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Abstract. We review two definitions of temperature in statistical mechanics,
Tg and Tg, corresponding to two possible definitions of entropy, Sg and Sg,
known as surface and volume entropy respectively. We limit our attention to
a class of systems with bounded energy, and such that the second derivative of
SB, with respect to energy, is always negative. The second condition holds in
systems where the number N of degrees of freedom is sufficiently large (examples
are shown where N~ 100 is sufficient) and without long-range interactions.
We first discuss the basic role of T, even when negative, as the parameter
describing fluctuations of observables in a sub-system. Then, we focus on how
T can be measured dynamically, i.e. averaging over a single long experimental
trajectory. The same approach cannot be used in a generic system for Tg, since
the equipartition theorem may be impaired by boundary effects due to the
limited energy. These general results are substantiated by the numerical study
of a Hamiltonian model of interacting rotators with bounded kinetic energy.
The numerical results confirm that the kind of configurational order realized in

the regions at small Sp, or equivalently at small | 7|, depends on the sign of Tp.
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1. Introduction

Two different definitions of temperature in equilibrium statistical mechanics have
recently been the subject of an intense debate [1-10], after the publication of experi-
mental measurements of a negative absolute temperature [11, 12]. In [11] the possibility
of preparing a state was demonstrated where the observed distribution of the modified
kinetic energy per atom appeared to be inverted, i.e. with the largest population in the
high energy states, yielding a de facto negative absolute temperature.

The possibility of a negative absolute temperature is well known since the theoreti-
cal work by Onsager on the statistical hydrodynamics of point vortices [13] and the
experimental and theoretical results on nuclear spin systems by Pound, Ramsey and
Purcell (see [14-16] for a review and discussion). In those investigations, it was clear
that an inverse temperature parameter 3 ranging over the full infinite real line (—o0, 00)
did not lead to any inconsistency or paradox. Ramsey in 1956 already realised that ‘the
Carathéodory form of the second law is unaltered.’ [14]

A negative absolute temperature appears whenever the microcanonical entropy is
non-monotonic in the energy, a condition which can be realized when the total energy
has a global maximum, which may happen when the phase space is bounded. There
are also cases where the phase space is bounded but the energy diverges: again this

doi:10.1088/1742-5468/2015/12/P12002 2



A consistent description of fluctuations requires negative temperatures

may lead to a non-monotonic entropy; an important example is given by point vortices
[13, 17-21]. It is crucial to highlight that the lack of monotonicity (for entropy ver-
sus energy) is realised if one adopts the simplest definition of microcanonical entropy,
which is related to the logarithm of the number of states with a given energy. Since
such a definition appears in the so-called ‘tombstone formula’ written on Boltzmann’s
grave, ‘S = klog W’, it is often referred to as Boltzmann’s definition of entropy. Even
if not historically precise [8], we adopt the same convention (but setting k= 1) and call
‘Boltzmann entropy’ in a system with Hamiltonian H(Q, P), where Q and P are vectors
in R, d being the dimension of the system, the function

SB(Ea N) = IOg W(E)v (1)
w(F) being the density of states, i.e.
OX(E)
E)= | §(H— E)dNQd"p = =/,
w(B) =[50~ ByatQ o @)

and X(FE) the total ‘number’ of states with energy less than or equal to E, that is

S(E) = fH _,d™Qd™p. 3)

In definition (1) we have ignored an additive constant which is not relevant in our
discussion. In [8] it is stated that the validity of the second principle of thermodynam-
ics depends on the value of this arbitrary constant. Nonetheless such an arbitrariness,
and the consequent paradox, can be removed if all the quantities (energies, positions,
momenta, time etc...) are considered adimensional. When propagating the denomina-
tion, it is customary to define the ‘Boltzmann temperature’ through

o — L _ OSpEN)
TR o8 @
Some authors [1, 8] have argued that a different definition of microcanonical entropy,
proposed by Gibbs, should be used in statistical mechanics, in order to be consistent

with a series of ‘thermodynamic’ requirements and to avoid unpleasant paradoxes. The
Gibbs entropy, which is always monotonically increasing, reads

Sa(E, N) = log X(E), )
and leads to the Gibbs temperature definition, which is always positive:

1 9Su(E,N)
=—=——"—20
be o OF (6)

We note that, since Tg is defined directly on the surface of interest (i.e. that at con-
stant energy FE), from the point of view of the ergodic approach its use appears to be
rather natural. The Gibbs temperature, on the other hand, enters through an ensemble
average in the equipartition formula common in textbooks [22]:

OH
<$Za— > = 6;1a, (M

Tj
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where z; is any of the components of the vector (Q, P) and the average is carried out in
the microcanonical ensemble. In section 3, we will discuss the limits in the application
of the formula (7) when the energy is bounded. We also mention that 7y appears in
the theory of Helmholtz monocycles (which had an important role in the development
of the Boltzmann’s ideas for the ergodic theory), for one-dimensional systems [23, 24].

