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Abstract

In this paper, the stabilized finite element approximation of the Stokes eigenvalue
problems is considered for both the two-field (displacement-pressure) and the
three-field (stress-displacement-pressure) formulations. The method presented is
based on a subgrid scale concept, and depends on the approximation of the un-
resolvable scales of the continuous solution. In general, subgrid scale techniques
consist in the addition of a residual based term to the basic Galerkin formulation.
The application of a standard residual based stabilizationmethod to a linear eigen-
value problem leads to a quadratic eigenvalue problem in discrete form which is
physically inconvenient. As a distinguished feature of thepresent study, we take
the space of the unresolved subscales orthogonal to the finite element space, which
promises a remedy to the above mentioned complication. In essence, we put for-
ward that only if the orthogonal projection is used, the residual is simplified and
the use of term by term stabilization is allowed. Thus, we do not need to put the
whole residual in the formulation, and the linear eigenproblem form is recovered
properly. We prove that the method applied is convergent, and present the error
estimates for the eigenvalues and the eigenfunctions. We report several numerical
tests in order to illustrate that the theoretical results are validated.
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1. Introduction

The finite element approximation of eigenvalue problems hasbeen studied
extensively in recent years due to the important theoretical and practical applica-
tions. The significance of the analysis maintains its attraction, and the approxi-
mation of eigenvalue problems is still a subject of active research. In particular,
there is a wide area of research on the Stokes eigenvalue problem which can be
set into different frameworks, and some abstract results can be applied to a vari-
ety of mixed or hybrid type finite element eigenvalue approximation methods (see
e.g. [1]).

In this paper, the problem under consideration consists of finding eigenvalues
λ ∈ R and eigenfunctionsu 6= 0 for a certain operatorL on a given domainΩ
such that

L u = λu in Ω, (1)

accompanied with appropriate boundary conditions on∂Ω.
Let X be a Hilbert space for which the variational form of (1) is well defined.

After normalizingu, this variational form reads: find a nonzerou ∈ X andλ ∈ R

such that

B(u, v) = λ(u, v) ∀v ∈ X , (2)

whereB is the bilinear form associated toL and(·, ·) stands for the inner product
in L2(Ω).

Let Xh be a finite dimensional space ofX constructed from a finite element
partition of sizeh. The Galerkin discretization of (2) is: find0 6= uh ∈ Xh and
λh ∈ R such that

B(uh, vh) = λh(uh, vh) ∀vh ∈ Xh. (3)

It is well known that whenL is either the two-field or three-field Stokes oper-
ator, the standard Galerkin approach necessitates an interpolation for the different
fields satisfying the classical inf-sup (or Babuška-Brezzi) condition. Researchers
might want to avoid the use of schemes satisfying this condition. This demand
has led to many recent studies devoted to develop robust and efficient stabilized
techniques for approximating the Stokes eigenvalue problem [2, 3, 4, 5, 6]. It is
worth noting that there are also alternative approaches. For instance, a solution
procedure based on a pseudostress-velocity formulation, leading to a locally con-
servative scheme without using additional stabilizing terms, has been proposed
in [7].
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In the convergence analysis of the eigenvalue problems, themost common ap-
proach is to deduce the error estimates and the rate of convergence from the well
known Babuška-Osborn theory [8] (see also [9] for a comprehensive review of
finite element approximation of general eigenvalue problems). In particular, the
convergence of the eigenvalues and eigenvectors for the two-field Stokes problem
using mixed formulations is analyzed in many works, including [1], [9] and [10].
On the other hand, despite the extensive number of papers on finite element anal-
ysis of the eigenproblem, as well as of the source problem forthe two-field Stokes
operator, few works have been published on the three-field case. Considering the
source problem, a stabilized finite element formulation based on a subgrid con-
cept is presented and analyzed for the stress-displacement-pressure formulation in
[11]. As another work, a Galerkin least-square based methodis proposed in [12],
with stability and convergence results given for the three-field Stokes formulation
arising from viscoelastic models.

The aim of this paper is to analyze the stabilized finite element method for
the Stokes eigenvalue problem in both two-field and three-field formulations. The
stabilization method applied is based on a subgrid scale concept. In this method,
the unresolvable scales of the continuous solution are approximately taken into
account. In general, when a stabilization technique based on a projectionP̃ of the
residual is applied to (2), one obtains a statement of the form

B(uh, vh)− λh(uh, vh)

+
∑

K

(P̃ (−L
∗vh + λhvh), αKP̃ (L uh − λhuh))K = 0, (4)

whereL
∗ is the formal adjoint operator ofL , andαK is a stabilization matrix (if

uh is vector valued) of numerical parameters defined within each element domain
K. Here and in the following,

∑

K stands for the summation over all elements of
the finite element partition, and(·, ·)K for theL2(K)-inner product.

It is clear from (4) that in general the resulting system leads to a quadratic
eigenvalue problem, which, apart from being much more demanding than a linear
one, could introduce eigenpairs that converge to solutionswhich are not solutions
of the original problem (2).

In this study, the unresolved subscales are assumed to be orthogonal to the fi-
nite element space, which amounts to say thatP̃ = P⊥, the appropriate orthogonal
projection. Apart from its novelty in the context of Stokes eigenvalue problems,
this choice is essential to establish the structure of the eigenproblem in its original
form. Only in this way the componentsuh andvh in the last term of (4) vanish, the
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residual is simplified, and the use of term by term stabilization is allowed. We will
show that this formulation is optimally convergent for an adequate choice of the
algorithmic parameters on which the method depends. This will be done by ap-
plying the classical spectral approximation theory of [8] to the associated source
problems in the spirit of the methodology developed in [9]. In the convergence
analysis for the two-field problem, we will make use of the stability and conver-
gence properties of the corresponding source problem, which are adapted from
[13] and [14]. For the three-field eigenvalue problem, the convergence and er-
ror estimates are based on the finite element analysis of the corresponding source
problem provided in [11]. This is the first finite element approximation to the
three-field Stokes eigenvalue problem to the best of our knowledge.

