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Investigation of many electronic processes in molecules andmaterials, such as charge and

exciton transport, requires a computational framework that incorporates both non-

adiabatic electronic effects and nuclear quantum effects, in particular at low

temperatures. We have recently developed an efficient semi-empirical fewest switches

surface hopping method, denoted fragment orbital-based surface hopping (FOB-SH),

that was tailored towards highly efficient simulation of charge transport in molecular

materials, yet with nuclei treated classically. In this work, we extend FOB-SH and

include nuclear quantum effects by combining it with ring-polymer molecular dynamics

(RPMD) in three different flavours: (i) RPSH with bead approximation (RPSH-BA) as

suggested in Shushkov et al., J. Chem. Phys., 2012, 137, 22A549, (ii) a modification of (i)

denoted RPSH with weighted bead approximation (RPSH-wBA) and (iii) the isomorphic

Hamiltonian method of Tao et al., J. Chem. Phys., 2018, 148, 10237 (SH-RP-iso). We

present here applications to hole transfer in a molecular dimer model and analyze

detailed balance and internal consistency of all three methods and investigate the

temperature and driving force dependence of the hole transfer rate. We find that RPSH-

BA strongly underestimates and RPSH-wBA overestimates the exact excited state

population, while SH-RP-iso gives satisfactory results. We also find that the latter

predicts a flattening of the rate vs. driving force dependence in the Marcus inverted

regime at low temperature, as often observed experimentally. Overall, our results

suggest that FOB-SH combined with SH-RP-iso is a promising method for including

zero point motion and tunneling in charge transport simulations in molecular materials

and biological systems.
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1 Introduction

Nonadiabatic processes dictate several photochemical and photophysical
phenomena in a wide variety of systems ranging from small molecules to solids,
including complex biological and organic semiconductors. Simulating nonadia-
batic processes requires time evolution of multiple electronic states as well as
a proper description of nuclear (ionic) motion. Full quantum mechanical
description of both electronic and nuclear motion is prohibitively expensive and
only possible for few atoms. Hence, one seeks a compromise where the electronic
motion is treated quantum mechanically while the nuclear motion is treated
classically, resulting in the so-called nonadiabatic mixed quantum classical (NA-
MQC) dynamics. Several approaches have been developed over the years that can
be loosely classied as NA-MQC dynamics including trajectory surface hopping
(TSH),1–19 mean-eld Ehrenfest,20–23 mixed quantum-classical Liouville equation
(QCLE),24–26 the mapping approach,27–31 multiple spawning,32,33 nonadiabatic
Bohmian dynamics34,35 and coupled-trajectories mixed quantum-classical
method.36

Conceptual simplicity and straightforward implementation has made TSH one
of the most popular NA-MQCmethods. In TSH, one runs a swarm of independent
classical trajectories to model time evolution of a nuclear wave packet and
a stochastic algorithm is employed to incorporate transitions from the active
adiabatic state to another one. Different avours of TSH have been developed over
the years depending on how and when the stochastic jumps are employed. In one
of the most popular approaches, known as the fewest switch surface-hopping
algorithm (FSSH),2 the state switch is associated with an instantaneous jump
from one adiabatic surface to another based on hopping probability. The hopping
probability in FSSH is calculated from the electronic density matrix and the
nonadiabatic coupling between the two states in such a fashion so that one needs
a minimum number of state switches in order to maintain consistency between
the electronic (adiabatic) and surface population. While the classical description
of nuclei is adequate in many cases, the incorporation of nuclear quantum effects
like vibrational tunneling might become important in certain scenarios, like
charge transfer/transport in organic semiconductors at low temperatures.37 In the
context of TSH, this problem has been addressed in two different ways. In the
army ants tunneling method,38 proposed by Truhlar’s group, an effective
tunneling coordinate is dened beforehand based on internal coordinates and
the tunneling probability is evaluated semi-classically. The population of the
trajectories is modulated depending on the tunneling probability. Alternatively,
one can introduce nuclear quantum effects employing the framework of ring
polymer molecular dynamics (RPMD).39–42 In this context, Shushkov, Li and
Tully43 proposed two closely related variants – ring polymer surface hopping with
bead approximation (RPSH-BA) and ring polymer surface hopping with centroid
approximation (RPSH-CA). In these methods each replica/bead is propagated on
its own adiabatic surface (ground or excited) while the electronic Schrödinger
equation is generated either from bead-averaged quantities (RPSH-BA) or from
the quantities evaluated at the ring polymer centroid position (RPSH-CA). Shakib
et al.44 demonstrated the critical role played by zero-point energy corrections and
nuclear tunneling effects by applying RPSH-CA on model potential energy
Faraday Discuss. This journal is © The Royal Society of Chemistry 2019
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surfaces. A conceptually different approach to combine RPMD with TSH has been
developed by Lu and Zhou,45,46 known as path integral molecular dynamics with
surface hopping (PIMD-SH), where each bead may occupy a different state with
the aim to compute thermal averages for observables. More recently, yet another
approach has been proposed by Tao, Shushkov and Miller47 in order to introduce
nuclear quantum effects in conjunction with NA-MQC dynamics. In this
approach, known as the isomorphic Hamiltonian method, one constructs an
effective Hamiltonian from the diabatic electronic Hamiltonian of each bead that
preserves the quantum Boltzmann statistics. Within this mean eld approach,
one can combine different non-thermostatted path integral based methods like
RPMD and centroid molecular dynamics (CMD)48,49 with various NA-MQC
approaches like TSH and QCLE.

We have recently introduced an efficient fewest switches surface hopping
method with classical nuclei, termed fragment orbital-based surface hopping
(FOB-SH),50 that was tailored towards efficient simulation of charge transport in
large condensed phase systems through expansion of the charge carrier wave-
function in a localized (or site) basis of molecular frontier orbitals. The merit of
this explicit charge propagation method is that it can be used in regimes where
traditional theoretical approaches, such as charge carrier hopping or band theory
no longer apply, e.g. in many organic semiconductors, DNA etc.51 In a rst series of
tests, we have shown that the method could reproduce Hab, l and DG dependence
for charge transfer in a dimer in the nonadiabatic regime in good agreement with
Marcus theory.52 Interestingly, we observed a crossover from activated charge
transfer to Rabi-type ultrafast charge relaxation in the limit of large electronic
couplings (Hab ¼ l/2). In chains of molecules modeling organic semiconductors,
this regime is characterized by a crossover from activated hopping of a localized
charge (small polaron) to band-like transport of a delocalized charge (delocalized
polaron),53 as observed sometimes experimentally.54

Explicit simulations of charge transfer/transport dynamics at low tempera-
tures are of general interest. Many experimental studies on charge mobility in
(bio)organic materials have been carried out in a wide temperature range to probe
the carrier mechanism, from temperatures as low as a few 10 K to room
temperature.55 For ultrapure organic crystals a power-law decay of electron
mobility with temperature has been observed, m ¼ T�h. Interestingly, rather
different values for the decay constant have been reported for similar materials
ranging from h ¼ 1 to h ¼ 3. Preliminary results indicate that while FOB-SH
reproduces experimental mobilities at high temperatures and qualitatively
reproduces the power-law decay at low temperatures, but the decay coefficient h is
underestimated, most likely because of missing nuclear tunneling and zero point
energy (ZPE) effects. Hence, it would be extremely desirable to include these
effects in the FOB-SH method.

