images representative of both benign and malignant skin lesions. For each image, the ground truth is also available. ISIC2016 consists of 397 (75 melanomas) and 900 (173 melanomas) annotated images as testing and training data, respectively. The images are 8-bit RGB and have a size ranging from  $542 \times 718$  to  $2848 \times 4288$ . PH<sup>2</sup> and ISIC2016 databases contain numerous images with complex backgrounds and complicated skin conditions with the presence of hair and other artifacts/aberrations.

Since in PH<sup>2</sup> and ISIC2016 hairless and hairy images are not distinguished, it is not possible to evaluate the performance of an HR method on each total dataset, and it is necessary to separate them preliminarily. Hence, from PH<sup>2</sup> and ISIC2016 we extract two datasets, denoted as *H*-data and *NH*-data, each constituted by 170 images, which respectively contain images with evident hair and images without hair. These images are selected randomly and subdivided into the two datasets according to a human visual

inspection. These datasets, totally comprising 340 images, are available at the Github link indicated in the section Data Availability Statement.

To accurately and comprehensively validate the goodness of detecting hair and, at the same time, to make a deeper comparison with the published results of the existing methods [18–23], which in the following we indicate with the name of the first author (i.e., Lee, Xie, Huang, Abbas, Toossi, Bibiloni), we also consider a specific dataset available in [37]. This dataset, here call *NH13-data* and shown in Figure 4, is constituted by 13 images without hair. We consider also the hairy images obtained starting from *NH13-data* by the GAN method [38] and HairSim method [39], that starting from a hair-free dermoscopic image, provide a hair occluded image and the corresponding hinary hair mack. There

Appl. Sci. 2021, 11, x FOR PEER REVIIMAGE, provide a hair-occluded image and the corresponding binary hair-mask. These are available in [37], are denoted as H13GAN-data and H13Sim-data, and are sho in Figures 5 and 6, respectively. IMD010 IMD017 IMD018 IMD030 IMD006 **IMD019** IMD020 IMD050 IMD061 IMD63 IMD033 IMD044 IMD75 Figure 4: Image dataset NFT3-data proposed in [37]: IMD010 IMD017 **IMD018** IMD030 IMD019 IMD020 IMD006 IMD033 IMD050 IMD63 IMD75 IMD044 IMD061 Figure 5: Image dataset H13CAN-data generated by applying the CAN method (38) to NH13-data and published in (37): IMD010 IMD017 **IMD018** IMD006 **IMD019 IMD020** IMD030

Figure 8. Image dataset H13Sim-data generated by applying the HairSim method 1391 to NH13-data and published in 1631.

IMD061



IMD63

ISIC\_0000040

IMD033



ISIC\_000096 1

**IMD044** 

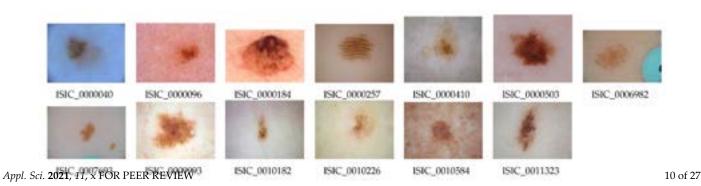
ISIC\_0000184

IMD050

ISIC\_0000257

ISIC 0000410

```
ISIC_0000503
```


IMD75

ISIC\_0006982



| 5/X    | 0      |        | 1105   | 1      | 10     | e            |
|--------|--------|--------|--------|--------|--------|--------------|
| IMD006 | IMD010 | IMD017 | IMD018 | IMD019 | IMD020 | IMD030 y     |
| -      | APP?   | A A    |        |        |        | t,<br>e<br>n |
| IMD033 | IMD044 | IMD050 | IMD061 | IMD63  | IMD75  | e<br>b       |

Figure 6. Image dataset H13 bink tata yon out the passibility of rangarisen by 9596 with 95 and published in [37].



# Figure 7: Image dataset sNH-data selected randomly from NH-data:

|              | 2.                | <b>100</b>         | 2)               | (Ja              | ×,             | 2)5.         |
|--------------|-------------------|--------------------|------------------|------------------|----------------|--------------|
| ISIC_0000040 | ISIC_0000096      | ISIC_0000184       | ISIC_0000257     | ISIC_0000410     | ISIC_0000503   | ISIC_0006982 |
| the last     | A Contraction     | (A)                | et               | 2432             | The            | Hair Sim     |
| ISIC_0007693 | ISIC_0009993      | ISIC_0010182       | ISIC_0010226     | ISIC_0010584     | ISIC_0011323   |              |
|              |                   | J.                 | - Al             |                  | the states     |              |
| ISIC_0000040 | ISIC_0000096      | ISIC_0000184       | ISIC_0000257     | ISIC_0000410     | ISIC_0000503   | ISIC_0006982 |
|              | J.                |                    | Le J             | ? ()             | f-<br>f-       | Hair Sim     |
| ISIC_0007693 | ISIC_0009993      | ISIC_0010182       | ISIC_0010226     | ISIC_0010584     | ISIC_0011323   |              |
| Figure 8. Im | ngeedatasetisHSin | ndutan with the ha | ir mask produced | how applying the | Haiisim method | to sNH-data. |

Figure 8. Image datasets Historiata with the hair mask produced by applying the HairSim method to sNH-data.

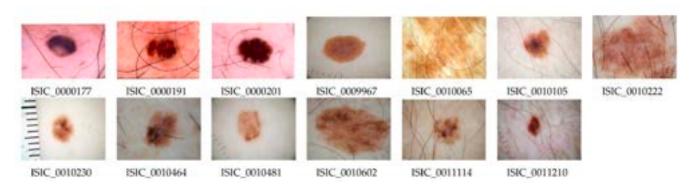
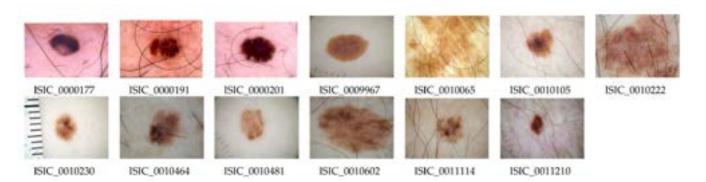




Figure 9. Image dataset *sH-data* selected randomly from *H-data*.

In regard to the assessment of point (a), we find that the classification error is within 25%, 65%, 10%, respectively, for Lee, Xie, and HR-SSC. As concerns the assessment of



Figure 8. Image dataset *sHSim-data* with the hair mask produced by applying the HairSim method to *sNH-data*.



# **Figure 9.** Image dataset *sH-data* selected randomly from *H-data*. Figure 9. Image dataset *sH-data* selected randomly from *H-data*.

<sup>3.2</sup>In Attglittite the use the second of point (a), we find that the classification error is within 25%, 65%, ptotorne specification of point (a), we find that the classification error is within 25%, 65%, ptotorne specification of point (a), we find that the classification error is within 25%, 65%, ptotorne specification of point (a), we find that the classification error is within 25%, 65%, ptotorne specification of point (a), we find that the classification error is within 25%, 65%, ptotorne specification of point (a), we find that the classification error is within 25%, 65%, ptotorne specification of point (a), we find that the classification error is within 25%, 65%, ptotorne specification error be an error of the provided the provided of the provided the provided the provided of th

In swamweytein whether to the essentiation from the original examination of ep the resulting integer of gradient to the association of the resulting integer of gradient of the sample and the second and

25%, 65%, 10%, respectively, for Lee, Xie, and HR-SSC. As concerns the assessment of point (b), the visual inspection of the results shows that the resulting perceptual quality is in accordance with the percentages obtained for point (a). To verify the effectiveness of the hair removal methods, a recent SLS method [14,15] is applied. The segmentation results show that hair removal applied before the segmentation process involves an improvement of about 70%, 20%, 90% for Lee, Xie, and HR-SSC, respectively. The results of the visual comparison on the various datasets of point (c) are given in Figures 10 and 11 on *H13GAN-data* and *H13Sim-data*, respectively. To give major visual evidence and to facilitate the comparison, in Figures 12 and 13, the results on *sHSim-data* and the corresponding final mask are respectively shown. The same is true for Figures 14 and 15, where results on *H-data* with the corresponding final mask are shown.

In summary, in relation to the qualitative evaluation, from the visual examination of the resulting images of each method available in [37] and HR-SSC on *H13GAN-data* and *H13Sim-data* (see Figures 10 and 11), it appears that evident hair regions are not detected by Abbas and Toossi. Limiting the comparison only to the three methods of Lee, Xie, and HR-SSC, evident hair regions are not detected by Xie on the *HSim-data* and, to a lesser extent, on *H-data*. See the results on the sample *sHsim-data* in Figure 12 and on the sample *sH-data* in Figure 14. Note that HR-SSC is able also to remove the ruler marks that can be mistaken as hair (see Figures 14 and 15).

# Appl. Sci. 2021, 11, 447

*sH-data* in Figure 14. Note that HR-SSC is able also to remove the ruler marks that the mistaken as hair (see Figures 14 and 15).

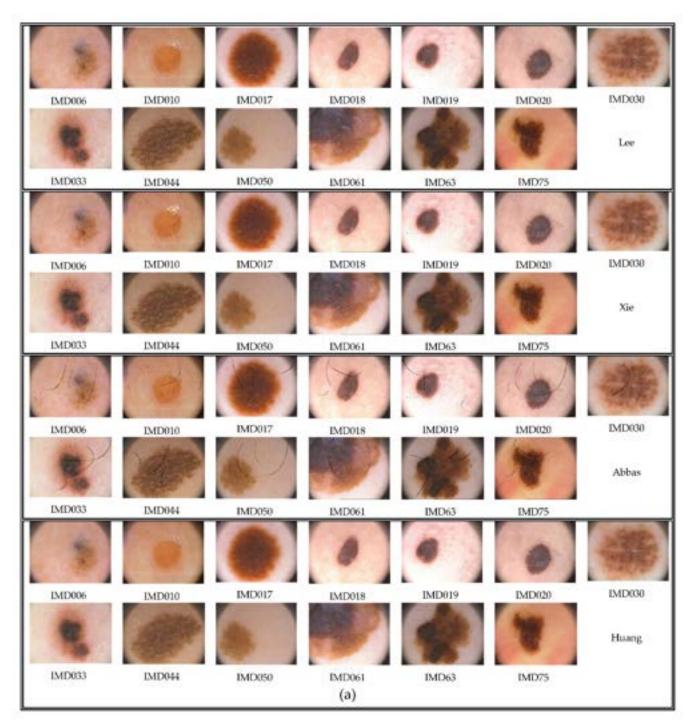



Figure 10. Cont.

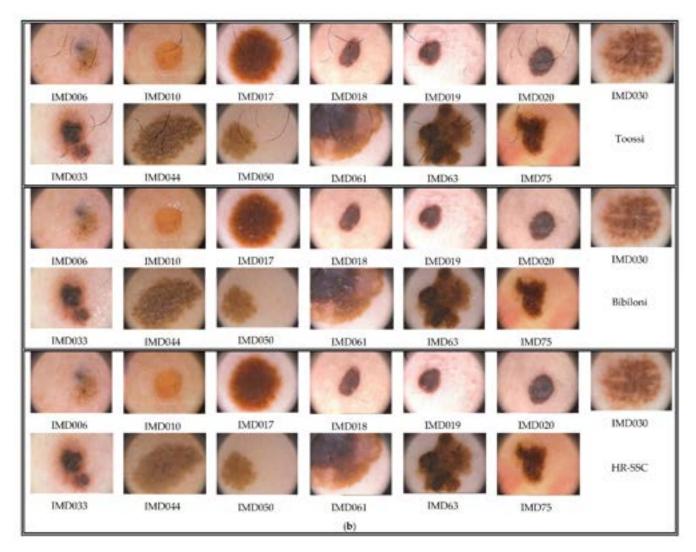
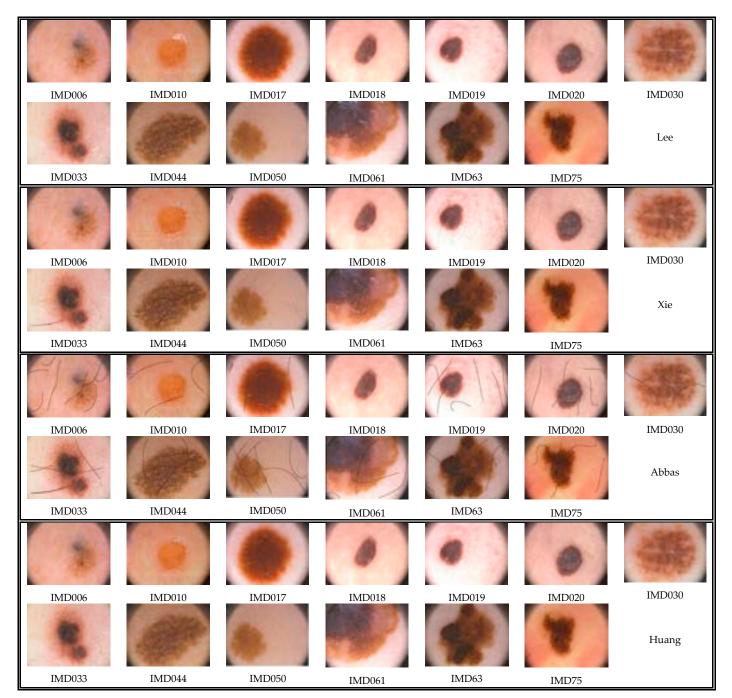



Figure 10. (a) Results of methods Lee, Xie, Abbas, Huang available in [37], rows 1–4, on H13GAN-data. (b) Results of methods Toossi, Figure 10. (a) Results of methods Lee, Xie, Abbas, Huang available in [37], rows 1–4, on H13GAN-data. (b) Results of Biblioni available in [37], rows 1–2, and results of HR-SSC, row 3, on H13GAN-data.
 Biblioni available in [37], rows 1–2, and results of HR-SSC, row 3, on H13GAN-data.

# 3.3: Quantitative Evaluation

We quantitatively evaluate the resulting images on the hairless image datasets to which hair has been added (see Section 3:1) by considering the original image as ground truth and expressing a quantitative evaluation in terms of the following:

- nine most popular quality measures: MSE, PSNR, MSE3, PSNR3, SSIM, MSSIM, VSNR, KIEPITOU AONOWSWR (40;41]; area of the detected hair regions;
- true/false discovery rate (see the definition in Section 3.3.3). true/false discovery rate (see the definition in Section 3.3.3).


- "True/false dixXX+14 the Set the definition in Set 1 and 3.3.3. Although the above quality measures are related to human perception to a small extent, Although the above quality measures are related to human perception to a small extent, Although the above quality measures are related to human perception to a small extent, and the problem to define adequate metrics for the performance evaluation of color image fent, and the problem to define adequate metrics for the performance evaluation of color inage tent, and the problem to define adequate metrics for the performance evaluation of color processing methods remains an open problem widely studied [41–45], most often, measures are extensively employed to evaluate the performance of many types of analysis methods, including the HK methods [17,37]. In turn, we see these quality measure image analysis methods, including the HK methods [17,37]. In turn, we see these quality values as valid indicators since they contribute to delineate the trend of the performance of measure values as valid indicators since they contribute to delineate the trend of the performance of or its effectiveness. To overcome this gap, since the determination of the effective hair area and the true/false rate are the major critical points for the determination of the and the true false rate are the major critical points for the determination of HK effective hair area and the true/false rate are the major frite quantitative evaluation of HK effective hair area and the true/false rate are the performance evaluation by measuring the hair area and true/false and the grup false rate are the major critical points for the out of HK effective hair area and the true/false rate are the major critical points for the quantitative evaluation of HR methods, we extend the performance evaluation by measuring the hair area and thrue/false evaluation of HR methods. We extend the performance evaluation by measuring the hair area and thrue/false evaluation of HR methods of 3.3.2 and 3.3.5). As mentioned above

consider the images in which, in a controlled way, the hair regions are introduced on input hair-free images by using suitable hair insertion methods [38,39] that provide a hair-occluded image and the corresponding binary hair mask. The resulting binary mask is

Appl. Sci. 2021, 11, x FOR PEER REVIEWsed as ground truth to quantitatively evaluate the performance by computing the detected 13 of 27

area and the false discovery rate/true discovery rate (FDR/TDR). Note that we use the hairy images used in [17] and those available at [37]. Then,

we extend the controlled hair simulation on a larger dataset, and to allow comparison area and true/false rate (see respective Sections 3.3 2 and 3.3). As mentioned above, folwith other HR methods on the same image dataset, we made it available at the already lowing other Grinub fink. Inteed, currently, the direct comparison with the results shown are introducted papinnut hair free images the direct comparison with the results shown introducted papinnut hair free images the direct comparison with the results of the providens bairied ducted, image dingly the comparison ding heir argument of the first free images and the direct in a control with the results shown providens paintied ducted, image dingly the comparison ding heir argument of the methods (38, 39] that providens paintied ducted, image dingly the comparison ding heir argument of the paint of the source of the same dingly the the section of the source of the same dingly the the section of the same dingly the section of the same dingly the section of the section of the same dingly the section of the section of



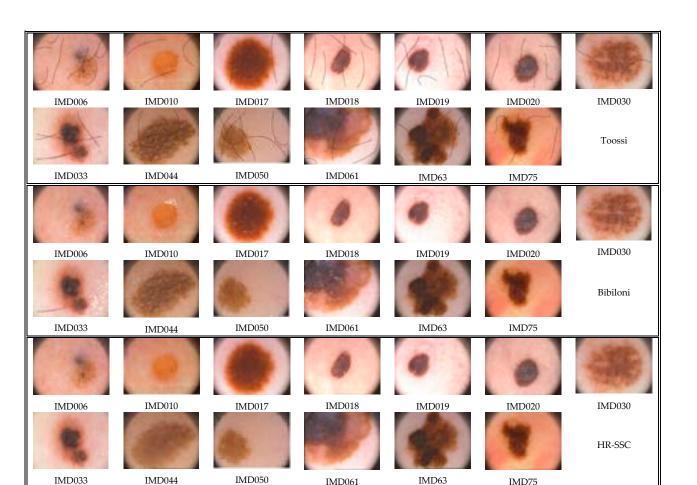




Figure 11. (APRESENTS (a) Resulta of the thods Autors, Finally as Analog an aliapte in [37] 47 on 41735 nn-4413.5 (b) Arts (b) Brinkth of mother, Bibiloni available in [37], rows 1–2, and results of HR-SSC, row 3, on H13Sim-data.

Note that we use the hairy images used in [17] and those available at [37]. Then, we 3.3.1. Quantitative Evaluation Based on Quality Measures extend the controlled hair simulation on a larger dataset, and to allow comparison with The arrive the notes of the index of the index of the controlled hair simulation on a larger dataset, and to allow comparison with The arrive the notes of the index of the index

insertion of the hairs and increasing the cardinality of the set of reference data, we obtain a similar result. This quality evaluation is performed by limiting the considered methods to Lee, Xie, and HR-SSC. For the sake of brevity, in Table 3, we show the metric values only for *sHSim-data* by considering the corresponding resulting images (see Figure 12) and the *sNH\_data* (see Figure 7). In Table 4 we report the average quality measures referring to *H13GAN-data*, *H13Sim-data*, *sH13Sim-data*, and *HSim-data*. The quantitative metrics for the set *HSim-data* including 170 images are also available at the mentioned Github link since they require much editing space. SSC. For the sake of brevity, in Table 5, we show the resulting area values for *sHSim-data*. Moreover, we compare the average hair area  $<A_1 >$  introduced in *HSim-data* by the Hair-Sim method with the average hair area detected by each method (Table 6).

Appl. Sci. 2021, 11, 447

Since in our experiment  $<A_1 > = 42648$ , from Table 6, it can be observed that the average hair area computed by HR-SSC is the one that comes closest to  $<A_1 >$ , while the average hair area computed by Xie is by far the most distant. This evaluation trend in terms of area on *HSim-data* and *sHSim-data* confirms the trend indicated in Section 3.3.1.