2. Problem statements

2.1. Preliminaries

Let us introduce some notation. In the following, the space of square inte-
grable functions in a domainω is denoted byL2(ω), and the space of functions
having distributional derivatives of order up to an integerm ≥ 0 belonging to
L2(ω) byHm(ω). The space of functions inH1(ω) vanishing on its boundary∂ω
is denoted byH1

0 (ω). TheL2(ω) inner product inω for scalars, vectors and ten-
sors, is denoted by(·, ·)ω, and the norm in a Banach spaceX is denoted by‖ · ‖X .
In what follows, the domain subscript is dropped for the caseω = Ω, ‖ · ‖ repre-
sents the norm onL2(Ω), and‖ · ‖m stands for‖ · ‖Hm(Ω) for a positive or negative
m. A finite element partition of the domainΩ is denoted byPh, andK ∈ Ph

denotes an element domain. The diameter of the finite elementpartition is defined
ash = max{hK |K ∈ Ph}, wherehK is the diameter of the element domainK.
For simplicity, we will assume quasi-uniform meshes. WhenK is a domain of an
element in a partition,‖ · ‖K and‖ · ‖m,K denote‖ · ‖L2(K) and‖ · ‖Hm(K), respec-
tively. Throughout the paper, the notation. is used to denote an inequality up to
a constant independent ofh and of the coefficients of the differential equations.
All constants involved in the analysis are dimensionless.

2.2. The two-field Stokes eigenproblem

Let Ω be bounded and polyhedral. The two-field Stokes eigenvalue problem
is as follows: find[u, p, λ], whereu 6= 0 is the displacement or velocity field,p is
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the pressure, andλ ∈ R, such that










−µ∆u +∇p = λu in Ω,

∇ · u = 0 in Ω,

u = 0 on∂Ω,

(5)

whereµ > 0 is a physical parameter. The weak form of problem (5) is obtained
in the functional spacesV = (H1

0(Ω))
d andQ = L2(Ω)/R. SettingXI = V × Q,

this weak form can be written as: find[u, p] ∈ XI andλ ∈ R such that

BI([u, p], [v, q]) = λ(u, v) ∀[v, q] ∈ XI, (6)

where

BI([u, p], [v, q]) = µ(∇u,∇v)− (p,∇ · v) + (q,∇ · u). (7)

It is well known that the inf-sup condition holds for the continuous problem
(6), and the corresponding solution operator is compact. From the spectral theory
([8]) it follows that (6) has a sequence of real eigenvalues (see also [2, 4, 15])

0 < λ1 ≤ λ2 ≤ . . . λk . . . ≤ lim
k→∞

λk = ∞,

and corresponding eigenfunctions

[u1, p1], [u2, p2], . . . , [uk, pk], . . .

which are assumed to satisfy

(ui,uj) = δij , i, j = 1, 2, . . .

The standard Galerkin approximation of the variational problem can be con-
structed on conforming finite element spacesVh ⊂ V andQh ⊂ Q. The discrete
version of problem (6) is given as follows: find[uh, ph] ∈ XI,h = Vh × Qh and
λh ∈ R such that

BI([uh, ph], [vh, qh]) = λh(uh, vh) ∀[vh, qh] ∈ XI,h. (8)

The restriction in the possible choices for the displacement and pressure spaces
dictated by the inf-sup condition motivates the use of a stabilization technique to
solve this problem. The stabilized finite element formulation adopted in this paper
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has its roots in the variational multiscale formulation, where the continuous space
XI of the problem is approximated byXI,h ⊕X̃I, X̃I being an approximation to the
complement ofXI,h in XI.

In our study, we select̃XI to be approximately orthogonal toXI,h leading to
the so-called method of orthogonal subscales [13, 14, 16]. The resulting simplified
stabilized method for problem (8) that we shall use reads: find [uh, ph] ∈ XI,h and
λh ∈ R such that

BIS([uh, ph], [vh, qh]) = λh(uh, vh) ∀[vh, qh] ∈ XI,h, (9)

whereBIS([uh, ph], [vh, qh]) is defined as

BIS([uh, ph], [vh, qh]) = BI([uh, ph], [vh, qh])

+
∑

K

α1K(P
⊥(∇ph), P

⊥(∇qh))K

+ α2(P
⊥(∇ · vh), P

⊥(∇ · uh)). (10)

α1K andα2 are the stabilization parameters, which are computed as

α1K =
h2
K

µ
c1, α2 = c2µ

wherec1 andc2 are numerical constants (see [16] for more details on the method
and the stabilization parameters). In the implementation of the method, a term of
the form(P⊥(fh), P

⊥(gh)) is computed as(fh, gh − P (gh)) where the projection
onto the appropriate finite element spaceP (gh) can either be treated implicitly or
in an iterative way.

Remark 1. Let us remark that in the design of the stabilization parameters one
could take into account the eigenvalue, considering thatλu is a reactive-like term
(see [17]). The effect of neglecting it is that the estimatesto be obtained will not be
uniform in terms of the magnitude of the eigenvalue, but thisis the same situation
encountered in any Galerkin approximation of an eigenproblem, including the
inf-sup stable approximation of the Stokes problem.
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2.3. The three-field Stokes eigenproblem

The three-field Stokes eigenvalue problem is written as follows: find[u, p,σ],
andλ ∈ R such that























−∇ · σ +∇p = λu in Ω,

∇ · u = 0 in Ω,
1
2µ
σ −∇Su = 0 in Ω,

u = 0 on∂Ω,

(11)

whereu 6= 0 is the displacement field,p is the pressure,σ is the deviatoric
component of the stress field and∇Su is the symmetrical part of∇u. To write
the weak form of problem (11), in addition to the functional spacesV = (H1

0 (Ω))
d

andQ = L2(Ω)/R, we defineT = (L2(Ω))dsym as the space of symmetric tensors
of second order with square-integrable components. If we now letXII = V ×Q×
T , the weak form of the problem can be stated as the follows: find[u, p,σ] ∈ XII

andλ ∈ R such that

BII ([u, p,σ], [v, q, τ ]) = λ(u, v) ∀[v, q, τ ] ∈ XII , (12)

where

BII([u, p,σ], [v, q, τ ]) = (∇Sv,σ)− (p,∇ · v) + (q,∇ · u)

+
1

2µ
(σ, τ )− (∇Su, τ ). (13)

The Galerkin finite element approximation is obtained in theusual way, by
building the conforming finite element spacesVh ⊂ V, Qh ⊂ Q andTh ⊂ T . If
we letXII ,h = Vh × Qh × Th, the problem is now: find[uh, ph,σh] ∈ XII ,h and
λh ∈ R such that