In this work we report the implementation of the RPSH-BA method and
a particular avour of the isomorphic Hamiltonian method that combines RPMD
with TSH, known as SH-RP-iso, in the context of FOB-SH simulations. We
investigate the ability of these methods to preserve two of the most desirable
features in any TSH simulation, internal consistency and detailed balance (see
Section 4.1 for details), for a model problem involving a charge transfer reaction
between two “ethylene-like” molecules in a bath of Ne atoms. The parameters
employed in this model system are chosen diligently in order to mimic the
This journal is © The Royal Society of Chemistry 2019 Faraday Discuss.
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parameter regime relevant for charge transfer/transport in organic semi-
conductor materials.56

We observe that RPSH-BA suffers from very few successful hops resulting in
a severe underestimation of the excited state population. In order to rectify this
issue, we propose a modication of the RPSH-BA method, denoted here as ring
polymer surface hopping with weighted bead approximation (RPSH-wBA) that
increases the number of successful hops but overestimates the excited state
population. On the other hand, the excited state population extracted from SH-
RP-iso simulations is found to be much closer to the “exact” excited state pop-
ulation. Based on these results we chose to compute charge transfer rate
constants with SH-RP-iso and FOB-SH methods at different temperatures. In
contrast to the rate constants obtained from simulations with classical nuclei, the
charge transfer rate constants extracted from ring polymer simulations show
much weaker temperature dependence, a probable consequence of quantum
nuclear tunneling at low temperatures. The trends in computed rate constants as
a function of temperature are found to be qualitatively consistent with the
temperature dependence of Golden rule rate constant expressions where the
Franck–Condon factor is derived for classical nuclei or from a quantized spin-
boson model. We further investigate the dependence of rate constants on the
free energy difference between the reactant and product states. At 100 K, the rate
constants extracted from SH-RP-iso simulations demonstrate a clear asymmetry
in the curvature due to the lower rate of decrease of rate constants in the Marcus
inverted regime, a feature that is indicative of vibrational tunneling effects.

This paper is organized as follows. In Section 2 we briey describe RPSH-BA, its
modication, which we call RPSH-wBA, and the isomorphic Hamiltonian
method. Proof of the expressions employed in describing the RPSH-wBA method
is given in the Appendix. We also dene here the Marcus rate constant expression
for charge transfer reactions, along with an analytical expression where the
semiclassical Franck–Condon factor is replaced by a quantized version that
involves overlap of harmonic oscillator wavefunctions, henceforth described as
quantum rate constant. Aer description of the molecular model, force eld
parameters and the details of the surface hopping simulations in Section 3, we
present and discuss the results of our calculations in Section 4. This analysis is
followed by a summary and future directions of our work in Section 5.

2 Theory
2.1 FOBSH

In the recently developed fragment orbital-based (FOB) surface hopping
approach, it is assumed that the complicated many-body electron dynamics can
be effectively described by a one-particle wavefunction J(t) for an excess charge
(electron or electron hole) moving in an effective, time-dependent potential due to
the other electrons and classical nuclear motion. The interaction of all other
electrons with the charge carrier is included implicitly through a parametrized
electronic Hamiltonian. The charge carrier wavefunction J(t) is expanded in
a basis of localized, non-orthogonal fragment orbitals, {4m}, that are located onM
“sites” of a molecular system and mediate the charge transfer. The fragment
orbital basis is orthogonalized using Löwdin orthogonalization. The carrier
wavefunction in the orthogonal fragment orbital basis {fl} then reads
Faraday Discuss. This journal is © The Royal Society of Chemistry 2019
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JðtÞ ¼
XM
l¼1

ulðtÞflðRðtÞÞ: (1)

In this basis, the time-dependent Schrödinger equation (TDSE) takes the
familiar form,

iħu� kðtÞ ¼
XM
l¼1

ulðtÞðHkl � iħdklÞ; (2)

where Hkl are the elements of the (non-diagonal) electronic Hamiltonian in the
{fl} basis, Hkl ¼ ½ℍ�kl, and dkl ¼ hfk|fl̇i are the nonadiabatic coupling elements
(NACEs). In what follows, we refer to the fragment orbital bases {4l} and {fl} as
non-orthogonal and orthogonal diabatic bases, respectively, even though
the NACEs dkl are in general non-zero, albeit small. The diagonal element Hkk ¼
hfk|H|fki is the energy of the excess charge localized on molecule k that can be
estimated using a classical force eld where molecule k is charged and all the
other M � 1 molecules are neutral. The off-diagonal term Hkl ¼ hfk|H|fli is the
electronic coupling matrix elements between the two diabatic states fk and fl. In
SH molecular dynamics, the nuclear degrees of freedom are propagated on
a single adiabatic potential energy surface Ei ðh½ℍad�iiÞ, which is obtained by
unitary transformation of the diabatic Hamiltonian, ℍ, eqn (3) where U is the
transformation matrix. The corresponding adiabatic states are denoted by {ji}.

ℍad ¼ U
†ℍU (3)

ji ¼
XM
k¼1

Ukifk (4)

The nuclear forces on the adiabatic state i, FI,i, can be obtained from the
gradients of the Hamiltonian matrix elements in the diabatic representation
using the Hellmann–Feynman theorem,

FI ;i ¼ �VIEi ¼ �VI hjijHjjii ¼ ��U†ðVIℍÞU
�
ii

(5)

where ½VIℍ�klhVIHkl ¼ VIhfkjHjfli. The last identity in eqn (5) has been shown
explicitly in ref. 50. In practice, the gradients of the diagonal and off-diagonal
elements are obtained with classical force elds and nite difference of the
orbital overlap using the analytic overlap method (AOM),57 respectively. The
probability to hop from the current (active) adiabatic state i to another state j in
the Tully’s fewest switch algorithm is given by

gij ¼ max

2
40; �2Re

�
a*ijd

ad
ij

�
aii

Dt

3
5 (6)

where aij ¼ c*i cj is the electronic densitymatrix, ci being the expansion coefficients of

the wavefunction in the adiabatic basis, JðtÞ ¼
XM
l¼1

ciðtÞjiðRðtÞÞ. Importantly, the

hopping probabilities depend on the NACEs between the adiabatic states, dadij , which
is dened as the projection of the nuclear velocity on the adiabatic NACV.
This journal is © The Royal Society of Chemistry 2019 Faraday Discuss.
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dadij ¼ _RI$d
ad
I,ij (7)

In the diabatic basis, the adiabatic NACEs are obtained from the temporal
change in the transformation matrix and the diabatic NACEs ðdklh½D�klÞ of eqn
(2).

dad
ij ¼ �U†

DU
�
ij
þ �U†

U
� �

ij
(8)

