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ABSTRACT: Allosteric molecules provide a powerful means to
modulate protein function. However, the effect of such ligands on
distal orthosteric sites cannot be easily described by classical
docking methods. Here, we applied machine learning (ML)
approaches to expose the links between local dynamic patterns and
different degrees of allosteric inhibition of the ATPase function in
the molecular chaperone TRAP1. We focused on 11 novel
allosteric modulators with similar affinities to the target but with
inhibitory efficacy between the 26.3 and 76%. Using a set of
experimentally related local descriptors, ML enabled us to connect
the molecular dynamics (MD) accessible to ligand-bound
(perturbed) and unbound (unperturbed) systems to the degree
of ATPase allosteric inhibition. The ML analysis of the
comparative perturbed ensembles revealed a redistribution of dynamic states in the inhibitor-bound versus inhibitor-free systems
following allosteric binding. Linear regression models were built to quantify the percentage of experimental variance explained by the
predicted inhibitor-bound TRAP1 states. Our strategy provides a comparative MD−ML framework to infer allosteric ligand
functionality. Alleviating the time scale issues which prevent the routine use of MD, a combination of MD and ML represents a
promising strategy to support in silico mechanistic studies and drug design.

■ INTRODUCTION

In silico hit-to-lead optimization is a challenging task in drug
discovery. High attrition rates in virtual screening campaigns
are associated with prioritization of hits with a predicted
binding affinity that does not always match the expected
efficacy in vitro/vivo.1 Determining a correlation between
affinity and efficacy becomes even more challenging in the
presence of allosteric compounds, as ligand effects at a distal
site are often identified by monitoring substrate processing in
the orthosteric pocket. In this respect, occurrence of “flat SAR”
or “functional switches” as a consequence of even small
changes in ligand structure points out how efficacy is not a
mere function of affinity.2 Efficacy often depends on changes in
system dynamics and kinetics. According to the conformational
selection binding model proposed by Nussinov, ligands
preferably bind to the best-matching protein conformation
from an ensemble of states and shift the equilibrium toward
that state.3 The advanced extended model of this mechanism
emphasizes that the final equilibrium shift between protein
conformations is the thermodynamic outcome of a multiscale
protein-encoded dynamics that involves different length scales
ranging from equilibrium atomic fluctuations to subdomain

dynamics (flexible hinge regions or independent dynamic
segments), up to large collective multidomain motions.4−8

Dynamic transitions are fundamental to trigger functional
changes, and they can be seen as the protein response to a
ligand, which acts as an external perturbation on a given
conformational state. Dynamic changes explain how the
receptor deals with this perturbation and how the latter
propagates throughout the whole structure to stabilize the
protein state that best adapts to the ligand.7,9 Since these states
pre-exist in the native ensemble even in absence of any
perturbation,10 they are likely to be intrinsically linked to
functional modulation. Even when structural transitions are
only subtle or not readily observed, the change in conforma-
tional landscape can still be linked to a population shift that
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involves energy redistributions or changes in the amplitude of
atomic fluctuations.9−11

These considerations underpin the principles of orthosteric
and allosteric functional modulation in all proteins and
underlie affinity/efficacy discrepancies in docking-driven
selections of the best compounds. Ligand docking strategies
rely on a speed−accuracy compromise to efficiently screen,
filter, and rank hundred thousands of ligands in a feasible time.
In this framework, scoring functions prioritize ligands mainly
approximating the enthalpic contribution due to protein−
ligand interactions, while molecular dynamics (MD) has
become a powerful instrument to take into account
structure−dynamics−function relationships.12−15 In principle,
MD offers atomic details of both the enthalpic and entropic
contributions to the global binding free energy, possibly
highlighting affinity and efficacy discriminants. In practice, this
comes at the cost of performance, since a complete shift in the
conformational equilibrium occurs on prohibitive time scales
(microseconds to minutes). Nonetheless, the recognized
potential of MD in the field is pushing significant efforts into
extracting and analyzing MD trajectories of protein−ligand
complexes at all levels, to inform in silico drug design and
improve understanding of dynamic and functional differences
resulting from ligand−protein cross-talks.12−17

Machine learning (ML) algorithms are being explored for
trajectory data mining and with the purpose of extracting
relevant information from MD trajectories collected for diverse
bound/unbound conditions. In a series of recent papers,
supervised and unsupervised ML techniques have been used as
a comparative analysis tool for MD trajectories to classify and
predict differential functional effects observed on GPCRs,18,19

PZD3 domain,20 and caspase-8,21 as a consequence of ligand
binding. A software package (DROIDS 3.0) for the
comparatively framed ML analysis of fast MD trajectories
has been released to analyze the link between atomic
fluctuations and functionally relevant protein regions affected

by ligand binding or mutations.22 By transforming time-
dependent Cartesian coordinates into ML-readable inputs, as
images or matrices, ML algorithms demonstrated an ability to
learn (training step) from known patterns (supervised ML) or
find hidden ones (unsupervised ML) and are able to
discriminate bound from unbound states. The sought-after
patterns are intended as a particular combination of MD
descriptors, also called features, which allow statistical
classification of unknown trajectory points as belonging to
one of the possible states (classes), e.g., inhibited versus
activated states, on which the algorithm has been trained. Once
an ML model has been internally trained and cross-validated
for predictive performance, a step of external validation
evaluates whether the learned patterns of descriptors are
robust enough to generalize to a functional class from
previously “unseen” trajectories. In these studies, a proper
choice of comparatively framed MD-derived features over
different time scales permitted a correct biologically and
biophysically interpretation of MD-trajectories. Indeed, the
sequential and extended conformational selection mechanism
for binding stems from the key concept of hierarchy of time
scales in proteins.6,23 Under this perspective, local ps−ns
dynamic events can play a synergistic role in triggering slower
transition by lowering energy barriers or increasing receptor’s
probability to visit different states/substates.
Here, we made use of this principle to investigate the

existence of ML-readable local dynamic patterns possibly
connected to ligand-induced allosteric mechanisms that
modulate the ATPase function in the molecular chaperone
TRAP1. This mitochondrial member of Hsp90 family is a
multidomain asymmetric dimer,24 where sequential ATP
binding and hydrolysis in the two N-terminal domains
(NTD) trigger allosteric conformational changes involving
the large middle (LMD), the small middle (SMD), and the C-
terminal (CTD) domains, more than 40 Å distal from the
NTD.25 Allosteric inhibition of this target is now appreciated

