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A B S T R A C T   

For many years the faith of organic photovoltaics has been linked to the one of fullerene, since fullerene has been 
considered the electron-acceptor of choice in bulk heterojunctions solar cells. In the last years, the number of 
molecules that can be very competitive in replacing fullerene has increased significantly. In this work, we study 
by means of different theoretical methods five molecules that have demonstrated to work effectively as acceptors 
in organic heterojunctions. We discuss the comparison of simulated absorption spectra with the experimental 
spectra.   

Introduction 

In the last decades, fullerene-based materials have been the most 
used acceptors in organic bulk heterojunction solar cells, owing to their 
relatively high processability and to the delocalization of the lowest 
unoccupied molecular orbital (LUMO) across the entire three- 
dimensional surface of fullerene [1]. Since the first report on the use 
of polymer:fullerene heterojunction as photovoltaic material in 1992 
[2], the use of fullerene derivatives has seen a stark increase [3–9]. On 
the other hand, some intrinsic limitations of fullerenes, such the 
generally weak optical absorption in the visible and its environmental 
instability [10], have promoted the research of new non-fullerene ac-
ceptors [11]. The outstanding endeavour in chasing reliable substitutes 
to fullerene is, for example, testified by works on perylenediimide-based 
molecules [12] and on fluorene-based molecules [13], and reported in 
four exhaustive review articles published in 2017 [14] and 2019 
[11,15,16]. Remarkably, power conversion efficiencies (PCE) above 
16% have been achieved for solar cells integrating the non-fullerene 
acceptor BTPTT-4F [17–19]. In this context, also semiconducting car-
bon nanotubes have been proposed as valid alternative to fullerenes, due 
to their excitonic behaviour and relatively high environmental stability 
[20–22]. 

In this work, we simulate by employing different calculation 
methods the absorption properties of non-fullerene molecules that hold 
great promises as efficient electron- acceptor systems in organic heter-
ojunction solar cells. The study of the optical gap and of the different 

optical transitions in non-fullerene acceptors permit to corroborate and 
complement the experimental studies present in the literature and aims 
at a better understanding of the different electronic transitions in the 
studied molecules. 

Methods 

We have sketched the molecule geometries with the Avogadro 
package [23]. We have optimized the ground state geometries and we 
have calculated the electronic transitions of the molecules with the 
package ORCA 4.2.1 [24]. 

Density Functional Theory calculations (with B3LYP functional): We 
have used the B3LYP functional [25] in the framework of the density 
functional theory. We have employed the Ahlrichs split valence basis set 
[26] and the all-electron nonrelativistic basis set SVPalls1 [27,28]. 
Moreover, the calculation utilizes the Libint library [29] and the Libxc 
library [30,31]. 

Density Functional Theory calculations (with BP functional): We employ 
ORCA 4.2.1 [24] for these calculations. The orbital basis set def2-SVP 
has been used [32] and the auxiliary basis set def2/J has been used 
[33]. Also in this case, the calculation utilizes the Libint library [29] and 
the Libxc library [30,31]. 

Calculations with Zerner’s Intermediate Neglect of Differential Overlap 
(ZINDO/S), Modified Neglect of Diatomic Overlap (MNDO), Parametric 
Method 3 (PM3) methods: Also for these calculations we employ ORCA 
4.2.1 [24]. The orbital basis set def2-SVP has been used [32]. Also in this 
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case, the calculation utilizes the Libint library [29] and the Libxc library 
[30,31]. 

Calculations with Hückel method: For the Hückel we employ the Hulis 
package [34,35]. 

Results and discussion 

In Fig. 1, we show the molecular structures of the five investigated 
molecules. The molecule with 3-ethylrhodanine (RH) attached to both 
ends of thiophene-flanked carbazole is the so-called Cz-RH [36]. A solar 
cell that includes a bulk heterojunction with Poly(3-hexylthiophene) 
and Cz-RH (P3HT-Cz-RH) is reported in literature with a power con-
version efficiency (PCE) of 2.56% [37]. 

The N-annulated perylene diimide (PDI) dimer has been employed in 
a bulk heterojunction solar cell reaching power conversion efficiency up 
to 7.6% with a terthiophene-based polymer named P3TEA as donor 
material [38]. The molecule IT-4F is used as acceptor in a bulk hetero-
junction with fluorinated poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen- 
2-yl)benzo[1,2-b:4,5-b′]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7- 

bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione)] (PBDB-T- 
SF) leads to a PCE of 13% [39,40]. Finally, a heterojunction containing 
BTPTT-4F shows an efficiency above 16% as mentioned above [17]. 