In spite of the fact that, in our opinion, the basic features of the different definitions
of temperature do not present particular technical or conceptual subtleties, there is a
certain confusion in the literature; therefore a general discussion on the topic can be
useful. In this paper we present a line of reasoning where the Boltzmann temperature
Tg (positive or negative) is the (unique) proper parameter for understanding the statis-
tical properties of the energy fluctuations, as well as for determining the flux of energy
between two systems at different temperatures. In addition to these it is measurable,
without the appearance of inconsistencies. We remark that the systems discussed in [8],
from which the authors try to show that only 7 is the ‘good’ temperature, are small
(N = O(1)) and/or with long interactions.

In section 2, after presenting the class of physically relevant systems which are
the subject of our study, we describe how the Boltzmann temperature Tg naturally
describes fluctuations of observables in subsystems, in analogy with the derivation of
the canonical ensemble from the microcanonical one. In section 3 we discuss dynamical
(‘ergodic’) measurements, which can reproduce Tg but are in general unsuited to mea-
sure 1g: in particular we show a possible failure of the equipartition theorem. In sec-
tion 4 we outline a series of numerical results with a model of interacting rotators with
bounded kinetic energy, discussing the many practical uses of Boltzmann temperature.
The summary and conclusions are drawn in section 5, together with a critique of some
of the arguments used, in [8], to rule out the thermodynamic meaning of Tp.

2. The relevance of the Boltzmann temperature

In this section we show, following the standard approach that can be found even in
some textbooks, the unavoidable role of Tp in many statistical mechanics problems.

2.1. Systems of physical relevance

In the paper we consider systems made of a finite but large number N> 1 of particles
with local interactions, i.e. we exclude long-range potentials or mean-field models. It
should be understood that long-range interactions widen the phenomenology of statis-
tical mechanics and may lead to complicated functional dependences for Sp(E, N), e.g.
with several maxima or minima, even for large N. Nevertheless they are not necessary
for the discussion on negative temperature and, most importantly, they represent a
peculiar case where even thermodynamics is not obvious. For instance, there is no
evidence that the typical Gedankenexperiment of putting in contact two—previously
isolated—systems can be realized, as the isolation condition is prevented by the long-
range interaction.
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We also assume that Sp(E, N) is always convex, i.e. d>Sg(E, N)/ dE? 0. This is
certainly true in the limit of vanishing interaction and in short-range-interacting sys-
tems for large N, since Sp is strictly related to the large deviation function associated
with the density of states®. Let us stress that these large values of N are not necessarily
‘thermodynamic’ (N[ « ): for instance in section 4 we will introduce a system that
possesses all the required features already at N = 100. In general such a value of N
will depend on the specific system, corresponding to situations in which some common
approximations (e.g. Laplace approximation for exponential integrals) can be safely
applied. In section 2.3 we discuss in detail the origin of the convexity of Sg(¥, N). It is
easy to understand that this assumption implies the validity of the second principle of
thermodynamics, as discussed in the next subsection.

2.2. Second law and energy flux between two systems in contact

We consider a system A of N, particles described by the variables {Q.,P,} and
Hamiltonian Hy (Qa, Py), a system B of Ny particles described by the variables {Qg, Py}
and Hamiltonian Hz(Qg, Ps) and a small coupling among the two, so that the global
Hamiltonian is

H = Ha(Qa,Py) + He(Qg,Pp) + Hi(Qa,Qp) (8)

If the two Hamiltonians have the same functional dependencies on the canonical vari-
ables (i.e. they correspond to systems with same microscopic dynamics, with possibly
different sizes N4 and Np), for large N, we can introduce the (Boltzmann) entropy per
particle

E
SHE,N) = NS(e) , = )
with S(e) a convex function, identical for systems A and B. Let us now suppose that

systems A and B have, respectively, energy Ex = Nyex and Ex = Ngeg and the corre-

sponding inverse Boltzmann temperatures 85 and 8%

When the two systems are put in contact, a new system is realized with N = Ny + N
particles. Let us call a = N /N the fraction of particles from the system A . We know
that the final energy is Ef= Ex + Eg = Neg, where 2= aep + (1 — a)ep and final entropy