# Higure 122 Results of methods Lee, Xie, and HR-SSC on sHSim-data.

Based on the quantitative analysis using the nine metrics, the trend of the various methods turns out to be completely different on *H13GAN-data* and *H13Sim-Data* in comparison with those on a set with greater cardinality *HSim-data* as well as on its sample *sHSim-data* of 13 images. This is highlighted in Figures 16 and 17, where the trends of each quality measure on the dataset containing 13 images belonging to different datasets but generated by the same HairSim method for the hair simulation, i.e., *H13Sim-data* and *sHSim-data*, are shown.

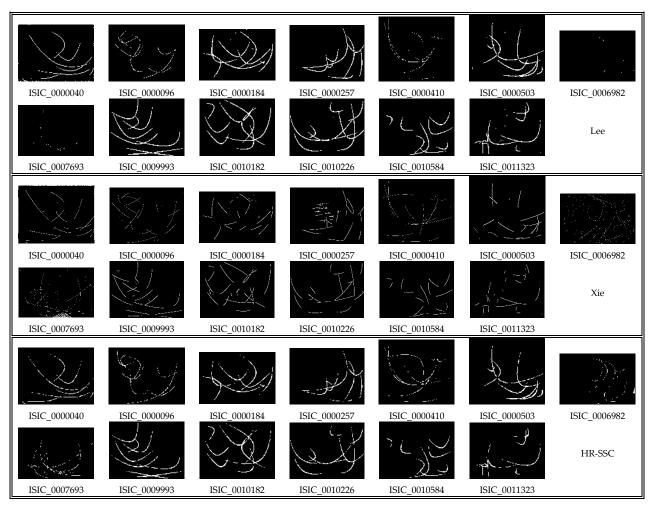



Figure 13: Resulting mask of HairSim method and the resulting mask of methods Lee, Xie, and HR-SSE on sHSim-data:

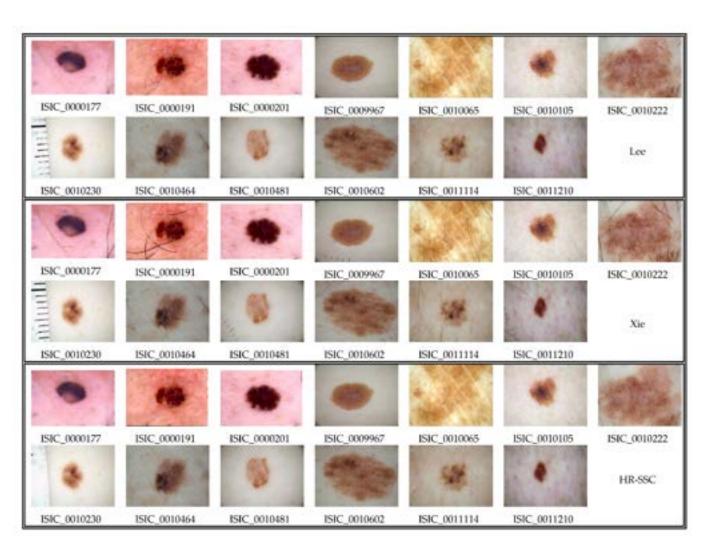



Figure 14. Results of methods Lee, Xie, and HR-SSC on sH-data.

3.3.3. Quantitative Evaluation in Terms of True/False Discovery Rate

We evaluate the quality of the resulting images also in terms of true discovery rate (TDR) and false discovery rate (FDR), defined as the following:

$$FDR = \frac{FP}{FP+TP}$$
  $TDR = 1 - FDR$ 

where FP and TP denote false positive and true positive assessments, respectively. For the sake of brevity, in Table 7, we show the resulting FDR and TDR values only for *sHSimdata*. Moreover, the average <FDR> and <TDR> values of each method for *HSimdata* are shown in Table 8. From the examination of Tables 7 and 8, a lower value of FDR and a higher value of TDR for HR-SSC, an intermediate value of FDR and TDR for Lee, and a higher value of FDR and a lower value of TDR for Xie can be observed. With respect to Lee, HR-SSC reports the percentage improvements of TDR and FDR equal to 35% and 27%, respectively, on *Hsimdata*, and equal to 33% and 27%, respectively, on *sHSimdata*. This evaluation trend in terms of FDR/TDR on *Hsimdata*, *sHSimdata* confirms the trend indicated in Section 3.3.1.

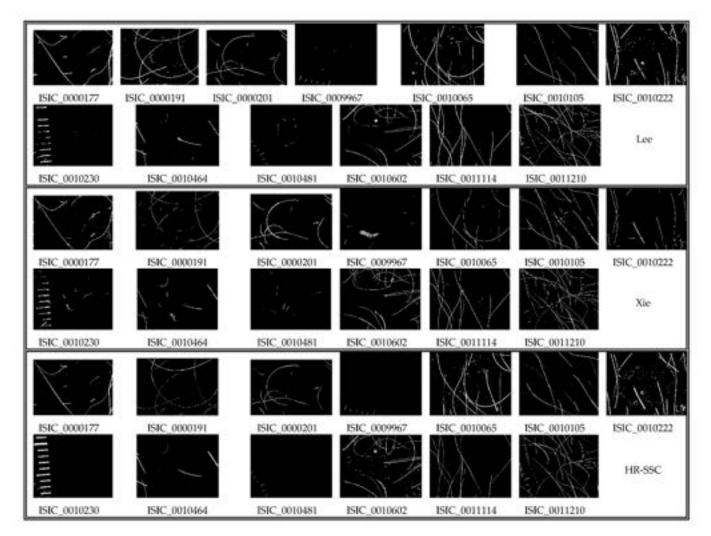



Figure 15. Resulting masks of methods Lee, Xie, and HR-SSC on sH-data.

| 13.626<br>12.610<br>57.555 |                                                                                                                          | 20.918                                                                                                                                                                                         | 34.926                                                                                                                                                                                                                                                                  | 0.888                                                 | 10                                                   | AV 1-4                                               |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | 37.124                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         | 0.000                                                 | 0.956                                                | 24.401                                               | 0.403                                                 | 0.650                                                 | 23.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 57 555                     |                                                                                                                          | 19.831                                                                                                                                                                                         | 35.157                                                                                                                                                                                                                                                                  | 0.891                                                 | 0.957                                                | 25.355                                               | 0.412                                                 | 0.653                                                 | 22.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 57.555                     | 30.530                                                                                                                   | 64.073                                                                                                                                                                                         | 30.064                                                                                                                                                                                                                                                                  | 0.856                                                 | 0.898                                                | 15.260                                               | 0.354                                                 | 0.608                                                 | 12.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| g 24.283                   | 34.278                                                                                                                   | 33.481                                                                                                                                                                                         | 32.883                                                                                                                                                                                                                                                                  | 0.860                                                 | 0.926                                                | 19.601                                               | 0.301                                                 | 0.534                                                 | 16.305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| i 55.748                   | 30.668                                                                                                                   | 62.440                                                                                                                                                                                         | 30.176                                                                                                                                                                                                                                                                  | 0.853                                                 | 0.897                                                | 15.370                                               | 0.342                                                 | 0.591                                                 | 12.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ni 19.653                  | 35.197                                                                                                                   | 28.070                                                                                                                                                                                         | 33.648                                                                                                                                                                                                                                                                  | 0.867                                                 | 0.943                                                | 21.588                                               | 0.328                                                 | 0.589                                                 | 19.411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C 19.669                   | 35.193                                                                                                                   | 27.078                                                                                                                                                                                         | 33.805                                                                                                                                                                                                                                                                  | 0.861                                                 | 0.941                                                | 21.101                                               | 0.323                                                 | 0.561                                                 | 20.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 44.373                     | 31.660                                                                                                                   | 52.734                                                                                                                                                                                         | 30.910                                                                                                                                                                                                                                                                  | 0.855                                                 | 0.939                                                | 16.990                                               | 0.352                                                 | 0.659                                                 | 18.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 46.305                     | 31.475                                                                                                                   | 55.898                                                                                                                                                                                         | 30.657                                                                                                                                                                                                                                                                  | 0.859                                                 | 0.931                                                | 15.853                                               | 0.364                                                 | 0.665                                                 | 14.288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 88.070                     | 28.683                                                                                                                   | 98.376                                                                                                                                                                                         | 28.202                                                                                                                                                                                                                                                                  | 0.838                                                 | 0.907                                                | 14.944                                               | 0.330                                                 | 0.636                                                 | 14.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| g 42.985                   | 31.798                                                                                                                   | 52.674                                                                                                                                                                                         | 30.915                                                                                                                                                                                                                                                                  | 0.818                                                 | 0.905                                                | 17.330                                               | 0.236                                                 | 0.510                                                 | 17.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| i 90.161                   | 28.581                                                                                                                   | 100.956                                                                                                                                                                                        | 28.089                                                                                                                                                                                                                                                                  | 0.832                                                 | 0.905                                                | 15.007                                               | 0.320                                                 | 0.618                                                 | 13.841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ni 40.550                  | 32.051                                                                                                                   | 51.019                                                                                                                                                                                         | 31.054                                                                                                                                                                                                                                                                  | 0.857                                                 | 0.937                                                | 16.699                                               | 0.354                                                 | 0.660                                                 | 16.755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C 55.952                   | 30.653                                                                                                                   | 66.185                                                                                                                                                                                         | 29.923                                                                                                                                                                                                                                                                  | 0.827                                                 | 0.920                                                | 15.203                                               | 0.293                                                 | 0.579                                                 | 17.837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | 1.00                                                                                                                     |                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1222222                    | 100                                                                                                                      | 12222                                                                                                                                                                                          | 111222                                                                                                                                                                                                                                                                  | 1.5                                                   | 1121122                                              | 12222                                                |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | si 55.748<br>ni 19.653<br>5C 19.669<br>44.373<br>46.305<br>ss 88.070<br>ig 42.985<br>si 90.161<br>ni 40.550<br>5C 55.952 | si 55.748 30.668<br>ni 19.653 35.197<br>3C 19.669 35.193<br>44.373 31.660<br>46.305 31.475<br>ss 88.070 28.683<br>ug 42.985 31.798<br>si 90.161 28.581<br>ni 40.550 32.051<br>3C 55.952 30.653 | si 55.748 30.668 62.440<br>nii 19.653 35.197 28.070<br>6C 19.669 35.193 27.078<br>44.373 31.660 52.734<br>46.305 31.475 55.898<br>ss 88.070 28.683 98.376<br>gg 42.985 31.798 52.674<br>si 90.161 28.581 100.956<br>nii 40.550 32.051 51.019<br>6C 55.952 30.653 66.185 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | si       55.748       30.668       62.440       30.176       0.853       0.897       15.370       0.342       0.591         mi       19.653       35.197       28.070       33.648       0.867       0.943       21.588       0.328       0.589         GC       19.669       35.193       27.078       33.805       0.861       0.941       21.101       0.323       0.561         44.373       31.660       52.734       30.910       0.855       0.939       16.990       0.352       0.659         46.305       31.475       55.898       30.657       0.859       0.931       15.853       0.364       0.665         ss       88.070       28.683       98.376       28.202       0.838       0.907       14.944       0.330       0.636         ig       42.985       31.798       52.674       30.915       0.818       0.905       17.330       0.236       0.510         si       90.161       28.581       100.956       28.089       0.832       0.905       15.007       0.320       0.618         mi       40.550       32.051       51.019       31.054       0.827       0.937       16.699       0.354       0.660 | Si       55.748       30.668       62.440       30.176       0.853       0.897       15.370       0.342       0.591       12.586         mi       19.653       35.197       28.070       33.648       0.867       0.943       21.588       0.328       0.589       19.411         SC       19.669       35.193       27.078       33.805       0.861       0.941       21.101       0.323       0.561       20.950         44.373       31.660       52.734       30.910       0.855       0.939       16.990       0.352       0.659       18.189         46.305       31.475       55.898       30.657       0.859       0.931       15.853       0.364       0.665       14.288         ss       88.070       28.683       98.376       28.202       0.838       0.907       14.944       0.330       0.636       14.129         gg       42.985       31.798       52.674       30.915       0.818       0.905       17.330       0.236       0.510       17.169         si       90.161       28.581       100.956       28.089       0.832       0.905       15.007       0.320       0.618       13.841         mi       40.550 </td |

Figure 16. Trends of quality measures on *H13Sim-data* for the methods Lee, Xie, and HR-SSC.