An important component of the surface hopping algorithm is velocity rescal-
ing upon a successful hop. It has been shown previously that rescaling the nuclear
velocity in the direction parallel to the adiabatic NACV (dadI,ij ¼ hji|VIjji) improves
detailed balance. Using the Hellmann–Feynman theorem, one can reformulate
the adiabatic NACV in terms of gradient of the adiabatic Hamiltonian (eqn (10) in
ref. 58). Finally, employing the diabatic to adiabatic transformation matrix ðUÞ,
one can express the adiabatic NACV in a diabatic basis.

dadI ;ij ¼
1

Ej � Ei

�
U

†ðVIℍÞU
�
ij
þ �U†

DIU
�
ij

(9)

It has been shown in our earlier work58 that the last term in eqn (9) is
numerically small and can be ignored. Hence, the working expression for the
adiabatic NACV in the diabatic basis is given by:

dadI ;ijz
1

Ej � Ei

�
U

†ðVIℍÞU
�
ij
: (10)

The details of the derivation of the above equation are provided in ref. 58. In
Appendix A we provide an alternative derivation of eqn (8) starting from eqn (9).
2.2 Ring polymer surface hopping with bead approximation (RPSH-BA)

In RPMD one performs classical MD with a ring polymer Hamiltonian in the
extended phase space at n times the physical temperature. In practice, physical
forces are calculated individually on each replica and the spring forces are added
separately at each MD time step. The ring polymer Hamiltonian with n beads,
each consisting of {I} nuclei is written as

H n ¼
Xn
a¼1

"X
I

"
p2
I ;a

2MI

þ 1

2
MIun

2ðRI ;a � RI ;a�1Þ2
#
þ Ei;aðfRIgaÞ

#
(11)

where MI is the physical mass of the Ith nucleus, pI,a and RI,a are the momentum
and position associated with the Ith nucleus of the ath bead, un¼ nkBT/ħ and Ei,a is
the ith eigenstate of the ath bead. The corresponding Hamilton’s equation of
motion is given by:

p
�

I ;a ¼ �MIunb
2ð2RI ;a � RI ;a�1 � RI ;aþ1Þ � vEi;aðfRIgaÞ

vRI ;a

R
�

I ;a ¼ pI ;a

MI

:

(12)
Faraday Discuss. This journal is © The Royal Society of Chemistry 2019
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Several attempts have been made to couple TSH with the ring polymer
framework. In the RPSH method, proposed by Shushkov et al.,43 the dynamics of
each bead is performed on the same adiabatic state (ia ¼ i) determined by the SH
algorithm. The corresponding electronic Schrödinger equation is propagated in
the adiabatic basis employing the adiabatic energies and adiabatic NACEs that
are either averaged over all the beads (RPSH-BA) or computed with the centroid
coordinates (centroid approximation). For the bead approximation, the TDSE
takes the following form:

iħc� i ¼
"
1

n

Xn
a¼1

Ei;a

#
ci � iħ

X
j

"
1

n

Xn
a¼1

dad
ij;a

#
cj (13)

where Ei,a is the energy of the ith eigenstate and dadij,a is the adiabatic NACE cor-
responding to the ath bead. Using model potential energy surfaces, it has been
shown that the bead approximation provides reasonable reactive ux rates even at
fairly low temperatures while the centroid approximation is mostly applicable at
ambient to high temperatures.

While a direct propagation of the TDSE in the adiabatic basis is numerically
challenging due to sudden peaks in the NACEs at avoided crossings, propagation
in the diabatic basis is numerically more robust. We rst introduce the eigen-
vector matrix of the bead-averaged diabatic Hamiltonian,

ℍ ¼ 1

n

Xn
a¼1

ℍa (14)

and use it to dene the diabatic wavefunction coefficients, ũ({RI,a}),

~uð�RI ;a

�Þ ¼ Ucð�RI ;a

�Þ: (15)

Insertion of eqn (15) in (13) gives the following TDSE for ũ (see Appendix for
a derivation):

iħ~u
�

k ¼
X
l

~ulð ~Hkl � iħ ~dkl � iħyklÞ (16)

where

~Hkl ¼
"
U

 
1

n

Xn
a¼1

ℍad
a

!
U

†

#
kl

(17)

~dkl ¼
"
U

 
1

n

Xn
a¼1

dad
ij;a

!
U

†

#
kl

(18)

ykl ¼
h
UU

� †
i
kl
: (19)

ℍad
a and dadij,a in eqn (17) and (18) are calculated for each bead using eqn (3) and

(8) respectively. As suggested by Shushkov et al.,43 the velocities of all the nuclei
are rescaled to conserve the total energy of all the beads:
This journal is © The Royal Society of Chemistry 2019 Faraday Discuss.
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1

2

X
a

X
I

MI

�
R
� 02
I ;a � R

� 2

I ;a

�
þ nD ~Eij ¼ 0; (20)

where R
� 0
I;a is the rescaled velocity of the Ith nucleus of the ath bead and D~Eij is the

difference in the average potential energies of the new and old state.

D ~Eij ¼ 1

n

Xn
a¼1

�
Ej;a � Ei;a

	
(21)

The rescaling of velocities is performed in the direction of the adiabatic NACV
of each bead, dad

I;ijðfRIgaÞ.

R
� 0
I ;a ¼ R

�

I ;a þ g
dadI ;ijðfRIgaÞ

MI

(22)

2.3 Ring polymer surface hopping with weighted bead approximation (RPSH-
wBA)

As explained in Section 4.1, the dynamics with RPSH-BA underestimates the
excited state population due to very few successful hops. In an attempt to rectify
this problem we introduce here a modication of the BA, denoted weighted bead
approximation, wBA. It is based on the observation that in the BA the adiabatic
(eigen) energies and the NACEs between the adiabatic states of each bead are
calculated rst and then averaged. An alternative procedure is to rst dene the
“average” adiabatic states and then consistently calculate the NACVs and NACEs
between them. In this formulation, the average adiabatic eigenstates {|ii,|ji}
diagonalize the average diabatic Hamiltonian, ℍ. The TDSE within the RPSH-wBA
approximation takes a form analogous to eqn (16) where ~Hkl is replaced by
Hkl ¼ ½ℍ�kl while dklð¼ UD

ad
U

†Þ replaces ~dkl.

iħu
�

k ¼
X
l

ulðHkl � iħdkl � iħyklÞ (23)

The matrix elements of D
ad
, denoted by �dadij , are given by

d
ad

ij ¼ 1

nDEij

X
a

X
ia

X
ja

DEia jahijiaihjajji

�
U

†
aU

�

a þ U
†
aDaUa

�
ia ja

(24)

where D�Eij is the difference in energy between the j th and i th eigenstates of ℍ and
DEiaja is the energy difference between the ja

th and ia
th eigenstates of the ath

diabatic Hamiltonian ℍa.