SB(Er, N) = NS(ep) [INaAS(e1) + NgS(ep) = N[aS(ea) + (1 - a)S(ep)].  (10)

The previous inequality follows from the convexity assumption for S(e) which implies

3 It is interesting to note that Kubo in [34] uses the adjective ‘normal’ for systems satisfying 5 (E, N ) ~ eNe(E/N)+o(N),
It is easy to verify that for such systems one has g5 = 85 + O(1/N). However our assumption is different: we ask

that, in the large N limit, u(E, N ) ~ eNWE/N)+oN)_ Since ¥ (E,N) = _[ Ew(E’)dE', a simple steepest descend compu-
tation shows that, if dy(E'/N)/dE’'> 0 for E'< E, then y(E /N) = @(f N): this is equivalent to say that Ty = Tg
in the thermodynamic limit (i.e. up to O(1/N)) whenever Ty > 0 (see figure 1 for an example). On the other hand

if ¢ has a maximum at E* then ¥(E,N) is roughly constant for £ > EF*. In summary, for ‘normal’ systems the
temperatures must coincide, while with our assumption, one can have different temperatures in the region £ > E*.
Note also that normal systems also satisfy our assumption, while the opposite is not true. Moreover, even if not all
the systems satisfying our assumption could be named ‘normal’, all of them satisfy the equivalence of ensembles
(as discussed below).
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S(aea + (1 — a)ep) 2aS(ea) + (1 - a)S(ep). (11)

The final inverse temperature ﬁ%f) is intermediate between ﬁgf) and ﬁg), e.g. ifeg> e
—that is % > B®—then

38 < O < gy (12)

The energy flux obviously goes from smaller Bg (hotter) to larger 8 (colder). The con-
sequence of convexity is that Gg(F) is always decreasing and a negative value does not
lead to any ambiguity. Confusion may arise from the fact that Tg < 0 is, for the purpose
of establishing the energy flux, hotter than Tz > 0. However if g is used, the confusion
is completely removed [14].

We also briefly discuss a particularly interesting case with different Hamiltonians.
Suppose that for the system A negative temperatures can be present, whereas system
B has only positive temperatures; it is quite easy to see that the coupling of the system
A at negative temperature with the system B at positive temperature always produces
a system with final positive temperature. Indeed, at the initial time the total entropy is

St = SA(Ea) + SP(Ep), (13)
while, after the coupling, it will be

S = SAMER) + SP(Ep), (14)
where E'y + F = Fx + Eg and, within our assumptions, E; is determined by the equi-
librium condition [22] that Sp takes the maximum possible value, i.e.
_BSMEY 3SR

b= OE, L (15)

Since fg is positive for every value of Ej, the final common temperature must also be
positive. The above conclusion can also be found, without detailed reasoning, in some
textbooks [25, 26].

2.3. Subsystems

We consider a vector X in R*# (with N < N), that is a subsystem of the full phase
space (Q, P), and we indicate with X in R?¢®~M the remaining variables. We have

H= H(X)+ Hy(X) + H(X,X) (16)

with an obvious meaning of symbols.
We then consider the case N> 1 and N N. In the microcanonical ensemble with
energy F, the probability density function (pdf) for the full phase space (Q, P) is

P(Q.P) - m&H(Q,P) _E). (an

The pdf of X can be obtained from the latter, by integrating over X . If the Hamiltonian

Hi(x ,5?) is negligible (a consequence of our assumption for non long-range interaction)
then we have

d0i:10.1088/1742-5468/2015,/12/P12002 6
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w(E - Hi(X),N- Ny

P(x)[
0 w(E,N) (18)
It is now possible to exploit the definition of Sy and get
w(E, N) = e%EM (19
WE - Hi(X),N- N)) = eSB(E-Hi(X),N-N)) o oSp(E,N-N)- Bp(E)Hi(X ), (20)
which, together with (18) leads to
P (X ) o e A8, (21)

When H; is bounded (as in our assumptions), the previous simple derivation can be car-
ried out irrespective of the sign of Op. It is immediately clear from the above argument
that Tg is the temperature ruling the statistics of fluctuations of physical observables
in a subsystem. For instance, the pdf of the subsystem (i.e. in the canonical ensemble)
energy Fi reads

P E1,Ni) o< WE, NyJe PolroceBoErN-Bokal (22)

Of course the above result holds in the (important) case where the two subsystems are
weakly interacting and H; [ E. For 2; = E;/Nj, one has

P €, Nl) < CNI[S e1)- ﬂBel], (23)

which is a large deviation law where the Cramer’s function C(e;) is C(eq) = Ogeq —

S(e;) + const. From general arguments of the theory of probability, we know that, if a

large deviation principle holds, dz:;fl) >0 so % [10. The validity of the large devia-
1 1

tion principle can be easily shown for non-interacting systems. For weakly interacting

systems it is quite common and reasonable, and can be stated under rigorous hypoth-
esis [27, 28].