| Img         Met.         MSE         PSNR         MSE3         PSNR3         SSIM         MSSIM         VSNR         VIFP         UQI         NQM         WSNR           IMD017         Lee         18.625         35.430         24.645         34.213         0.881         0.955         20.130         0.445         0.711         27.399         98.837           Mung         29.318         33.499         25.611         32.615         0.884         0.955         30.411         0.455         0.711         23.473         32.835           Imag         29.318         33.499         37.67         33.247         0.887         0.937         25.118         0.356         0.662         17.373         28.516           IMD018         Lee         53.077         32.457         0.887         0.944         2.959         0.406         6.642         2.998         71.773         2.9571         0.845         0.971         0.334         0.578         23.688         40.335         0.581         0.827         0.578         23.688         40.335         0.581         1.818         2.863         35.015         1.416         3.77         3.448         3.930         0.861         0.957         2.413         0.574<                                                                                                                                       | lable 1. Cont. |        |         |        |         |        |       |       |        |       |       |        |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|---------|--------|---------|--------|-------|-------|--------|-------|-------|--------|--------|
| Xie         16.228         30.028         20.70         34.53         0.854         0.955         30.41         0.455         0.714         25.465           Huang         29.318         33.459         35.451         32.615         0.854         0.907         21.18         0.060         17.73         25.555           Biblioni         24.312         34.273         0.874         0.846         0.907         25.158         0.040         0.662         7.230         35.660           IMD018         Lec         53.072         30.882         58.624         0.455         0.960         27.43         0.052         0.328         0.531         25.060         0.351         0.522         20.08         0.351         0.522         20.08         21.075         0.440         0.777         0.440         0.577         1.18         2.657         0.341         0.557         21.640         0.393         0.241         0.563         1.512         2.653         0.343         0.577         2.614         0.406         2.537         2.624         0.343         0.577         2.614         3.645         3.645         3.645         0.579         2.614         1.604         3.617         3.645         3.645         1.614                                                                                                                                  | Img            | Met.   | MSE     | PSNR   | MSE3    | PSNR3  | SSIM  | MSSIM | VSNR   | VIFP  | UQI   | NQM    | WSNR   |
| Abbas         61.528         30.240         67.983         29.907         0.847         0.911         21.698         0.309         0.662         1.737         28.555           Huang         62.801         30.151         68.802         29.743         0.844         0.907         21.911         0.304         0.664         23.877         35.610           Biblioni         21.212         22.733         30.787         33.247         0.867         0.944         25.50         0.371         0.664         23.847         35.610           MD1018         Lee         53.072         30.852         58.624         39.957         0.865         0.960         27.331         0.315         0.564         29.586         40.348           Abbas         112.129         27.641         11.742         27.433         0.850         0.913         17.74         0.326         0.574         11.868         22.247           Intanag         65.664         29.87         11.42         0.852         0.913         17.74         0.340         0.574         12.18         2.86.89           Intonag         27.67         11.343         27.57         0.849         0.915         17.89         2.4135         0.417         0.                                                                                                                                              | IMD017         |        | 18.625  | 35.430 | 24.645  | 34.213 | 0.881 | 0.957 | 29.130 | 0.445 | 0.711 | 27.359 | 38.837 |
| Huang<br>Doessi<br>biblioni         29.318<br>(2.40)         33.459<br>(2.40)         32.615<br>(6.898)         0.854<br>(0.867)         0.937<br>(0.867)         21.511<br>(0.367)         0.366<br>(0.648)         0.446<br>(2.397)         22.682<br>(2.308)           IMD018         Lee         53.072         30.882         58.624         0.450         0.850         0.934         2.635         0.331         0.581         22.039         55.006           MD018         Lee         53.072         30.882         58.624         0.450         0.865         0.996         2.7.33         0.352         0.578         2.3.68         0.353           MD018         Lee         53.072         30.875         71.73         2.5.71         0.846         0.939         2.2.471         0.366         0.466         1.5.89         3.2.222           Torossi         10.874         2.7.67         11.343         0.957         2.6.413         0.343         0.553         15.118         2.8.39           IMD019         Lee         40.674         32.038         4.999         3.1.142         0.882         0.942         2.4.15         0.414         0.667         1.2.02         3.5.377           IMD019         Lee         40.674         3.0.38         9.993         3.1.42                                                                                    |                | Xie    | 16.228  | 36.028 | 22.790  | 34.553 | 0.884 | 0.955 | 30.411 | 0.455 | 0.714 | 25.465 | 38.191 |
| Biblioni         C 2801         30.151         68.982         29.743         0.840         0.070         21.971         0.574         0.658         1.717         28.516           IHC-SC         31.007         33.216         30.787         33.247         0.867         0.948         25.50         0.371         0.652         23.808         34.512           IMD018         Lee         53.072         30.882         58.624         30.439         0.865         0.960         27.433         0.333         0.831         24.038         35.066           Abbas         112.129         27.634         117.432         27.433         0.850         0.913         17.475         0.344         0.554         15.181         28.474           Abbas         108.747         13.034         27.576         0.849         0.917         17.869         0.340         0.557         22.683         36.557           IMD019         Lee         41.459         31.402         0.836         0.937         24.135         0.417         0.706         14.20         0.837         0.417         0.706         31.343         0.565         14.366         0.377         0.677         16.018         32.315         0.565         0.566 <t< td=""><td></td><td>Abbas</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>   |                | Abbas  |         |        |         |        |       |       |        |       |       |        |        |
| Biblioni         24.312         31.247         33.247         0.867         0.948         22.559         0.301         0.684         23.497         35.660           IMD018         Lee         53.072         30.882         58.624         30.450         0.966         27.433         0.533         0.581         22.039         35.006           Xie         18.253         35.517         25.648         34.399         0.863         0.996         28.108         0.353         0.581         22.039         35.006           Toossi         10.8744         27.76         113.543         27.77         0.845         0.939         22.471         0.286         0.476         18.580         32.285           Biblioni         54.371         30.777         0.1419         30.319         0.861         0.957         26.074         0.343         0.574         21.630         34.512           IMD019         Lee         40.674         32.088         49.993         31.142         0.882         0.942         24.415         0.414         0.696         21.020         35.377           Aice         41.539         31.940         51.323         31.022         0.855         0.938         24.515         0.816 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         31.007         33.216         36.943         32.455         0.800         0.934         25.50         0.371         0.632         23.080         34.512           IMD018         Lee         53.072         30.882         56.624         30.430         0.865         0.966         27.431         0.353         0.581         22.039         35.006           Abbas         112.129         27.634         117.422         27.433         0.850         0.913         17.475         0.344         0.570         14.966         28.478           Ibloani         156.64         29.98         71.773         0.6141         27.576         0.849         0.915         17.690         0.340         0.553         15.181         28.222           Toossi         168.777         60.419         30.319         0.863         0.955         24.135         0.417         0.607         12.603         34.737           Abbas         80.579         20.699         9.049         28.555         0.856         0.938         14.315         0.414         0.667         16.024         30.163           IMD019         Lee         40.674         25.614         30.167         29.2958         0.827         0.601         <                                                                                                                                          |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD018         Lee         53.072         30.882         58.624         30.450         0.865         0.960         27.433         0.533         0.581         22.039         35.006           Nie         18.253         35.517         23.648         34.399         0.863         0.956         28.108         0.352         0.578         25.368         40.353           Toossi         10.8744         27.777         113.634         27.757         0.8449         0.915         17.475         0.344         0.570         12.8639           Biblioni         54.371         30.777         60.419         30.319         0.861         0.957         26.734         0.333         0.574         21.670         34.733           IMD019         Lee         40.674         32.038         49.993         31.142         0.886         0.938         24.135         0.427         0.700         19.620         34.346           Nae         41.599         31.940         51.373         31.023         0.886         0.938         24.315         0.427         0.700         19.620         34.346           Toossi         81.503         29.019         91.594         29.583         0.887         0.904         20.292         <                                                                                                                                          |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie         18.253         35.517         23.648         24.393         0.863         0.956         21.808         0.352         0.578         25.368         40.353           Huang         65.664         29.958         71.773         29.571         0.845         0.939         22.713         0.286         0.476         115.880         22.257           Biblioni         54.371         0.0777         0.0419         0.031         0.0957         22.673         0.343         0.574         21.670         43.633           IMD019         Lee         40.674         32.208         49.993         31.142         0.882         0.992         24.415         0.417         0.606         21.002         35.377           Xia         41.599         31.040         51.373         31.022         0.885         0.938         24.415         0.417         0.606         34.345           MD019         Lee         40.674         32.08         49.855         0.938         24.315         0.427         0.507         16.024         30.102           Ticossi         80.579         29.069         90.699         28.55         0.936         23.166         0.375         0.672         19.580         30.0229         1                                                                                                                                              |                | HR-SSC | 31.007  | 33.216 | 36.943  | 32.455 | 0.850 | 0.934 | 25.550 | 0.371 | 0.632 | 23.808 | 34.512 |
| Abbas         112.122         27.634         117.432         27.433         0.850         0.913         17.475         0.344         0.570         14.966         28.474           Toossi         108.744         27.777         13.634         27.576         0.845         0.995         22.471         0.340         0.563         15.181         28.252           Biblioni         54.371         30.2761         39.240         32.194         0.853         0.955         24.135         0.327         0.537         22.68         0.475           IMD019         Lee         40.674         20.083         94.993         31.142         0.882         0.942         24.115         0.414         0.696         21.020         37.37         16.024         30.136           Toossi         81.0372         20.109         91.594         25.55         0.856         0.908         18.666         0.372         0.507         16.024         30.122           Biblioni         49.196         31.121         59.452         30.389         0.868         0.934         21.560         0.357         0.673         18.910         33.110           IMD020         Lee         54.462         30.770         61.126         30.269                                                                                                                                              | IMD018         |        |         |        |         |        |       |       |        |       |       |        |        |
| Huang<br>Toossi         65.664         29.988         71.773         29.571         0.845         0.939         22.471         0.286         0.476         18.580         32.252           Bibiloni         54.371         30.777         60.419         30.319         0.861         0.957         26.734         0.343         0.574         21.670         34.635           IMD019         Lee         40.674         32.038         49.993         31.142         0.882         0.942         24.415         0.414         0.066         21.003         34.363           Abbas         80.579         29.069         91.692         29.585         0.856         0.908         24.315         0.427         0.700         19.620         34.346           Abbas         80.579         29.069         91.594         28.512         0.846         0.904         20.229         0.507         16.024         30.101         32.212         59.452         0.338         0.930         21.562         0.363         0.642         18.991         33.110           IMD020         Lee         54.462         30.770         61.126         30.269         0.842         0.956         23.801         0.362         0.653         52.282         34.643                                                                                                                               |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toossi         108,744         27,767         113,634         27,576         0.849         0.915         76,899         0.340         0.563         15,181         28,839           HR-SSC         34,432         32,761         39,240         32,194         0.853         0.955         24,135         0.337         0.537         22,638         36,055           IMD019         Lee         40,674         32,038         49,993         31,142         0.882         0.942         24,115         0.414         0.669         16,024         33,102         34,346           Abbas         80,797         20,609         28,555         0.856         0.908         24,315         0.427         0.667         16,024         30,163           Huang         60,703         30,209         71,852         20,389         0.866         0.934         21,360         0.375         0.672         16,024         30,404           IRASSC         56,414         30,617         65,614         29,938         0.858         0.930         21,562         0.363         0.642         18,991         33,110           IMD020         Lee         54,442         30,770         61,126         30,269         0.843         15,761                                                                                                                                                   |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Biblioni         54.37         30.777         60.419         30.319         0.861         0.957         24.135         0.327         0.537         21.670         34.753           IMD019         Lee         40.674         32.038         49.993         31.142         0.882         0.942         24.115         0.414         0.696         21.020         35.377           Nie         41.599         31.940         51.373         31.023         0.886         0.938         24.315         0.427         0.700         19.620         34.346           Abbas         80.579         20.690         90.699         28.555         0.856         0.934         23.135         0.427         0.700         18.011         32.313           Toossi         81.503         20.19         91.594         28.512         0.846         0.934         23.166         0.355         0.647         16.013         30.228           IMD020         Lee         54.462         30.761         63.269         0.842         0.958         23.801         0.362         0.652         40.384           Abbas         13.2264         34.942         0.815         0.936         21.317         0.303         0.642         14.059         53.                                                                                                                                              |                | Huang  |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         34.432         32.761         39.240         32.194         0.853         0.955         24.135         0.327         0.537         22.638         36.055           IMD019         Lee         40.674         32.038         49.993         31.142         0.882         0.942         24.415         0.414         0.666         21.020         35.377           Abbas         80.579         29.069         90.699         28.555         0.856         0.908         18.686         0.372         0.657         16.024         30.163           Toossi         81.503         20.199         91.554         28.551         0.866         0.904         18.662         0.357         0.624         16.105         30.222           Biblioni         49.196         31.212         59.452         30.389         0.868         0.930         21.56         0.642         18.991         33.110           IMD020         Lee         54.462         30.707         61.126         30.269         0.842         0.958         23.801         0.362         0.653         22.282         34.661           MD020         Lee         54.462         30.707         61.126         30.269         0.812         0.955                                                                                                                                                       |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD019         Lee         40.674         32.038         49.993         31.142         0.882         0.942         24.415         0.414         0.696         21.020         35.377           Abbas         80.579         29.069         90.699         28.555         0.856         0.938         18.686         0.372         0.657         16.024         30.163           Huang         60.703         30.299         71.582         29.583         0.827         0.904         20.229         0.273         0.507         18.011         32.313           Toossi         81.503         29.019         91.594         28.512         0.846         0.904         12.0259         0.375         0.642         18.691         30.102           IMD020         Lee         54.462         30.770         61.126         30.269         0.842         0.957         26.239         0.373         0.660         25.905         40.344           Abbas         132.080         26.922         138.996         26.701         0.803         0.884         0.917         0.630         0.660         25.905         40.384           Huang         62.554         30.168         69.857         31.290         0.316         0.936 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>               |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie         41.599         31.940         51.373         31.023         0.886         0.938         24.315         0.427         0.700         19.620         34.346           Abbas         80.579         29.069         90.699         92.555         0.856         0.908         18.666         0.372         0.507         16.024         30.163           Toossi         81.503         29.019         91.584         28.512         0.846         0.904         18.662         0.355         0.634         16.105         30.229           Biblioni         49.196         31.212         59.542         30.899         0.868         0.904         21.562         0.363         0.642         18.991         33.110           IMD020         Lee         54.462         30.707         61.126         30.269         0.842         0.958         23.801         0.362         0.653         22.282         34.643           Abbas         132.080         26.922         138.996         26.701         0.803         0.833         15.764         0.306         0.541         19.108         32.279           Toossi         125.759         27.135         13.254         6.907         0.796         0.884         1.311                                                                                                                                                   |                | HR-SSC | 34.432  | 32.761 | 39.240  | 32.194 | 0.853 | 0.955 | 24.135 | 0.327 | 0.537 | 22.638 | 36.055 |
| Abbas         80.579         29.069         90.699         28.555         0.856         0.904         18.686         0.372         0.657         16.024         30.163           Huang         60.703         30.299         71.582         29.583         0.827         0.904         20.229         0.235         0.657         18.011         32.313           Biblioni         49.196         31.212         59.452         30.389         0.868         0.934         23.136         0.355         0.672         19.580         34.043           IMD020         Lee         54.462         30.770         61.126         30.269         0.842         0.958         23.801         0.362         0.662         22.822         34.661           Xie         23.642         34.394         29.561         33.424         0.846         0.957         26.239         0.303         0.564         19.08         32.275           Toossi         125.759         27.135         132.244         26.907         0.796         0.841         16.111         0.295         0.581         14.456         27.197           Biblioni         59.850         30.260         67.565         30.522         0.823         0.951         22.181                                                                                                                                                 | IMD019         |        |         |        |         |        |       |       |        |       |       |        |        |
| Huang<br>Toossi         60.703         30.299         71.582         29.583         0.827         0.904         20.29         0.273         0.507         18.011         32.313           Biblioni         49.196         31.212         59.452         0.3846         0.904         18.662         0.355         0.634         16.105         30.222           IMD020         Lee         54.412         30.617         65.961         29.938         0.858         0.930         21.562         0.363         0.642         18.991         33.110           IMD020         Lee         54.462         30.707         61.126         30.269         0.842         0.958         23.801         0.362         0.663         22.282         34.661           Xic         23.642         31.896         26.701         0.803         0.883         15.764         0.306         0.604         14.074         26.834           Huang         62.554         30.168         69.851         29.690         0.796         0.884         16.111         0.302         0.660         18.41         36.456           Toossi         125.759         27.135         13.2544         26.807         0.796         0.884         16.111         0.322                                                                                                                                             |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toosší<br>Bibiloni         49.196<br>49.194         31.212<br>31.212         59.452<br>59.452         0.846<br>30.868         0.934<br>0.938         21.562         0.634<br>0.636         0.644<br>0.672         19.580<br>33.013         32.222<br>30.313           IMD020         Lee         54.462         30.770         61.126         30.269         0.858         0.930         21.562         0.636         0.642         18.990         33.110           IMD020         Lee         54.462         30.770         61.126         30.269         0.842         0.958         23.801         0.362         0.653         22.282         34.661           Xie         23.642         34.394         29.561         33.424         0.846         0.957         26.329         0.373         0.660         25.905         40.384           Huang         62.554         30.168         69.851         29.689         0.815         0.936         21.317         0.303         0.564         19.108         32.275           Toossi         125.759         27.135         132.544         26.907         0.796         0.884         16.111         0.295         0.564         19.108         32.247           MD030         Lee         50.877         3.5761         34.380         0.95                                                                                     |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Biblioni<br>HR-SSC         49.196<br>56.414         31.212<br>30.217         59.452<br>59.938         0.868<br>0.858         0.934<br>0.930         23.136<br>21.522         0.672<br>0.663         19.580<br>0.642         34.043<br>18.991           IMD020         Lee         54.462         30.770         61.12         30.269         0.842         0.958         23.801         0.362         0.662         22.822         34.661           MABAS         132.080         26.922         138.996         26.701         0.803         0.883         15.764         0.306         0.604         14.074         26.834           Huang         62.554         30.168         69.851         29.669         0.815         0.936         21.317         0.303         0.564         19.108         32.275           Toossi         125.759         27.135         132.544         29.855         0.828         0.951         22.518         0.329         0.630         20.985         33.642           IMD030         Lee         50.857         31.070         57.665         30.522         0.838         0.643         0.559         23.641         36.229           IMD030         Lee         50.856         79.211         29.464         0.959         26.493         0.413         0                                                                                     |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         56.414         30.617         65.961         29.938         0.858         0.930         21.562         0.363         0.642         18.991         33.110           IMD020         Lee         54.462         30.770         61.126         30.269         0.842         0.958         23.801         0.362         0.663         22.282         34.661           Abbas         132.080         26.922         138.996         26.701         0.030         0.883         15.764         0.306         0.604         14.074         26.834           Huang         62.554         30.168         69.851         29.689         0.815         0.936         21.317         0.303         0.564         19.108         32.275           Jossi         159.850         30.360         67.234         29.855         0.828         0.951         22.518         0.320         0.360         20.985         33.649           HR-SSC         43.098         31.700         57.665         30.522         0.864         0.952         19.959         0.388         0.660         18.341         32.244           MD030         Lee         50.827         31.070         57.665         30.522         0.864         0.912 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD020         Lee         54.462         30.770         61.126         30.269         0.842         0.958         23.801         0.362         0.653         22.282         34.661           Abbas         132.080         26.922         138.996         26.701         0.803         0.883         15.764         0.306         0.660         25.905         40.384           Huang         62.554         30.166         69.851         29.689         0.815         0.936         21.317         0.303         0.564         19.108         32.275           Toossi         125.759         27.135         132.544         29.697         0.796         0.884         16.111         0.295         0.581         14.456         27.197           Bibiloni         59.850         30.360         67.234         29.855         0.828         0.951         22.518         0.329         0.630         20.985         33.649           HR-SSC         43.098         31.786         48.657         31.259         0.821         19.959         0.398         0.660         18.341         32.244           Nie         16.425         35.976         23.671         34.389         0.869         9.959         26.493         0.413                                                                                                                                                |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie23.64234.39495.5133.4240.8460.95726.2990.3730.66025.90540.844Abbas132.08026.922138.99626.7010.8030.88315.7640.3060.60414.07426.834Huang62.55430.16869.85129.6890.8150.8051170.3030.56419.10832.275Bibiloni59.85030.30667.23429.8550.8280.95122.5180.3290.63020.98533.649HR-SSC43.09831.78648.65731.2590.8220.8470.94922.030.3160.59023.64136.227IMD030Lee50.87731.07057.66530.5220.8640.95926.4930.4130.66918.34132.244Abbas70.11229.67376.88529.2720.8380.91718.5280.3320.62315.44729.003Huang50.55631.03357.62030.6220.8470.94120.7430.3470.59919.63232.935Toossi72.51729.52679.21129.1430.8300.91218.3300.3370.60015.61629.428Bibiloni45.92031.51153.06230.8750.8470.94120.7430.3470.64219.08933.60HR-SSC99.0133.49636.02832.5640.8840.94823.1460.3480.62320.9463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | HR-SSC | 56.414  | 30.617 | 65.961  | 29.938 | 0.858 | 0.930 | 21.562 | 0.363 | 0.642 | 18.991 | 33.110 |
| Abbas         132.080         26.922         138.996         26.701         0.803         0.883         15.764         0.306         0.604         14.074         26.834           Huang         62.554         30.168         69.851         29.689         0.815         0.936         21.317         0.303         0.564         19.108         32.275           Bibiloni         59.850         30.360         67.234         29.855         0.828         0.951         22.518         0.329         0.630         20.985         33.649           IMD030         Lee         50.827         31.070         57.665         30.522         0.869         0.959         26.493         0.413         0.669         18.341         32.247           Abbas         70.112         29.673         76.885         29.272         0.838         0.917         18.528         0.352         0.643         0.347         0.599         19.632         32.935           Toossi         72.517         29.526         79.211         29.143         0.830         0.912         18.530         0.337         0.609         19.599         19.632         32.935           Muang         50.526         79.211         29.143         0.830                                                                                                                                                  | IMD020         |        | 54.462  | 30.770 | 61.126  | 30.269 | 0.842 |       | 23.801 | 0.362 | 0.653 | 22.282 | 34.661 |
| Huang<br>Toossi62.55430.16869.85129.6890.8150.93621.3170.3030.56419.10832.275Biblioni59.8030.36067.23429.8570.7860.88416.1110.2950.58114.45627.197Biblioni59.8030.36067.23429.8570.8280.95122.6180.3290.50023.64136.222IMD030Lee50.82731.0757.66530.5220.8640.95219.9590.3980.66018.34132.244Abbas70.11229.67376.88529.2720.8830.91718.5280.3520.62315.44729.300Huang50.55631.09357.62030.5220.8470.94120.7430.3470.59919.63223.2935Toossi72.51729.52679.21129.1430.8300.91218.3300.3370.60015.61629.428Bibiloni45.92031.51153.06230.8830.8550.94921.6920.3720.64719.68033.360HR-SSC59.20230.40766.78329.8480.7860.94823.1460.3480.62320.94637.195MD033Lee20.7133.49636.22533.7070.8740.95426.2800.3920.57412.8128.385IMD034Lee20.75032.91040.51632.0550.8860.94821.6420.3020.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |        |         |        | 29.561  |        |       |       |        |       |       | 25.905 |        |
| Toossi<br>Bibiloni         125.759         27.135         132.544         26.907         0.796         0.884         16.111         0.295         0.581         14.456         27.197           Bibiloni         59.850         30.360         67.234         29.855         0.828         0.951         22.518         0.329         0.630         20.985         33.649           IMD030         Lee         50.827         31.070         57.665         30.522         0.864         0.952         19.959         0.398         0.660         18.341         32.244           Abbas         70.112         29.673         76.885         29.272         0.838         0.917         18.528         0.352         0.623         15.447         29.300           Huang         50.556         31.093         57.620         30.525         0.847         0.941         20.743         0.347         0.599         16.669         25.476         39.897           Toossi         72.517         29.526         79.211         29.143         0.830         0.912         18.330         0.337         0.600         15.616         29.428           Bibiloni         45.920         31.511         53.062         30.804         0.786         0.99                                                                                                                                  |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Bibiloni<br>HR-SSC         59.850<br>43.098         30.360<br>31.786         67.234<br>48.657         29.855<br>31.259         0.817         0.949         22.203         0.316         0.500         23.641         36.221           IMD030         Lee         50.827         31.070         57.665         30.522         0.864         0.952         19.959         0.318         0.660         18.341         32.244           Xie         16.425         35.976         23.671         34.389         0.917         18.528         0.332         0.660         18.341         32.244           Abbas         70.112         29.673         76.885         29.272         0.838         0.917         18.528         0.337         0.600         15.447         29.303           Huang         50.556         31.093         57.620         30.525         0.847         0.941         20.743         0.347         0.599         19.632         32.935           Toossi         72.517         29.202         30.407         66.783         29.844         0.786         0.904         17.204         0.252         0.646         20.928         33.669           MD033         Lee         29.071         33.496         30.275         0.874         0.954                                                                                                                    |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC43.09831.78648.65731.2590.8170.94922.030.3160.59023.64136.222IMD030Lee50.82731.07057.66530.5220.8640.95219.9590.3980.66018.34132.244Abbas70.11229.67623.67134.3890.8690.95926.4930.4130.66925.47639.857Huang50.55631.09357.62030.5250.8470.91718.5280.3520.62315.44729.300Toossi72.51729.52679.21129.1430.8300.91218.3300.3370.60015.61629.428Bibiloni45.92031.51153.06230.8830.8550.94921.6920.3720.64719.68033.360IMD033Lee29.07133.49636.02832.5640.8580.94823.1460.3480.62320.94637.195Xie20.68034.97527.69633.7070.8740.95416.7620.3020.57412.08128.385Huang33.27032.91040.51632.0550.8360.92621.5840.2800.52318.37234.461Lossi86.21828.77593.27828.4330.8150.89016.7830.2660.57412.08128.584Huang33.27032.91040.51632.0550.8360.94317.6410.4210.73816.90329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD030         Lee         50.827         31.070         57.665         30.522         0.864         0.952         19.959         0.398         0.660         18.341         32.244           Abbas         70.112         29.673         76.885         29.272         0.838         0.917         18.528         0.352         0.623         15.447         29.300           Huang         50.556         31.093         57.620         30.525         0.847         0.941         20.743         0.347         0.599         19.632         32.935           Toossi         72.517         29.526         79.211         29.143         0.830         0.912         18.330         0.337         0.600         15.616         29.428           Bibiloni         45.920         31.511         53.062         30.883         0.885         0.949         21.692         0.372         0.647         19.680         33.360           IMD033         Lee         29.071         33.496         36.028         32.564         0.858         0.948         23.146         0.348         0.623         20.946         37.195           Xie         20.680         34.975         27.696         33.707         0.874         0.954                                                                                                                                                       |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie16.42535.97623.67134.3890.8690.95926.4930.4130.66925.47639.857Abbas70.11229.67376.88529.2720.8380.91718.5280.3520.62315.44729.300Huang50.55631.09357.62030.5250.8470.94120.7430.3470.59919.63232.935Toossi72.51729.52679.21129.1430.8300.91218.3300.3370.60015.61629.428Bibiloni45.92031.51153.06230.8330.8550.94921.6920.3720.64719.68033.360HR-SSC59.20230.40766.78329.8840.7860.90417.2040.2520.46819.00931.509IMD033Lee29.07133.49636.02832.5640.8580.94823.1460.3480.62320.94637.195Xie20.68034.97527.69633.7070.8740.95426.2800.3890.64620.92838.139Abbas87.50528.71094.48928.3770.8250.89416.7620.3020.57412.08128.384Huang33.27032.91040.51632.0550.8360.92621.5840.2860.54712.32428.584Abbas87.50528.71094.48928.57731.5430.8390.93220.9800.2960.58818.1783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | HR-SSC | 43.098  | 31.786 | 48.657  | 31.259 | 0.817 | 0.949 | 22.203 | 0.316 | 0.590 | 23.641 | 36.222 |
| Abbas70.11229.67376.88529.2720.8380.91718.5280.3520.62315.44729.300Huang50.55631.09357.62030.5250.8470.94120.7430.3470.59919.63232.935Toossi72.51729.52679.21129.1430.8300.91218.3300.3370.60015.61629.428Bibiloni45.92031.51153.06230.8830.8550.94921.6920.3720.64719.68033.360HR-SSC59.20230.40766.78329.8840.7860.90417.2040.2520.46819.00931.509IMD033Lee29.07133.49636.02832.660.8580.94823.1460.3480.62320.94637.195Xie20.68034.97527.69633.7070.8740.95426.2800.3890.64620.92838.139Abbas87.50528.71094.48928.3770.8250.89416.7620.3020.57412.08128.385Huang33.27032.91040.51632.0550.8360.92621.5840.2800.52318.37234.461Toossi86.21828.77593.27828.4330.8150.89016.7830.2660.54712.32428.584Bibiloni38.72232.25145.57731.5430.8370.96425.9710.4940.77423.18834.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IMD030         |        |         |        |         |        |       |       |        |       |       |        |        |
| Huang<br>Toossi50.55631.09357.62030.5250.8470.94120.7430.3470.59919.63232.935Toossi72.51729.52679.21129.1430.8300.91218.3300.3370.60015.61629.428Bibiloni45.92031.51153.06230.8830.8550.94921.6920.3720.64719.68033.360IMD033Lee29.07133.49636.02832.5640.8580.94823.1460.3480.62320.94637.195Xie <b>20.68034.97527.69633.7070.8740.95426.2800.3890.64620.92838.139</b> Abbas87.50528.71094.48928.3770.8250.89416.7620.3020.57412.08128.855Huang33.27032.91040.51632.0550.8360.92621.5840.2860.54712.32428.854Bibiloni38.72232.25145.57731.5430.8390.93220.9800.2070.45116.91732.624IMD044Lee47.45731.36853.35530.8590.8630.94317.6410.4210.73816.90329.594Xie <b>18.590</b> 35.438 <b>27.085</b> 33.8040.8870.964 <b>25.971</b> 0.4940.774 <b>23.188</b> 36.594Huang105.87527.883110.17827.7100.7450.83512.9930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toossi72.51729.52679.21129.1430.8300.91218.3300.3370.60015.61629.428Bibiloni45.92031.51153.06230.8830.8550.94921.6920.3720.64719.68033.360HR-SSC59.20230.40766.78329.8840.7860.90417.2040.2520.46819.00931.509IMD033Lee29.07133.49636.02832.5640.8580.94823.1460.3480.62320.94637.195Abbas87.50528.71094.48928.3770.8740.95426.2800.3020.57412.08128.385Huang33.27032.91040.51632.0550.8360.92621.5840.2800.52318.37234.461Toossi86.21828.77593.27828.4330.8150.89016.7830.2860.54712.32428.584Bibiloni38.72232.25145.57731.5430.8390.93220.9800.2070.45116.91732.624IMD044Lee47.45731.36853.35530.8590.8630.94317.6410.4210.73816.90329.594Abbas72.92329.50278.28829.1940.8670.92616.2760.75012.36925.921IMD044Lee47.45731.36853.35530.8590.8630.94317.6410.4210.73816.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Bibiloni<br>HR-SSC45.920<br>59.20231.511<br>30.40753.062<br>66.78330.883<br>29.8840.855<br>0.7860.949<br>0.90421.692<br>17.2040.372<br>0.2520.647<br>0.46819.680<br>19.00933.360<br>31.509IMD033Lee<br>Xie<br>Abbas29.071<br>87.05533.496<br>20.68036.028<br>34.97532.564<br>27.696<br>27.6960.858<br>33.707<br>0.8740.954<br>0.95423.146<br>26.2800.348<br>0.6230.646<br>20.92820.946<br>20.92837.195<br>38.139Abbas<br>Huang<br>Toossi<br>Bibiloni33.270<br>38.72232.910<br>32.91040.516<br>40.51632.055<br>32.0570.836<br>0.9260.926<br>21.5840.302<br>0.5230.574<br>12.08112.081<br>28.385IMD044Lee<br>HR-SSC28.775<br>56.65993.278<br>30.59828.433<br>64.3420.839<br>30.0460.932<br>0.78520.980<br>0.8900.523<br>16.78318.372<br>0.28634.461<br>12.324IMD044Lee<br>HR-SSC47.457<br>56.65931.368<br>30.59853.355<br>64.34230.863<br>30.8690.943<br>0.86717.641<br>0.4210.421<br>0.7380.738<br>16.91729.594<br>23.188IMD044Lee<br>Huang<br>Xie<br>Huang<br>105.87527.883<br>29.50227.888<br>29.1940.867<br>0.9260.926<br>0.8850.457<br>0.5970.750<br>0.45112.081<br>16.91729.594<br>26.280IMD044Lee<br>Huang<br>105.87527.883<br>29.50278.288<br>29.19429.194<br>0.8670.926<br>0.92616.276<br>16.2760.457<br>0.4570.750<br>0.75012.369<br>23.188 <td></td> |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC59.20230.40766.78329.8840.7860.90417.2040.2520.46819.00931.509IMD033Lee29.07133.49636.02832.5640.8580.94823.1460.3480.62320.94637.195Xie <b>20.68034.97527.69633.7070.8740.95426.2800.3890.64620.92838.139</b> Abbas87.50528.71094.48928.3770.8250.89416.7620.3020.57412.08128.385Huang33.27032.91040.51632.0550.8360.92621.5840.2800.52318.37234.461Toossi86.21828.77593.27828.4330.8150.89016.7830.2860.54712.32428.584Bibiloni38.72232.25145.57731.5430.8390.93220.9800.2960.58818.17834.092HR-SSC56.65930.59864.34230.0460.7850.89418.5900.2070.45116.91732.624IMD044Lee47.45731.36853.35530.8590.8630.94317.6410.4210.73816.90329.594Abbas72.92329.50278.28829.1940.8670.92616.2760.4570.75012.36925.924Huang105.87527.883110.17827.7100.7450.83512.9930.2100.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD033         Lee         29.071         33.496         36.028         32.564         0.858         0.948         23.146         0.348         0.623         20.946         37.195           Xie         20.680         34.975         27.696         33.707         0.874         0.954         26.280         0.389         0.646         20.928         38.139           Abbas         87.505         28.710         94.489         28.377         0.825         0.894         16.762         0.302         0.574         12.081         28.385           Huang         33.270         32.910         40.516         32.055         0.836         0.926         21.584         0.280         0.523         18.372         34.461           Toossi         86.218         28.775         93.278         28.433         0.815         0.890         16.783         0.286         0.547         12.324         28.584           Bibiloni         38.722         32.251         45.577         31.543         0.839         0.932         20.980         0.296         0.588         18.178         34.092           HR-SSC         56.659         30.598         64.342         30.046         0.785         0.894         18.590         <                                                                                                                                          |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie20.68034.97527.69633.7070.8740.95426.2800.3890.64620.92838.139Abbas87.50528.71094.48928.3770.8250.89416.7620.3020.57412.08128.385Huang33.27032.91040.51632.0550.8360.92621.5840.2800.52318.37234.461Toossi86.21828.77593.27828.4330.8150.89016.7830.2860.54712.32428.584Bibiloni38.72232.25145.57731.5430.8390.93220.9800.2060.58818.17834.092HR-SSC56.65930.59864.34230.0460.7850.89418.5900.2070.45116.91732.624IMD044Lee47.45731.36853.35530.8590.8630.94317.6410.4210.73816.90329.594Abbas72.92329.50278.28829.1940.8670.92616.2760.4570.75012.36925.924Huang105.87527.883110.17827.7100.7450.83512.9930.2100.48412.17423.933Toossi73.45229.47178.67429.1720.8590.92316.1100.4400.73612.44525.910Bibiloni96.72228.276101.89528.0490.7630.86713.7110.2420.56113.03024.693<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | HR-SSC |         | 30.407 | 66.783  | 29.884 | 0.786 | 0.904 | 17.204 | 0.252 | 0.468 | 19.009 |        |
| Abbas       87.505       28.710       94.489       28.377       0.825       0.894       16.762       0.302       0.574       12.081       28.385         Huang       33.270       32.910       40.516       32.055       0.836       0.926       21.584       0.280       0.523       18.372       34.461         Toossi       86.218       28.775       93.278       28.433       0.815       0.890       16.783       0.286       0.547       12.324       28.584         Bibiloni       38.722       32.251       45.577       31.543       0.839       0.932       20.980       0.296       0.588       18.178       34.092         IMD044       Lee       47.457       31.368       53.355       30.859       0.863       0.943       17.641       0.421       0.738       16.903       29.594         IMD044       Lee       47.457       31.368       53.355       30.859       0.863       0.943       17.641       0.421       0.738       16.903       29.594         Abbas       72.923       29.502       78.288       29.194       0.867       0.926       16.276       0.457       0.750       12.369       25.924         Huang       105.                                                                                                                                                                                                                             | IMD033         |        |         |        |         |        |       |       |        |       |       |        |        |
| Huang<br>Toossi         33.270         32.910         40.516         32.055         0.836         0.926         21.584         0.280         0.523         18.372         34.461           Toossi         86.218         28.775         93.278         28.433         0.815         0.890         16.783         0.286         0.547         12.324         28.584           Bibiloni         38.722         32.251         45.577         31.543         0.839         0.932         20.980         0.296         0.588         18.178         34.092           IMD044         Lee         47.457         31.368         53.355         30.859         0.863         0.943         17.641         0.421         0.738         16.903         29.594           Xie         18.590         35.438         27.085         33.804         0.887         0.964         25.971         0.494         0.774         23.188         36.594           Abbas         72.923         29.502         78.288         29.194         0.867         0.926         16.276         0.457         0.750         12.369         25.924           Huang         105.875         27.883         110.178         27.710         0.745         0.835         12.993                                                                                                                                         |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toossi         86.218         28.775         93.278         28.433         0.815         0.890         16.783         0.286         0.547         12.324         28.584           Bibiloni         38.722         32.251         45.577         31.543         0.839         0.932         20.980         0.296         0.588         18.178         34.092           IMD044         Lee         47.457         31.368         53.355         30.859         0.863         0.943         17.641         0.421         0.738         16.903         29.594           Xie         18.590         35.438         27.085         33.804         0.887         0.964         25.971         0.494         0.774         23.188         36.594           Abbas         72.923         29.502         78.288         29.194         0.867         0.926         16.276         0.457         0.750         12.369         25.924           Huang         105.875         27.883         110.178         27.710         0.745         0.835         12.993         0.210         0.484         12.174         23.933           Toossi         73.452         29.471         78.674         29.172         0.859         0.923         16.110                                                                                                                                                  |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Bibiloni<br>HR-SSC         38.722<br>56.659         32.251<br>30.598         45.577<br>64.342         31.543<br>30.046         0.839<br>0.785         0.932<br>0.894         20.980<br>18.590         0.296<br>0.207         0.588<br>0.451         18.178<br>16.917         34.092<br>32.624           IMD044         Lee         47.457         31.368         53.355         30.859         0.863         0.943         17.641         0.421         0.738         16.903         29.594           Xie <b>18.590 35.438 27.085 33.804 0.887 0.964 25.971 0.494 0.774 23.188</b> 36.594           Abbas         72.923         29.502         78.288         29.194         0.867         0.926         16.276         0.457         0.750         12.369         25.924           Huang         105.875         27.883         110.178         27.710         0.745         0.835         12.993         0.210         0.484         12.174         23.933           Toossi         73.452         29.471         78.674         29.172         0.859         0.923         16.110         0.440         0.736         12.445         25.910           Bibiloni         96.722         28.276         101.895 <td></td>                                    |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         56.659         30.598         64.342         30.046         0.785         0.894         18.590         0.207         0.451         16.917         32.624           IMD044         Lee         47.457         31.368         53.355         30.859         0.863         0.943         17.641         0.421         0.738         16.903         29.594           Xie         18.590         35.438         27.085         33.804         0.887         0.964         25.971         0.494         0.774         23.188         36.594           Abbas         72.923         29.502         78.288         29.194         0.867         0.926         16.276         0.457         0.750         12.369         25.924           Huang         105.875         27.883         110.178         27.710         0.745         0.835         12.993         0.210         0.484         12.174         23.933           Toossi         73.452         29.471         78.674         29.172         0.859         0.923         16.110         0.440         0.736         12.445         25.910           Bibiloni         96.722         28.276         101.895         28.049         0.763         0.867         13.711                                                                                                                                                 |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD044         Lee         47.457         31.368         53.355         30.859         0.863         0.943         17.641         0.421         0.738         16.903         29.594           Xie         18.590         35.438         27.085         33.804         0.887         0.964         25.971         0.494         0.774         23.188         36.594           Abbas         72.923         29.502         78.288         29.194         0.867         0.926         16.276         0.457         0.750         12.369         25.924           Huang         105.875         27.883         110.178         27.710         0.745         0.835         12.993         0.210         0.484         12.174         23.933           Toossi         73.452         29.471         78.674         29.172         0.859         0.923         16.110         0.440         0.736         12.445         25.910           Bibiloni         96.722         28.276         101.895         28.049         0.763         0.867         13.711         0.242         0.561         13.030         24.693                                                                                                                                                                                                                                                                         |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie18.59035.43827.08533.8040.8870.96425.9710.4940.77423.18836.594Abbas72.92329.50278.28829.1940.8670.92616.2760.4570.75012.36925.924Huang105.87527.883110.17827.7100.7450.83512.9930.2100.48412.17423.933Toossi73.45229.47178.67429.1720.8590.92316.1100.4400.73612.44525.910Bibiloni96.72228.276101.89528.0490.7630.86713.7110.2420.56113.03024.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | HR-SSC | 56.659  | 30.598 | 64.342  | 30.046 | 0.785 | 0.894 | 18.590 | 0.207 | 0.451 | 16.917 | 32.624 |
| Abbas72.92329.50278.28829.1940.8670.92616.2760.4570.75012.36925.924Huang105.87527.883110.17827.7100.7450.83512.9930.2100.48412.17423.933Toossi73.45229.47178.67429.1720.8590.92316.1100.4400.73612.44525.910Bibiloni96.72228.276101.89528.0490.7630.86713.7110.2420.56113.03024.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IMD044         |        |         |        |         |        |       |       |        |       |       |        |        |
| Huang105.87527.883110.17827.7100.7450.83512.9930.2100.48412.17423.933Toossi73.45229.47178.67429.1720.8590.92316.1100.4400.73612.44525.910Bibiloni96.72228.276101.89528.0490.7630.86713.7110.2420.56113.03024.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toossi73.45229.47178.67429.1720.8590.92316.1100.4400.73612.44525.910Bibiloni96.72228.276101.89528.0490.7630.86713.7110.2420.56113.03024.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Bibiloni 96.722 28.276 101.895 28.049 0.763 0.867 13.711 0.242 0.561 13.030 24.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |        |         |        |         |        |       |       |        |       |       |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-5SC 176.341 25.667 179.590 25.588 0.673 0.734 11.356 0.143 0.345 9.157 20.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |        |         |        |         |        |       |       |        |       |       |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | HR-SSC | 176.341 | 25.667 | 179.590 | 25.588 | 0.673 | 0.734 | 11.356 | 0.143 | 0.345 | 9.157  | 20.718 |