Chart 1. Chemical Structures of the 11 TRAP1 Allosteric Modulators Investigated in This Study
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as an attractive strategy to selectively perturb TRAP1-
dependent mechanisms involved in tumor growth, without
interfering with other constitutive Hsp90 members.26

In this work, we tested the ability of ML to classify 11 novel
allosteric modulators according to their effect on TRAP1
ATPase activity (Chart 1).
The experimental data in our hands set the stage for

retrospective validation of the inhibitory efficacy of our
compounds, which regardless of similar affinities to the target,
decreased the chaperone ATPase function between 26.3 and
76%.27

Since the time scales required to fully explore end-point
allosteric effects limit the use of MD for comparison of many
bound/unbound states, an ML-based description of MD data
was chosen in the attempt to rationalize compounds’
functional effects by focusing on the (apparently) noisy
nanosecond dynamics of highly flexible subdomains with a
well-established role in TRAP1 dynamics and function. A total
of 66 MD systems were used to investigate the outcome of
naiv̈e Bayesian (NB) and support vector machines (SVM)
algorithms. An ML-driven comparative-perturbed-ensemble
analysis revealed a redistribution of inhibitor-bound/-free
states observed as a consequence of ligand perturbation of a
single low-energy TRAP1 conformation. Linear regression
models were built to assess the relationship between the
percentage of ML-predicted inhibitor-bound states and
percentage of experimental TRAP1 inhibition. NB predictions
returned regression models with maximum r2 between 0.64
and 0.71. This comparatively framed method for simulation
and analysis provided a suitable ground to infer ligand
functional effects within a coherently generated MD
ensemble,28 enabling proper exploration of the potential of
ML techniques applied to a challenging real-world case
study.29 We show that a rigorous statistical ML framework
can empower interpretation of different MD features in a
perturbed ensemble, generating new knowledge to assist
chemical biology and docking studies.

■ METHODS
Generation of the Comparative MD Ensemble. The

closed dimeric form of zebrafish zTRAP1 in its activated
double ATP-bound state (Protein Data Bank ID: 4IPE)24 was
simulated in inhibitor-unbound (state A) and inhibitor-bound
(state I) to generate a ligand-perturbed conformational MD
ensemble, whereby local functional TRAP1 dynamics could be
compared in the presence and absence of the 11 allosteric
inhibitors (Chart 1). All the compounds were docked in the
same representative starting structure obtained via cluster
analysis on a previous set of 600 ns MD simulations. We refer
the reader to our original publication for technical details on
the clustering procedure followed to extract the common initial
TRAP1 configuration.30 This choice was done to select an
equilibrated dimer conformation in a relaxed local minimum
around the native crystallographic state. The backbone RMSD
(1266 residues) between the chosen reference structure and
the crystallized dimer was 3.83 Å. To enhance the sampling
around the near-native conformation, each inhibitor-bound
complex was independently simulated in 3 replicates, to get 33
ligand-perturbed systems. For comparison, 33 independent
copies of the unperturbed TRAP1 system were simulated in
the same conditions with only two ATP molecules bound to
the two catalytically competent sites in the NTDs. Nine out of
33 inhibitor-bound systems and 3 out of 33 inhibitor-free

replicates were taken from our previous MD simulations, in
which 3 replicates for each of the 3 most active compounds
(namely, compounds 5−7 in Chart 1) were compared with 3
inhibitor-free copies of TRAP1.27 Here, 24 inhibitor-bound
systems and 30 inhibitor-unbound complexes were added to
this initial set to complete the MD ensemble. The 3 replicates
for each of the 8 discovered hits (namely, compounds 1−4 and
8−11 in Chart 1), as well as the new copies of the inhibitor-
free state, were built following the same protocol used for the
old simulations and described in full details in the original
publication.27 Briefly, the Schrödinger software suite release
2017−1 was used for system setup.31 Flexible ligand docking
into TRAP1 allosteric site was performed using Glide with
default settings in SP mode.32 The best-ranking docked
complexes were solvated by building a isometric truncated
octahedral simulation box, leaving 10 Å solvent buffer from the
protein. Equilibration and production steps were performed
using the AMBER16 MD engine,33 describing the protein with
the ff99SB force field and employing GAFF parametrization for
ligands. Each independent complex, containing ≈175 000
atoms, was minimized and gently heated to 300 K, allowing
volume and density equilibration in the NPT ensemble before
switching to the NVT production run. In every replicate,
velocities were reinitialized according to Maxwell−Boltzmann
distribution at 300 K; the first 20 ns of each NVT run were
discarded to allow for further system relaxation. Productive
statistics was accumulated for a minimum of 80 ns to a
maximum of 280 ns for every MD run, depending on whether
the replicate was part of the training or the test sets used for
ML analysis (see below). For the 66 systems, a total of 8.88 μs
of production MD were collected and analyzed to build up
features matrices of local MD descriptors. ML Classification
tasks were later assessed by training and testing NB and SVM
algorithms on combined matrixes obtained from each replicate.

Generation of MD Features Matrices for ML Analysis.
Four local features for each TRAP1 monomer were chosen
based on theoretical and experimental evidence attributing to
these subdomains structural and dynamic properties connected
to the ATPase functional cycle. The rationale behind their
choice is discussed in the “Results” section. The eight variables
monitored along each MD trajectory were tested in a ML
framework as “local reporters” of TRAP1 allosteric perturba-
tion. Each MD frame was transformed in a feature vector of 8
TRAP1 descriptors (4 × monomer). The resulting features
matrices contained the number of MD frames as rows and the
8 MD-derived features as columns. Descriptors were generated
with in-house scripts using VMD (version 1.9.3)34 to calculate
solvent accessible surface area (SASA) and g_mindist tool of
gromacs (version 4.6)35 to get residue−residue contacts.
Formal definition of the four MD descriptors are reported as
follows:
Two sets of cross-monomer contacts were calculated

between either NTD-swapped N-terminal extension (residues
85−108) in one monomer and the NTD core of the other
(residues 109−308). In every frame, the number of contacts
was obtained by summing up every pair of heavy atoms
belonging to different domains, whose distance was lower than
4.5 Å.
Two sets of SASA values were collected for the ATP lid of

both monomers in the NTDs of TRAP1. For the analysis, a
rolling sphere of radius 1.4 Å was used to identify water
accessible surfaces. Calculations were restricted to the side-
chains of residues 191−217.
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R417-γPO4 distances in the buckled and straight monomers
were calculated between centers of masses of the gamma-
phosphate group of ATP and the guanidinium group of R417.
Solvent exposure of S582 at the end of each of the two