DEij ¼
h
U

†
ℍU

i
jj
�
h
U

†
ℍU

i
ii

DEia ja ¼ Ej;a � Ei;a

(25)

Note that both eqn (16) and (23) reduce to eqn (2) in the limit n¼ 1. As shown in
the Appendix the expression for �dadij is derived from the adiabatic NACVs,
�dadIa,ij, corresponding to the average diabatic Hamiltonian, ℍ. These adiabatic NACVs
Faraday Discuss. This journal is © The Royal Society of Chemistry 2019
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can be expressed in terms of the NACV between the adiabatic states
({|iai,|jai}) of each bead with the use of the Hellmann–Feynman theorem by pro-
jecting {|ii,|ji} onto {|iai,|jai}. The working form of the adiabatic NACV is given by:

d
ad

Ia ;ij
z

1

nDEij

X
ia

X
ja

hijiaihjajji
�
U

†
aðVIaℍaÞUa

�
ia ja

:

(26)

As will be seen later, this modication signicantly increases excited state
population. Although RPSH-wBA is conceptually simple and results in a larger
number of hops compared to RPSH-BA, there is no simple way to formulate
a consistent velocity rescaling scheme, since each bead evolves on its own adiabatic
surface while the electronic dynamics is dictated by the eigenvalue spectrum of the
average diabatic electronic Hamiltonian. In our current formulation, we treat an
attempted hop in two steps. We rst check whether the ring polymer has enough
kinetic energy to compensate for change in the average adiabatic energies of the two
surfaces (D~Eij, eqn (21)). If this criterion is met then we rescale the velocities using
eqn (22) and (20) where dadI,ij({RI}a) is replaced with d

ad
Ia;ij (eqn (26)) and D~Eij is

replaced with D�Eij (eqn (25)), respectively. In the next section we summarize the
recently proposed isomorphic Hamiltonian method where both the electronic
dynamics and the nuclear dynamics are performed with the same Hamiltonian.
2.4 Isomorphic Hamiltonian (SH-RP-iso)

In the isomorphic Hamiltonian method, the matrix elements of the diabatic
Hamiltonians of all the beads are combined together to generate the isomorphic
Hamiltonian in such a way that classical Boltzmann sampling of this Hamilto-
nian preserves the quantum Boltzmann statistics of the physical system. The
method has been described extensively in the original article.47 Here we present
only the key equations. The diagonal elements of the potential energy matrix,Viso,
of the isomorphic Hamiltonian are the same as the diagonal elements of ℍ,

V iso
i ¼ 1

n

Xn
a¼1

½ℍa�ii; (27)

but the condition on preserving the quantum Boltzmann statistics requires
a more involved average for the off-diagonals,

�
K iso

kl

	2 ¼ 1

b2
a cosh2



1

2
e
1
2
b
�
V iso

k þ V iso
l

	
mkl

�
� 1

4

�
V iso

l � V iso
k

	2
; (28)

where, for a 2-level system,

mkl ¼ m12 ¼ tre

"Yn
a¼1

e�bnℍa

#
: (29)

In the above expressions, b¼ 1/(kBT), and bn¼ b/n. The isomorphic Hamiltonian
method differs fundamentally from RPSH-BA and RPSH-wBA in the way how the
nuclear and electronic dynamics are performed. In the previous two methods, the
physical forces for nuclear dynamics are calculated separately for each bead while
This journal is © The Royal Society of Chemistry 2019 Faraday Discuss.
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the electronic dynamics is performed by an effective electronic Hamiltonian that
includes contributions from all the beads. In SH-RP-iso, both the nuclear and
electronic dynamics involve the same isomorphic Hamiltonian. In our imple-
mentation, the matrix elements of Viso replace the matrix elements Hkl for propa-
gation of the TDSE in eqn (2), while the diabatic NACEs (presumably small) are
ignored. For the calculation of physical forces on each nucleus, eqn (5), and NACVs,
eqn (10), VIℍ is replaced by VIaV

iso. In addition, the adiabatic NACEs are obtained
from the NACVs using eqn (7) and inserted in eqn (6) for calculation of the hopping
probability. The rescaling of velocities following a successful jump is performed in
the direction parallel to NACVs corresponding to the eigenvalue spectrum of Viso.
2.5 Analytical rate constants

The semi-classical Marcus nonadiabatic Golden rule rate constant (kM) expression
for charge transfer is given by:59

kM ¼


2p

ħ

��
Hkl

2


4pl

b

��1=2
exp

 
�b

ðDAþ lÞ2
4l

!
; (30)

where Hkl is the electronic coupling between the diabatic states k and l, l is the
reorganization energy, and DA is the free energy difference between the two
diabatic states. The quantum mechanical analog of the above equation has been
derived by considering two electronic states in a bath of quantum harmonic
oscillators (spin-boson):60,61

kLD ¼


b

ħ

��
Hkl

2

 ðþN

�N

dRexp

 
�


b

2
þ ibR

�
DA

� 2

pħ

ðN
0

du
JðuÞðcoshðbħu=2Þ � coshðiRbħuÞÞ

u2 sinhðbħu=2Þ

!
;

(31)

where J(u) is the spectral density function. The above equation can be further
simplied for DA ¼ 0 using the saddle point approximation:60–63

kqz



2p

ħ

�D
Hij

2
E
4pl1

b

��1=2
exp



�b l2

4

�
(32)

where

l1 ¼ bħ
p

ðN
0

du JðuÞsinh�1ðbħu=2Þ (33)

and

l2 ¼ 8

bħp

ðN
0

du
JðuÞ
u2

tanhðbħu=4Þ: (34)

In the classical limit, when bħu � 1, both l1 and l2 reduce to classical reor-
ganization energy, l, which is directly related to the spectral density function.

l ¼ 2

p

ðN
0

du
JðuÞ
u

(35)
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2.6 Charge transfer rate constant from the decay of diabatic population and
surface hopping rate constant

We calculate the time-dependent diabatic population from the square of the
expansion coefficient of the initial diabatic state, averaged over several SH
trajectories at a given instant of time.

Pa(t) ¼ h|ua|2i(t) (36)

The decay of the diabatic population may be tted to an exponential of the
following form:

Pa(t) ¼ a(exp(�kdt) � 1) + 1. (37)

The prefactor “a” can be determined beforehand from the free energy differ-
ence, DA, between the initial and nal states and the temperature (as done here)
or can be considered as a tting parameter.

For a reversible reaction where the reactant, X, transforms into a product, Y,
with kf and kb as the forward and backward rate constants respectively, the decay
of the population of X is given by

PX ðtÞ ¼ kf

kf þ kb

�
exp
���kf þ kb

	
t
	� 1

�þ 1: (38)

Comparing eqn (37) and (38), we get:

kd ¼ kf + kb (39)

a ¼ kf

kf þ kb
¼ kf

kd
: (40)

Using the detailed balance relation (kf ¼ kb exp(�bDA)), one obtains an
expression for “a” in terms of DA while the surface hopping rate constant, kSH, can
be written in terms of kd and “a”.