 Table 1. Cont.

| Img    | Met.     | MSE     | PSNR   | MSE3    | PSNR3  | SSIM  | MSSIM | VSNR   | VIFP  | UQI   | NQM    | WSNR   |
|--------|----------|---------|--------|---------|--------|-------|-------|--------|-------|-------|--------|--------|
| IMD050 | Lee      | 35.787  | 32.594 | 41.721  | 31.927 | 0.880 | 0.954 | 18.895 | 0.335 | 0.578 | 17.676 | 31.938 |
|        | Xie      | 22.695  | 34.572 | 28.814  | 33.535 | 0.881 | 0.953 | 22.280 | 0.337 | 0.578 | 19.716 | 34.639 |
|        | Abbas    | 49.806  | 31.158 | 55.624  | 30.678 | 0.859 | 0.898 | 18.094 | 0.314 | 0.554 | 12.763 | 28.703 |
|        | Huang    | 22.682  | 34.574 | 29.144  | 33.485 | 0.852 | 0.932 | 22.328 | 0.232 | 0.453 | 18.434 | 34.242 |
|        | Toossi   | 49.658  | 31.171 | 55.452  | 30.692 | 0.856 | 0.897 | 18.151 | 0.300 | 0.536 | 12.899 | 28.805 |
|        | Bibiloni | 24.683  | 34.207 | 30.624  | 33.270 | 0.876 | 0.949 | 20.898 | 0.335 | 0.575 | 19.338 | 33.924 |
|        | HR-SSC   | 32.032  | 33.075 | 38.428  | 32.284 | 0.863 | 0.944 | 21.815 | 0.269 | 0.507 | 19.705 | 34.589 |
| IMD061 | Lee      | 200.137 | 25.118 | 206.683 | 24.978 | 0.818 | 0.913 | 16.492 | 0.340 | 0.655 | 14.269 | 24.901 |
|        | Xie      | 31.045  | 33.211 | 39.240  | 32.194 | 0.853 | 0.947 | 28.493 | 0.401 | 0.701 | 24.189 | 35.438 |
|        | Abbas    | 162.905 | 26.011 | 170.740 | 25.807 | 0.774 | 0.862 | 19.898 | 0.262 | 0.585 | 17.621 | 27.216 |
|        | Huang    | 118.122 | 27.408 | 125.806 | 27.134 | 0.824 | 0.930 | 19.472 | 0.341 | 0.641 | 18.026 | 28.664 |
|        | Toossi   | 160.195 | 26.084 | 168.469 | 25.866 | 0.759 | 0.856 | 19.691 | 0.248 | 0.552 | 17.752 | 27.250 |
|        | Bibiloni | 132.368 | 26.913 | 139.485 | 26.686 | 0.816 | 0.918 | 18.707 | 0.319 | 0.651 | 15.911 | 26.804 |
|        | HR-SSC   | 123.964 | 27.198 | 132.643 | 26.904 | 0.730 | 0.877 | 21.104 | 0.222 | 0.459 | 19.312 | 28.617 |
| IMD063 | Lee      | 73.087  | 29.492 | 78.056  | 29.207 | 0.868 | 0.949 | 16.458 | 0.395 | 0.638 | 18.376 | 27.193 |
|        | Xie      | 15.333  | 36.274 | 23.189  | 34.478 | 0.871 | 0.955 | 30.726 | 0.405 | 0.644 | 27.486 | 38.241 |
|        | Abbas    | 75.404  | 29.357 | 82.451  | 28.969 | 0.849 | 0.914 | 19.238 | 0.372 | 0.619 | 16.239 | 25.970 |
|        | Huang    | 82.506  | 28.966 | 87.606  | 28.705 | 0.846 | 0.931 | 15.781 | 0.328 | 0.563 | 16.786 | 25.992 |
|        | Toossi   | 74.619  | 29.402 | 81.598  | 29.014 | 0.847 | 0.914 | 19.316 | 0.364 | 0.608 | 16.268 | 25.989 |
|        | Bibiloni | 74.387  | 29.416 | 80.223  | 29.088 | 0.861 | 0.948 | 16.314 | 0.374 | 0.626 | 18.402 | 27.149 |
|        | HR-SSC   | 38.011  | 32.332 | 44.806  | 31.617 | 0.852 | 0.945 | 25.076 | 0.355 | 0.586 | 21.399 | 30.795 |
| IMD075 | Lee      | 98.538  | 28.195 | 107.530 | 27.816 | 0.860 | 0.948 | 16.524 | 0.354 | 0.624 | 15.793 | 27.594 |
|        | Xie      | 18.342  | 35.496 | 29.230  | 33.473 | 0.866 | 0.952 | 26.945 | 0.373 | 0.635 | 24.586 | 38.198 |
|        | Abbas    | 73.194  | 29.486 | 82.107  | 28.987 | 0.845 | 0.926 | 18.078 | 0.336 | 0.606 | 16.732 | 28.717 |
|        | Huang    | 112.433 | 27.622 | 122.341 | 27.255 | 0.821 | 0.917 | 15.514 | 0.251 | 0.486 | 14.620 | 26.485 |
|        | Toossi   | 71.889  | 29.564 | 80.600  | 29.067 | 0.841 | 0.926 | 18.156 | 0.325 | 0.590 | 16.955 | 28.867 |
|        | Bibiloni | 93.923  | 28.403 | 103.663 | 27.975 | 0.855 | 0.948 | 17.089 | 0.344 | 0.618 | 15.988 | 27.807 |
|        | HR-SSC   | 45.132  | 31.586 | 53.234  | 30.869 | 0.814 | 0.925 | 20.687 | 0.256 | 0.491 | 19.150 | 31.981 |

 Table 1. Cont.