SMD−CTD linkers was calculated from SASA values (as
above) of its phosphorylatable hydroxymethyl side-chain.
Generation of Training, Validation, and External Test

Sets from the Comparative MD Ensemble. Initially, 18
matrices, each built on 80 ns MD run, were merged in the so-
defined “original” training set (Table 1) to represent 9 copies
of the TRAP1 active state dimer (double-ATP-bound) in
absence of inhibitors and 9 systems representing the same
active state after binding of compounds 5−7 at the allosteric
site. Every features vector belonging to these two groups was
accordingly labeled as “A” (inhibitor-free) and “I” (inhibitor-
bound) in the combined matrix. Since MD frames were saved
every 20 ps, 80 ns of productive statistics returned individual
features matrices of 4000 records. In total, the original training
set contained 72 000 (4000 records × 18) data points
describing 1.44 μs of aggregated statistics; every inhibitor-
bound complex in the training set was evolved in MD for a
cumulative time of 240 ns (80 ns × 3 repeats) and compared
with an equal amount of statistics collected on the unperturbed
TRAP1 state simulated in identical conditions.
The predictive power of the trained models was internally

checked via 5-fold cross validation procedure available in
MATLAB version 2019b,36 by randomly using 20% (14 400
records) of the training set as validation set in each fold (see
below). To test the effects of increased sampling on the

predictive power of our MD descriptors, a so-defined
“extended” training set was generated by retraining the
algorithms after the addition of 200 ns to each of the 18
systems belonging to the original training set (Table 1). To
keep the size of the data set reasonable, a features vector was
built every 100 ps, and 2000 new records were added to each
original matrix. The extended training set included a total of
108 000 features vectors collected over 5.04 μs of aggregated
statistics; every replicate of the three inhibitor-bound
complexes was extended to reach a cumulative time of 840
ns (280 ns × 3 repeats) and similarly compared with an equal
amount of statistics collected on the unperturbed TRAP1 state
simulated in identical conditions. A 5-fold cross validation was
used for internal accuracies as described for the original
training set.
External performances of the original and extended training

sets were verified against a so-defined “small” test set including
the less active compounds of the library (compounds 1−4 and
8−11 in Chart 1), each consistently simulated over 3
independent replicates for 80 ns. A total of 24 TRAP1
complexes (8 ligands × 3 repeats) was used to build a features
matrix of 96 000 data points (4000 records × 24). The small
test set was properly balanced by the addition of an equivalent
number of 96 000 data points collected from 24 replicates of
the inhibitor-free state and simulated in the same conditions. A
total of 192 000 unlabeled and unseen features vectors were
subjected to ML predictions based on 3.84 μs of aggregated
statistics.

Table 1. Training and External Test Sets Used for Comparative ML Analysesa

aDetails on trajectories included in the training/test sets are reported in the corresponding cells. The small test set was used for external validation
of both the training sets (merged row); extended trajectories of compounds (cmpds) 5−7 (red text) were “unseen” only by the original training set,
so the extended training set was not validated against the large test set (X).
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In order to test models external performance against
compounds 5−7, the final ML models trained on the original
data set were used to predict TRAP1 states from 200 ns long
trajectories, which had been used to build the extended
training set (Table 1). Indeed, the extended portions of these
trajectories were not part of the original training set and were
treated as out-of-model data for this latter. Three features
matrices, each of 2000 unlabeled records (time interval: 100−
300 ns) from the extended training set, were thus added to the
small test set (8 ligands). The so defined “large test set” was
then used to make predictions on 11 inhibitor-bound systems.
The large test set was properly balanced by adding three more
matrices of 2000 records each, similarly extracted from the
extended portions of three inhibitor-free trajectories. The large
test set contained only one replicate of compounds 5−7 to
ensure similar statistics and time scales were used for
prediction of all ligand-bound states (200 ns for compounds
5−7 and 240 ns for the others). A set of 12 000 additional data
points (1.2 μs) were added to the small test set, totaling
204 000 “unseen” records of featurized MD frames (see Table
1).
Comparative Performance Analysis of ML Classifica-

tion Tasks: Naiv̈e Bayesian Algorithm and Radial Basis
Function Support Vector Machines. Two supervised ML
algorithms based on generative and discriminative approaches
were used to explore models ability to predict meaningful local
patterns representative of bound (I) and unbound (A) TRAP1
states. Two variants of the NB classifier were chosen to
exemplify the performance of generative models, while SVM
based on Gaussian radial distribution functions (GDF-SVM)
was chosen as representative of discriminative models. The
main difference between generative and discriminative
algorithms resides in the way they make decisions to separate
I from A states in the defined eight-dimensional features space.
NB classifiers are probabilistic algorithms that generate

statistical distribution models for the classes and for individual
features within the classes, estimating prior and posterior
probabilities from empirical evidence in the training set
according to Bayes’s theorem and considering features
independence (naiv̈e assumption). Depending on the shape
of data, Gaussian (GNB) or continuous (KNB) kernel
functions are used to calculate joint probabilities for features
and classes (for methods, see the Supporting Information).
In contrast, the radial basis function SVM consists of

discriminative nonprobabilistic algorithms which learn the best
decision boundary between classes given an input n-dimen-
sional space. When data are not linearly separable, SVM
transforms data through kernel functions that map from each
point in the input eight-dimensional space to the correspond-
ing class in the so-called kernel space. This mapping strategy
enables to find a linear boundary between classes in this new
space. Gaussian distribution functions are used in this SVM
implementation as similarity functions to distinguish close
from far features vectors in the mapped space (see the
Supporting Information). SVM find the best separating
hyperplane based on the sampling of the input space. In
other words, SVM does not address the probability that
connects members of a class to the ensemble of visited
features. Unlike NB, discriminative approaches do not take
into account the statistical distribution of the features in the
examined classes, but rather focus on the final distribution of
actually visited coordinates in the space of the features. The

reader is also referred to excellent reviews for further
details.37,38

ML Parameters and Performance Metrics for Internal
and External Validations. GNB, KNB and GDF-SVM were
trained on the original and extended training sets (Table 1) by
using the Classification Learner app available in the Statistics
and Machine Learning Toolbox of MATLAB.36