BII ([uh, ph,σh], [vh, qh, τ h]) = λ(uh, vh) ∀[vh, qh, τ h] ∈ XII ,h. (14)

It is obviously seen that the bilinear formBII([uh, ph,σh], [vh, qh, τ h]) is not
coercive and the inf-sup condition is not satisfied unless some stringent require-
ments are posed on the choice of the finite element spaces. Thus, like for the
two-field formulation, the purpose of the stabilization used is to avoid the use of
the inf-sup conditions and, in particular, to allow equal interpolations for all the
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unknowns. The same strategy as before is followed to obtain the stabilized fi-
nite element formulation, and the method becomes: find[uh, ph,σh] ∈ XII ,h and
λh ∈ R such that

BIIS([uh, ph,σh], [vh, qh, τ h]) = λh(uh, vh) ∀[vh, qh, τ h] ∈ XII ,h, (15)

whereBIIS([uh, ph,σh], [vh, qh, τ h]) is given as

BIIS([uh, ph,σh], [vh, qh, τ h]) = BII([uh, ph,σh], [vh, qh, τ h])

+ α3(P
⊥(∇Svh), P

⊥(∇Suh)) + α4(P
⊥(∇ · vh), P

⊥(∇ · uh))

+
∑

K

α5K(P
⊥(∇qh −∇ · τ h), P

⊥(∇ph −∇ · σh))K . (16)

The stabilization parameters of this formulation are givenby

α3 = 2µc3, α4 = 2µc4, α5K =
h2
K

µ
c5

wherec3, c4 andc5 are numerical constants which can be taken in a wide range,
as the analysis in [11] put forth. In this paper we consider that the finite element
spaces are built using equal continuous interpolation, although the extension to
more general spaces, and in particular of discontinuous stresses and pressures,
can be done as analyzed in [11].

3. Numerical analysis of the source problems

As we have mentioned earlier, we aim to prove that the eigensolutions of the
stabilized two-field and three-field Stokes problems converge to the solutions of
the corresponding spectral problems by applying the classical spectral approxima-
tion theory presented in [8] to the associated source problems. To achieve this, we
will present in this section the source problems for the two-field and three-field
cases, and the essential stability and convergence results. At this point, let us in-
troduce the notation for the interpolation estimates that will allow us to define the
error functions of the methods. For anyv ∈ Hk′v+1(Ω), kv being the degree of an
approximating finite element spaceWh, the interpolation errorsεi(v), i = 0, 1,
are derived from the interpolation estimates as

εi(v) = hk′′v+1−i
∑

K

‖v‖k′′v+1,K , (17)
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with

inf
vh∈Wh

∑

K

‖v − vh‖i,K . εi(v), (18)

wherek′′
v = min(kv, k

′
v). Here we usev to represent the unknownu, σ or p, and

kv denotes the corresponding order of interpolation for eachv. In the results given
below, we will define the error functions based on these definitions.

3.1. The two-field source problem

The source Stokes problem for the two-field case can be written as: given
f ∈ (L2(Ω))d, find [u, p] ∈ XI such that

BI([u, p], [v, q]) = (f , v) ∀[v, q] ∈ XI . (19)

The corresponding stabilized formulation can be written as: find [uh, ph] ∈ XI,h

such that

BIS([uh, ph], [vh, qh]) = (f , vh) ∀[vh, qh] ∈ XI,h, (20)

whereBIS is defined in (10).
The stability and convergence properties of the method usedin (20) are an-

alyzed in [13] and [14], and the following theorem is a collection of immediate
consequences of the results obtained therein:

Theorem 1. The solution of (20) satisfies the stability condition

√
µ‖uh‖1 +

1√
µ
‖ph‖ .

1√
µ
‖f‖−1. (21)

Moreover, if the solution of the continuous problem has enough regularity, then
the solution of (20) has the following optimal order of convergence

√
µ‖u− uh‖1 +

1√
µ
‖p− ph‖ . εI(h), (22)

whereεI(h) is the interpolation error given by

εI(h) =
√
µε1(u) +

1√
µ
ε0(p). (23)
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It is important to note that as the definition ofεI(h) suggests, the interpolation
error is of orderk′′ in terms ofh, wherek′′ = min(k′′

u, k
′′
p + 1).

Now, for reasons that will become obvious in the convergencetheory given in
Section 4.1, we state and prove the following theorem, whichasserts theL2-error
estimate for the displacement:

Theorem 2. If the continuous problem (19) satisfies the regularity condition

√
µ‖u‖2 +

1√
µ
‖p‖1 .

1√
µ
‖f‖, (24)

then

√
µ‖u− uh‖ . h2

(√
µ‖u‖2 +

1√
µ
‖p‖1

)

. (25)

Proof. The proof is carried out by using a duality argument. To do this, we let
[w, π] ∈ XI and consider the following adjoint problem:











−µ∆w −∇π = µ

ℓ2
(u− uh) in Ω,

−∇ ·w = 0 in Ω,

w = 0 on∂Ω,

(26)

whereℓ is a characteristic length introduced to maintain the dimensional consis-
tency of the problem. The next step is to test the first and second equations in (26)
respectively withu− uh andp− ph. Then we have

µ

ℓ2
‖u− uh‖2 = µ(∇w,∇(u− uh)) + (π,∇ · (u− uh))− (p− ph,∇ ·w)

= BI([u− uh, p− ph], [w, π])

= BIS([u− uh, p− ph], [w, π])

−
∑

K

α1K(P
⊥(∇π), P⊥(∇(p− ph)))K

− α2

∑

K

(P⊥(∇ ·w), P⊥(∇ · (u− uh)))K , (27)

where we have used the definition ofBIS. The last term in the expression above
vanishes because∇ ·w = 0, and thus only the first two terms on the right-hand-
side of the last equality must be bounded. Now if we let[w̃h, π̃h] be the best
approximation to[w, π] in XI,h, the first of these terms can be bounded using the
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consistency error coming fromBIS([u − uh, p − ph], [w̃h, π̃h]) as follows. Since
[u, p] is the solution of the continuous problem (19), we have

BIS([u, p], [w̃h, π̃h]) = (f , w̃h) +
∑

K

α1K(P
⊥(∇p), P⊥(∇π̃h))K

+α2(P
⊥(∇ · u), P⊥(∇ · w̃h)). (28)

Making use of (20) in (28) and noting that∇ · u = 0 yields

BIS([u− uh, p− ph], [w̃h, π̃h]) .
h2

µ
‖π‖1‖p‖1,

where we have made use of theH1-stability of the best interpolation and the
expression ofα1K . This same bound clearly applies to the second term in the
right-hand-side of (27). Regarding the stabilizing terms applied to([u− uh, p−
ph], [w − w̃h, π − π̃h]), we have that

∑

K

α1K(P
⊥(p− ph), P

⊥(π − π̃h))K

+ α2(P
⊥(∇ · u−∇ · uh), P

⊥(∇ ·w −∇ · w̃h))

.
h2

µ
‖π‖1‖p‖1 + µ‖u− uh‖1‖w − w̃h‖1

.
h2

µ
‖π‖1‖p‖1 + µh2‖u‖2‖w‖2.