2.4. The generalised Maxwell-Boltzmann distribution

The extreme case of the above discussions is when N; = 1, that is to say the fluctuations
of a single degree of freedom (e.g. a momentum component of a single particle) are
observed. This becomes interesting when the Hamiltonian has the form

N N
H= Zl g(pn) + Zqun, Q) (24)

where the variables {p,} are limited and the same happens for the function g(p).
Repeating the arguments in the previous subsection, one may compute the prob-
ability density for the distribution of a single momentum p, obtaining

WwE,N)

P(p) (25)

doi:10.1088/1742-5468/2015/12/P12002 7
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which, again, is valid for both positive and negative #g. We mention that in the experi-
ment in [11], the above recipe has been applied to measure both positive and negative
system’s temperatures.

From equations (22) and (25) the true meaning of the (Boltzmann) temperature is
quite transparent: it is a quantity which rules the pdf of the energy of a subsystem (or
the momentum of a single particle). Let us note that since Ty is associated with the large
microcanonical system (in physical terms the reservoir) it is a non-fluctuating quantity
[29] also for each sub-system and, in general, for non-isolated systems. In the conclu-
sions, we discuss again this aspect which is not always fully understood, see e.g. [8]

2.5. Temperature and order

In usual statistical mechanics, low temperatures—or, better, high values of inverse
temperature—are usually associated with the possibility of some kind of order, the
most noticeable example given by phase transitions. Intuitively, one would expect such
a situation whenever w(F) is relatively small, which usually corresponds to regions
where | 3p| is large irrespective of the temperature’s sign. A famous example where such
an order at negative (small) temperatures was observed is that of pointlike vortices dis-
cussed by Onsager in [13]. The system, obtained as a particular limit from two-dimen-
sional Euler equations, describes N points of vorticities {I, ..., Iy} in a two-dimensional
domain Q: the equation of motions of the coordinates (x,,y,) of the n-th point vortex
are shown to be (see for instance [30])

ldt=a_yi’ Tt~ ox (26)
with Hamiltonian

H= #ZJ [05G(r ) 27)
where G(r) is the Green function of the Laplacian in Q: in the infinite plane one has
G(r) = - 1/4nlnr where r;; = \/ (x; — xj)2 + (y; - yj)z. The canonical variables in this
case are

g = JINlxi, pi= VIl sign(My;. (28)

Onsager showed that if the domain of Q is bounded, then negative T are achieved at
large values of the energy. At large energies a particular spatial order appears too: clus-
ters of vortices with the same sign of the vorticity are the unique possible structures. It
is interesting to note that 75 < 0 (and the corresponding clusterization) is not a pecu-
liarity of the divergence of G(r) in = 0, nor of the long range nature of the interaction:
indeed, it can be obtained with any arbitrary G(r) having a maximum (even finite) in
r= 0, and vanishing at large r, provided that the domain is bounded. The presence
of spatial order at high values of energy, in the form of discrete breathers, has also
been observed in the discrete non-linear Schrodinger equation and analogous systems
[10, 31]. In section 4 we introduce a different, in a way simpler, model which still exhib-
its spatial order at small negative temperatures.

d0i:10.1088/1742-5468/2015,/12/P12002 8
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3. How to measure Tg and Tg

The definitions of Gg and (¢ given in equations (4) and (6) are based on the functional
dependence of the phase space occupations w(F) and »(FE) upon the energy. In a real or
numerical experiment it may be cumbersome or even impossible to make use of those
definitions to measure the two temperatures: for instance, an empirical estimate of w(F)
(and therefore of ¥(F£)) will always be limited by the available statistics (number of
independent measurements of F) and therefore cannot provide a clear answer, for both
Op and (g, in the interesting regimes where w(E) ~ 0.