To minimize overfitting, the models were subjected to 5-fold
cross-validation during training. The data set was randomly
splitted in 5 subsets of roughly equal size in a 80:20 ratio. In
five iterations, each model was trained on the 4 subsets and
subsequently validated on the remaining one to ensure each
subset was considered as a validation set at least once. Then,
the overall performance of the models was assessed by
comparing cross-validation accuracy values, reported as the
average of single accuracies (Q) obtained in each fold
described as

= +
+ + +

Q
TP TN

TP TN FP FN (1)

In our ML models, states classified as I were treated as true
positives (TP), while states classified as A were treated as true
negatives (TN). Here, false positives (FP) represented frames
classified as I in inhibitor-free trajectories, while false negatives
(FN) were the frames classified as A in inhibitor-bound
systems.
NB was trained using Gaussian kernel coupled with

parametric (GNB) or nonparametric (KNB) distribution
functions available in MATLAB. Both the NB algorithms
were externally validated on the two out-of-model test sets.
GDF-SVM was trained tuning the hyperparameters σ and C,
i.e., kernel scale and box constraint values, respectively.
MATLAB uses an heuristic methodology to train three presets
referred to as coarse, medium and fine, where C was fixed to 1
and the kernel scale was set at 11, 2.8, and 0.71, respectively.36

Moreover, a Bayesian optimization procedure was carried out
to perform a statistics-based evaluation of σ and C values.
Bayesian optimization does an informed and efficient search in
the space of hyperparameters based on a probabilistic model
and an iterative approach that minimizes the score of the
classification error function. The σ and C hyperparameters
were tuned in the range 0.001−1000. Two rounds of
optimization were performed on the two training set, using
15 and 40 iterations. The software selected the best models as
those that minimize the upper confidence interval of the
classification error function. To minimize the risk of over-
fitting, the 5 GDF-SVM models (3 presets and 2 optimized)
trained on the original and extended training set were
externally validated on the small and large test sets. Only the
two GDF-SVM models (one for the original and one for the
extended training set) with the best external performance were
selected for further investigation.
For all NB and GDF-SVM models, true positive (TPR) and

true negative (TNR) rates were used as specific performance
metrics to express training and test set accuracies for states I
(TP) and A (TN), respectively. TPR an TNR values consider
the number of predicted positives and negatives over the total
number of true positives and negatives in the data set and can
be calculated as follows:

=
+

TPR
TP

TP FN (2)
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=
+

TNR
TP

TN FP (3)

False positive rates (FPR) can be directly calculated from TPR
as follows

= −FPR 1 TNR (4)

The predicted percentages of TP and FP from external
inhibitor-bound and inhibitor-free trajectories, respectively,
were plotted against the corresponding percentage of TRAP1
inhibition calculated from experimental assays. Linear
regression models were generated on the predicted vs observed
variables with the Curve Fitting tool of MATLAB.36 The
coefficient of determination (r2) was reported to measure the
percentage of variability in the experimental data that can be
expressed by the variance resulting from ML predictions.

■ RESULTS
Theoretical and Experimental Background for Fea-

tures Selection and Data Partitioning. Rational selection
of TRAP1MD descriptors was carried out restricting our
choices to dimer subdomains with demonstrated key roles
(simulations and experiments) in TRAP1 conformational
dynamics and ATPase function. We focused on residue-level
solvation, contacts, and distances obtained from four
inherently flexible regions of the buckled and straight
monomers, belonging to NTD, SMD−CTD linker, and the
ATP sensor loop in the LMD (Figure 1).

On the basis of our previous findings,27 the allosteric
perturbation induced by compounds 5−7 strongly affected the
global NTD flexibility, including NTD buckling motions in the
catalytically competent monomer. The ATP binding pocket in
the NTD, which displayed efficient long-range communication
propensity with the allosteric site,27,30 contains two higly
flexible elements which are well-known kinetic regulators of

TRAP1 conformational changes along the ATPase cycle: the
N-terminal extension and the ATP active site lid.
These two regions are responsible for functional cis-/cross-

talking within and between the two NTDs and directly
respond to nucleotide binding to mediate dimerization, to
induce the “tense” active state or to relax the dimer in a set of
open apo forms.39,40

The N-terminal extension, also called the “strap” (segment
85−100), behaves as a large thermal barrier to closing and
opening motions by stabilizing interactions with the trans- and
the cis-NTD, respectively.41 Mutants or strap-truncated
TRAP1 constructs resulted in a dramatic increase in ATPase
activity from 3- to 6-fold in zTRAP1 and even to a 30-fold
increase for hTRAP1.24,41 Our recent MD study has shown
that the fragment undergoes abrupt changes in internal
stiffness and mechanical coupling with both the NTDs when
the most effective compounds were simulated in the allosteric
site for 900 ns.27

The ATP lid (residues 191−217) is essential for
dimerization and the ATP hydrolysis reaction.40,42 Local and
global motions between open and closed conformations are
affected by ligand binding;43 in fact, previous simulations on
the cytosolic Hsp90 showed that in the double ATP-bound
state the ATP lid is widely flexible.44 A similar behavior has
been experimentally observed also in TRAP1,24,41 suggesting
that local dynamics in this region is not suppressed by
nucleotide binding.
Even if motions at the level of these two TRAP1 motifs

represent some of the rate-limiting steps needed to promote
slower conformational changes, experiments reported that the
two structural elements enjoy differential plasticity on faster
time scales and sense the chaperone binding state to trigger
oriented and functional conformational transitions.40 Here, we
monitored the effects of the allosteric perturbation on their
plasticity, assessing whether ligand-induced strain at a distal
site could propagate to the NTD and perturb the local
dynamics of long-range communicating regions in a mean-
ingful way. Such an effect was sought in changes in the ATP lid
SASA and cross-monomer contacts involving the strap motifs
and their partner NTDs.
The third local feature we investigated was the interaction

distance between the catalytic R417 and the ATP gamma-
phosphate group. The arginine resides in the LMD on the
ATP-sensor loop and readily responds to the nucleotide to
trigger loop rearrangements required for catalysis.45 The
interaction is the fingerprint of the catalytically competent
ATP-bound state and differentiates the internal dynamics of
the active state from ADP-bound or apo forms, where this salt
bridge is missing.25,30 Moreover, since this amino acid was
critically involved in the establishment of long-range
coordination with the allosteric site, we expected that a greater
responsiveness to allosteric perturbation could reverberate on
the stability of this functional ion pair.
As a fourth variable, we focused on the solvent-accessibility

properties of S582 located in the structurally disordered
TRAP1 SMD−CTD linker (residues 572−586). Mutagenesis
studies by Masgras and co-workers identified this serine
residue as an accessible phosphorilation site for ERK1/2 on
the closed dimer, which enhances TRAP1 chaperone activity.46