On the other hand, it is easily seen that

BI([u− uh, p− ph], [w − w̃h, π − π̃h])

. µ‖∇u−∇uh‖h‖w‖2 + ‖p− ph‖h‖w‖2 + ‖∇ · u−∇ · uh‖h‖π‖1

. h2µ‖u‖2‖w‖2 + h2‖p‖1‖w‖2 + h2‖u‖2‖π‖1.

Collecting the bounds just obtained and using them in (27) yields

µ

ℓ2
‖u− uh‖2 . h2µ‖u‖2‖w‖2 + h2‖p‖1‖w‖2 + h2‖u‖2‖π‖1 +

h2

µ
‖π‖1‖p‖1.

From the elliptic regularity assumption we have that

‖w‖2 .
1

ℓ2
‖u− uh‖, ‖π‖1 .

µ

ℓ2
‖u− uh‖,

which when used in the previous bound yields the theorem.
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3.2. The three-field source problem
The three-field Stokes source problem can be written as: givenf ∈ (L2(Ω))d,

seek[u, p,σ] ∈ XII such that

BII([u, p,σ], [v, q, τ ]) = (f , v) ∀[v, q, τ ] ∈ XII , (29)

and the stabilized formulation is: find[uh, ph,σh] ∈ XII,h such that

BIIS([uh, ph,σh], [vh, qh, τ h]) = (f , vh) ∀[vh, qh, τ h] ∈ XII ,h, (30)

whereBIIS is defined in (16).
The following theorem, which is proved in [11], asserts the stability and con-

vergence of the finite element solution:

Theorem 3. The solution of (30) can be bounded as

√
µ‖uh‖1 +

1√
µ
‖σh‖+

1√
µ
‖ph‖ .

1√
µ
‖f‖−1. (31)

Moreover, if the solution of the continuous problem has enough regularity,

√
µ‖u− uh‖1 +

1√
µ
‖σ − σh‖+

1√
µ
‖p− ph‖ . εII(h), (32)

whereεII (h) is the interpolation error given by

εII(h) =
√
µε1(u) +

1√
µ
ε0(σ) +

1√
µ
ε0(p). (33)

In the same way as in the previous section, the definition ofεII(h) states that
the interpolation error is of orderk′′ in terms ofh, wherek′′ = min(k′′

u, k
′′
σ +

1, k′′
p + 1) for this case.
To complete the convergence analysis for the three-field source problem, be-

low we include the theorem stated and proved in [11], which provides anL2-error
estimate for the displacement:

Theorem 4. If the continuous three-field source problem satisfies the regularity
condition

√
µ‖u‖2 +

1√
µ
‖σ‖1 +

1√
µ
‖p‖1 .

1√
µ
‖f‖, (34)

then
√
µ‖u− uh‖ . h2

(√
µ‖u‖2 +

1√
µ
‖σ‖1 +

1√
µ
‖p‖1

)

. (35)
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4. Numerical analysis of the eigenvalue problems

In this section, we aim to apply the convergence analysis to the two-field and
three-field Stokes eigenproblems. Mainly, we account for the theory developed in
[9], which has its roots in the abstract spectral approximation theory of Babuška-
Osborn. The convergence results, and the error estimates for the displacement in
suitable norms obtained in the previous section, are considered as the constitu-
tional steps to accomplish our tasks. We will report the sufficient and necessary
conditions for the convergence of eigenvalues and eigenfunctions to the continu-
ous problems, and the approximation rates for each case.

4.1. The two-field eigenproblem

The object of this subsection is to provide, for the two-fieldcase, the neces-
sary and sufficient conditions for proving that the eigenvalues and eigenfunctions
of (9) converge to those of (5) with no spurious solutions, and to find an estimate
for the order of convergence. As already discussed, the convergence results stated
in Section 3.1 will be used following the spectral approximation theory with an
analogous notation to that of [9]. However, before proceeding, we want to em-
phasize that the Galerkin formulation of the two-field eigenproblem (5) can be
set into the framework of a standard mixed eigenvalue problem of the first type
according to the classification in [9] and [10] as follows: find a nontrivialu ∈ V
andλ ∈ R such that for somep ∈ Q

{

aI(u, v) + bI(v, p) = λ(u, v) ∀v ∈ V,
bI(u, q) = 0 ∀q ∈ Q,

(36)

where the bilinear forms introduced are given by

aI(u, v) = µ(∇u,∇v),

bI(v, q) = (q,∇ · v).

If Vh ⊂ V andQh ⊂ Q are the finite element spaces to approximate the solution,
the Galerkin finite element approximation can be written as:find a nontrivial
uh ∈ Vh andλ ∈ R such that for someph ∈ Qh there holds

{

aI(uh, vh) + bI(vh, ph) = λ(uh, vh) ∀vh ∈ Vh,

bI(uh, qh) = 0 ∀qh ∈ Qh.
(37)
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The convergence of the eigensolutions to (37) towards thoseof (36) is analyzed
in [9].

Let us come back to our main task of analyzing the two-field eigenvalue prob-
lem. The existence and uniqueness of the solutions to (19) and (20) allows us to
define the operatorsT, Th : X → X such that for anyf ∈ X , Tf = u and
Thf = uh are the displacement components of the solutions to (19) and(20),
respectively, whereX can be either(H1

0(Ω))
d or (L2(Ω))d. Now, by means of

Theorem 1, we can state the convergence of the discrete operator Th to the con-
tinuous operatorT , that is to say,

‖T − Th‖L(X ) → 0 as h → 0, (38)

which is equivalent to convergence of the eigenvalues and eigenfunctions accord-
ing to the theory given in [9] and [18]. In (38),L(X ) denotes the space of endo-
morphisms inX and‖ · ‖L(X ) its natural norm.