On the other hand it has been shown [32] that 85 can be obtained as a microcanoni-
cal average of a certain observable. The recipe is the following

VH
B = (R(X)), RX)=V W (29)
where V stands for the vector of derivative operators along the degrees of freedom in the
full phase space X = (Q,P). From (29) one has, assuming the ergodicity, that #g can be
computed with a molecular dynamics simulation, and, at least in principle, by a long-
time series from an experiment. It is interesting to notice that such a kind of recipe does
not exist for Sg(F, N) or Sq(E, N) [32]. It is clear that, in view of the considerations in
sections 2.3 and 2.4, one may always measure fluctuations of appropriate observables,
such as subsystem’s energy or single particle momentum, to get an estimate of 7g.
A method to approach the problem of B¢ measurement is via the equipartition
theorem and has previously been discussed in textbooks and considered important [8].

It states
o0H

Tj

However the usual derivation of equation (30) implies the possibility to neglect bound-
ary terms in an integration by parts. Such a possibility is challenged in the class of
systems with bounded energy and phase space that we are considering.

In particular it is easy to show that (30) does not hold under the simultaneous real-
ization of the following conditions:

¢ bounded space of the canonical variables;
¢ bounded derivatives of the Hamiltonian Z—I:;
J

* bounded energy from above and below: E,, [1 E [1 Ey;

e vanishing density of states at the boundaries, i.e. w(Ey) = 0.

Given such conditions, one has that, on one side,
X(E)

Ia(E) = o) (31)

diverges when E [1 Ey. On the other side, 3(13—1:[ is limited, resulting in a contradiction.
J

doi:10.1088/1742-5468/2015/12/P12002 9
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A failure or the equipartition formula equation (30) is also possible in systems where
there are no negative temperatures, i.e. 15 ] Tg > 0 for all E. Consider, for instance, the
following Hamiltonian

N 2 N
H-= Zl% + &Y (1-cos(g,— @_ ) (32)

n= n=1

where @, € T, ). For large E, i.e. E> &N, the contribution to X(E) of the variables
{¢p,} does not depend too much on the value of E, so that

Z(E) Z¢(E) x EN2, (33)

and I'g[J 2E/N and, for large N, T'g = Tg + O(1/N).
On the other hand it is easy to see that

oH
(Pnaq)

n

[ 2me (34)

and, therefore, the equipartition formula lpng—I:D: Tq does not hold for large value of
Eand N. '

4. Numerical results for a system with negative temperature

In this section we present a detailed study of a system composed of N ‘rotators’ with
canonical variables @y, ..., ¢y, p1--.pn With all ¢, and p; defined in [-m,m), and with
Hamiltonian

N

N
H @ .... o8 P15 --s PN) = Z [l — cos (pn)]+ sZ - cos@— ®_)] (39)
n=1

n=1

We choose, as boundary condition, ¢, = 0 and this guarantees that the only conserved
quantity by the dynamics is the total energy E. The equations of motion for the rota-
tors can be readily obtained by applying Hamilton’s equations to equation (35):

¢, = sin(py),

Pa = — e(sin(g, — @,_1) + sin(g, — @y, ). (36)

It is immediate to verify that the energy has a maximum value Eyy = 2N1 + ¢) which
is realised when p, = m and ¢, — ¢ _; = T for every n.

When £= 0it is immediately clear to see that the Hamiltonian in equation (35) implies
negative Boltzmann temperatures. Indeed at low energy one has 1 — cos(py) [J przl/ 2 so
that

N
T(E)0 CNEN2, w(E)D ECNEN’Z‘l (37)

doi:10.1088/1742-5468/2015/12/P12002 10
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Figure 1. Phase space sampling: we report the reconstruction of the density of
E

states w(F) and its integral Z(F) = Jo dE'w(E"). The two functions are normalized

with Z(Ey = 2NT + ¢)). The parameters of the system are: N= 100 and ¢= 0.5.

with Gy = (2H)N$. Close to Ey = 2N one has 1 — cos(py) ! (1 = py)?/ 2, therefore

when E approaches E); it is

N N
2®) = 20— o[, Tdnet Z@0- o5 wpr_ i, [apa= 260

<(Ev-E

— Cy(Em—- EN/2 (38)
and therefore

mmm%@ﬁrEW%ﬁ (39)

In conclusion w(F) =0 if E=0 and F = E);, which implies a maximum inbetween
and a region (at high energies) with negative Og. The previous scenario is expected
to hold also in the prescence of a small interaction among the rotators and can be
numerically confirmed with a sampling of the phase-space (see figure 1): random
configurations of the system are extracted with an uniform distribution over the
phase space and w(F) is reconstructed by counting the number of configurations
lying in a small interval of width 6F around the energy E. It is clear from figure 1
that: the density of states w(E) has a maximum in E ~» Ey/2; it is an increasing func-
tion for E< E whence T > 0; it decreases for E> E whence Tg < 0. Unfortunately,
such a sampling is reliable only in a narrow region around E: indeed, there are very
few configurations with energies much larger or smaller than E and, therefore, there
is an extremely small probability such configurations can be extracted with this
procedure.