a ¼ 1

1þ expðbDAÞ (41)

kSH h kf ¼ akd (42)
3 Simulation details
3.1 Model system

We have investigated the rate constant for hole transfer in a dimer of ethylene-like
molecules (ELMs), embedded in a bath of 124 neon atoms. The center of mass of
the two ELMs is restrained with a weak restraining potential centered at 3.6 Å
(force constant ¼ 1.12 kcal mol�1 Å�2). A similar model system with different
simulation parameters was chosen in our previous studies. We refer to the
molecules as “ethylene-like” because only their nuclear geometries correspond to
This journal is © The Royal Society of Chemistry 2019 Faraday Discuss.
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real ethylene molecules. The reorganization energy l and the constant C deter-
mining the magnitude of diabatic electronic couplings, Hkl, are taken to be 200
meV and 0.005 Ha respectively. This scaling factor corresponds to hH2

kli1/2 of �15
meV. This choice of parameters, though arbitrary, conforms to the reorganization
energies and electronic couplings usually seen in the organic semiconductors.56

The Ne atoms take the role of a heat bath facilitating energy exchange with the
ELMs while running the FOB-SH simulation in the NVE ensemble. This way we
avoid introduction of articial bias forces due to the thermostat. We used a cubic
box of length 60 Å which corresponds to a density of 6.3 � 10�4 atoms Å�3.
3.2 Force eld parameters

We assume that the hole transfer is mediated by the HOMO orbitals of the
ethylene molecules, 41 and 42, which are transformed into the orthogonal basis
{fi} for the expansion of the charge carrier wavefunction according to eqn (1). The
diagonal elements of the corresponding 2� 2 electronic HamiltonianHkk, k¼ 1,2,
are estimated using two classical potential energy functions (force elds). In force
eld 1, ELM 1 is positively charged and ELM 2 is neutral, giving the site energies
H11 and the corresponding forces VIH11. In force eld 2, ELM 2 is positively
charged and ELM 1 is neutral, giving the site energies H22 and the corresponding
forces VIH22. Intra-molecular interactions for the neutral ELM are taken from the
Generalized Amber Force Field (GAFF).64 The same intramolecular parameters are
taken for the charged ELM except for the carbon–carbon bond length which was
chosen to obtain a reorganization energy l for electron hole transfer of 200 meV
(at innite donor–acceptor distance).50 This requirement gave a carbon–carbon
bond length of 1.387 Å for the charged ELM, compared to 1.324 Å for the neutral
molecule. The intermolecular interaction between the ELMs and between ELM
and Ne atoms is modeled by Lennard-Jones terms, with parameters taken from
the GAFF database for neutral and charged ELMs and from ref. 65 for Ne and
applying the Lorentz–Berthelot mixing rules. Electrostatic interactions in the
form of xed point charges do not signicantly alter the energetics of this system
because only one ELM carries a net charge and the other ELM and Ne are charge
neutral. Hence, for convenience, electrostatic interactions were switched off. The
off-diagonal element of the Hamiltonian, H12, is calculated using the analytic
overlap method (AOM).57 Briey, the HOMO orbitals of the ELMs, 41 and 42, are
expanded in a minimum Slater basis of p orbitals and updated along the trajec-
tory as described in detail in ref. 50. H12 is obtained via the simple linear rela-
tionship H12 ¼ CS12, with S12 ¼ h41|42i calculated analytically. The coupling
derivatives d0

I;12 ¼ h41jVI42i are obtained using nite differences of the AOM
overlap and are used for the calculation of VIH12 and dadI,12. The NACEs dad12 are
calculated similarly using nite differences. A detailed description of these
calculations is given in ref. 50. The rate constants, extracted from FOB-SH and SH-
RP-iso simulations, are computed as a function of energy bias applied articially
to the second diagonal element of the diabatic Hamiltonians. The applied bias
ranged from 0 (no bias) to �400 meV. Additionally, the SH-RP-iso method
requires assigning phases (signs) to the off-diagonal elements of the isomorphic
Hamiltonian. In the original paper, these signs were obtained from the phase of
the off-diagonal elements at the centroid position. Here, we assign the signs
corresponding to the signs of the analogous off-diagonal elements of the average
Faraday Discuss. This journal is © The Royal Society of Chemistry 2019

https://doi.org/10.1039/c9fd00046a


Paper Faraday Discussions
Pu

bl
is

he
d 

on
 0

7 
Ju

ne
 2

01
9.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 C
ol

le
ge

 L
on

do
n 

on
 1

1/
11

/2
01

9 
6:

57
:5

8 
PM

. 
View Article Online
diabatic Hamiltonian. Furthermore, since the square of the off-diagonal elements
of the isomorphic Hamiltonian is a difference of two terms, eqn (28), it becomes
negative in some cases during the simulation. In those cases, we reassign these
values to zero.
3.3 Preparation of initial structures

3.3.1 Detailed balance. To investigate detailed balance in FOB-SH simula-
tions, we prepared initial structures drawn from a thermally equilibrated distri-
bution of positions, velocities and adiabatic states. We built the initial
conguration from two ELMs in their energy-minimized geometry, surrounded by
neon atoms positioned in a regular grid. The system is equilibrated to the
particular temperature (200 K or 300 K) for 1 ns in the NVT ensemble using
a Nosé–Hoover thermostat. At 300 K, 150 ps of Born–Oppenheimer molecular
dynamics for both the ground (E0) and excited (E1) adiabatic electronic state of the
charged system is carried out using forces calculated according to eqn (5). We
remove the rst 50 ps where the system equilibrates and use the last 100 ps of the
ground state trajectories to calculate the free energy between ground and excited
state, DA01 ¼ �(1/b)lnhexp[�b(E1 � E0)]iE0

. The corresponding “exact” excited
state population is determined as P1 ¼ 1/(1 + exp(bDA01)), which will serve as
reference values for the excited state population obtained from FOB-SH. We
extracted 600(1 � P1) congurations (nuclear coordinates and velocities) from the
last 100 ps of the ground state run and 600P1 congurations from the last 100 ps
of the excited state run as starting congurations for the FOB-SH runs, to ensure
exact excited state population at the start of the run (at t ¼ 0). The electronic
wavefunction is initialized in the corresponding adiabatic stateJ(0) ¼ j0 or j1. A
similar strategy was employed at 200 K but we needed a much longer (500 ps)
simulation time to converge the excited state population. Out of 500 ps, structures
were collected from the last 200 ps of simulation.

For investigation of detailed balance with SH-RP-iso, RPSH-BA, and RPSH-wBA
methods a similar protocol is followed using the quantum free energy difference
from RPMD simulation as a reference. To this end, 500 ps of path integral Lan-
gevin equation (PILE)66 thermostating is followed by 150 ps or 500 ps of non-
thermostatted Born–Oppenheimer RPMD simulation depending on whether the
temperature is 300 K or 200 K. We remove the rst 50 ps (300 ps for 200 K) where
the system equilibrates and use the last 100 ps (200 ps for 200 K) of the ground
state trajectories to calculate the quantum free energy between ground and

excited state, DA01 ¼ �ð1=bÞln
�
ð1=nÞ

Xn
a¼1

hexp½�bðE1;a � E0;aÞ�iE0;a
�
. We used 24

and 16 beads for the RPMD simulations at 200 K and 300 K respectively.
3.3.2 Rate constants and internal consistency. For investigation of internal