In several tumor models, TRAP1 down-regulates succinate
dehydrogenase (SDH),47 leading to transcriptional changes
that ultimately favor the advantageous metabolic switch from
OXPHOS to aerobic glycolysis in aggressive neoplasms.48

Figure 1. MD descriptors mapped onto 180°-rotated views of the
buckled (Bu.) and the straight (Str.) TRAP1 monomers in the active
asymmetric state. Two ATP molecules are bound to their pockets in
the NTDs (pink) and establish the featuring salt-bridge with R417 on
the ATP sensor loop (vdW spheres). Protein segments with enhanced
local dynamics within the dimer are shown (green) and labeled
accordingly. The two NTDs make cross-monomer interactions with
the N-terminal strap of the partner monomer. S582 (vdW spheres) is
shown in the SMD−CTD linker; the segment 566−572 (purple) is
highlighted in its ordered (straight) and disordered (buckled)
structure. For clarity, in each view, labels are reported for the front
monomer only.
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Since our tested allosteric inhibitors result in a beneficial
increase of SDH activity in vitro and in vivo tests,27 we
monitored differences in S582 solvent exposure in the two
simulated states as a consequence of allosterically perturbed
dynamics. Notably, the helix preceding the SMD−CTD linker
in the crystal structure, that is helix 20, contains a residue
(E566) which makes asymmetric interactions in the straight
protomer and if mutated decreases ATPase activity of more
than 60%.24 In contrast, the same helix is an unstructured
fragment in the buckled monomer, including 20 highly flexible
and disordered residues (566−586). This aspect is reminiscent
of intrinsically disordered regions in folded complexes, which
are arising much interest because of their role in allosteric
regulation of multidomain proteins.49,50 These regions can
locally fold or unfold to dissipate sources of mechanical stress
in the dimeric asset and thus trigger sequence-encoded
dynamics changes eventually connected to complete state
transitions.10,51,52 Notably, the whole N-terminal region
(residues 85−108) is composed by the “strap” extension

(residues 85−100) and the beta-strand (residues 101−108) in
the closed dimer. However, the two subregions are α-helical in
a recently crystallized apo form of the hTRAP NTD
construct.39 Structural differences in structural order are also
observed for the ATP lid in the two crystallized zTRAP1
monomers: While the buckled monomer displays a helix−
loop−helix fold, a portion of the ATP lid is missing in the
straight protomer and the helical regions are partially
unfolded.24 These considerations suggest that changes in
folding could involve key regulatory elements of the
chaperone.
Given the above-described set of features, three aspects were

taken into account in the generation of the training sets: (i)
The 11 ligands inhibit TRAP1 function in a relatively wide
range of activities, and such an heterogeneous data set could in
principle contain spurious inhibited states (I), which might
poorly represent the effects of the most active compounds. (ii)
The emergence of local dynamics patterns was searched as a
result of the allosteric perturbation in a unique initial structure,

Figure 2. Probability distributions for the eight features in TRAP1 states A (blue) and I (red) in original (720 ns for each state A/I) and extended
training sets (2.52 μs for each state A/I). The plots were obtained distributing individual features vectors collected from 9 inhibitor-unbound
replicates and 9 inhibitor-bound complexes containing compounds (5−7) with the highest inhibitory efficacy in the allosteric site (see Table 1).
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so we needed to maximize the diversity between substates
accessible to inhibitor-bound and inhibitor-free systems. (iii)
Since short-time-scale MD on a single replicate is severely
affected by the sampling problem, more replicates of a single
complex were simulated to improve data statistics.
In the attempt to tackle these specific issues, only the three

most effective inhibitors (compounds 5−7) with almost
homogeneous inhibitory efficacy (73−76%) were used in the
training set and balanced with the same number of inhibitor-
free replicates. In other words, ML models were built to ensure
learning of inhibitor-bound patterns from the allosteric ligands
expected to have the biggest detectable impact on TRAP1 local
unperturbed dynamics.
Probability Distribution Plots of Local Features in A

and I States. Figure 2 shows the degree of sampling achieved
by each variable in the 9 inhibitor-free (state A) and 9
inhibitor-bound (state I) complexes from the original and
extended training sets (Table 1). Since states A and I were
simulated starting from the same reference TRAP1 structure, it
is not surprising to notice overlap between the visited space on
the simulation time scale. Although states I are also accessible
to states A to a certain extent, the three most active
compounds of the series (5−7) cause sensitive and
heterogeneous perturbations of the statistics sampled by
inhibitor-free systems, affecting the modality of the distribu-
tions and the ensemble probability of the different peaks in the
features space. Both the training sets highlight interesting
ligand-induced differences within a few features distributions,
which cannot be observed in the test set (see Figure S1), as in
the case of the SASA values for S582 and the ATP lid (Figure
2). The addition of 200 ns of statistics in the extended training
set do not substantially change the shape of distributions for
state A. Furthermore, the 9 inhibitor-free systems in the
training set and the 24 inhibitor-free replicates included in the
test set appear to visit overlapping regions of the features space
(see Figures 2 and S1). Nevertheless, the curves clearly show
poor separability of TRAP1 states, demonstrating that the
classification task cannot be based on a simple analysis of the
probability plot nor can differences between the states be
rationalized. These considerations set the stage to turn to ML
classification tasks, in the attempt to expose emergent local and
functional dynamic patterns characterizing the MD ensemble.
Internal Performance of NB and SVM Models on