For this reason, we have performed dynamical measures through numerical simula-
tions of the motion of the system: the integration of equations (36) is carried out with
the usual Verlet scheme with a time step A t= 1073,

doi:10.1088/1742-5468/2015/12/P12002 11
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1.2 . .
4 - E>E *
2 -
14 | ey
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[
2+
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1-cos(p)

Figure 2. Measure of the Boltzmann temperature in the rotators chain for N = 100
and £= 0.5. Probability distribution function of the momentum of the rotators
as a function of their ‘kinetic energy’ g(p) = 1 - cos(p) at energy E=FE_ =170
(blue squares) and £ = E. = 130. The slopes of the two black straight lines are
1/Tg (E), where T'g (E) is the asymptotic value of the corresponding curve in
the inset. Inset: The Ty obtained from the cumulated average of the observable
R(X (t)) over a trajectory up to time tat £ = 170 (blue line) and F = 130 (red line).

4.1. Measure of Tg

Measurements of the Boltzmann temperature are taken using the two methods dis-
cussed in the previous sections. In particular, by computing the following average (over
a single trajectory of the system)

T N
.1
p(p) = lim ﬁf o dt i; o(pi(t) - p). (40)

for different values of p, and assuming that the system is ergodic, we recover the
single-particle-momentum probability density function P(p), equation (21). The result
of such a measure is reported in figure 2: for two different values of energy E, < F and
E_ > E the measured p(p) is plotted as a function of the ‘kinetic energy’ of the indi-
vidual rotator g(p) = 1 - cos(p). The presence of a negative temperature at £ = FE_
can be readily indentified by means of the consideration in section 2.4. On one hand,
the exponential behaviour of p(p) guarantees that the approximation used to obtain
equation (25) is already valid (for every value of g(p)) at N = 100. On the other hand,
the clear positive slope of the function at £ = E_ is a direct consequence of the fact
that Tg(E_) < 0: the opposite situation is encountered at F = E., where the decreas-
ing behavior of p(p) indicates a temperature T'g(E,) > 0. These conclusions can also be
drawn by measuring the time average of the function R(X), equation (29): in the inset
of figure 2 we report the temperature obtained with the cumulated average of R(X)
up to time ¢, namely

L1
Tr(t) t

t
J, arrRe ). (41)
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for E=F, and F= E_. These two quantities converge, for large ¢, to an asymptotic
value representing an estimate of the inverse Boltzmann temperature (g of the system.
This value, as expected, is positive for £ = F, and negative for ¥ = E : moreover, the
values are in very good agreement with the slopes of the single particle distribution
function, as shown by the dashed and solid lines in figure 2.

4.2. Equivalence of ensembles and the equipartition formula

We briefly discuss the problem of the equivalence of ensembles. In the usual textbook
approach one starts from equation (23): assuming that S(e) is convex and performing
a steepest descent analysis, for large N, one obtains the canonical functions from the
(Boltzmann) microcanonical ones, e.g.:

I's(e)S(e) = e - £(Tgr(e)), (42)

where f(T) is the free energy per particle in the canonical ensemble. In addition the
energy fluctuations are negligible. In such a derivation, the relevant point is only the
convexity of S(e) and nothing about its first derivative is required. Therefore, the equiv-
alence of ensembles naturally holds under our hypothesis even for negative Tg. Since Tp
and 7g can be different even for large N, as in our model defined with equation (35), it
is evident that 7 is not relevant for the ensemble equivalence.