**Table 2.** Quality evaluation of the results on the *H13Sim-data*—best results are in bold.

| Img    | Met.     | MSE     | PSNR   | MSE3    | PSNR3  | SSIM  | MSSIM | VSNR   | VIFP  | UQI   | NQM    | WSNR   |
|--------|----------|---------|--------|---------|--------|-------|-------|--------|-------|-------|--------|--------|
| IMD006 | Lee      | 5.443   | 40.773 | 6.400   | 40.069 | 0.978 | 0.985 | 25.044 | 0.873 | 0.938 | 23.320 | 40.853 |
|        | Xie      | 6.105   | 40.274 | 8.712   | 38.730 | 0.998 | 0.971 | 22.402 | 0.898 | 0.944 | 18.362 | 36.300 |
|        | Abbas    | 146.175 | 26.482 | 149.923 | 26.372 | 0.920 | 0.836 | 9.709  | 0.747 | 0.877 | 6.777  | 23.447 |
|        | Huang    | 14.654  | 36.471 | 17.000  | 35.826 | 0.964 | 0.971 | 20.263 | 0.817 | 0.905 | 16.575 | 34.655 |
|        | Toossi   | 147.390 | 26.446 | 151.565 | 26.325 | 0.913 | 0.831 | 9.707  | 0.715 | 0.857 | 6.726  | 23.421 |
|        | Bibiloni | 14.087  | 36.642 | 19.991  | 35.123 | 0.937 | 0.960 | 21.615 | 0.536 | 0.830 | 18.990 | 36.561 |
|        | HR-SSC   | 17.983  | 35.582 | 22.252  | 34.657 | 0.882 | 0.961 | 21.630 | 0.373 | 0.637 | 20.652 | 37.497 |
| IMD010 | Lee      | 44.462  | 31.651 | 45.490  | 31.552 | 0.960 | 0.969 | 15.108 | 0.844 | 0.935 | 14.718 | 30.440 |
|        | Xie      | 7.632   | 39.304 | 10.396  | 37.962 | 0.999 | 0.979 | 20.231 | 0.924 | 0.967 | 19.061 | 35.559 |
|        | Abbas    | 93.505  | 28.422 | 96.605  | 28.281 | 0.935 | 0.894 | 12.548 | 0.769 | 0.904 | 10.231 | 25.941 |
|        | Huang    | 21.230  | 34.861 | 22.192  | 34.669 | 0.962 | 0.967 | 20.111 | 0.819 | 0.919 | 17.995 | 33.880 |
|        | Toossi   | 94.868  | 28.360 | 99.195  | 28.166 | 0.926 | 0.889 | 12.520 | 0.734 | 0.882 | 10.253 | 25.956 |
|        | Bibiloni | 49.427  | 31.191 | 55.047  | 30.723 | 0.973 | 0.971 | 16.917 | 0.850 | 0.953 | 14.449 | 30.158 |
|        | HR-SSC   | 54.625  | 30.757 | 61.890  | 30.215 | 0.856 | 0.937 | 15.234 | 0.353 | 0.666 | 17.575 | 31.736 |
| IMD017 | Lee      | 9.535   | 38.338 | 9.855   | 38.194 | 0.981 | 0.988 | 29.519 | 0.905 | 0.967 | 28.643 | 39.534 |
|        | Xie      | 11.082  | 37.684 | 16.277  | 36.015 | 0.997 | 0.986 | 27.386 | 0.955 | 0.979 | 21.083 | 32.729 |
|        | Abbas    | 64.666  | 30.024 | 67.694  | 29.825 | 0.941 | 0.934 | 20.432 | 0.758 | 0.902 | 15.536 | 26.897 |
|        | Huang    | 13.747  | 36.749 | 14.357  | 36.560 | 0.978 | 0.986 | 26.004 | 0.896 | 0.944 | 21.100 | 33.753 |
|        | Toossi   | 66.238  | 29.920 | 69.393  | 29.718 | 0.930 | 0.928 | 20.432 | 0.714 | 0.871 | 15.469 | 26.880 |
|        | Bibiloni | 17.438  | 35.716 | 19.820  | 35.160 | 0.950 | 0.972 | 26.695 | 0.648 | 0.904 | 23.420 | 35.196 |
|        | HR-SSC   | 28.231  | 33.624 | 31.105  | 33.202 | 0.881 | 0.954 | 26.097 | 0.437 | 0.727 | 24.092 | 34.710 |