We next present in the following theorem the error estimatesfor eigenvalues
of the approximate problem:

Theorem 5. Assume that the continuous problem satisfies the regularitycondition

√
µ‖u‖k′′+1 +

1√
µ
‖p‖k′′ .

1√
µ
hk′′‖f‖k′′−1, (39)

for k′′ > 0. Then the following optimal double order of convergence holds

|λ− λh| .
µ

ℓ2

(

h

ℓ

)2k′′

, (40)

whereℓ is, as before, a characteristic length scale of the problem.

Proof. ForX = (H1
0(Ω))

d, from Theorem 1 it follows that
√
µ‖Tf − Thf‖1 =

√
µ‖u− uh‖1

. εI(h)

.
√
µhk′′‖u‖k′′+1 +

1√
µ
hk′′‖p‖k′′

. hk′′ 1√
µ
‖f‖k′′−1

.
ℓ2√
µ

(

h

ℓ

)k′′

‖f‖1
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where a norm embedding has been used in the last step. The proof follows from
Corollary 9.8 of [9], using the definitions ofεI(h) andk′′.

Remark 2. The assumption (39) for0 < k′′ < 1 suffices to prove the convergence
(38) in the proof of Theorem 5. On the other hand, the strongerassumptionk′′ = 1
is needed to obtain theL2-error estimate given by Theorem 2, which is essential
to obtain the convergence result (38) ifX = (L2(Ω))d is chosen.

Next, we make use of Corollary 9.4 of [9] to conclude that ifλ is an eigen-
value of (8) with algebraic multiplicitym, andE = E(λ−1)X is its generalized
eigenspace, whereE(λ) is the Riesz spectral projection associated withλ, and if
Eh = Eh(λ

−1)X . Then

δ̂(E,Eh) . sup
u∈E

‖u‖X=1

inf
uh∈Eh

‖u− uh‖X .

Having arrived at these results, one can now prove the following:

Theorem 6. Letu be a unit eigenfunction solution of (6) associated to the eigen-
valueλ of multiplicity m, and letφ1

h, . . . ,φ
m
h be the eigenfunctions associated

with them discrete eigenvalues solution of (9) converging toλ. Then there exists
a discrete eigenfunctionuh ∈ span{φ1

h, . . . ,φ
m
h } such that

‖u− uh‖1 . hk′′‖u‖k′′+1. (41)

4.2. The three-field eigenproblem

We first remark that it is possible to obtain a standard mixed formulation for
the three-field eigenproblem (11) as follows (see also [19]): findu ∈ V andλ ∈ R

such that for some[σ, p] ∈ T × Q there holds
{

aII ([σ, p], [τ , q]) + bII ([τ , q],u) = 0 ∀[τ , q] ∈ T × Q,

bII ([σ, p], v) = −λ(u, v) ∀v ∈ V,
(42)

where we have introduced the following bilinear forms:

aII([σ, p], [τ , q]) =
1

2µ
(σ, τ ),

bII ([σ, p], v) = −(τ − qI,∇Su).
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As before, once the finite element spacesVh ⊂ V, Qh ⊂ Q andTh ⊂ T have
been constructed, the discrete eigenvalue problem can be written as follows: find
uh ∈ Vh andλ ∈ R such that for some[σh, ph] ∈ Th ×Qh there holds
{

aII([σh, ph], [τ h, qh]) + bII ([τ h, qh],uh) = 0 ∀[τ h, qh] ∈ Th ×Qh,

bII([σh, ph], vh) = −λh(uh, vh) ∀vh ∈ Vh.
(43)

This is a standard mixed eigenvalue problem of the second type according to the
classification in [9], and can be analyzed by using the abstract theory given there.

Our ultimate purpose in this section is to provide the necessary and sufficient
conditions for proving that the eigenvalues and eigenfunctions of (15) converge to
those of (12) with no spurious solutions, and to estimate theorder of convergence.
Thus, we now proceed to establish the convergence results based on Section 3.2, as
before following the notation and the ingredients of [9]. From the well posedness
of problems (29) and (30), for anyf ∈ X , we can define the operatorsZ,Zh :
X → X such thatZf = u andZhf = uh are the displacement components of
the solutions to (29) and (30), respectively. In this way, Theorem 3 allows us to
state the convergence

‖Z − Zh‖L(X ) → 0 as h → 0, (44)

which is equivalent to the convergence of eigenvalues and eigenfunctions we are
seeking.

The following theorem provides the rate of convergence of the eigenvalues:

Theorem 7. Assume that the continuous problem satisfies the regularitycondition

√
µ‖u‖k′′+1 +

1√
µ
‖p‖k′′ +

1√
µ
‖σ‖k′′ .

1√
µ
hk′′‖f‖k′′−1, (45)

for k′′ > 0. Then have the following optimal double order of convergence

|λ− λh| .
µ

ℓ2

(

h

ℓ

)2k′′

. (46)
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Proof. Let X = (H1
0(Ω))

d. From Theorem 3 we have

√
µ‖Zf − Zhf‖1 =

√
µ‖u− uh‖1

. εII(h)

.
√
µhk′′‖u‖k′′+1 +

1√
µ
hk′′‖σ‖k′′ +

1√
µ
hk′′‖p‖k′′

. hk′′ 1√
µ
‖f‖k′′−1

.
ℓ2√
µ

(

h

ℓ

)k′′

‖f‖1.

The proof is completed by following Corollary 9.8 of [9], andobserving the defi-
nitions ofεII(h) andk′′.

Remark 3. The convergence for the choice ofX = (L2(Ω))d can similarly be ob-
tained as a result of theL2-error estimate of the displacement given in Theorem 4
by assuming that the elliptic regularity condition holds with k′′ = 1.

Next, we make use of Corollary 9.4 of [9] to conclude that ifλ is an eigen-
value of (12) with algebraic multiplicitym, E = E(λ−1)X is its generalized
eigenspace, whereE(λ) is the Riesz spectral projection associated withλ, and if
Eh = Eh(λ

−1)X , then

δ̂(E,Eh) . sup
u∈E

‖u‖X=1

inf
uh∈Eh

‖u− uh‖X .