A common way [8] to measure the Gibbs temperature is by the equipartition for-
mula, equation (30): for the Hamiltonian in equation (35) one should get

"pxsin plg = To(E), (43)

for every 10k N. In the present subsection, we use the notation ‘I to denote the
average in the microcanonical ensemble, in order to distinguish it from a canonical
average L1} which is useful to get some analytic expressions and better investigate the
validity of equation (43). The canonical probability density reads

1
P(Py, -y Qs P1s - Pn) = e PH@ - PreeeeP), (44)

where 7 (3) is the partition funcion and (3 the (external) inverse temperature, that can
be either positive or negative: if such a distribution is derived from a larger isolated
system, as already discussed in section 2.3, the temperature in the canonical ensemble
is precisely the Boltzmann temperature of the whole system. A simple explicit expres-
sion (see details of analogous calculations in [33]) can be derived for the mean energy

L(B)  el(Be)
L(B)  Io(Be)
where Iy(x) and I;(z) are, respectively, the zeroth and the first modified Bessel function

of the first kind. Analogously, one can get an analytic formula for the equipartition
function

0
U(@) = Mij= N1+ e (45)

1 e

B Bl

psin(p)Lj= (46)
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Figure 3. Black line: [Cpsin(p)[j versus U(f) in the canonical ensemble (equations
(45) and (46)) as parametric functions of 3 € (= = , = ). Red squares: time averages
of the equipartition function in molecular dynamics simulations at fixed energy
E (microcanonical ensemble). The values for the parameters of the model are
N =100 and £= 0.5.

Equations (45) and (46) hold for both positive and negative 3. In figure 3 we report the
plot of the parametric curve (U (f), [psin(p)L) obtained by varying (8 both in the posi-
tive and in the negative region of the real axis.

This curve is then compared with the measurements of [psin(p)g computed from
molecular dynamics simulations in the microcanonical ensemble at different values of
the energy F (figure 3). This comparison clearly shows that the results obtained in
the two different ensembles are identical, a transparent evidence that the equivalence
of ensemble already exists for this system quite far from the thermodynamic limit
(N = 100).

Figure 3 also shows that the equipartition formula cannot be used to measure the
Gibbs temperature: as previoulsy discussed in section 3, the equipartition theorem
can fail if the density of states w(F) vanishes. This is the case of our system (figure 1),
where I'g = 3(E )/ w(E ) should diverge for E [J 2N1 + ¢): on the other hand the results
obtained in the canonical and in the microcanonical ensemble clearly indicate that
psin(p)g L) 0asE [J 2NT + o).

4.3. Spatial coherence

By analogy with systems of point vortices discussed in section 2.5, the rotator model
in equation (35) possesses a spatially ordered phase at large values of E: this can be
easily understood by noting that the density of states w(£) vanishes in F= Ej, i.e.
there is a small number of microscopic configurations corresponding to large values of
E. In particular, the maximum of the energy Eyq = 2N1 + ¢) is attained by the unique
microscopic state where, for every n, p, = and @, - ¢ _; = T; that is, where all the
rotators are fixed (¢ = sin TT= 0) and the distance among two consecutive rotators is
A @ = T. As a consequence, since ¢, = 0, all the particles with even index (n= 0,2,4...)
must be at ¢ = 0 and the others (n= 1,3,...)in ¢ = M. At smaller values of E [J Ey, see

doi:10.1088/1742-5468/2015/12/P12002 14
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Figure 4. (A): Probability distribution function of angular distance between
two consecutive rotators at high energy E = 298.96. (B): Probability distribution
function of rotators’ positions ¢ in the high energy case F = 298.96 (blue squares)
and in the low energy case F'= 6.79 (red triangles). The two maxima of the high
energy distribution correspond to the clusters around ¢ = 0 and ¢ = 1 discussed in
the text. The other parameters are N =100 and ¢= 0.5.

figure 4(B), such considerations can be extended, yielding a very similar situation: even
and odd rotators must be close, respectively, to ¢ =0 or ¢ = 1.

We note that an ordered phase exists whenever, at a given energy E, the number of
corresponding configurations is small, i.e. when w(F) vanishes: for instance, the cluster-
ing can also be observed at small energies, when the rotators accumulate around ¢ = 0,
in order to minimize the interaction energy, see figure 4(B). The sign of the Boltzmann
temperature plays a crucial role in this context, defining the features of the coherent
phase. Indeed, in analogy with the single-particle-momentum distribution, it is easy to
show that

P(@,— @_ ) xexp{-Bgll - cos(®,— @_I}. 47)

When E[1 Ey or ELJ 0, the inverse temperature Og diverges and, depending on the
sign of (g, the distribution equation (47) peaks around ¢;— q_;=0or ¢,— Q_; = T,
see figure 4(A).

We stress that not every state with negative temperature is spatially ordered: the
necessary condition is a small corresponding phase space volume, which implies a very
high energy or, equivalently, a very small negative temperature. The same argument
applies to small positive temperatures. Of course, if negative temperatures appear,
they signal a reduction of phase space with increasing energy, and therefore announce
a more ordered structure at higher energy.