| Ing         Met.         MSE         PSNR         MSE3         PSNR3         SSIM         MSSIM         VSNR         VIFF         UQI         NQM         WSNR           IMD018         Lee         41.755         31.926         42.986         31.807         0.982         0.982         22.284         0.999         0.944         21.864         34.947           Abbas         43.683         31.738         44.480         31.610         0.972         0.983         22.286         0.921         21.782         34.447           Toossi         24.6405         24.221         251.071         24.132         0.936         22.226         0.792         0.903         21.232         34.447           IMD019         Lee         34.227         32.787         71.255         32.444         0.954         0.968         2.0690         0.770         0.908         21.011         36.83         86.37         32.173         36.411         31.935         0.986         0.399         21.011         0.863         0.837         0.757         0.921         32.217         36.611         36.33         8.22         22.517         31.341         0.945         0.946         21.851         36.35         8.627         22.517                                                                                                                                                                                                         | Table 2. Cont. |        |         |        |         |        |       |       |        |       |       |        |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|---------|--------|---------|--------|-------|-------|--------|-------|-------|--------|--------|
| Xie         31.009         33.216         43.166         31.779         0.997         2.8252         0.825         0.9921         21.820         34.947           Huang         41.980         31.900         43.166         31.779         0.981         0.987         28.252         0.885         0.9921         21.822         34.447           Toossi         24.6405         24.212         251.091         24.132         0.983         0.792         0.983         27.266         0.872         0.9921         21.723         34.748           Biblioni         44.101         31.666         31.779         32.131         0.886         0.972         0.988         21.011         35.208           IMD019         Lcc         34.227         32.787         37.125         32.434         0.954         0.968         21.601         0.863         0.835         8.6.57         22.510           Nice         30.434         33.297         32.543         1.0467         0.954         0.968         0.790         0.857         0.632         32.101         35.208         1.221         34.31         0.942         1.937         32.101         35.208         1.221         34.31         0.942         1.937         32.101                                                                                                                                                                                                         | Img            | Met.   | MSE     | PSNR   | MSE3    | PSNR3  | SSIM  | MSSIM | VSNR   | VIFP  | UQI   | NQM    | WSNR   |
| Abbas         43.883         31.78         44.880         31.610         0.972         0.983         27.268         0.829         0.922         1.21.782         34.445           Toossi         246.045         24.221         25.1091         24.132         0.936         0.831         11.292         0.841         0.911         4.242         23.138           Biblioni         44.101         31.66         45.644         31.337         0.972         0.983         27.256         0.792         0.930         21.352         34.448           IMD019         Lce         34.227         32.787         37.125         32.434         0.954         0.966         23.690         0.930         17.717         32.221           Huang         44.096         31.608         47.752         31.41         0.945         0.966         0.739         0.874         17.753         32.611           Toossi         31.4691         23.152         30.173         22.433         0.876         0.790         0.663         0.887         17.753         32.611           IMD20         Lce         50.227         0.310         92.019         0.966         2.1807         0.587         1.0735         2.2515         0.883 <t< td=""><td>IMD018</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                          | IMD018         |        |         |        |         |        |       |       |        |       |       |        |        |
| Huang<br>Drossi<br>Biblioni         41.980<br>44.004         31.900<br>31.686         45.648<br>45.648         31.779<br>31.729         0.981<br>0.983         228.252<br>27.226         0.949<br>0.972         0.983<br>0.972         0.983<br>0.972         0.983<br>0.972         0.983<br>0.972         0.994<br>0.930         0.122<br>0.396         0.652<br>0.652         23.172<br>23.23         34.748           IMD019         Lee         34.227         32.787         37.125         32.434         0.954         0.998         27.226         0.908         21.101         35.203           MD019         Lee         34.227         32.787         37.125         32.434         0.954         0.998         21.001         0.662         23.172         36.610           Nice         30.434         33.297         42.538         31.841         0.954         0.999         21.001         0.665         0.652         22.540           Toossi         31.4601         23.152         30.173         22.431         0.871         0.665         0.846         18.834         32.594           IMD020         Lee         39.130         32.206         41.418         31.959         0.974         0.988         24.516         0.883         0.951         22.135         34.724           IMD020         Lee                                                                                                                      |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toossii         246.045         24.21         25.091         24.132         0.930         0.1337         0.972         0.9831         11.292         0.9441         0.911         4.24         23.138           IMD019         Lee         34.227         32.787         37.125         32.434         0.954         0.968         23.690         0.770         0.908         21.101         35.208           MD019         Lee         34.227         32.787         37.125         32.434         0.954         0.9768         23.690         0.770         0.908         21.101         35.208           Abbas         311.608         23.155         326.472         22.994         0.888         0.777         10.663         0.887         17.755         32.541           Toossi         31.4640         55.627         0.031         0.21.007         0.666         0.885         0.874         17.755         32.640           IMD20         Lee         50.23         0.813         1.899         0.974         0.986         2.4561         0.884         1.843         32.994           Toossi         17.670         6.151         1.999         9.949         0.986         2.4561         0.8451         1.428         2.                                                                                                                                                                                                              |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Biblioni         44.101         31.686         45.648         31.537         0.972         0.983         27.202         0.792         0.930         21.523         34.748           IMD019         Lee         34.227         32.787         37.125         32.434         0.954         0.968         23.600         0.770         0.908         21.101         35.203           Mabbas         31.048         23.197         42.538         31.843         0.966         0.939         21.010         0.663         0.939         17.517         32.120           Toossi         31.6491         23.152         330.173         2.943         0.873         0.790         10.693         0.587         0.739         0.874         17.755         32.540           HR:SSC         46.419         31.464         94.858         31.188         0.897         0.960         22.956         0.454         0.754         22.614         1.843         32.597           IMD020         Lee         39.130         32.206         41.18         31.959         0.974         0.988         24.516         0.883         0.951         22.135         34.724           Abbas         151.33         22.051         11.502         24.574                                                                                                                                                                                                                   |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         29.831         33.34         31.740         33.115         0.886         0.978         25.02         0.3%6         0.652         23.172         36.610           IMD019         Lee         34.227         32.787         37.125         32.434         0.954         0.966         0.370         0.090         21.101         0.563         0.630         0.930         17.517         32.120           Abbas         311.608         23.195         32.6342         22.944         0.888         0.797         10.687         0.636         0.830         8.627         22.541           Toossi         314.691         23.152         33.0172         22.943         0.873         0.790         10.698         0.797         0.864         1.755         32.544           IMD20         Lee         39.130         32.064         41.418         31.989         0.974         0.988         24.516         0.883         0.951         22.135         34.794           Abbas         151.333         26.331         157.032         26.171         0.919         0.864         13.518         0.799         0.879         11.620         24.574           Huang         40.210         32.087         42.343                                                                                                                                                                                                                       |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD019         Lee         34.227         32.787         37.125         32.434         0.954         0.968         23.690         0.770         0.908         21.101         35.203           Abbas         31.648         33.297         42.538         31.843         0.986         0.399         21.001         0.863         0.990         17.517         32.120           Toossi         31.649         23.152         30.173         22.943         0.887         0.770         0.687         0.636         0.837         0.730         0.874         17.755         32.540           Biblioni         51.861         30.982         56.277         30.631         0.921         0.946         21.897         0.750         0.561         0.846         18.834         32.964           IMD020         Lee         39.130         32.206         41.418         31.195         0.974         0.988         24.516         0.883         0.951         22.135         34.724           Nues         5.025         41.120         7.099         39.619         0.998         0.981         26.692         0.933         0.965         23.517         38.794           Toossi         15.332         0.231         157.032         25                                                                                                                                                                                                              |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie         30.434         33.297         42.538         31.843         0.986         0.979         110.00         0.866         0.930         17.517         32.120           Huang         44.906         31.608         47.752         31.341         0.945         0.960         20.866         0.779         0.663         0.838         8.627         32.541           Biblioni         51.861         30.982         56.227         30.631         0.921         0.946         21.807         0.561         0.846         18.834         22.941           IMD20         Lec         30.130         32.026         41.418         31.959         0.974         0.988         24.516         0.883         0.951         22.153         34.724           Xie         50.25         41.120         7.099         39.619         0.998         24.516         0.883         0.965         23.517         38.742           Huang         40.210         32.087         42.343         31.186         0.976         0.978         22.775         0.695         0.922         20.401         33.376           Huang         40.210         32.076         0.970         0.977         2.647         0.969         23.425         36.893<                                                                                                                                                                                                              |                |        | 29.831  | 33.384 | 31.740  | 33.115 | 0.886 | 0.978 | 25.032 | 0.396 | 0.652 | 23.172 | 36.610 |
| Abbas         311.608         23.6342         22.944         0.888         0.797         10.687         0.636         0.835         8.627         22.541           Toossi         314.601         23.152         33.0173         22.943         0.873         0.790         10.693         0.587         0.790         8.581         22.515           Biblioni         51.861         30.982         56.277         30.631         0.921         0.946         21.807         0.561         0.846         18.843         32.254           IMD020         Lee         39.130         32.206         41.418         31.959         0.974         0.988         24.516         0.883         0.951         22.135         34.744           Abbas         151.333         26.331         157.032         26.171         0.998         9.948         23.483         0.900         0.947         11.520         24.574           Toossi         157.470         26.159         163.807         25.997         0.968         23.483         0.900         0.947         12.757         0.4451         11.452         24.465           Biblioni         46.316         31.474         39.423         31.919         0.567         0.977         2.575 <td>IMD019</td> <td></td>                                                                 | IMD019         |        |         |        |         |        |       |       |        |       |       |        |        |
| Huang<br>Toossi<br>134691         23125         33131         0.945         0.960         0.0390         0.874         17.75         32.540           Bibilioni<br>HR-SSC         51.861         30.982         56.227         30.631         0.921         0.946         21.807         0.561         0.846         18.834         32.594           IMD020         Lee         39.130         32.206         14.181         31.98         0.974         0.988         24.516         0.833         0.951         22.135         34.724           Abbas         151.333         26.331         157.032         26.171         0.919         0.864         12.818         0.900         0.879         11.620         24.574           Huang         40.210         32.087         42.343         31.863         0.976         0.2891         20.65         0.976         22.475         0.665         0.4971         9.376         32.697           Ibilioni         45.316         31.747         49.423         31.192         0.956         0.3859         0.661         0.848         11.482         24.465           Bibilioni         46.316         40.233         31.92         0.957         22.777         0.661         0.848         11.482                                                                                                                                                                                                |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toossi         314.691         23.152         330.173         22.943         0.873         0.790         0.587         0.799         8.581         22.515           Biblioni         51.861         30.982         56.227         30.631         0.921         0.946         21.807         0.561         0.846         18.84         32.594           IMD020         Lee         39.130         32.206         41.418         31.188         0.897         0.960         22.956         0.454         0.754         20.611         34.265           Mbbas         151.333         26.331         157.032         26.171         0.919         0.864         3.518         0.790         0.879         11.620         24.574           Huang         40.210         32.087         42.343         31.863         0.966         23.483         0.900         0.879         11.620         24.574           IMD030         Lee         40.468         32.066         0.976         0.979         12.775         0.695         0.222         0.401         33.376           IMD030         Lee         40.468         32.066         0.970         0.977         0.967         24.675         0.933         0.917         0.861         0.9                                                                                                                                                                                                              |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Biblioni         51.861         30.982         56.227         30.631         0.921         0.946         21.807         0.561         0.846         18.84         32.594           IMD020         Lee         39.130         32.206         41.148         31.959         0.974         0.988         24.516         0.883         0.951         22.135         34.724           Abbas         51.33         25.31         157.02         26.171         0.998         0.884         13.518         0.797         1.66.40         24.571         0.887         14.243         31.863         0.976         0.986         23.483         0.900         0.947         19.376         32.999           Toossi         157.470         26.159         163.807         22.987         0.905         0.859         13.468         0.661         0.848         11.482         24.465           Bibiloni         46.316         31.474         49.423         31.192         0.857         0.967         22.515         0.833         0.693         22.956         0.6317         32.422           IMD03         Lee         40.468         32.060         0.970         0.977         2.647         0.926         2.4322         37.894           <                                                                                                                                                                                                          |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         46.419         31.464         49.458         31.188         0.897         0.960         22.956         0.454         0.754         20.611         34.265           IMD020         Lee         33.130         32.206         41.418         31.959         0.974         0.981         26.952         0.933         0.965         23.517         38.794           Abbas         151.333         26.331         157.032         26.171         0.919         0.864         23.433         0.965         23.517         38.794           Huang         40.210         32.087         42.2343         31.863         0.976         0.986         23.433         0.900         0.947         19.376         32.299           Toossi         157.470         26.137         0.387         0.967         22.515         0.383         0.693         22.956         3.6159           IMD030         Lee         40.468         32.060         40.968         32.066         0.970         0.977         2.647         0.945         18.713         32.452           Xie         4.286         41.810         61.63         40.233         0.998         0.987         26.467         0.927         0.669         2.3422         3                                                                                                                                                                                                              |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD020         Lee         39.130         32.206         41.418         31.959         0.974         0.988         24.516         0.883         0.951         22.135         34.724           Abbas         51.333         26.331         157.032         26.171         0.919         0.864         13.518         0.709         0.879         11.620         24.574           Huang         40.210         32.087         42.343         31.863         0.976         0.986         13.648         0.661         0.848         16.162         24.574           Bibiloni         46.316         21.597         42.343         31.192         0.956         0.879         13.468         0.661         0.848         16.141         14.22         24.465           Bibiloni         46.316         31.474         49.423         31.192         0.956         0.978         22.775         0.695         0.922         20.401         33.376           MD030         Lee         40.468         31.006         28.936         0.937         16.512         0.947         0.947         24.52         25.55         0.383         0.246         0.987         26.467         0.927         0.969         23.432         37.899         13.482                                                                                                                                                                                                          |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie         5025         41.120         7.099         39.619         0.998         0.984         26.952         0.933         0.965         23.517         38.794           Huang         40.210         32.087         42.343         31.863         0.976         0.986         23.483         0.090         0.947         11.620         24.574           Toossi         157.470         26.159         163.807         25.987         0.905         0.899         13.468         0.661         0.848         11.482         24.465           Biblioni         46.316         31.474         49.23         31.921         0.857         0.967         22.515         0.383         0.693         22.956         36.159           IMD030         Lee         40.468         32.060         40.968         32.066         0.970         0.977         0.861         0.945         18.713         32.458           MD033         Lee         40.468         32.060         42.848         0.938         0.915         16.712         0.743         0.897         12.657         26.939           Biblioni         36.763         32.477         39.569         32.157         0.947         0.467         0.927         0.966         2.                                                                                                                                                                                                              |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Abbas         151.333         26.331         157.032         26.171         0.919         0.886         13.518         0.709         0.879         11.620         24.579           Huang         40.210         32.087         42.343         31.863         0.976         0.986         23.483         0.900         0.947         19.376         32.999           Incossi         157.470         26.159         16.800         25.987         0.905         0.978         22.775         0.695         0.922         20.401         33.376           IMD030         Lee         40.468         32.060         0.970         0.979         19.777         0.861         0.945         18.713         32.452           Xie         4.286         41.810         6.163         40.233         0.998         0.987         26.467         0.927         0.969         23.432         37.689           Huang         36.530         32.478         30.569         32.175         0.540         0.971         2.177         0.677         0.911         0.960         21.820         0.911         0.960         21.820         0.911         0.966         21.820         0.911         0.967         2.6.457         2.6.939         31.643         <                                                                                                                                                                                                  | IMD020         |        |         |        |         |        |       |       |        |       |       |        |        |
| Huang<br>Toossi         40.210         32.087         42.343         31.863         0.976         0.986         23.483         0.900         0.947         19.376         32.999           Biblioni         46.316         31.474         49.423         31.192         0.956         0.978         22.775         0.669         0.922         20.401         33.376           IMD030         Lee         40.468         32.060         40.968         32.006         0.970         0.979         19.777         0.861         0.945         18.713         32.452           Xie         4.266         41.810         6.163         40.233         0.999         0.987         26.467         0.927         0.997         33.576           Abbas         81.085         22.041         83.086         28.936         0.938         0.915         16.712         0.743         0.897         12.585         26.889           Huang         36.536         32.477         39.569         32.157         0.925         0.908         16.518         0.697         0.867         12.657         26.939           Biblioni         36.763         32.477         39.569         33.73         0.947         0.968         21.830         0.757                                                                                                                                                                                                             |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toossi         157470         26.19         163.807         25.987         0.905         0.879         13.468         0.661         0.848         11.482         24.465           Bibiloni         46.316         31.474         49.423         31.192         0.956         0.978         22.775         0.695         0.922         20.401         33.376           IMD030         Lee         40.468         32.060         40.968         32.006         0.970         0.979         19.777         0.861         0.945         18.713         32.452           Xie         4.286         41.810         6.163         40.233         0.998         0.987         26.467         0.927         0.969         23.432         37.889           Abbas         81.085         29.041         83.086         28.936         0.938         0.915         16.712         0.743         0.897         12.657         26.939           Bibiloni         35.764         32.477         0.925         0.988         21.820         0.911         0.960         22.087         36.43           Toossi         84.981         28.838         87.182         28.727         0.926         0.948         21.837         0.867         12.657 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Biblioni         46.316         31.474         49.423         31.192         0.956         0.978         22.775         0.695         0.922         20.401         33.376           IMD030         Lee         40.468         32.060         40.968         32.006         0.970         0.979         19.777         0.861         0.945         18.713         32.452           Abbas         81.085         29.041         83.086         28.936         0.938         0.987         26.467         0.969         23.432         37.889           Huang         36.56         32.504         86.838         22.468         0.982         0.986         21.820         0.911         0.960         20.087         33.643           Toossi         84.981         28.838         87.182         28.727         0.925         0.908         21.820         0.911         0.960         20.877         35.643           Bibiloni         36.763         32.477         39.559         32.157         0.954         0.971         21.777         0.675         0.913         19.905         33.504           IMD03         Lee         24.454         34.247         26.046         33.973         0.901         16.937         0.245                                                                                                                                                                                                                   |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         39.242         32.193         41.779         31.921         0.857         0.967         22.515         0.383         0.693         22.956         36.159           IMD030         Lee         40.468         32.060         40.968         32.066         0.970         0.979         19.777         0.861         0.945         18.713         32.452           Xie         4.286         41.810 <b>61.63</b> 40.233         0.998         26.467         0.927         0.969         23.432         37.889           Abbas         81.085         29.041         83.086         28.936         0.987         26.467         0.927         0.969         23.432         37.889           Huang         36.536         32.504         36.838         32.468         0.982         0.986         21.820         0.911         0.960         20.087         33.643           Toossi         84.981         28.838         87.182         28.727         0.925         0.908         12.677         0.675         0.913         19.905         33.500           IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.830         0.757         0                                                                                                                                                                                                                         |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD030         Lee         40.468         32.060         40.968         32.006         0.970         0.979         19.777         0.861         0.945         18.713         32.452           Xie         4286         41.810         6.163         40.233         0.998         0.987         26.467         0.927         0.969         23.432         37.889           Abbas         81.085         29.041         83.086         28.936         0.938         0.915         16.712         0.743         0.897         12.585         26.889           Huang         36.536         32.504         36.838         87.182         28.727         0.926         21.820         0.911         0.960         20.087         33.643           Toossi         84.981         28.838         87.182         28.727         0.927         0.906         16.518         0.607         0.867         12.657         26.939           Biblioni         36.763         32.477         39.569         32.157         0.971         21.777         0.675         0.913         19.905         33.500           IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.030         0                                                                                                                                                                                                              |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie         4.286         41.810         6.163         40.233         0.998         0.987         26.467         0.927         0.969         23.432         37.889           Abbas         81.085         29.041         83.086         28.936         0.915         16.712         0.743         0.897         12.585         26.889           Huang         36.536         32.504         36.838         82.468         0.982         0.986         21.820         0.911         0.960         20.087         33.643           Toossi         84.981         28.838         87.182         28.727         0.925         0.908         16.518         0.697         0.867         12.657         26.939           Bibiloni         36.763         32.477         39.569         32.157         0.947         0.945         0.421         0.462         17.583         30.504           IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.830         0.757         0.907         20.112         36.196           Abbas         189.799         25.348         194.689         25.237         0.901         0.855         12.821         0.823         6.918 <td< td=""><td></td><td>HR-SSC</td><td>39.242</td><td>32.193</td><td>41.779</td><td>31.921</td><td>0.857</td><td>0.967</td><td>22.515</td><td>0.383</td><td>0.693</td><td>22.956</td><td>36.159</td></td<>           |                | HR-SSC | 39.242  | 32.193 | 41.779  | 31.921 | 0.857 | 0.967 | 22.515 | 0.383 | 0.693 | 22.956 | 36.159 |
| Abbas         81.085         29.041         83.086         28.936         0.982         0.986         16.712         0.743         0.897         12.585         26.889           Huang         36.536         32.04         86.888         23.2468         0.982         0.986         21.820         0.911         0.960         20.087         33.643           Joossi         84.981         28.838         87.182         28.727         0.925         0.908         16.518         0.697         0.867         12.657         26.939           Bibiloni         36.763         32.477         39.569         32.157         0.954         0.971         21.777         0.675         0.913         19.905         33.500           IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.830         0.757         0.907         20.112         36.166           Abbas         189.799         25.348         194.689         25.237         0.901         0.855         12.471         0.662         0.853         6.665         23.295           Huang         18.819         35.385         19.675         35.192         0.956         0.966         22.401                                                                                                                                                                                                                  | IMD030         | Lee    | 40.468  | 32.060 | 40.968  | 32.006 | 0.970 | 0.979 | 19.777 | 0.861 | 0.945 | 18.713 | 32.452 |
| Huang<br>Toossi         36.536         32.504         36.838         32.468         0.982         0.986         21.820         0.911         0.960         20.087         33.643           Bibiloni         36.763         32.477         39.569         32.157         0.925         0.908         16.518         0.697         0.867         12.657         26.939           Bibiloni         36.763         32.477         39.569         32.157         0.971         21.777         0.675         0.911         10.960         20.867         33.500           IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.830         0.757         0.907         20.112         36.196           Xie         22.402         34.628         31.323         33.172         0.995         0.958         20.109         0.915         0.952         13.498         30.916           Abbas         189.799         25.348         19.4689         25.237         0.901         0.852         12.471         0.662         0.823         7.391         23.295           Huang         18.819         35.385         19.675         35.192         0.956         0.966         22.401                                                                                                                                                                                                       |                |        |         | 41.810 | 6.163   |        | 0.998 | 0.987 | 26.467 | 0.927 | 0.969 | 23.432 | 37.889 |
| Toossi         84.981         28.838         87.182         28.727         0.925         0.908         16.518         0.697         0.867         12.657         26.939           HR-SSC         63.601         30.096         68.802         29.755         0.782         0.901         16.937         0.245         0.462         17.583         30.554           IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.830         0.757         0.907         20.112         36.196           Xie         22.402         34.628         31.323         33.172         0.995         0.958         20.109         0.915         0.952         13.498         30.916           Abbas         189.799         25.348         194.689         25.237         0.901         0.855         12.471         0.662         0.853         6.665         23.295           Huang         18.819         35.385         19.675         35.192         0.956         0.966         22.401         0.823         7.391         23.923           Biblioni         69.269         29.725         73.560         29.464         0.902         19.19280         0.264         0.552                                                                                                                                                                                                                  |                | Abbas  | 81.085  | 29.041 | 83.086  | 28.936 | 0.938 | 0.915 | 16.712 | 0.743 | 0.897 | 12.585 | 26.889 |
| Bibiloni<br>HR-SSC         36.763<br>63.601         32.477<br>30.966         39.569<br>68.802         32.157<br>29.755         0.954<br>0.782         0.971<br>0.901         21.777<br>16.937         0.675<br>0.245         0.462         17.583         33.500           IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.830         0.757         0.907         20.112         36.196           Xie         22.402         34.628         31.323         33.172         0.995         0.958         20.109         0.915         0.952         13.498         30.916           Abbas         189.799         25.348         194.689         25.237         0.901         0.855         12.471         0.662         0.853         6.665         23.295           Huang         18.819         35.385         19.675         35.192         0.956         0.966         22.401         0.828         0.918         18.761         35.305           Toossi         169.486         25.839         174.635         25.709         0.890         0.852         12.952         0.624         0.823         7.391         23.923           Bibiloni         69.269         29.725         7.75.61         30.679         0.                                                                                                                                                        |                |        |         |        |         |        |       |       |        | 0.911 |       | 20.087 |        |
| HR-SSC         63.601         30.096         68.802         29.755         0.782         0.901         16.937         0.245         0.462         17.583         30.554           IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.830         0.757         0.907         20.112         36.196           Abbas         189.799         25.348         194.689         25.237         0.901         0.855         12.471         0.662         0.853         6.665         23.295           Huang         18.819         35.385         19.675         35.192         0.956         0.966         22.401         0.828         0.918         18.761         35.305           Toossi         169.486         25.839         174.635         25.709         0.890         0.852         12.952         0.624         0.823         7.391         23.923           Bibiloni         69.269         29.725         73.560         29.464         0.902         0.910         16.689         0.466         0.815         11.935         28.549           MR-SSC         50.811         31.071         55.613         30.679         0.816         0.921         19.280                                                                                                                                                                                                               |                |        |         |        |         |        |       |       |        |       |       |        | 26.939 |
| IMD033         Lee         24.454         34.247         26.046         33.973         0.947         0.968         21.830         0.757         0.907         20.112         36.196           Abbas         189.799         25.348         194.689         25.237         0.901         0.855         12.471         0.662         0.853         6.665         23.295           Huang         18.819         35.385         19.675         35.192         0.956         0.966         22.401         0.828         0.918         18.761         35.305           Toossi         169.486         25.839         174.635         25.709         0.890         0.852         12.952         0.624         0.823         7.391         23.923           Bibiloni         69.269         29.725         73.560         29.464         0.902         0.910         16.689         0.646         0.815         11.935         28.549           HR-SSC         50.811         31.071         55.613         30.679         0.816         0.921         19.280         0.264         0.552         17.666         33.302           IMD044         Lee         49.270         31.205         47.786         31.338         0.927         0.943                                                                                                                                                                                                                  |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie         22.402         34.628         31.323         33.172         0.995         0.958         20.109         0.915         0.952         13.498         30.916           Abbas         189.799         25.348         194.689         25.237         0.901         0.855         12.471         0.662         0.853         6.665         23.295           Huang         18.819         35.385         19.675         35.192         0.956         0.966         22.401         0.828         0.918         18.761         35.305           Toossi         169.486         25.839         174.635         25.709         0.890         0.852         12.952         0.624         0.823         7.391         23.923           Bibiloni         69.269         29.725         73.560         29.464         0.902         0.910         16.689         0.466         0.815         11.935         28.549           HR-SSC         50.811         31.071         55.613         30.679         0.816         0.921         19.280         0.264         0.552         17.666         33.302           IMD044         Lee         49.270         31.205         47.786         31.338         0.927         0.943         16.197                                                                                                                                                                                                                  |                | HR-SSC | 63.601  | 30.096 | 68.802  | 29.755 | 0.782 | 0.901 | 16.937 | 0.245 | 0.462 | 17.583 | 30.554 |
| Abbas         189.799         25.348         194.689         25.237         0.901         0.855         12.471         0.662         0.853         6.665         23.295           Huang         18.819         35.385         19.675         35.192         0.956         0.966         22.401         0.828         0.918         18.761         35.305           Toossi         169.486         25.839         174.635         25.709         0.890         0.852         12.952         0.624         0.823         7.391         23.923           Bibiloni         69.269         29.725         73.560         29.464         0.902         0.910         16.689         0.466         0.815         11.935         28.549           HR-SSC         50.811         31.071         55.613         30.679         0.816         0.921         19.280         0.264         0.552         17.666         33.302           IMD044         Lee         49.270         31.205         47.786         31.338         0.927         0.943         16.197         0.684         0.890         14.864         27.824           Abbas         39.651         32.148         39.209         32.197         0.955         0.945         7.650                                                                                                                                                                                                                 | IMD033         |        |         | 34.247 | 26.046  |        |       |       | 21.830 | 0.757 |       | 20.112 |        |
| Huang<br>Toossi         18.819         35.385         19.675         35.192         0.956         0.966         22.401         0.828         0.918         18.761         35.305           Bibiloni         69.269         29.725         73.560         29.464         0.902         0.910         16.689         0.466         0.815         11.935         28.549           HR-SSC         50.811         31.071         55.613         30.679         0.816         0.921         19.280         0.264         0.552         17.666         33.302           IMD044         Lee         49.270         31.205         47.786         31.338         0.927         0.943         16.197         0.684         0.890         14.864         27.824           Xie         7.508         39.376         10.183         38.052         0.998         0.980         23.052         0.924         0.973         18.344         32.600           Abbas         39.651         32.148         39.209         32.197         0.955         0.945         17.653         0.790         0.934         13.447         27.292           Toossi         44.653         31.632         44.317         31.665         0.941         0.938         17.253                                                                                                                                                                                                           |                | Xie    | 22.402  | 34.628 | 31.323  | 33.172 | 0.995 | 0.958 | 20.109 | 0.915 | 0.952 | 13.498 |        |
| Toossi169.48625.839174.63525.7090.8900.85212.9520.6240.8237.39123.923Bibiloni69.26929.72573.56029.4640.9020.91016.6890.4660.81511.93528.549HR-SSC50.81131.07155.61330.6790.8160.92119.2800.2640.55217.66633.302IMD044Lee49.27031.20547.78631.3380.9270.94316.1970.6840.89014.86427.824Xie7.50839.37610.18338.0520.9980.98023.0520.9240.97318.34432.600Abbas39.65132.14839.20932.1970.9550.94517.6530.7900.93413.44727.293Huang73.35429.47771.51029.5870.8910.90114.1200.5940.81312.37225.252Toossi44.65331.63244.31731.6650.9410.93817.2530.7340.91113.25026.963Bibiloni124.03427.195127.43927.0780.7640.82912.4160.2210.56211.71922.787HR-SSC214.18324.823214.14724.8240.6710.71810.4980.1420.3428.44519.567IMD050Lee21.35534.83621.80734.7450.9760.98420.0820.8600.93019.013 </td <td></td> <td>Abbas</td> <td></td> <td></td> <td>194.689</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Abbas  |         |        | 194.689 |        |       |       |        |       |       |        |        |
| Bibiloni<br>HR-SSC         69.269<br>50.811         29.725<br>31.071         73.560<br>55.613         29.464<br>30.679         0.902<br>0.816         0.901<br>0.921         16.689<br>19.280         0.466<br>0.264         0.815<br>0.552         11.935<br>17.666         28.549<br>33.302           IMD044         Lee         49.270         31.205         47.786         31.338         0.927         0.943         16.197         0.684         0.890         14.864         27.824           Xie         7.508         39.376         10.183         38.052         0.998         0.980         23.052         0.924         0.973         18.344         32.600           Abbas         39.651         32.148         39.209         32.197         0.955         0.945         17.653         0.790         0.934         13.447         27.293           Huang         73.354         29.477         71.510         29.587         0.891         0.901         14.120         0.594         0.813         12.372         25.252           Toossi         44.653         31.632         44.317         31.665         0.941         0.938         17.253         0.734         0.911         13.250         26.963           Bibiloni         124.034         27.195         127.439         27.078 </td <td></td> |                |        |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         50.811         31.071         55.613         30.679         0.816         0.921         19.280         0.264         0.552         17.666         33.302           IMD044         Lee         49.270         31.205         47.786         31.338         0.927         0.943         16.197         0.684         0.890         14.864         27.824           Xie         7.508         39.376         10.183         38.052         0.998         0.980         23.052         0.924         0.973         18.344         32.600           Abbas         39.651         32.148         39.209         32.197         0.955         0.945         17.653         0.790         0.934         13.447         27.293           Huang         73.354         29.477         71.510         29.587         0.891         0.901         14.120         0.594         0.813         12.372         25.252           Toossi         44.653         31.632         44.317         31.665         0.941         0.938         17.253         0.734         0.911         13.250         26.963           Bibiloni         124.034         27.195         127.439         27.078         0.764         0.829         12.416                                                                                                                                                                                                                   |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD044         Lee         49.270         31.205         47.786         31.338         0.927         0.943         16.197         0.684         0.890         14.864         27.824           Xie         7.508         39.376         10.183         38.052         0.998         0.980         23.052         0.924         0.973         18.344         32.600           Abbas         39.651         32.148         39.209         32.197         0.955         0.945         17.653         0.790         0.934         13.447         27.293           Huang         73.354         29.477         71.510         29.587         0.891         0.901         14.120         0.594         0.813         12.372         25.252           Toossi         44.653         31.632         44.317         31.665         0.941         0.938         17.253         0.734         0.911         13.250         26.963           Bibiloni         124.034         27.195         127.439         27.078         0.764         0.829         12.416         0.221         0.562         11.719         22.787           HR-SSC         214.183         24.823         214.147         24.824         0.671         0.718         10.498                                                                                                                                                                                                                 |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Xie         7.508         39.376         10.183         38.052         0.998         0.980         23.052         0.924         0.973         18.344         32.600           Abbas         39.651         32.148         39.209         32.197         0.955         0.945         17.653         0.790         0.934         13.447         27.293           Huang         73.354         29.477         71.510         29.587         0.891         0.901         14.120         0.594         0.813         12.372         25.252           Toossi         44.653         31.632         44.317         31.665         0.941         0.938         17.253         0.734         0.911         13.250         26.963           Bibiloni         124.034         27.195         127.439         27.078         0.764         0.829         12.416         0.221         0.562         11.719         22.787           HR-SSC         214.183         24.823         214.147         24.824         0.671         0.718         10.498         0.142         0.342         8.445         19.567           IMD050         Lee         21.355         34.836         21.807         34.745         0.976         0.984         20.082                                                                                                                                                                                                                  |                | HR-SSC | 50.811  | 31.071 | 55.613  | 30.679 | 0.816 | 0.921 | 19.280 | 0.264 | 0.552 | 17.666 | 33.302 |
| Abbas         39.651         32.148         39.209         32.197         0.955         0.945         17.653         0.790         0.934         13.447         27.293           Huang         73.354         29.477         71.510         29.587         0.891         0.901         14.120         0.594         0.813         12.372         25.252           Toossi         44.653         31.632         44.317         31.665         0.941         0.938         17.253         0.734         0.911         13.250         26.963           Bibiloni         124.034         27.195         127.439         27.078         0.764         0.829         12.416         0.221         0.562         11.719         22.787           HR-SSC         214.183         24.823         214.147         24.824         0.671         0.718         10.498         0.142         0.342         8.445         19.567           IMD050         Lee         21.355         34.836         21.807         34.745         0.976         0.984         20.082         0.860         0.930         19.013         33.138           Xie <b>5.561</b> 40.680         7.855         39.179         0.998         0.970         25.606                                                                                                                                                                                                                            | IMD044         |        | 49.270  | 31.205 | 47.786  | 31.338 |       | 0.943 | 16.197 | 0.684 | 0.890 | 14.864 | 27.824 |
| Huang<br>Toossi         73.354         29.477         71.510         29.587         0.891         0.901         14.120         0.594         0.813         12.372         25.252           Toossi         44.653         31.632         44.317         31.665         0.941         0.938         17.253         0.734         0.911         13.250         26.963           Bibiloni         124.034         27.195         127.439         27.078         0.764         0.829         12.416         0.221         0.562         11.719         22.787           HR-SSC         214.183         24.823         214.147         24.824         0.671         0.718         10.498         0.142         0.342         8.445         19.567           IMD050         Lee         21.355         34.836         21.807         34.745         0.976         0.984         20.082         0.860         0.930         19.013         33.138           Xie <b>5.561 40.680 7.855 39.179</b> 0.998         0.970 <b>25.606 0.874</b> 0.934         19.433         36.204           Abbas         121.210         27.295         122.357         27.255         0.930         0.838 <td< td=""><td></td><td>Xie</td><td>7.508</td><td>39.376</td><td>10.183</td><td>38.052</td><td>0.998</td><td>0.980</td><td>23.052</td><td>0.924</td><td>0.973</td><td>18.344</td><td></td></td<>                                                                       |                | Xie    | 7.508   | 39.376 | 10.183  | 38.052 | 0.998 | 0.980 | 23.052 | 0.924 | 0.973 | 18.344 |        |
| Toossi         44.653         31.632         44.317         31.665         0.941         0.938         17.253         0.734         0.911         13.250         26.963           Bibiloni         124.034         27.195         127.439         27.078         0.764         0.829         12.416         0.221         0.562         11.719         22.787           HR-SSC         214.183         24.823         214.147         24.824         0.671         0.718         10.498         0.142         0.342         8.445         19.567           IMD050         Lee         21.355         34.836         21.807         34.745         0.976         0.984         20.082         0.860         0.930         19.013         33.138           Xie <b>5.561 40.680 7.855 39.179</b> 0.998         0.970 <b>25.606 0.874</b> 0.934         19.433         36.204           Abbas         121.210         27.295         122.357         27.255         0.930         0.838         12.242         0.790         0.895         7.594         23.528           Huang         10.580         37.886         11.262         37.615         0.965         0.979         23.658<                                                                                                                                                                                                                                                                   |                |        | 39.651  | 32.148 | 39.209  |        |       | 0.945 | 17.653 | 0.790 | 0.934 | 13.447 |        |
| Bibiloni         124.034         27.195         127.439         27.078         0.764         0.829         12.416         0.221         0.562         11.719         22.787           HR-SSC         214.183         24.823         214.147         24.824         0.671         0.718         10.498         0.142         0.342         8.445         19.567           IMD050         Lee         21.355         34.836         21.807         34.745         0.976         0.984         20.082         0.860         0.930         19.013         33.138           Xie <b>5.561 40.680 7.855 39.179 0.998</b> 0.970 <b>25.606 0.874 0.934</b> 19.433 <b>36.204</b> Abbas         121.210         27.295         122.357         27.255         0.930         0.838         12.242         0.790         0.895         7.594         23.528           Huang         10.580         37.886         11.262         37.615         0.965 <b>0.979</b> 23.658         0.821         0.915         19.415         35.929           Toossi         120.022         27.338         121.174         27.297         0.927         0.837         <                                                                                                                                                                                                                                                                                                           |                | Huang  |         |        |         |        |       |       |        |       |       |        |        |
| HR-SSC         214.183         24.823         214.147         24.824         0.671         0.718         10.498         0.142         0.342         8.445         19.567           IMD050         Lee         21.355         34.836         21.807         34.745         0.976         0.984         20.082         0.860         0.930         19.013         33.138           Xie <b>5.561 40.680 7.855 39.179 0.998</b> 0.970 <b>25.606 0.874 0.934</b> 19.433 <b>36.204</b> Abbas         121.210         27.295         122.357         27.255         0.930         0.838         12.242         0.790         0.895         7.594         23.528           Huang         10.580         37.886         11.262         37.615         0.965 <b>0.979</b> 23.658         0.821         0.915         19.415         35.929           Toossi         120.022         27.338         121.174         27.297         0.927         0.837         12.359         0.769         0.886         7.647         23.580           Bibiloni         37.044         32.444         40.803         32.024         0.969         0.971                                                                                                                                                                                                                                                                                                                        |                |        |         |        |         |        |       |       |        |       |       |        |        |
| IMD050         Lee         21.355         34.836         21.807         34.745         0.976         0.984         20.082         0.860         0.930         19.013         33.138           Xie <b>5.561 40.680 7.855 39.179 0.998</b> 0.970 <b>25.606 0.874 0.934</b> 19.433 <b>36.204</b> Abbas         121.210         27.295         122.357         27.255         0.930         0.838         12.242         0.790         0.895         7.594         23.528           Huang         10.580         37.886         11.262         37.615         0.965 <b>0.979</b> 23.658         0.821         0.915         19.415         35.929           Toossi         120.022         27.338         121.174         27.297         0.927         0.837         12.359         0.769         0.886         7.647         23.580           Bibiloni         37.044         32.444         40.803         32.024         0.969         0.971         18.740         0.817         0.920         16.150         30.032                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |        | 124.034 |        |         |        |       |       | 12.416 |       |       | 11.719 |        |
| Xie5.56140.6807.85539.1790.9980.97025.6060.8740.93419.43336.204Abbas121.21027.295122.35727.2550.9300.83812.2420.7900.8957.59423.528Huang10.58037.88611.26237.6150.9650.97923.6580.8210.91519.41535.929Toossi120.02227.338121.17427.2970.9270.83712.3590.7690.8867.64723.580Bibiloni37.04432.44440.80332.0240.9690.97118.7400.8170.92016.15030.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | HR-SSC | 214.183 | 24.823 | 214.147 | 24.824 | 0.671 | 0.718 | 10.498 | 0.142 | 0.342 | 8.445  | 19.567 |
| Xie5.56140.6807.85539.1790.9980.97025.6060.8740.93419.43336.204Abbas121.21027.295122.35727.2550.9300.83812.2420.7900.8957.59423.528Huang10.58037.88611.26237.6150.9650.97923.6580.8210.91519.41535.929Toossi120.02227.338121.17427.2970.9270.83712.3590.7690.8867.64723.580Bibiloni37.04432.44440.80332.0240.9690.97118.7400.8170.92016.15030.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IMD050         | Lee    | 21.355  | 34.836 | 21.807  | 34.745 | 0.976 | 0.984 | 20.082 | 0.860 | 0.930 | 19.013 | 33.138 |
| Abbas121.21027.295122.35727.2550.9300.83812.2420.7900.8957.59423.528Huang10.58037.88611.26237.6150.965 <b>0.979</b> 23.6580.8210.91519.41535.929Toossi120.02227.338121.17427.2970.9270.83712.3590.7690.8867.64723.580Bibiloni37.04432.44440.80332.0240.9690.97118.7400.8170.92016.15030.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |         |        | 7.855   |        |       | 0.970 |        |       |       |        | 36.204 |
| Huang10.58037.88611.26237.6150.9650.97923.6580.8210.91519.41535.929Toossi120.02227.338121.17427.2970.9270.83712.3590.7690.8867.64723.580Bibiloni37.04432.44440.80332.0240.9690.97118.7400.8170.92016.15030.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |        |         |        |         |        |       |       |        |       |       |        |        |
| Toossi 120.022 27.338 121.174 27.297 0.927 0.837 12.359 0.769 0.886 7.647 23.580<br>Bibiloni 37.044 32.444 40.803 32.024 0.969 0.971 18.740 0.817 0.920 16.150 30.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |        |         | 37.886 |         |        |       |       |        |       |       |        |        |
| Bibiloni 37.044 32.444 40.803 32.024 0.969 0.971 18.740 0.817 0.920 16.150 30.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 0      |         |        |         |        | 0.927 | 0.837 | 12.359 | 0.769 | 0.886 |        | 23.580 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |        | 37.044  |        | 40.803  | 32.024 | 0.969 |       | 18.740 | 0.817 | 0.920 | 16.150 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | HR-SSC | 28.878  | 33.525 | 32.355  | 33.031 | 0.893 | 0.964 | 22.466 | 0.344 | 0.632 | 20.099 | 34.948 |