Validation Sets. Specificity (TNR) is considered as a more
robust metric than sensitivity (TPR) to validate our models. It
can be stated that if states labeled as A (TN) in the training
sets are genuinely meaningful of an unperturbed local
equilibrium learned from TRAP1 inhibitor-free dynamics,
external trajectories of the same type should reproduce this
behavior.22 Furthermore, a specific model is desirable in a
supportive tool for drug design, since it should minimize
prioritization of inactive compounds (FP). Specificity is
generally lower but should not drastically degrade in external

testing. In order to build ML models as robust as possible, we
relied on their ability to predict states A, learnt from
trajectories of 36 000 or 54 000 frames, in a much larger
number of out-of-model inhibitor-free trajectories available as
external test set (96 000 frames). Sensitivity (TPR) could
depend more on the extent of perturbation induced by
different allosteric modulators, so a lower sensitivity may also
be descriptive of ligand functional properties and could not
necessarily imply bad prediction accuracy for states I.
However, as a compromise, we excluded the GDF-SVM
models with the lowest TPR and selected the one with the
highest TNR among the other four SVM setup. Table 2
summarizes ⟨ ⟩Q , TPR, and TNR metrics calculated via 5-fold
cross-validation of GNB, KNB, and GDF-SVM algorithms. For
the latter, the “medium” preset (σ = 2.8 and C = 1) returned
the best performance in the external validation procedure and
was selected for further comparative analyses. Interestingly, the
overall prediction accuracy slightly decreased when the
simulations were extended up to 300 ns, indicating that
sampling in the first 80 ns (in each replicate) produced more
identifiable patterns of perturbed (TPR) and unperturbed
(TNR) complexes.
Such a result indicates that although starting from the same

reference structure, on the shortest simulated time scales, the
chosen local features experience more relevant perturbations
relative to TRAP1 inhibitor-unbound states that come partially
restored or become less identifiable extending the simulations
by 2.5-fold.
The average accuracy in each validation fold varies between

66.7 and 94.9%, with the discriminative models outperforming
the generative ones in the internal validation. All the models
are characterized by good internal specificity (TNR),
recognizing the A state in a range between 78 and 92% of
the inhibitor-free trajectories. In contrast, model sensitivity
(TPR) differs more among the models, identifying state I in a
range between the 55 and 95% of the inhibitor-bound frames.
Overall, GDF-SVM gives models of high sensitivity for state I
and specificity for state A in the training set, whereas NB shows
good specificity for state A, reaching 0.83 when data are
modeled as Gaussian distributions (GNB) but lower ability to
identify all inhibitor-bound frames as genuine states I. In KNB
models, nonparametric statistical treatment of the data set
returns the highest TPR values. In order to evaluate ML
predictions over a fixed simulated time window and allow
coherent comparison among homogeneous inhibitor-bound
and inhibitor-free trajectories, Table 3 reports the percentages
of correct predictions (TP and TN) in the two training sets for
aggregated trajectories (12 000 or 18 000 frames) grouped for
each simulated ligand (3 replicates). The internal performance
metrics of our models remarks the absence of a clear separation
between the sampled states in the ensemble; rather, states A
and I seem to coexist as a minor population in inhibitor-bound
and inhibitor-free trajectories, respectively. The trained models

Table 2. Internal Cross-Validated Performances of Generative and Discriminative ML Modelsa

GNB KNB GDF-SVM

⟨Q⟩% TPR TNR ⟨Q⟩% TPR TNR ⟨Q⟩% TPR TNR

original training set 73 0.63 0.83 78.9 0.77 0.81 94.9 0.95 0.95
extended training set 66.7 0.55 0.79 74 0.70 0.78 91.0 0.92 0.92

aCross-validated percentage accuracy ⟨ ⟩Q and corresponding TPR and TNR for GNB, KNB, and GDF-SVM models (“medium” preset: σ = 2.8
and C = 1). Performance metrics were calculated summing up TP and TN predictions on the five validation subsets generated from the training
data.
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were able to recognize no less than 49% of states I in each
individual inhibitor-bound state and no less than 69.5% of
states A in inhibitor-free ones, highlighting their preference for
one of the two, without excluding minor sampling of the other.
External Performances of the Models on out-of-

Model Test Sets. External testing of the models causes an
expected decrease in TPR and TNR, relative to the validation
sets (Table 4). In spite of the 24−27% loss in the specificity of
SVM models, 68−69% of inhibitor-free trajectories can be
genuinely recovered as TN. For NB models, the loss in
specificity is lower, in the range of 2−23%. Training NB
models on the extended data set leads to a lower loss in
specificity in respect of values obtained from the original
training set. Specifically, the GNB model trained on the
extended data set, almost retains the same specificity (0.77)
observed during internal validation (0.79), whereas a higher

but acceptable 13% loss in TNR is obtained with KNB. Adding
sampling to the original training set improves recognition of
states A on a much larger number of “unseen” inhibitor-free
replicates. Overall, data modeling via normal distributions
(GNB) provides the most specific models for state A
predictions, while the use of nonparametric statistics in the
KNB variant returns increased sensitivity toward the state I,
although the overall TPR values are significantly lowered in the
external test sets.
ML predictions on the two external test sets are plotted on

the x-axis of two-dimensional graphs using TPR percentage
and FPR percentage values, describing the percentage of I
states in inhibitor-bound and inhibitor-free trajectories,
respectively (Figure 3a−i). Here, we calculate these perform-
ance metrics grouping TRAP1 replicates bound to the same
ligand in every training/test set pairs. For comparison, results
on inhibitor-free trajectories are similarly shown for groups of
three replicates. Therefore, 8 or 11 predicted values are plotted
against the experimentally observed percentage of functional
ATPase inhibition (y-axis) (Table 5). FPR percentage
predictions in inhibitor-free trajectories have y coordinates
equal to 0 to represent lack of functional inhibition in absence
of ligand perturbation. In order to assess whether ML
predictions on inhibitor-bound systems can provide any
meaningful correlation with observed functional inhibition,
linear regression models are built on TPR percentage, to
quantify the percentage of experimental variance explained by
predicted values. Thus, the coefficients of determination (r2)
for each model are presented as an additional metrics of
external performance. Given the nonseparable nature of our
data (Figure 2) and our choice to simulate near-minimum
conformations sampled from a single reference structure, full
segregation of states was not expected.
Also, the functional heterogeneity of the tested inhibitors is

not excluded to play a key role in limiting sampling of
unambiguous I states. Nonetheless, the plots highlight
interesting trends within and between predicted observables
representing the A/I states. Direct comparison of I states in
inhibitor-bound (TPR percentage) and inhibitor-free (FPR
percentage) trajectories provided us with a consistent frame-
work for internal assessment of TRAP1 patterns featuring its
local internal dynamics, before and after the allosteric
perturbation.
In each plot, we tried to identify two regions based on the

segregation of A/I states along the x-axis (Figure 3a−i); two
dashed gray lines parallel to the y-axis are drawn to identify
boundaries in this two-dimensional space. The methodology is
inspired by the principle used to identify support vectors in
SVM algorithms.53

The first line encountered from the left passes through the
maximum FPR% characterizing at least 5/8 (Figure 3a,c,d,f,g,i)

Table 3. Internal Validation Metrics Reported as TPR %
and TNR % for Individual Systems in the Bound/Unbound
Statesa

original training set extended training set

ML
models

TRAP1
complexes

TPR %
(state I)