From these results we can conclude exactly the same as in Theorem 6:

Theorem 8. Letu be a unit eigenfunction solution of (12) associated to the eigen-
valueλ of multiplicity m, and letφ1

h, . . . ,φ
m
h be the eigenfunctions associated

with them discrete eigenvalues solution of (15) converging toλ. Then there exists
a discrete eigenfunctionuh ∈ span{φ1

h, . . . ,φ
m
h } such that

‖u− uh‖1 . hk′′‖u‖k′′+1. (47)

5. Numerical results

In this section we present some numerical tests to illustrate the theoretical
convergence results obtained for the two-field and three-field Stokes problems in
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two dimensions. Three different problem domains, namely, asquare domain, an
L-shaped domain, and a square with a crack, are considered inSections 5.1, 5.2,
and 5.3, respectively. The orthogonal subscale stabilization method is applied with
equal order ofP1 (linear) andP2 (quadratic) interpolations for all the unknowns
on triangular elements.

It is important to note that all the theory about stabilized finite element meth-
ods applies for some fixed values of the constants defined in these parameters. The
accuracy of the approximation for a fixed mesh size depends onthe discretization
type of the region as well as on the choice of the algebraic constants in the stabi-
lization parameters.

In the present study, the method given in (9) is applied usingfixed values of
the constants, that we have chosen asc1 = 1/4 andc2 = 1/10 for bothP1 and
P2 elements to solve the two-field eigenproblem (5). For the three-field Stokes
eigenvalue problem (11), we employ the method given in (15),where the constants
of the stabilization parameters are now taken asc3 = 1, c4 = 1/10 andc5 = 1/4.

The caseµ = 1 is considered for all the tests we examine, and as the ex-
act solutions to the considered eigenproblems are unknown,reference values are
taken from the works published for validation purposes. Thereference values are
given individually for each test case. We examine the convergence rates for the
reference eigenvalue approximations in terms of the difference between the ap-
proximate value and the reference value, normalized by the latter. For each test
case, we illustrate the results on a log-log scaled plane.

In the simulations, the displacement (or velocity) components are taken as
zero on the whole boundary, whereas the pressure is specifiedto be zero at a
single point of the computational domain. The computationsare carried out by
a code written by us using MATLAB, where the generalized eigenvalue function
eigs, which uses ARPACK, is involved. The number of divisions in each direction
is denoted byN . For the L-shaped domain,N is the number of division in one of
the shortest edges.

5.1. Test 1: Square domain

In this test, we consider a widely used experiment, and solvethe eigenprob-
lems on the squareΩ = [0, 1] × [0, 1]. A sample discretization of the problem
domain usingN = 5 is illustrated in Figure 1. As we have already mentioned,
the exact solution is unknown, and we takeλ1 = 52.3447 as a reference to the
minimum eigenvalue (see [2, 4, 20]).

Figures 2 and 3 present the convergence of the minimum eigenvalue approx-
imations to the reference valueλ1 for the two-field and three-field problems, re-
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Figure 1:A sample triangulation of the square domain (N = 5).
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Figure 2: Plot of log |(λ1 − λh)/λ1| with respect tolog |N |for the two-field Stokes
problem on a square domain.

spectively. From the two figures, we can observe the optimal convergence rates,
which are2 for P1 elements and4 for P2 elements for both approximations.
These calculations prove numerically that the theoreticalconvergence results are
achieved. To have a closer glance at the computed eigenvalues, the approximation
to the first eigenvalue as well as the error values are listed in Tables 1-3 (usingP1

elements) and Tables 2-4 (usingP2 elements). It can be seen from these tables
that both for theP1 andP2 solutions, as the number of divisions (N) increases,
and thus ash tends to zero accordingly, the computed eigenvalues converge to
the reference value. Moreover, the results show a monotonicconvergence of the
approximations from above.
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Figure 3: Plot of log |(λ1 − λh)/λ1| with respect tolog |N | for the three-field Stokes
problem on a square domain.

Table 1: Computed eigenvalues of two-field Stokes problem ona square domain
usingP1 elements.

N λh (λ1 − λh)/λ1

10 55.8688 0.0673
15 53.9453 0.0306
20 53.2514 0.0173
25 52.9270 0.0111
30 52.7498 0.0077
35 52.6426 0.0057
40 52.5729 0.0044
45 52.5251 0.0034
50 52.4908 0.0028
55 52.4655 0.0023
60 52.4462 0.0019

Furthermore, we want to look at the first ten eigenvalue approximations with
comparison to the reference values obtained by the standardGalerkin method
usingP2-P1 interpolations satisfying the appropriate inf-sup condition on a fine
mesh (N = 60). The results are shown in Table 5 and Table 6 using respectively
P1 elements andP2 elements for the two-field case. The results for the three-field
case are shown in Table 7 (usingP1 elements) and Table 8 (usingP2 elements).
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Table 2: Computed eigenvalues of two-field Stokes problem onsquare domain
usingP2 elements.

N λh (λ1 − λh)/λ1

10 52.3891776138315288.4971× 10−4

15 52.3541845320672581.8119× 10−4

20 52.3478053058592545.9324× 10−5

25 52.3459903788682232.4652× 10−5

30 52.3453240529849571.1922× 10−5

35 52.3450347825058916.3957× 10−6

40 52.3448933036898373.6929× 10−6

45 52.3448176433402642.2475× 10−6

50 52.3447742702973291.4189× 10−6

Table 3: Computed eigenvalues of three-field Stokes problemon square domain
usingP1 elements.

N λh (λ1 − λh)/λ1

10 56.5919 0.0811
15 54.3902 0.0391
20 53.5378 0.0228
25 53.1231 0.0149
30 52.8913 0.0104
35 52.7491 0.0077
40 52.6558 0.0059
45 52.5913 0.0047
50 52.5449 0.0038
55 52.5104 0.0032
60 52.4841 0.0027

The numerical results show that the approximations for all the first ten eigenvalues
in the calculated spectrum converge to the corresponding reference solutions, and
the approximated values are above the reference solutions for all cases.

In order to compare our results qualitatively, we plot the unknowns, when
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Table 4: Computed eigenvalues of three-field Stokes problemon square domain
usingP2 elements.