consistency and calculation of rate constants from SH simulations, we initialize
the trajectories in a slightly different fashion compared to the procedure
described in the previous section. We start from the nal geometry of the NVT (or
PILE) equilibration on the rst diabatic surface where ELM 1 is charged and ELM
2 is neutral and then perform 200 ps of NVE (or RPMD) simulation with no
additional applied bias. The initial geometries for FOB-SH (or SH-RP-iso) trajec-
tories were collected at regular intervals from the last 100 ps of NVE (or RPMD)
equilibration. To investigate the effect of applied bias (DA < 0) on rate constants
This journal is © The Royal Society of Chemistry 2019 Faraday Discuss.
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extracted from SH simulations, we employ the same initial structures but add the
bias to the second diagonal element of the electronic Hamiltonian during the SH
run. In this equilibration procedure, the NVE (or RPMD) simulation was run on
a single diabatic surface where the charge is localized on one ELMwhereas for the
investigation of detailed balance we performed NVE (or RPMD) equilibration on
the ground Born–Oppenheimer surface. For the path integral-based simulations,
we employed 16 beads at 300 K, 24 beads at 200 K, 32 beads at 150 K and 48 beads
at 100 K. The electronic wavefunction, in these simulations, is initialized in the
rst diabatic state whereas for nuclear dynamics the initial adiabatic state was
chosen randomly based on the projection of the rst diabatic state on a particular
adiabatic state. While adiabatic and surface populations were calculated to
investigate the internal consistency, the rate constants were extracted from the
decay of the diabatic population as described later. We calculate the adiabatic
population (Padi (t)) from the square of the adiabatic expansion coefficients (ci) that
are computed from the transformation matrix of eqn (4) and diabatic expansion
coefficients of eqn (1). The surface population (Psurfi (t)) is dened as the fraction of
the trajectories that are running on a particular adiabatic surface i.

Pad
i (t) ¼ h|ci|2i(t) (43)

Psurf
i ðtÞ ¼ NiðtÞ

Ntot

(44)

The reorganization energy l in eqn (30) is extracted from the distribution of the
vertical energy gap in the reactant state sampled with classical MD simulations.
The same value is also obtained when the reorganization energy is calculated
from the spectral density function, eqn (35). The spectral density function J(u) is
obtained from the cosine transform of the diabatic energy gap autocorrelation
function, which is calculated with classical MD simulations at a particular
temperature.63 J(u) is also employed to compute the quantum rate constant,
eqn (32).

3.4 SH simulations

FOB-SH simulations were carried out using a modied version of the CP2K
simulation package. We generated 600 independent trajectories for each set of
parameters investigated for FOB-SH starting from initial structures that were
prepared employing the protocols described in Section 3.3. Unless stated other-
wise, simulations have been carried out with the following default settings. The
nuclear dynamics is propagated with the velocity-Verlet algorithm with forces
calculated according to eqn (5) with a MD time step Dt ¼ 0.1 fs. The simulations
are run in the NVE ensemble with the temperature remaining approximately
constant around the target temperature due to interaction with the bath of Ne
atoms. Surface-hopping probabilities are calculated according to eqn (6) at every
MD time step. The probability for a hop from the current state to the state closest
in energy is replaced by the expression dictated by the self-consistent FSSH
method10 as described in our previous work.58 We calculated the kinetic energy
along the adiabatic NACV, eqn (10), to determine whether a hop was energy-
allowed. Whenever a hop was energy-forbidden the velocities were always
reversed according to the protocol described in our earlier work.58 The
Faraday Discuss. This journal is © The Royal Society of Chemistry 2019
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wavefunction of the excess charge carrier, eqn (1) was propagated by integrating
eqn (2) using the Runge–Kutta algorithm of 4th order and an electronic time step
dt ¼ Dt/5 ¼ 0.02 fs. An interpolation scheme is used to calculate the Hamiltonian
matrix elements at each electronic time step, as explained in our previous work.50

It is well documented that SH simulations suffer from an overcoherence
problem.67,68 Several decoherence correction schemes have been suggested over
the years. In this work, we employ exponential damping of the inactive electronic
adiabatic states following the energy-based decoherence correction scheme sug-
gested by Truhlar et al.7,69

ci/ci expð�Dt=siaÞ

sia ¼ ħ
jEi � Eaj



C þ E0

Ta

� (45)

For all our simulations we set C ¼ 1 and E0 ¼ 0.0 Ha. We found that excited
state populations are well converged within 30 ps at 300 K while a much longer
time (�50–100 ps) is required for simulations at lower temperatures. Error bars
were determined by block averaging of the trajectories with a block size of �200
independent trajectories.

RPSH-BA, RPSH-wBA and SH-RP-iso simulations were carried with a similar
protocol as above. We employ 1000 independent trajectories and calculated forces
on the adiabatic surface determined by the potential energy matrix (electronic
Hamiltonian) as dened in Sections 2.2, 2.3 and 2.4. All other settings including
the MD time step, time step for propagation of the electronic Schrödinger
equation and decoherence correction scheme are kept the same as above.
4 Results and discussion
4.1 Internal consistency and detailed balance

Two important desirable properties of any SH simulation are internal consistency
and ability to maintain detailed balance in the long time limit. Internal consis-
tency can be measured by the time-averaged root mean square error (RMSE)
between the surface population Psurfi (t), eqn (44) and adiabatic population
Padi (t), eqn (43).

RMSE ¼
0
@1

s

ðs
0

�
Psurf

1 ðtÞ � Pad
1 ðtÞ

�21A
1
2

(46)

RMSE for SH simulations with different methods employed in this study are
shown in Fig. 1A. Overall, the internal consistency is found to be reasonable for all
the simulations. The smallest and largest RMSE are found for the RPSH-BA and
RPSH-wBA methods respectively, while RMSE for the FOB-SH and SH-RP-iso
simulations fall in between the two. Moreover, the RMSE decreases with
decrease in temperature for the FOB-SH method but increases with decrease in
temperature for SH-RP-iso and RPSH-wBA simulations. Note that a certain
percentage of the error is introduced due to approximate treatment of the over-
coherence problem in SH simulations. The signicantly lower RMSE for RPSH-BA
This journal is © The Royal Society of Chemistry 2019 Faraday Discuss.
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Fig. 1 Root mean square error (RMSE) in internal consistency (eqn (46)), and excited state
population calculated for a charge transfer reaction in an ELM dimer in a bath of Ne atoms.
The excited state populations obtained with different methods are compared to the
“exact” population computed with Born–Oppenheimer dynamics as described in Section
3.3.1.
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is slightly misleading. A closer inspection of the results reveals that for RPSH-BA,
the time-averaged surface population hPsurf1 i as well as the time-averaged adiabatic
population hPad1 i are both signicantly smaller than the equivalent quantities in
FOB-SH simulations (0.001 vs. 0.017 and 4 � 10�6 vs. 0.025 respectively, at 300 K)
resulting in smaller RMSE.