We have calculated the first 16 transitions for the studied molecules 
(reported in the Supporting Information) and obtained simulated ab-
sorption spectra as a sum of Gaussian curves expressed as f(x) =

foscexp
[
(x − xc)

2
/2a2], with fosc the oscillator strength of the transition, 

xc the central wavelength (in nm) of the transition, a that is related to the 
linewidth. In particular, we have selected a value of 5 nm for the line-
width a. In Fig. 2, we show the simulations of the absorption spectra of 
Cz-RH molecule (left) and Flu-RH molecule (right). The lowest transi-
tion peak at around 500 nm (about 2.48 eV) is in good agreement with 
the experimental absorption spectra for the solutions reported in Kim at 
al. [37]. The highest predicted transitions are at longer wavelengths 
with respect to the experimental ones. 

In Fig. 3, we show the absorption spectrum of TPDI-Hex. We observe 
a discrepancy between the simulated absorption spectrum and the 
experimental one in terms of oscillator strength. The lowest simulated 

Fig. 1. Molecular structures of the molecules studied: Cz-RH, Flu-RH, TPDI-Hex, IT-4F and BTPTT-4F.  

Fig. 2. Calculation of the absorption spectrum (DFT with B3LYP functional) of the molecule Cz-RH (left) and the molecule Flu-RH (right).  
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transition is at 2.31 eV (with a very weak oscillator strength of < 0.01) 
while the lowest experimental transition is at 2.36 eV, but with a very 
strong weight in the spectrum with respect to the other peaks. With 
ZINDO/S method the simulated lowest transition is at 2.52 eV (with an 
oscillator strength of 0.93). These discrepancies could be due to the 
optimized geometry used and, in particular, to the dihedral angle be-
tween the perylene groups. 

In Fig. 4, we show the absorption spectrum of IT-4F with the lowest 
optical transition at 1.99 eV with DFT and B3LYP functional (black solid 
curve) and at 1.82 eV with ZINDO/S, while the experimental absorption 
shows the lowest absorption peak at 1.77 eV [39,40]. 

In Fig. 5, we display the absorption spectrum of BTPTT-4F, with the 

transition at 1.99 eV. For the estimation of BTPTT-4F optical bang gap, 
we have employed different theoretical methods whose results are re-
ported in Table 1. 

Taking into account that Fan et al. [17] report an optical band gap of 
about 1.7 eV of BTPTT-4F solution in chlorobenzene, DFT calculations 
with BP functional and ZINDO/S calculations give optical band gaps that 
are closer to the experimental one. 

We perform Hückel method based calculations with Hulis package 
[34,35]. We find the following states: i) HOMO-1: α + 0.42β; ii) HOMO: 
α + 0.24β; iii) LUMO: α – 0.15β; iv) LUMO + 1: α – 0.16β. Hence, we 
observe a HOMO-LUMO gap of 0.39β. As reported by Fan et al. [17], the 
experimental HOMO, measured by cyclic voltammetry, is at − 5.68 eV, 
while the experimental LUMO is at − 4.06 eV. Thus, we could estimate a 
value of 4.15 for the β parameter. 

Conclusion 

In this work, we have studied the optical properties of five different 
non-fullerene acceptors by means of different calculation methods. 
These molecules, namely Cz-RH, Flu-RH, TPDI-Hex, IT-4F and BTPTT- 
4F, hold great promises for application in organic photovoltaic. In 
regards of BTPTT-4F, which has shown remarkable photovoltaic per-
formances in organic heterojunction cells, we have determined the op-
tical gap and compared it with the experimental results. At this stage, we 
did not consider any solvent effect on our calculations. However, we 
propose to include this degree of complexity in the near future, as sol-
vent effects can lead to diverse intramolecular phenomena that, in turns, 
can modify the optical response of many molecular systems [41]. 

Fig. 3. Calculation of the absorption spectrum of TPDI-Hex with DFT and 
B3LYP functional (solid black curve) and ZINDO/S method (dotted dashed red 
curve). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 4. Calculation of the absorption spectrum of IT-4F with DFT and B3LYP 
functional (solid black curve) and with ZINDO/S method (dotted dashed red 
curve). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 5. Calculation of the absorption spectrum of BTPTT-4F with DFT and 
B3LYP functional (solid black curve) and with ZINDO/S method (dotted dashed 
red curve). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 1 
Optical band gap of BTPTT-4F calculated with different methods: DFT with 
B3LYP and BP functional, Zerner’s Intermediate Neglect of Differential Overlap 
(ZINDO/S), Modified Neglect of Diatomic Overlap (MNDO), Parametric Method 
3 (PM3).   

DFT B3LYP DFT BP ZINDO/S MNDO PM3 

Optical band gap (eV)  1.99  1.65  1.71  2.01  2.28  
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