TNR %
(state A)

TPR %
(state I)

TNR %
(state A)

GNB

5 71.4 49.8
7 63.0 52.0
6 61.2 62.1
inhibitor-free
(rep. 1−3) 69.9 75.1

inhibitor-free
(rep.4−6) 84.5 80.3

inhibitor-free
(rep.7−9) 90.0 80.2

KNB

5 70.9 78.3
7 94.2 63.9
6 66.6 68.8
inhibitor-free
(rep. 1−3) 70.1 69.5

inhibitor-free
(rep.4−6) 89.6 83.4

inhibitor-free
(rep.7−9) 82.9 78.4

GDF-
SVM

5 92.5 90.9
7 97.3 93.7
6 95.4 91.3
inhibitor-free
(rep. 1−3) 95.7 92.7

inhibitor-free
(rep.4−6) 98.4 96.7

inhibitor-free
(rep.7−9) 92.5 89.7

aPercentages are shown over chunks of 12 000 (original training set)
or 18 000 (extended training set) frames. Models trained on the entire
training set were used to make predictions.

Table 4. Performance Metrics for the External Validation of the Three ML Algorithms Trained on the Original and Extended
Dataseta

GNB KNB GDF-SVM

training set test set TNR TPR r2 TNR TPR r2 TNR TPR r2

original
small 0.68 0.38 0.50 0.59 0.42 0.45 0.69 0.40 0.11
large 0.67 0.41 0.64 0.58 0.44 0.61 0.68 0.42 0.53

extended small 0.77 0.31 0.56 0.65 0.37 0.71 0.68 0.37 0.18

aTNR (states A) and TPR (states I) are extracted from 96 000 and 102 000 MD frames for each state in the small and large test sets, respectively.
The r2 values obtained from linear regression analyses are also shown for each set of predictions, with the best values highlighted in red.
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or 8/11 predictions (Figure 3b,e,h) (62.5 and 72.7% of the
observations, respectively) on inhibitor-free systems (blue
dots). The second dashed line passes through the first TPR%
value on the x-axis above that FPR% threshold. Depending on
the model specificity, this geometric construct enables
separation of inhibitor-bound/inhibitor-free systems, based
on the percentage of states I (TP) predicted in each system of
the ensemble. An inhibitor-bound state is assigned to class I if
the TPR% in each of the 8 or 11 meta-trajectories is greater
than the maximum percentage of false states I (FP) predicted
in at least 5/8 or 8/11 inhibitor-free systems.
Comparing the external performance achieved on the small

test set by GNB and KNB models trained on the original and
extended training data (Figure 3a,c,d,f), we observe that the
more specific models trained on the extended set shifts FPR%
thresholds left by more than 20% (Figure 3c,f). In all the NB

models tested on the small test set, the most active compound
8 increases the percentage of states I more than any other
inhibitor-free system. However, if the NB models are trained
on shorter MD simulations, then only two of the most active
ligands, that is, compounds 8 and 10, significantly shift the
percentage of states I above the FPR% threshold predicted for
the two models (Figure 3a,d). Compounds 1 and 9, with
inhibitory efficacies > 50%, as well as the less active
compounds, do not segregate from inhibitor-free trajectories.
Moreover, the regression models do not capture significant
correlation (r2 > 0.60) between predicted TPR% and
experimental inhibition data. Training NB on the extended
set decreases the sensitivity of the models and increases
specificity (Figure 3c,f), showing a significant r2 value of 0.71
for the KNB model. The plot in Figure 3f allows to classify
states according to a linear model that is able to link ML

Figure 3. External validation of GNB, KNB and GDF-SVM models against small and large test sets. Predicted TPR percentage (TPR%, red dots)
for the 8 ligands (a, c, d, f, g, i) or 11 ligands (b, e, h) against observed percentage of TRAP1 inhibition. In each plot, FPR percentage (FPR%) are
calculated as the percentage of states I in the same number of inhibitor-free systems. ML models validated on the original training set (a, d, g) and
the extended training set (c, f, i) were used for predictions. The original training set was also tested on “unseen” trajectories of compounds 5−7
(large test set) (b, e, h). Regression lines are shown in solid gray lines, with the associated equations and r2 values. Ligands are numbered as in
Table 4. Dashed gray lines identify boundaries between A/I states: the first line from the left passes through the blue point that defines the
maximum FPR% found in at least 62.5% of inhibitor-free trajectories; the second line from the left goes through the first TPR% point (red) found
immediately after the first boundary and delimits a region where predicted states I in the inhibitor-bound trajectories (TPR%) is significantly
greater than the threshold of states I characterizing the inhibitor-free trajectories (FPR%). Regression models built from docking scores on the
small (l) and large (m) test set are shown for comparison.
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predictions to functional differences among the ligands in a
meaningful way. The region of the I state in this graph contains
5/8 inhibitor-bound trajectories, while 5/8 inhibitor-free states
fell in the space mainly populated by the A state. Here, the
remaining 3 ligands misclassified by the separating plane are
actually the less active compounds with 26.3 and 35.5%
inhibitory efficacy against TRAP1. However, if GNB models
are used to classify the compounds, then the lack of significant
correlation would lead to also prioritizing the worst compound
of the series (ligand 3 in Figure 3c). As shown by the lower
sensitivity and r2 values, the high specificity achieved in this
model (0.77) is not balanced by a sufficient understanding of
meaningful dynamic patterns.
The discriminative GDF-SVM models tested on the small

series are highly specific and identify boundaries with larger
margins between the states (Figure 3g,i). However, the lack of
meaningful correlation between predicted and observed
variables allows only a qualitative classification. 6/8 ligands
are correctly found above the FPR% threshold characterizing
87.5% of the predictions made on inhibitor-unbound systems
(Figure 3g). Even without showing meaningful correlation
with experimental inhibition, SVM trained on the extended set
provides higher sensitivity only toward the most active
inhibitors, filtering out less active compounds 3 and 4 (Figure
3i). Indeed, if SVM models are trained on the extended data
set, then only the three ligands (2, 8, and 9) with high to
intermediate inhibitory efficacy fall above the TPR% boundary
threshold.
The testing of ML models trained on the original set against