A comparison between the excited state population obtained from different
SH-based simulations and from Born–Oppenheimer simulation on the ground
adiabatic surface, as explained in Section 3.3.1, is shown in Fig. 1B. FOB-SH
simulations exhibit excellent detailed balance with respect to the BO-MD refer-
ence values, while the excited state population obtained with the RPSH-BA
method is found to be signicantly smaller than the BO-RPMD reference values
(0.027 and 0.053) at the two temperatures, 200 K and 300 K. With the RPSH-wBA
method, the excited state population is overestimated at both 200 K (0.198) and
300 K (0.219). On the other hand, the SH-RP-iso method slightly underestimates
the excited state population at both temperatures (0.005 and 0.02 respectively).
The trend in the excited state population can be understood by inspecting the
relative number of successful and rejected hops during SH simulations. In Fig. 2,
we graphically plot the number of successful and rejected hops per trajectory for
a simulation time of 5 ps at 300 K with the four different methods discussed in
this work. It can be easily seen that the total number of attempted hops per
trajectory is signicantly higher for the RPSH-BA and RPSH-wBA methods
compared to the SH-RP-iso and FOB-SH methods. The ratio of successful vs.
rejected hops is, however, quite different for the two RPSH-based methods. For
RPSH-BA simulations, only a very small percentage (0.26%) of the attempted hops
are successful while for RPSH-wBA, 80.55% of the attempted hops are successful.
In most cases, the attempted hops in RPSH-BA simulations are rejected due to
lack of enough kinetic energy in the direction of the adiabatic NACV. Hence, the
two RPSH-based methods either signicantly underestimate or overestimate the
excited state population. The percentage of successful hops is found to be quite
similar for SH-RP-iso and FOB-SH, 54.29% and 48.34% respectively. Based on the
Faraday Discuss. This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Number of successful (green) and rejected (red) hops per trajectory at 300 K for
different trajectory surface hopping-based methods employed in this study.
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detailed balance performance we chose to compute the charge transfer rate
constants with the FOB-SH and SH-RP-iso methods in Sections 4.2 and 4.3.
4.2 Temperature dependence of rate constant

In Fig. 3 we plot the rate constants obtained from SH simulations with the FOB-
SH and SH-RP-iso methods at different temperatures. These rate constants are
extracted from the decay of diabatic population as described in Section 2.6. In
addition, we also plot the semi-classical (eqn (30)) and quantum (eqn (32)) charge
transfer rate constants at different temperatures. The results obtained from FOB-
SH simulations qualitatively follow the trend calculated with the semi-classical
rate constant expression, Fig. 3, while the rate constants extracted from SH-RP-
iso simulations are practically temperature-independent between 300 K and 100
K. This qualitatively different behavior of the classical and quantum nuclei can be
understood in terms of the charge transfer barrier. In our system, the classical
barrier for charge transfer, �(l/4 � hHkli1/2), is small (�35 meV). This barrier is
further reduced if one includes the ZPE correction, which is the case for the SH-
RP-iso simulations. Hence, we speculate that the quantum nuclei can easily
tunnel through this low barrier at low temperatures resulting in a rate constant
which is approximately temperature-independent. The importance of nuclear
tunneling at low temperatures can be assessed by comparing the mean radius of
gyration, hrT,ii, of the atoms at 300 K and 100 K. The mean radius of gyration of all
the atoms increases upon lowering the temperature (Fig. S1†). The nuclear
quantum effects are further exaggerated if one compares the semi-classical vs.
quantum rate constants. The semi-classical rate constant decreases with
decreasing temperature as expected but the quantum rate constant increases with
decreasing temperature. The temperature dependence of the two rate constants
can be analyzed by considering the pre-exponential and exponential components
This journal is © The Royal Society of Chemistry 2019 Faraday Discuss.
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Fig. 3 Plot of rate constant vs. inverse temperature for charge transfer between two ELMs.
The rate constants were extracted by fitting the decay of the diabatic population, obtained
from FOB-SH and SH-RP-iso simulations, to an exponential function using eqn (37) and
(42). These rate constants are comparedwith the results obtained from semi-classical (eqn
(30)) and quantum (eqn (32)) rate constant expressions.
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at zero driving force. For the same mean square electronic coupling (hHkl
2i)

parameter, the pre-exponential factor in the case of the quantum rate constant,
eqn (33), increases much more steeply with decrease in temperature compared to
the equivalent term in the semi-classical expression, T�1/2. For the quantum rate
constant, the growth in the pre-exponential factor outcompetes the decay of the
exponential term, which becomes temperature-independent in the limit b / N.
The interplay between these two terms leads to an effective increase in the
quantum rate constant with the decrease in temperature.
4.3 Dependence of rate constant on driving force

We calculated the change in rate constants with the change in driving force at 300
K and 100 K. The calculated rate constants are plotted in Fig. 4 and 5, respectively.
Overall, the rate constants extracted from SH-RP-iso trajectories are very similar in
magnitude to the rate constants obtained from FOB-SH simulations at 300 K.
With very low or very high driving force, we observe slightly enhanced rate
constants from SH-RP-iso simulations compared to the rate constants obtained
from FOB-SH simulations at the same driving forces. This enhancement in rate
constant can be attributed to the lowering of the effective charge transfer barrier
due to the presence of ZPE corrections in the path integral-based simulations. The
rate constants from FOB-SH simulations are also in fair agreement with Marcus
rate constants. At 100 K, we observe a prominent asymmetry in the curvature of
the rate constants calculated from SH-RP-iso trajectories as a function of
increasing driving force, compared to the results obtained from FOB-SH simu-
lations. To demonstrate this feature clearly we have plotted inverted parabolas on
top of the data obtained with both the SH-RP-iso and FOB-SH methods in Fig. 5.
The slower rate of decrease of rate constant with the increase in driving force in
Faraday Discuss. This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Plot of rate constant vs. driving force at 300 K for hole transfer in an ELM dimer.
Inverted parabolas are drawn on top of the rate constants obtained from FOB-SH and SH-
RP-iso simulations as well as the rate constants computed with Marcus theory to
emphasize the symmetry in the curvature of all the plots.
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the Marcus “inverted” regime compared to the rate of increase in the normal
regime has been demonstrated previously, and was attributed to vibrational
tunneling.70 The relative increase in radius of gyration upon increasing the
driving force (�DA) from 0 to 300 meV for the atoms of the two ELMs is �1.5–3.0
times larger compared to the relative increase in the radius of gyration of the
same atoms upon increasing the driving force from 0 to 400 meV at 300 K
Fig. 5 Plot of rate constant vs. driving force at 100 K for hole transfer in an ELM dimer.
Inverted parabolas, drawn on top of the rate constants, clearly demonstrate the asym-
metry in the curvature of the plot of the rate constants obtained from SH-RP-iso
simulations.
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(Fig. S2†). In addition, we also observe a small shi in the maxima compared to
the rate constants obtained from FOB-SH simulations. While a more extensive
and systematic study comprising of systems either with several vibrational modes
or with a higher charge transfer free energy barrier (equivalent to larger reor-
ganizational energy) is required in order to fully comprehend the exact origin of
this shi, we tentatively speculate that the shi is a consequence of varying extent
of nuclear tunneling at different driving forces.
5 Conclusions