5. Conclusions

In this paper we have given a series of arguments to support the thesis of the Boltzmann
temperature T as a useful parameter to describe the statistical features of a system
with many particles and short-range interactions, even when it takes negative values.
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We draw our conclusions with a series of remarks on the role of the negative tempera-
ture and some comments on recent papers.

We have shown that the temperature Ty is the proper quantity for describing the
distribution of the energy fluctuations in the canonical ensemble. It enters an immedi-
ate generalization of the Mawell-Boltzmann distribution in the case of ‘kinetic energy’
which is not a quadratic function of momentum. For a particular model we have also
demonstrated that at small | 7| (for both positive and negative values) a spatial order
induced by interactions appears, whose qualitative traits depend upon the tempera-
ture’s sign.

If the microcanonical entropy S(e) is a convex function, independent of the sign
of Tg, there is no ambiguity in determining the flux of energy as it always goes from
the hotter system, i.e. with smaller 8g to the colder one (with larger §g). It should be
remembered that the convexity of S(e) can be violated only for very small systems or
systems with long range interaction, both cases being very well known examples that
can violate thermodynamic requirements.

From a physical point of view it is possible to obtain the canonical ensemble from
the microcanical one only for large systems with short range interactions. In such a
class of systems, if N> 1, the S(e) is convex and it is easy to obtain the equivalence
of the ensembles. This is a fundamental requirement to obtain equilibrium thermody-
namics, where there is no difference between thermostatted and isolated macroscopic
systems. It is worth emphasizing that the equivalence of the ensembles only holds if
one adopts the Boltzmann definition of entropy: for this reason, in systems exhibiting
negative temperatures, where Sg and Sg are no longer equivalent in the large N limit,
thermodynamic can be recovered for N[] « only through the Boltzmann formalism.

In systems with few components and/or with long-range interactions, one can still
define a canonical ensemble at a formal level (i.e. assume that the phase space distribu-
tion is o« e #H), and then consider the equivalence of the ensembles. However such a
formal mathematical approach, in our opinion, has no physical meaning. Since in the
presence of long-range interactions (or equivalently a system with N = O(1)) it is not
possible to make a clear distinction between the system and the reservoir, it is not pos-
sible to construct systems following a canonical distribution. For the same reason the
question of the flux of energy among two systems appears to be meaningless in those
cases.

Following Rugh [32], 75 can be computed via a molecular dynamics simulation,
and (at least in principle) from the data of an experiment. The microcanonical formula
(30), which, in most cases, allows for a practical definition of Tg, can fail in systems
with negative Tp, therefore, as far as we know, at a variance with 7, there is no general
method to compute 71 in an experiment.

We emphasise that the counterexamples used in [8] to support the claimed inconsis-
tency in the use of T are based on systems with very few degrees of freedom and non-
convex S(e). We note that the system in equation (71) of [8] is nothing but the system
considered in our section 4, equation (35), with N=1 and ¢= 0: the claimed strange
behavior of Ty is present only if N = O(1). On the contrary for N>> 1 as a consequence of
the convexity of S(e) one has a quite natural scenario, as discussed above. In a similar
way we have shown that the consistency of Tg with the microcanonical formula fails
for large N.
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In the microcanonical ensemble the temperature Tg is a function of the total energy
E. In the canonical ensemble the temperature T is a mere property of the reservoir and
does not depend on the microscopic configuration of the system. In [8], see section 3.4,
the wrong concept of temperature (in non-isolated (sub)-systems) depending upon the
energy of the microscopic configuration, see their equation (31), is used to explain this
inconsistency of Ts. Such confusion seems to be persistent, see [29] for a discussion of
the topic of the (non existing) fluctuations of temperature.

In conclusion our analysis, that applies to a large class of systems with many
degrees of freedom and short-ranged interactions, shows that the Boltzmann tempera-
ture has the following properties: (i) it is the proper quantity ruling the fluctuations of
energy in a sub-system; (ii) it can be measured by means of time-averages of a suitable
observable; iii) it rules the direction of the fluxes of energies between two coupled sys-
tems at different initial temperatures. For the Gibbs temperature, we observe that: (i)
the Gibbs entropy is an adiabatic invariant (although to the best of our knowledge a
mathematically rigorous proof exists only for one-dimensional systems); (ii) the micro-
canonical formula for equipartition in general is not valid therefore—at variance with
Tg—a simple way to measure T is not available. We note that the differences between
Tg and T can survive for large N, even when the ensembles are equivalent in the ther-
modynamic limit.
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