Table 2. Cont.

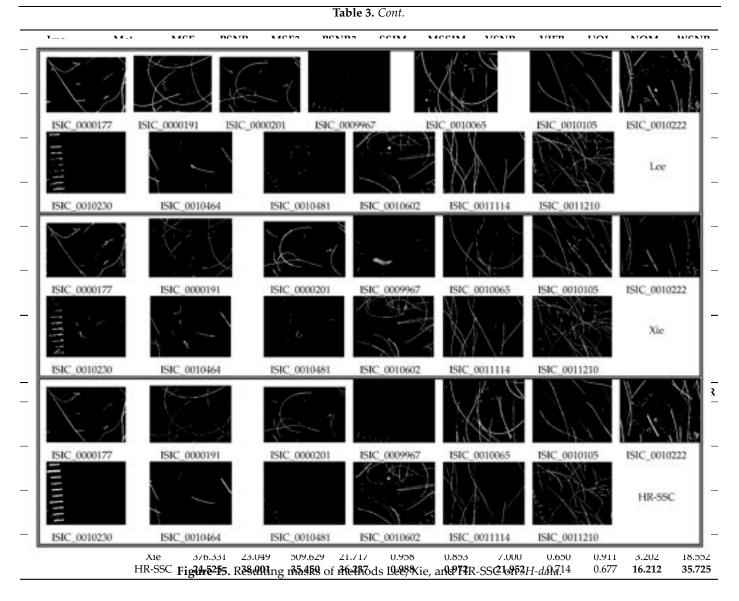

| Img    | Met.     | MSE     | PSNR   | MSE3    | PSNR3  | SSIM  | MSSIM | VSNR   | VIFP  | UQI   | NQM    | WSNR   |
|--------|----------|---------|--------|---------|--------|-------|-------|--------|-------|-------|--------|--------|
| IMD061 | Lee      | 199.214 | 25.138 | 197.816 | 25.168 | 0.918 | 0.934 | 15.841 | 0.705 | 0.881 | 14.097 | 24.753 |
|        | Xie      | 13.371  | 36.869 | 18.984  | 35.347 | 0.994 | 0.973 | 25.671 | 0.915 | 0.962 | 21.197 | 32.801 |
|        | Abbas    | 231.503 | 24.485 | 238.370 | 24.358 | 0.869 | 0.848 | 17.243 | 0.568 | 0.811 | 12.035 | 22.788 |
|        | Huang    | 92.491  | 28.470 | 92.932  | 28.449 | 0.965 | 0.979 | 19.645 | 0.871 | 0.939 | 17.979 | 28.910 |
|        | Toossi   | 230.406 | 24.506 | 237.676 | 24.371 | 0.853 | 0.839 | 17.117 | 0.526 | 0.778 | 11.960 | 22.729 |
|        | Bibiloni | 125.200 | 27.155 | 127.409 | 27.079 | 0.919 | 0.937 | 18.203 | 0.551 | 0.875 | 15.407 | 26.464 |
|        | HR-SSC   | 120.609 | 27.317 | 126.001 | 27.127 | 0.760 | 0.895 | 21.122 | 0.254 | 0.535 | 19.579 | 28.808 |
| IMD063 | Lee      | 62.239  | 30.190 | 60.750  | 30.295 | 0.984 | 0.977 | 16.040 | 0.902 | 0.959 | 18.381 | 27.253 |
|        | Xie      | 6.407   | 40.064 | 9.620   | 38.299 | 0.996 | 0.982 | 27.252 | 0.931 | 0.968 | 22.772 | 33.216 |
|        | Abbas    | 88.233  | 28.674 | 89.376  | 28.619 | 0.961 | 0.937 | 15.611 | 0.820 | 0.927 | 14.729 | 24.462 |
|        | Huang    | 67.139  | 29.861 | 65.432  | 29.973 | 0.975 | 0.975 | 15.731 | 0.871 | 0.937 | 16.992 | 26.398 |
|        | Toossi   | 94.791  | 28.363 | 95.625  | 28.325 | 0.954 | 0.934 | 15.164 | 0.784 | 0.909 | 14.397 | 24.068 |
|        | Bibiloni | 63.394  | 30.110 | 63.387  | 30.111 | 0.972 | 0.977 | 16.033 | 0.778 | 0.937 | 18.206 | 27.103 |
|        | HR-SSC   | 37.731  | 32.364 | 41.061  | 31.997 | 0.880 | 0.963 | 25.120 | 0.395 | 0.671 | 20.784 | 30.350 |
| IMD075 | Lee      | 84.834  | 28.845 | 86.173  | 28.777 | 0.979 | 0.983 | 16.386 | 0.880 | 0.951 | 15.894 | 27.734 |
|        | Xie      | 4.125   | 41.977 | 5.986   | 40.359 | 0.999 | 0.986 | 27.081 | 0.932 | 0.969 | 23.102 | 37.372 |
|        | Abbas    | 123.562 | 27.212 | 123.997 | 27.197 | 0.951 | 0.917 | 14.234 | 0.803 | 0.920 | 11.946 | 24.537 |
|        | Huang    | 92.738  | 28.458 | 93.963  | 28.401 | 0.970 | 0.977 | 15.607 | 0.851 | 0.934 | 14.744 | 26.916 |
|        | Toossi   | 131.867 | 26.929 | 132.950 | 26.894 | 0.942 | 0.913 | 13.898 | 0.762 | 0.897 | 11.703 | 24.251 |
|        | Bibiloni | 77.560  | 29.234 | 79.014  | 29.154 | 0.976 | 0.982 | 16.953 | 0.825 | 0.949 | 16.059 | 28.034 |
|        | HR-SSC   | 42.993  | 31.797 | 46.676  | 31.440 | 0.829 | 0.944 | 21.012 | 0.286 | 0.539 | 19.158 | 32.117 |
| -      |          |         |        |         |        |       |       |        |       |       |        |        |

Table 2. Cont.

**Table 3.** Quality evaluation of the results on the *sHSim-data*—best results are in bold.

| Img          | Met.   | MSE     | PSNR   | MSE3    | PSNR3  | SSIM  | MSSIM | VSNR   | VIFP  | UQI   | NQM    | WSNR   |
|--------------|--------|---------|--------|---------|--------|-------|-------|--------|-------|-------|--------|--------|
| ISIC_0000040 | Lee    | 284.167 | 23.595 | 378.463 | 22.351 | 0.976 | 0.952 | 8.877  | 0.712 | 0.916 | 0.702  | 19.995 |
|              | Xie    | 184.397 | 25.473 | 295.277 | 23.429 | 0.977 | 0.874 | 3.327  | 0.562 | 0.923 | 2.318  | 19.575 |
|              | HR-SSC | 114.313 | 27.550 | 158.448 | 26.132 | 0.982 | 0.985 | 8.688  | 0.697 | 0.611 | 15.389 | 31.447 |
| ISIC_0000096 | Lee    | 8.604   | 38.784 | 13.237  | 36.913 | 0.997 | 0.983 | 16.692 | 0.905 | 0.956 | 14.830 | 36.493 |
|              | Xie    | 164.330 | 25.974 | 236.750 | 24.388 | 0.985 | 0.917 | 3.736  | 0.818 | 0.950 | 2.842  | 21.224 |
|              | HR-SSC | 5.160   | 41.005 | 12.589  | 37.131 | 0.996 | 0.961 | 20.198 | 0.716 | 0.614 | 16.606 | 39.021 |
| ISIC_0000184 | Lee    | 26.720  | 33.862 | 39.355  | 32.181 | 0.995 | 0.959 | 20.266 | 0.815 | 0.915 | 16.444 | 31.995 |
|              | Xie    | 391.069 | 22.208 | 580.441 | 20.493 | 0.966 | 0.848 | 9.115  | 0.711 | 0.903 | 4.434  | 17.907 |
|              | HR-SSC | 12.844  | 37.044 | 19.339  | 35.267 | 0.995 | 0.966 | 24.759 | 0.728 | 0.801 | 19.208 | 34.899 |
| ISIC_0000257 | Lee    | 14.885  | 36.403 | 20.021  | 35.116 | 0.993 | 0.974 | 14.336 | 0.750 | 0.922 | 10.323 | 32.190 |
|              | Xie    | 244.908 | 24.241 | 326.325 | 22.994 | 0.966 | 0.854 | 1.574  | 0.528 | 0.911 | 1.219  | 17.999 |
|              | HR-SSC | 1.094   | 47.739 | 1.910   | 45.320 | 0.998 | 0.994 | 31.166 | 0.845 | 0.652 | 23.113 | 46.466 |
| ISIC_0000410 | Lee    | 11.893  | 37.378 | 16.306  | 36.007 | 0.989 | 0.986 | 14.863 | 0.831 | 0.957 | 12.455 | 33.225 |
|              | Xie    | 138.029 | 26.731 | 186.638 | 25.421 | 0.975 | 0.923 | 3.274  | 0.690 | 0.953 | 3.516  | 21.231 |
|              | HR-SSC | 2.346   | 44.427 | 4.869   | 41.257 | 0.971 | 0.976 | 22.008 | 0.620 | 0.354 | 20.210 | 41.823 |
| ISIC_0010503 | Lee    | 14.655  | 36.471 | 21.322  | 34.843 | 0.987 | 0.970 | 18.175 | 0.771 | 0.923 | 15.295 | 33.283 |
|              | Xie    | 209.160 | 24.926 | 297.527 | 23.396 | 0.961 | 0.877 | 5.627  | 0.644 | 0.913 | 3.655  | 19.156 |
|              | HR-SSC | 3.716   | 42.430 | 5.489   | 40.736 | 0.992 | 0.987 | 27.291 | 0.673 | 0.646 | 21.392 | 39.927 |
| ISIC_0006982 | Lee    | 4.379   | 41.717 | 6.318   | 40.125 | 0.997 | 0.991 | 17.597 | 0.896 | 0.968 | 17.799 | 39.600 |
|              | Xie    | 78.818  | 29.165 | 106.018 | 27.877 | 0.990 | 0.950 | 3.448  | 0.840 | 0.957 | 4.028  | 23.575 |
|              | HR-SSC | 15.341  | 36.272 | 23.827  | 34.360 | 0.990 | 0.947 | 10.670 | 0.479 | 0.342 | 8.234  | 32.009 |

## Appl. Sci. 2021, 11, x FOR PEER REVIEW



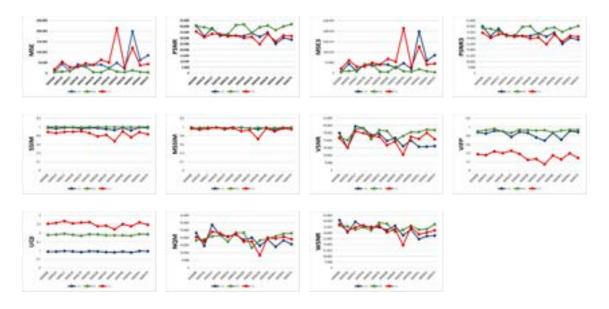



Figure 16. Trends of quality measures on H13Sim-data for the methods Lee, Xie, and HR-SSC.