We have reported here the implementation of three different methods that
include nuclear quantum effects in the context of nonadiabatic dynamics with
a fragment orbital-based surface hopping propagation scheme in the CP2K
soware package. By comparing the excited state populations obtained from each
of these simulations at different temperatures, we have shown that the results
obtained with SH-RP-iso simulations deviate the least from the excited state
populations obtained with the BO-RPMDmethod, while RPSH-BA and RPSH-wBA
simulations either severely underestimate or overestimate the population in the
excited adiabatic state. By analyzing the rate constants for charge transfer
between two ethylene-like molecules in a bath of Ne atoms, we have shown that
nuclear quantum effects are not of major importance at 300 K but become
signicant at lower temperatures. In future, we intend to compare the rate
constants calculated with reactive ux formulation71–73 with the rate constants
computed here. Additionally, we aim at studying the temperature dependence of
charge transport in more realistic systems, e.g. a chain of naphthalene molecules,
employing the SH-RP-iso method.
Appendix
A Derivation of NACE expression in diabatic basis

Taking the derivative of the off-diagonal elements of the adiabatic electronic
Hamiltonian, we get:

VI

�
U

†ℍU
�
ij

¼ ��VIU
†
	
ℍU
�
ij
þ �U†VIℍU

�
ij
þ �U†ℍðVIUÞ

�
ij

¼ 0:

Hence, �
U

†VIℍU
�
ij
¼ ���VIU

†
	
ℍU
�
ij
� �U†ℍðVIUÞ

�
ij
: (A.1)

Since the transformation matrix is unitary irrespective of nuclear congura-
tion, we get:

VI

�
U

†
U
	 ¼ 0

VIU
† ¼ �U†ðVIUÞU†:

(A.2)

The rst term on the right hand side of eqn (A.1) is given by:
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��
VIU

†
	
ℍU
�
ij

¼ ��U
†ðVIUÞU†ℍU

�
ij

¼ ���U†VIU
	
ℍad
�
ij

¼ �Ej

�
U

†VIU
�
ij
:

(A.3)

Similarly, the second term on the r.h.s. of eqn (A.1) is given by:�
U

†ℍðVIUÞ
�
ij

¼ �U†ℍ
�
UU

†
	ðVIUÞ

�
ij

¼ �ℍad
�
U

†VIU
	�

ij

¼ Ei

�
U

†VIU
�
ij
:

(A.4)

Substituting eqn (A.3) and (A.4) in eqn (A.1), we get:�
U

†VIℍU
�
ij
¼ �Ej � Ei

	�
U

†VIU
�
ij
: (A.5)

Using the expression for adiabatic NACV in diabatic basis, eqn (9) and (A.5) we
obtain the desired relation for adiabatic NACE, eqn (8).

dad
ij ¼ R

�

I$d
ad
I ;ij

¼ R
�

I$



1

Ej � Ei

�
U

†VIℍU
�
ij
þ �U†

DIU
�
ij

�

¼ R
�

I$
��
U

†VIU
�
ij
þ �U†

DIU
�
ij

�
¼ �U†

U
� �

ij
þ �U†

DU
�
ij
B RPSH-BA: electronic Schrödinger equation in diabatic basis

The vector-matrix form of eqn (13) is given by:

ic
� ¼

�
~ℍ
ad � i~D

ad
�
c (B.1)

where

h
~ℍ
ad
i
ii
¼ �U† ~ℍU

�
ii
¼ 1

n

Xn
a¼1

Ei;a

h
~D
ad
i
ij
¼ 1

n

Xn
a¼1

dad
ij ðfRIgaÞ:

(B.2)

Inserting eqn (15) in (B.1), we obtain:

i
�
U

� †

uþ U
†

u
� 	 ¼ �~ℍad � i~D

ad
�
U

†

u: (B.3)

Rearranging eqn (B.3), inserting eqn (3) and (7) and multiplying from the le
with U we obtain eqn (16).
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iu
� ¼ U

 
1

n

Xn
a¼1

U
†

aℍaUa

!
U

†

u� iU

 
1

n

Xn
a¼1

h
U

†

aU
�

a þ U
†

aDaUa

i!
U

†

u� iUU

� †

u (B.4)
C Derivation of NACV expression in RPSH-wBA

Let |ii and |ji be the eigenstates of the average electronic Hamiltonian,H with
eigenvalues Ei and Ej:

VIahijHjji
¼ hVIaijHj ji þ hijVIaHj ji þ hijHjVIa ji
¼ 0:

(C.1)

Using the denition of adiabatic NACV,

dadIa ;ij ¼ hi|VIa ji ¼ �hVIai| ji we obtain; � Ejd
ad
Ia ;ij

þ hijVIaðHÞjji þ Eid
ad
Ia ;ij

¼ 0:

(C.2)

Rearranging the terms, we get:

dadIa ;ij ¼
1

DEij

hijVIaHjji

¼ 1

DEij



1

n

�*
i

�����
X
a0
VIaHa0

�����j
+

¼ 1

nDEij

X
a0

X
ia0

X
ja0

D
i|ia0
ED

ja0 |j
ED

ia0
���VIaHa0

���ja0E
(C.3)

where the last line is obtained by inserting the completeness of the eigenstates of
the electronic Hamiltonian of each individual bead.

Following Spencer et al.,50 we can write an expression for the gradient of the
electronic Hamiltonian in the diabatic basis of each individual bead:D

ia0
���VIaHa0

���ja0E
¼
h
U

†
a0GIaa0Ua0

i
ia0 ja0

¼
h
U

†
a0VIaℍa0Ua0

i
ia0 ja0

þ
h
U

†
a0

h
DIaa0 ;ℍa0

i
Ua0
i
ia0 ja0

(C.4)

where ½DIaa0 �k0l0 ¼ hk0|VIal
0iðfk0; l0g˛a0Þ. Inserting eqn (C.4) into eqn (C.3) we obtain

an expression for adiabatic NACV in terms of gradient of Hamiltonian of each
bead in diabatic basis. Following Carof et al.,58 we can ignore the second term on
the r.h.s. of eqn (C.4):

dadIa ;ijz
1

nDEij

X
a0

X
ia0

X
ja0

D
i|ia0
ED

ja0 | j
Eh

U
†
a0VIaℍa0Ua0

i
ia0 ja0

: (C.5)

The above expression can be further simplied by assuming that the change in
nuclear position in one bead does not affect the electronic Hamiltonian of
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another bead. Hence, the triple sum in eqn (C.5) is reduced to a double sum over
the eigenstates of the ath bead only, leading to eqn (26).
D Derivation of NACE expression in RPSH-wBA

dad
ij ¼ R

�

I ;a$d
ad
Ia ;ij

¼ R
�

I ;a$

 h
U

†
a0VIaℍa0Ua0

i
ia0 ja0

þ
h
U

†
a0

h
DIaa0 ;ℍa0

i
Ua0
i
ia0 ja0

!

¼ DEia0 ja0R
�

I ;a$

 h
U

†
a0VIaUa0

i
ia0 ja0

þ
h
U

†
a0DIaa0Ua0

i
ia0 ja0

!

¼ DEia0 ja0

 h
U

†
a0U

�

a0
i
ia0 ja0

þ
h
U

†
a0Da0Ua0

i
ia0 ja0

!
(D.1)
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