N λh (λ1 − λh)/λ1

10 52.4155738199240841.3540× 10−3

15 52.3590700178005902.7453× 10−4

20 52.3493051920500188.7978× 10−5

25 52.3465951283133463.6205× 10−5

30 52.3456131365245911.7445× 10−5

35 52.3451900283314879.3616× 10−6

Table 5: Computed ten eigenvalues of two-field Stokes problem on a square do-
main usingP1 elements.

Ref. N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40
52.3447 55.8688 53.9453 53.2514 52.927 52.7498 52.6426 52.5729
92.1245 99.9955 95.7656 94.1952 93.4560 93.0514 92.8065 92.6471
92.1246 104.6259 97.7599 95.3019 94.1591 93.5375 93.1626 92.9192
128.2100 148.7460 138.2263 133.9922 131.9494 130.8203 130.1333 129.6851
154.1260 179.5074 165.7321 160.7009 158.3444 157.0584 156.2813 155.7763
167.0298 196.3993 179.8558 174.1717 171.5767 170.1783 169.3389 168.7957
189.5729 221.5153 205.7600 199.0557 195.7457 193.8967 192.7654 192.0246
189.5735 240.9553 214.2593 203.7305 198.6940 195.9248 194.2460 193.1532
246.3240 303.4553 271.6308 260.4574 255.3276 252.5584 250.8957 249.8195
246.3243 304.9802 275.3703 262.4826 256.6058 253.4404 251.5414 250.3128

u p

Figure 4:Plots ofu andp for N = 40 with P1 elements (two-field, square domain).
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Table 6: Computed ten eigenvalues of two-field Stokes problem on a square do-
main usingP2 elements.

Ref. N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40
52.3447 52.3892 52.3542 52.3478 52.3460 52.3453 52.3450 52.3449
92.1245 92.2650 92.1540 92.1341 92.1285 92.1264 92.1255 92.1250
92.1246 92.3546 92.1731 92.1402 92.1310 92.1276 92.1261 92.1254
128.2100 128.8179 128.3406 128.2526 128.2276 128.2184 128.2144 128.2124
154.1260 154.7857 154.2660 154.1712 154.1445 154.1347 154.1305 154.1284
167.0298 167.8012 167.1932 167.0829 167.0516 167.0401 167.0351 167.0327
189.5729 190.8794 189.8582 189.6665 189.6116 189.5913 189.5825 189.5781
189.5735 191.5500 190.0079 189.7160 189.6322 189.6013 189.5879 189.5813
246.3240 248.3017 246.7483 246.4620 246.3806 246.3507 246.3377 246.3314
246.3243 248.6870 246.8347 246.4907 246.3926 246.3566 246.3409 246.3332

Table 7: Computed ten eigenvalues of three-field Stokes problem on a square
domain usingP1 elements.

Ref. N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40
52.3447 56.5919 54.3902 53.5378 53.1231 52.8913 52.7491 52.6558
92.1245 98.9870 95.8558 94.4066 93.6468 93.2066 92.9310 92.7479
92.1246 106.0693 98.9834 96.1631 94.7706 93.9869 93.5043 93.1867
128.2100 148.9444 140.1753 135.6434 133.2037 131.7734 130.8721 130.2706
154.1260 172.7031 164.8846 160.9287 158.7355 157.4291 156.5992 156.0429
167.0298 189.4507 179.0202 174.4194 171.9815 170.5594 169.6654 169.0694
189.5729 212.7258 205.2605 199.9178 196.7485 194.7888 193.5145 192.6472
189.5735 238.4948 218.2487 207.5491 201.7170 198.2669 196.0809 194.6171
246.3240 269.6729 263.5867 258.3683 254.8240 252.5404 251.0333 250.0011
246.3243 282.5791 268.1758 260.8985 256.4580 253.6864 251.8820 250.6549

N = 60 usingP1 elements in Figure 4 for the two-field case, and in Figure 5 for
the three-field case. Comparing these two figures, one can seethe perfect agree-
ment in the velocity and pressure profiles obtained with the two formulations.
Moreover, we can observe that the behavior of the velocity streamlines and pres-
sure levels are in good agreement with the previously published results [2, 20].

Before proceeding, we want to report an unexpected behaviorwe have en-
countered during our numerical experiments. As the numerical analysis for both
two-field and three-field source problems suggests, the numerical constants in the
stabilization parameters can be arbitrarily chosen in a wide range. Considering
the source problems, for all cases this conclusion has been validated by testing
different combinations of the parameters chosen from a verylarge interval. For
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Table 8: Computed ten eigenvalues of three-field Stokes problem on a square
domain usingP2 elements.

Ref. N = 10 N = 15 N = 20 N = 25 N = 30 N = 35
52.3447 52.4156 52.3591 52.3493 52.3466 52.3456 52.3452
92.1245 92.2684 92.1548 92.1343 92.1285 92.1264 92.1255
92.1246 92.4690 92.1927 92.1461 92.1333 92.1287 92.1267
128.2100 129.306 128.4260 128.2782 128.2378 128.2232 128.2170
154.1260 154.6511 154.2415 154.1636 154.1414 154.1332 154.1297
167.0298 167.5411 167.1493 167.0696 167.0462 167.0375 167.0337
189.5729 191.4011 189.9504 189.6936 189.6223 189.5964 189.5852
189.5735 193.3702 190.3109 189.8036 189.6665 189.6175 189.5965
246.3240 246.4209 246.4648 246.3805 246.3486 246.3356 246.3297
246.3243 246.8890 246.5649 246.4125 246.3617 246.3419 246.3331

u p

σ11 σ12 σ22

Figure 5: Plots ofu, p andσ-components forN = 40 with P1 elements (three-field,
square domain).

the eigenvalue problems, this is also true for the two-field case. However, consid-
ering the approximation of first ten eigenvalues for the three-field eigenproblem,
when we test the method with constants approximately ten times larger than our
default values, we have observed that for certain cases spurious node-to-node os-
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cillations in the approximations are developed. This bad behavior only exists in
the seventh and tenth modes, and only for the three-field casefor bothP1 andP2

elements, using high values for the algorithmic constants.In other words, the cor-
rect values are well approximated for larger values of the stabilization constants
for the two-field problem; however, a bad behavior is observed in two approxima-
tions of the first ten eigenvalues for the three-field case. These results lead us to
think that a possible reason for this issue could be related to the deficiency of the
algorithm that computes the eigenvalues for the structure of the resulting system
in the three-field case.