# 23 of 27

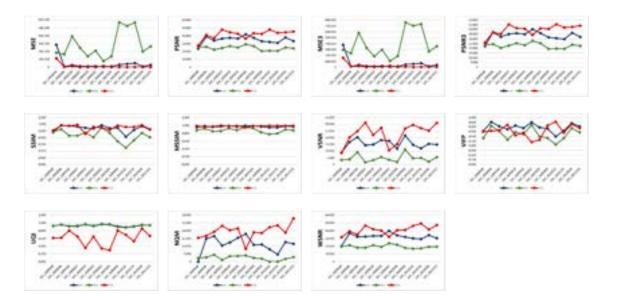



Figure 17: Frends of quality measures on sHSim-data for the methods Lee; Xie; and HR-SSE:

# Table 5. Hair area on sHSim-data—best results are in bold 3.3.2. Quantitative Evaluation Based on the Area of the Detected Hair Regions

|              |                  |                                    |                             | ve ev <b>a</b> luation ba      |                            |                            | the areawalues                                      |
|--------------|------------------|------------------------------------|-----------------------------|--------------------------------|----------------------------|----------------------------|-----------------------------------------------------|
|              |                  | obtainelsity the                   |                             |                                |                            |                            |                                                     |
|              |                  | hair is astreeding                 |                             |                                | ,                          | , , .                      | ,                                                   |
|              |                  | introduged byothe                  |                             | . ,                            | , 0                        | , ,                        | ,                                                   |
|              |                  | area idestified by                 | en meth                     | od, indigated as               | AB,446, AR, re             | spectively                 | for Leos Xie, and                                   |
|              |                  | HR-SSGSFor thes                    | ake of brevit               | y, in Table 5, we s            | how the resulti            | ug area yalu               | es for sHSimodata.                                  |
|              |                  | Moreover, we can                   | pare the ave                | erage hair area <              | Abz introduced             | in HSim-da                 | ta by the HairSim                                   |
|              |                  | method with the<br>ISIC_0006       | average hair                | area detected by               | y each method              | Table 6).                  | 106,147                                             |
|              |                  | ISIC 0007<br>Table 5. Hair area of |                             |                                |                            | 5,984,212                  | 135,523                                             |
|              |                  | ISIC 0009                          | on <i>sHSim-aata</i><br>993 | -best results are 1<br>35,991  | n bold.<br>47,248          | 766,116                    | 38,432                                              |
|              |                  | <b>I61£</b> _0010                  | 182 A <sub>I</sub>          | 36,257 A <sub>L</sub>          | 44,818                     | A7,64,856                  | <b>38</b> ,127                                      |
|              |                  | ISIC 1500004010                    | 226 47,608                  | 33,226 77,00                   | 0141,208 1,6               | 6 <b>5,791</b> 008         | 5 <b>4,9,85</b> 77                                  |
|              |                  | ISIC_1910009010                    |                             |                                | 2027,634 3,1               | 06,040687                  | 7 <u>8,1</u> ,9892                                  |
|              |                  | ISIC-1990018411                    | 323 32,827                  | 20,309 42,11                   |                            | <sup>3</sup> 774,768       | <sup>3</sup> 22,641                                 |
|              |                  | ISIC_0000257                       | <u>26,069</u><br>86 122     |                                |                            | 8,308<br>41 140            | 28,057                                              |
|              |                  | ISIC_0000410<br>Table Average ha   | air area yalue              | s on the HSim <sub>3</sub> dat | 20 4,5<br>22to compare wit | $h_{4,917}^{41,149} = 420$ | <b>105,109</b><br>548—best results<br><b>28,063</b> |
|              |                  | are is 10006982                    | 73,066                      |                                |                            | 10,208                     | 106,147                                             |
|              |                  | ISIC_0007693<br>Datase             | et 100,975                  |                                | ζΔ.,                       | 84,212                     | 135,523<br>38 432                                   |
|              |                  | ISIC 00109993                      |                             | (1.045                         |                            | <del>6,116</del><br>36856  | <u></u>                                             |
|              |                  | ISIC_001010226                     | 33,226                      |                                |                            | 0,008                      | 34,677                                              |
| Table        | e 7. False disco | veryISAGe_(FCDR5)84nd              |                             |                                |                            | ,                          |                                                     |
|              | Mat              | ISIC_0011323                       | 20,309<br>TDD               | <b>_</b> , ,o.                 |                            | 4,768                      | <u>22,041</u>                                       |
| Img          | Met.             |                                    | TDR                         | Img                            | Met.                       | FDR                        | TDR                                                 |
| ISIC_0000040 | Lee              | Table 6. Average ha                |                             | on the HSim-data               |                            | < A1 >= 426                | 48—best results are                                 |
|              | Xie              | in bold?80                         | 0.020                       |                                | Xie                        | 0.992                      | 0.008                                               |
|              | HR-SSC           | 0.202                              | 0.798                       |                                | HR-SSC                     | 0.469                      | 0.531                                               |
| ISIC_0000096 | Lee              | 0.3 Bataset                        | 0.697                       | ISf@ <u></u> 20009993          | Lee <a<sub>x&gt;</a<sub>   | 0.641                      | <a<sub>R(?:359</a<sub>                              |
|              | Xie              | 0. <b>985</b> m-data               | 0.015                       | 61,045                         | X <b>1e</b> 594,363        | 0.992                      | 48,830008                                           |
|              | HR-SSC           | 0.206                              | 0.794                       |                                | HR-SSC                     | 0.456                      | 0.544                                               |
| ISIC_0000184 | Lee              | 0.293                              | 0.707                       | ISIC_0010182                   | Lee                        | 0.631                      | 0.369                                               |

## 3.3.3. Quantitative Evaluation in Terms of True/False Discovery Rate

We evaluate the quality of the resulting images also in terms of true discovery rate (TDR) and false discovery rate (FDR), defined as the following:

$$FDR = \frac{FP}{FP + TP}$$
  $TDR = 1 - FDR$ 

where FP and TP denote false positive and true positive assessments, respectively. For the sake of brevity, in Table 7, we show the resulting FDR and TDR values only for *sHSim-data*. Moreover, the average <FDR> and <TDR> values of each method for *HSim-data* are shown in Table 8. From the examination of Tables 7 and 8, a lower value of FDR and a higher value of TDR for HR-SSC, an intermediate value of FDR and TDR for Lee, and a higher value of FDR and a lower value of TDR for Xie can be observed. With respect to Lee, HR-SSC reports the percentage improvements of TDR and FDR equal to 35% and 27%, respectively, on *Hsim-data*, and equal to 33% and 27%, respectively, on *sHSim-data*. This evaluation trend in terms of FDR/TDR on *Hsim-data*, *sHSim-data* confirms the trend indicated in Section 3.3.1.

Table 7. False discovery rate (FDR) and true discovery rate (TDR) on sHSim-data—best results are in bold.

| Img          | Met.   | FDR   | TDR   | Img          | Met.   | FDR   | TDR   |
|--------------|--------|-------|-------|--------------|--------|-------|-------|
| ISIC_0000040 | Lee    | 0.326 | 0.674 | ISIC_0007693 | Lee    | 0.651 | 0.349 |
|              | Xie    | 0.980 | 0.020 |              | Xie    | 0.992 | 0.008 |
|              | HR-SSC | 0.202 | 0.798 |              | HR-SSC | 0.469 | 0.531 |
| ISIC_0000096 | Lee    | 0.303 | 0.697 | ISIC_0009993 | Lee    | 0.641 | 0.359 |
|              | Xie    | 0.985 | 0.015 |              | Xie    | 0.992 | 0.008 |
|              | HR-SSC | 0.206 | 0.794 |              | HR-SSC | 0.456 | 0.544 |
| ISIC_0000184 | Lee    | 0.293 | 0.707 | ISIC_0010182 | Lee    | 0.631 | 0.369 |
|              | Xie    | 0.988 | 0.012 |              | Xie    | 0.992 | 0.008 |
|              | HR-SSC | 0.217 | 0.783 |              | HR-SSC | 0.444 | 0.556 |

Table 7. Cont.

| Img          | Met.   | FDR   | TDR   | Img          | Met.   | FDR   | TDR   |
|--------------|--------|-------|-------|--------------|--------|-------|-------|
| ISIC_0000257 | Lee    | 0.311 | 0.689 | ISIC_0010226 | Lee    | 0.628 | 0.372 |
|              | Xie    | 0.987 | 0.013 |              | Xie    | 0.992 | 0.008 |
|              | HR-SSC | 0.211 | 0.789 |              | HR-SSC | 0.439 | 0.561 |
| ISIC_0000410 | Lee    | 0.299 | 0.701 | ISIC_0010584 | Lee    | 0.618 | 0.382 |
|              | Xie    | 0.989 | 0.011 |              | Xie    | 0.992 | 0.008 |
|              | HR-SSC | 0.243 | 0.757 |              | HR-SSC | 0.427 | 0.573 |
| ISIC_0000503 | Lee    | 0.281 | 0.719 | ISIC_0011323 | Lee    | 0.608 | 0.392 |
|              | Xie    | 0.991 | 0.009 |              | Xie    | 0.992 | 0.008 |
|              | HR-SSC | 0.276 | 0.724 |              | HR-SSC | 0.416 | 0.584 |
| ISIC_0006982 | Lee    | 0.654 | 0.346 |              |        |       |       |
|              | Xie    | 0.992 | 0.008 |              |        |       |       |
|              | HR-SSC | 0.464 | 0.536 |              |        |       |       |

|        | <fdr></fdr> | <tdr></tdr> |
|--------|-------------|-------------|
| Lee    | 0.503       | 0.497       |
| Xie    | 0.990       | 0.010       |
| HR-SSC | 0.360       | 0.640       |

 Table 8. Average FDR and TDR on the HSim-data—best results are in bold.

#### 4. Discussion and Conclusions

In this paper, we propose the method HR-SSC based on the combined use of saliency, shape, and color. Initially, the computation burden of the hair removal process is lowered optionally by reducing the size of the image. Then, pseudo-hair regions and border/corner components are determined and employed in the successive process of hair mask detection. Successively, the image is restored by an inpainting process. A further contribution of this paper includes the proposal of a method for qualitative and quantitative evaluation of an HR method, and the availability of appropriate datasets to be used for testing and comparing by others. According to the proposed evaluation method, we perform a detailed quantitative and qualitative analysis of the experimental results on these datasets. Specifically, we qualitatively evaluate the performance of the proposed method and six state-of-the-art methods. We quantitatively evaluate the performance of HR methods under examination using a hair simulation technique applied on available dermoscopic image datasets, nine commonly adopted quality measures, area criteria, and FDR/TDR indicators.

Based on the experimental results and the performance evaluation, HR-SSC detects and removes the hair from the dermoscopic image by preserving the image features for its subsequent image segmentation process. Moreover, HR-SSC has a competitive and satisfactory performance concerning other considered methods as the probability of missing hair regions and/or detecting false hair regions is low. This is visually evident from the evaluation carried out, but it is to a lesser extent if we restrict the analysis to *NH13-data*. Indeed, as also reported in [17], the quantitative results on *H13GAN-data* and *H13Sim-data* (see Tables 1 and 2) indicate that the method Xie statistically outperforms the other methods under consideration, including HR-SSC. However, this experimental evidence does not match the qualitative/quantitative results obtained on the larger dataset *HSim-data* and on its sample, which, on the contrary, indicate a better performance of the proposed method. This trend is validated also by the qualitative evaluation based on area and TDR/FDR as reported respectively in Sections 3.3.2 and 3.3.3.

In summary, according to the performance evaluation, HR-SSC achieves good qualitative and quantitative results with an adequate balance. Moreover, it detects hair regions rapidly by processes with limited complexity. The results have also demonstrated the effectiveness and the utility of the employment of saliency, shape, and color information for hair removal problems. Finally, the implementation does not require any extensive learning based on a high number of parameters and labeled training images, and its execution time is quite fast.

In future investigations, there is room to extend the comparative studies with other existing methods and to improve this work by applying more efficient and efficacy inpainting methods to increase the performance quality.

**Funding:** This work was supported by GNCS (Gruppo Nazionale di Calcolo Scientifico) of the INDAM (Istituto Nazionale di Alta Matematica).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

**Data Availability Statement:** The data presented in this study are openly available at the following GitHub link: https://github.com/gramella/HR.

Conflicts of Interest: The author declares no conflict of interest.

#### References

- 1. Okur, E.; Turkan, M. A survey on automated melanoma detection. Eng. Appl. Artif. Intell. 2018, 73, 50–67. [CrossRef]
- 2. Oliveira, R.B.; Papa, J.P.; Pereira, A.S.; Tavares, J.M.R.S. Computational methods for pigmented skin lesion classification in images: Review and future trends. *Neural Comput. Appl.* **2018**, *29*, 613–636. [CrossRef]
- Masood, A.; Jumaily, A.A. A Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms. *Int. J. Biom. Imag.* 2013. [CrossRef] [PubMed]
- Vocaturo, E.; Zumpano, E.; Veltri, P. Image pre-processing in computer vision systems for melanoma detection. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 6 December 2018; pp. 2117–2124.
- Kavitha, N.; Vayelapelli, M. A Study on Pre-Processing Techniques for Automated Skin Cancer Detection. Smart Technologies in Data Science and Communication; Fiaidhi, J., Bhattacharyya, D., Rao, N., Eds.; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2020; Volume 105, pp. 145–153.
- Michailovich, O.V.; Tannenbaum, A. Despeckling of medical ultrasound images. *IEEE Trans. Ultras. Ferroelect. Freq. Control* 2006, 53, 64–78. [CrossRef] [PubMed]
- 7. Ramella, G.; Sanniti di Baja, G. A new technique for color quantization based on histogram analysis and clustering. *Int. J. Patt. Recog. Art. Intell.* **2013**, 27, 13600069. [CrossRef]
- Bruni, V.; Ramella, G.; Vitulano, D. Automatic Perceptual Color Quantization of Dermoscopic Images. In VISAPP 2015; Scitepress Science and Technology Publications: Setúbal, Portugal, 2015; Volume 1, pp. 323–330.
- 9. Ramella, G.; Sanniti di Baja, G. A new method for color quantization. In Proceedings of the 12th International Conference on Signal Image Technology & Internet-Based Systems—SITIS 2016, Naples, Italy, 28 November–1 December 2016; pp. 1–6.
- Bruni, V.; Ramella, G.; Vitulano, D. Perceptual-Based Color Quantization. Image Analysis and Processing—ICIAP 2017; Lecture Notes in Computer Science 10484; Springer: Berlin/Heidelberg, Germany, 2017; pp. 671–681.
- Premaladha, J.; Lakshmi Priya, M.; Sujitha, S.; Ravichandran, K.S. A Survey on Color Image Segmentation Techniques for Melanoma Diagnosis. *Indian J. Sci. Technol.* 2015, 8, IPL0265.
- 12. Ramella, G.; Sanniti di Baja, G. *Image Segmentation Based on Representative Colors and Region Merging in Pattern Recognition;* Lecture Notes in Computer Science 7914; Springer: Berlin/Heidelberg, Germany, 2013; pp. 175–184.
- Ramella, G.; Sanniti di Baja, G. From color quantization to image segmentation. In Proceedings of the 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016; IEEE: Piscataway Township, NJ, USA, 2016; pp. 798–804.
- Ramella, G. Automatic Skin Lesion Segmentation based on Saliency and Color. In VISAPP 2020; Scitepress Science and Technology Publications: Setúbal, Portugal, 2020; Volume 4, pp. 452–459.
- 15. Ramella, G. Saliency-based segmentation of dermoscopic images using color information. arXiv 2020, arXiv:2011.13179.
- Celebi, M.E.; Wen, Q.; Iyatomi, H.; Shimizu, K.; Zhou, H.; Schaefer, G. A state-of-the-art survey on lesion border detection in dermoscopy images. In *Dermoscopy Image Analysis*; Celebi, M.E., Mendonca, T., Marques, J.S., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 97–129.
- Talavera-Martinez, L.; Bibiloni, P.; Gonzalez-Hidalgo, M. Comparative Study of Dermoscopic Hair Removal Methods. In Proceedings of the ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, Porto, Portugal, 16–18 October 2019; Springer: Berlin/Heidelberg, Germany, 2019.
- 18. Lee, T.; Ng, V.; Gallagher, R.; Coldman, A.; McLean, D. Dullrazor: A software approach to hair removal from images. *Comput. Biol. Med.* **1997**, *27*, 533–543. [CrossRef]
- 19. Xie, F.-Y.; Qin, S.-Y.; Jiang, Z.-G.; Meng, R.-S. PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma. *Comput. Med. Imaging Graph.* **2009**, *33*, 275–282. [CrossRef]
- Abbas, Q.; Celebi, M.E.; Fondón García, I. Hair removal methods: A comparative study for dermoscopy images. *Biomed. Signal Process. Control.* 2011, 6, 395–404. [CrossRef]
- Huang, A.; Kwan, S.-Y.; Chang, W.-Y.; Liu, M.-Y.; Chi, M.-H.; Chen, G.-S. A robust hair segmentation and removal approach for clinical images of skin lesions. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Osaka, Japan, 3–7 July 2013; pp. 3315–3318.
- 22. Toossi MT, B.; Pourreza, H.R.; Zare, H.; Sigari, M.H.; Layegh, P.; Azimi, A. An effective hair removal algorithm for dermoscopy images. *Skin Res. Technol.* **2013**, *19*, 230–235. [CrossRef] [PubMed]
- 23. Bibiloni, P.; Gonzàlez-Hidalgo, M.; Massanet, S. Skin Hair Removal in Dermoscopic Images Using Soft Color Morphology. In *AIME 2017*; Lecture Notes in Artificial Intelligence 10259; Springer: Berlin/Heidelberg, Germany, 2017; pp. 322–326.
- Koehoorn, J.; Sobiecki, A.; Rauber, P.; Jalba, A.; Telea, A. Efficient and Effective Automated Digital Hair Removal from Dermoscopy Images. *Math. Morphol. Theory Appl.* 2016, 1, 1–17.
- 25. Zaqout, I.S. An efficient block-based algorithm for hair removal in dermoscopic images. *Comput. Optics.* 2017, 41, 521–527. [CrossRef]
- 26. Attia, M.; Hossny, M.; Zhou, H.; Nahavandi, S.; Asadi, H.; Yazdabadi, A. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture. *Comput. Methods Programs Biomed.* **2019**, *177*, 17–30. [CrossRef] [PubMed]
- 27. Talavera-Martinez, L.; Bibiloni, P.; Gonzalez-Hidalgo, M. An Encoder-Decoder CNN for Hair Removal in Dermoscopic Images. *arXiv* 2020, arXiv:2010.05013v1.

- Mendonca, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; Rozeira, J. PH<sup>2</sup>–A public database for the analysis of dermoscopic images. In *Dermoscopy Image Analysis*; Celebi, M.E., Mendonca, T., Marques, J.S., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 419–439.
- 29. ISIC 2016. ISIC Archive: The International Skin Imaging Collaboration: Melanoma Project, ISIC. Available online: https://isic-archive.com/# (accessed on 5 January 2016).
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. *IEEE Trans. Patt. Anal. Mach. Intell.* 1998, 20, 1254–1259. [CrossRef]
- 31. Haralick, R.; Sternberg, S.R.; Huang, X. Image Analysis Using Mathematical Morphology. IEEE Trans. PAMI 1987, 4, 532–550. [CrossRef]
- 32. Soille, P. Morphological Image Analysis: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2004.
- 33. Serra, J.; Vincent, L. An Overview of Morphological Filtering. Circuits Systems Signal Process. 1992, 11, 47–108. [CrossRef]
- 34. Guarracino, M.R.; Maddalena, L. SDI+: A Novel Algorithm for Segmenting Dermoscopic Images. *IEEE J. Biomed. Health Inf.* 2019, 23, 481–488. [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. *IEEE Trans. Systems Man Cybern.* 1979, *9*, 62–66. [CrossRef]
   Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway Township, NJ, USA, 2009; pp. 1597–1604.
- 37. Dermaweb. Available online: http://dermaweb.uib.es/ (accessed on 26 November 2020).
- 38. Attia, M.; Hossny, M.; Zhou, H.; Yazdabadi, A.; Asadi, H.; Nahavandi, S. Realistic Hair Simulator for Skin lesion Images Using Conditional Generative Adversarial Network. *Preprints* **2018**, 2018100756. [CrossRef]
- 39. HairSim by Hengameh Mirzaalian. Available online: http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en\_US (accessed on 26 November 2020).
- Mitsa, T.; Varkur, K.L. Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in halftoning algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Minneapolis, MN, USA, 27–30 April 1993; pp. 301–304.
- 41. Ramella, G. Evaluation of quality measures for color quantization. arXiv 2020, arXiv:2011.12652.
- 42. Chandler, D.M. Seven Challenges in Image Quality Assessment: Past, Present, and Future Research. *ISRN Signal Process.* 2013, 2013, 1–53. [CrossRef]
- 43. Lee, D.; Plataniotis, K.N. Towards a Full-Reference Quality Assessment for Color Images Using Directional Statistics. *IEEE Trans. Image Process.* **2015**, *24*, 3950–3965. [CrossRef] [PubMed]
- 44. Lin, W.; Kuo, C.-C.J. Perceptual visual quality metrics: A survey. J. Vis. Commun. Image Represent. 2011, 22, 297–312. [CrossRef]
- 45. Liu, M.; Gu, K.; Zhai, G.; Le Callet, P.; Zhang, W. Perceptual Reduced-Reference Visual Quality Assessment for Contrast Alteration. *IEEE Trans. Broadcast.* **2016**, *63*, 71–81. [CrossRef]