5.2. Test 2: L-shaped domain

In the previous example we have considered a convex domain and showed that
the convergence estimates are recovered numerically for both two-field and three-
field cases. Next, we want to examine a test case with an L-shaped domain with
a re-entrant corner, defined byΩ = [−1, 1]2 \ [0, 1]2. The problem domain with a
discretization whereN = 5 is shown in Figure 6.
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Figure 6:A sample triangulation of the L-shaped domain (N = 5).

For this experiment, we considerλ2 = 48.9844 as the reference value to the
fourth eigenvalue. It is known that the dual problem hasH ι+1 regularity where
0 < ι < 1 [4]. The convergence results obtained for the two-field problem are
shown in Figure 7, where the reference values are given in Table 9 and 10 using
P1 andP2 elements, respectively. Similarly, Figure 8 plots the convergence re-
sults for the three-field case, whereas the approximated values are listed in Table
11 (P1 results) and Table 12 (P2 results). We conclude from these results that
the method achieves a double order of convergence from above, for the errors of
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the approximated eigenvalues. Further, we can infer that the reference eigenfunc-
tion corresponding to the fourth eigenvalue is smooth, complying with the results
reported in [4].

Table 9: Computed eigenvalues of the two-field Stokes problem on a L-shaped
domain usingP1 elements.

N λh (λ2 − λh)/λ2

5 58.6756 0.1978
10 51.8885 0.0593
15 50.3119 0.0271
20 49.7384 0.0154
25 49.4692 0.0099
30 49.3218 0.0069

Table 10: Computed eigenvalues of the two-field Stokes problem on a L-shaped
domain usingP2 elements.

N λh (λ2 − λh)/λ2

5 49.8045 0.0167
10 49.0428 0.0012
15 48.9959 0.0002
20 48.9877 0.0001

5.3. Test 3: Cracked square domain

Having dealt with two examples having analytic solutions, we consider an-
other domain with a re-entrant corner, namely, a square witha 45-degrees crack,
as the last test. The problem domain is discretized by a sequence of unstructured
triangular meshes, and the total number of vertices is denoted byM . Figure 9
shows the problem domain and a sample discretization whereM = 136.

We takeλ3 = 31.2444 as the reference solution to the first eigenvalue for this
experiment. The corresponding solution is known to be singular [4].
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Table 11: Computed eigenvalues of the three-field Stokes problem on a L-shaped
domain usingP1 elements.

N λh (λ2 − λh)/λ2

5 51.9184 0.0599
10 49.8498 0.0177
15 49.4469 0.0094
20 49.2607 0.0056
25 49.1658 0.0037
30 49.1120 0.0026

Table 12: Computed eigenvalues of the three-field Stokes problem on a L-shaped
domain usingP2 elements.

N λh (λ2 − λh)/λ2

5 49.4628 0.0098
10 49.0224 0.0008
15 48.9923 0.0002
20 48.9867 0.0000
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Figure 7: Plot of log |(λ2 − λh)/λ2| with respect tolog |N | for the two-field Stokes
problem on a L-shaped domain.
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Figure 8: Plot of log |(λ2 − λh)/λ2| with respect tolog |N | for the three-field Stokes
problem on a L-shaped domain.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 9:A sample triangulation of the cracked square (M = 136).

Tables 13 and 14 list the first eigenvalue approximations together with the rel-
ative errors, usingP1 andP2 elements, respectively, for the two-field case. Simi-
larly, in Tables 15 and 16 we present the results for the three-field case.

The convergence results in terms of the errors are displayedin Figure 10 for
the two-field case and in Figure 11 for the three-field case. The results show that
the monotonic approximation property of the method is also preserved for this
example, and the approximation orders are higher than the reference value for all
cases considered. The figures indicate that the asymptotic regime has not been
reached yet, and the number of elements has to be further increased in order to
obtain a linear dependence of the error on the number of totalvertices. We clearly
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Table 13: Computed eigenvalues of the two-field Stokes problem on a cracked
square usingP1 elements.

M λh (λ3 − λh)/λ3

136 33.9006 0.0850
477 32.1248 0.0282
989 31.6912 0.0143
1861 31.4876 0.0078
2515 31.4485 0.0065
3489 31.4013 0.0050

Table 14: Computed eigenvalues of the two-field Stokes problem on a cracked
square usingP2 elements.

M λh (λ3 − λh)/λ3

136 31.4697 0.0072
477 31.3694 0.0040
989 31.3215 0.0025
1861 31.3102 0.0021
2515 31.3074 0.0020
3489 31.3022 0.0018

infer that the convergence order has decreased for the problem where we do not
have global regularity, and the solution is not analytic. Thus, we can conclude that
the convergence is driven by the regularity of the continuous solution, as expected.

6. Conclusions

The stabilized finite element formulation based on the application of subgrid
scale concept to the two-field and three-field Stokes eigenvalue problems has been
presented. The virtue of the method relies in considering the subscales orthogonal
to the finite element space; the fact that the orthogonal projection of the displace-
ments (or velocities) vanishes provides an essential property which makes the
method very convenient for eigenvalue problems. The finite element approxima-
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Table 15: Computed eigenvalues of the three-field Stokes problem on a cracked
square usingP1 elements.

M λh (λ3 − λh)/λ3

136 35.5336 0.1373
477 33.6856 0.0781
989 32.6086 0.0437
1861 32.0648 0.0263
2515 31.9739 0.0233
3489 31.8046 0.0179

Table 16: Computed eigenvalues of the three-field Stokes problem on a cracked
square usingP2 elements.

M λh (λ3 − λh)/λ3

136 32.0113 0.0245
477 31.6124 0.0118
989 31.4632 0.0070
1861 31.4086 0.0053
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Figure 10: Plot of log |(λ3 − λh)/λ3| with respect tolog |M |for the two-field Stokes
problem on a cracked square domain.
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Figure 11:Plot of log |(λ3 − λh)/λ3| with respect tolog |M | for the three-field Stokes
problem on a cracked square domain.

tion to the three-field Stokes eigenvalue problem is anothernovel contribution of
the paper. The convergence and error estimates are based on the finite element
analysis of the corresponding source problems. The formulations are shown to be
optimally convergent for a given set of algorithmic parameters on which the meth-
ods depend. The numerical computations show that the accuracy of the method is
the one expected from the convergence analysis, and the theoretical convergence
rates for all the experiments considered are exactly achieved in the numerical re-
sults presented.
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