“unseen” trajectories of compounds 5−7 increases the r2 values
of all the corresponding regression models (Figure 3b,e,h),
with NB models returning lower values of 0.64 (GNB) and
0.61 (KNB). Indeed, all the tested ML models are able to
assign the highest relative TPR% to these three compounds.
Even if the GNB model tested on the large set is less specific,
then six ligands are associated to TPR% larger than the
maximum FPR% threshold which characterizes the 72.7% of
the predictions on inhibitor-free trajectories. As indicated by
lower correlation (0.61) and by the lowest specificity (0.58),
the GNB model outperforms KNB model on the large test set
(Figure 3b), as the former is able to isolate the six allosteric
modulators with the best pharmacological profiles from the

region of the A states. Nonetheless, among the most active
compounds, KNB correctly predicts four compounds (6−8
and 10) with TPR% above the maximum FPR% threshold
(Figure 3e).
Concerning the performance of the discriminative SVM

model on the large set, the significant increase in the r2 value is
due to the capability of this model to assign the highest TPR%
values to trajectories of compounds 5−7 (Figure 3h). Even if
GDF-SVM models can identify ligand-perturbed states in a
more qualitative manner, then the model shows the greatest
sensitivity for the most active compounds, 5−7. Here, we
notice that states I for ligands 5−7 are predicted from the
extended portion of MD trajectories (100−300 ns), whose
lengths are 2.5-fold bigger than those employed in the original
training set; therefore, the high TPR% is unlikely due to
correlation between trajectories in training/test sets. In line
with this hypothesis, when states A are predicted from
inhibitor-free trajectories of analogous length, we rather
observed an overall decrease in specificity, indicating that, in
contrast with its ability to recognize I states, the GDF-SVM
fails to recognize A states when are taken from extended time
windows and the model is trained on shorter trajectories.
Overall, discriminative SVM models return more balanced
predictions on our data when trajectories are of the same
length during training and testing procedures (Figure 3g). In
contrast, generative NB models are more robust to changes in
the test sets, recovering interesting relationships between
predicted percentage of states I and ligand functional
properties, while keeping good specificity in recognizing
patterns of the unperturbed TRAP1 states. When regression
models are built by correlating the docking scores of the 8 or
11 compounds to their functional effects, the plots in Figure
3l,m show a regression line with a negative slope, indicating the
lack of any correlation between the predicted score and their
inhibitory power. In this respect, ML-based classification of
inhibitors from MD simulations outperform docking-based
models in the prediction of ligand-induced perturbation of
TRAP1 dynamics and its connection to function.

■ DISCUSSION
Here, an ML approach was used to explore the existence of
local dynamic patterns featuring inhibitor-free (A) and
inhibitor-bound (I) TRAP1 states in a comparative MD
ensemble including 66 systems, wherein 11 new allosteric
modulators were used to train and validate NB and GDF-SVM
models. These two different algorithms, based on probabilistic
or nonprobabilistic approaches, were used in synergy with MD
simulations of TRAP1 complexes to explore their ability to
explain allosteric perturbation as a function of localized
dynamic patterns developed on the ns−μs time scale. Such
patterns were established as a particular combination of local
dynamic features. In turn, the selection of such descriptors was
guided by experimental results that demonstrated their role in
modulating TRAP1 ATPase activity and in responding to
nucleotide binding. On the basis of the hierarchy of time scales
in protein motions,6 we hypothesized that allosteric
perturbations could reverberate in changes of the dynamics
at the level of inherently dynamic (local) segments, since the
latter were known to drive the onset of slower functionally
oriented conformational changes. Generative NB and discrim-
inative SVM models were employed to learn from MD
trajectories and to compare the performances of the two
different approaches to the classification tasks. The two

Table 5. Percentage Decrease in TRAP1 ATPase Function
after Treatment with the 11 Allosteric Inhibitors
Investigated in This Studya

inhibitor-bound TRAP1 % TRAP1 inhibition

5 76.0
7 75.2
6 73.0
8 65.9
1 51.3
9 50.8
10 50.5
2 39.6
4 35.5
11 27.4
3 26.3
inhibitor-free TRAPl 0.0

aFunctional assays are described in our previous publication.27

Ligands are numbered as in Chart 1 and are ordered by decreasing
effects.
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training sets were built based on retrospective data obtained on
the three most active ligands. Consequently, the training sets
were actually smaller than the test sets, where the activities of
up to 8 or 11 ligands with lower or equal inhibitory efficacy
were predicted and used to test performances on trajectories
not included in the models. One of the hypotheses we tested
was that the most active compounds would have been
representative of local patterns inducing the maximum impact
on local dynamics in the comparative ensemble, and that the
less active ligands could have induced a nonoptimal
perturbation of the set of functionally relevant local features,
as compared to the most efficacious compounds. Generative
models were the best ones with regard to validating this
hypothesis. Linear regression analyses based on predicted TPR
% for individual sets of inhibitor-bound systems returned
models explaining from 64 to 71% of the variance expressed in
the observed range of TRAP1 inhibition (Figure 3b,f).
However, discriminative models did not reach similar
correlations but consistently allowed to recognize opposite
trends and generate boundaries between states. Therefore,
GDF-SVM models provided a more qualitative distinction
between the perturbed and the unperturbed ensembles without
direct correlation to the experimental percentage of TRAP1
modulation, as shown by r2 values <0.60 (Figure 3g−i). These
differences in performance suggested that NB models took
advantage not only of the probabilistic treatment of the A/I
states visited within the comparative MD ensemble but also of
the assumption of independence among features. Even if
allosteric motions act cooperatively on long time scales, such
dependence could not be readily established on the simulated
ones, but the local dynamic equilibrium of each feature can still
independently respond to ligand perturbation to a different
extent, depending on specific allosteric mechanisms and
communication propensity of distal sites. Hence, the efficacy
of an allosteric ligand may depend on the ability to interfere
with an efficient combination of features. The Bayesian
approach, weighting the ligand effects on each individual
feature and treating them independently within a system-
specific statistic model, enabled meaningful interpretation of
puzzling details of allosteric propagation. We believe this
makes NB an attractive model to analyze similar events in
comparatively framed MD ensembles generated and simulated
in the same conditions. In contrast, discriminative models,
simply trying to separate the states based on the input n-
dimensional space, do not take into account the probability
that connects members of a class to the ensemble of visited
features. This aspect probably induced the less active
compounds to segregate from the unbound replicates by
sampling specific regions which, however, were less represen-
tative of the patterns which instead were relevant to explain
functional inhibition in our best inhibitors. By comparing
predicted TPR% and FPR% in the 2D plots we showed that in
the absence of ligands the unperturbed systems sample both
patterns A and I, with the majority of systems exhibiting
preference for state A. As for the global dynamic equilibrium
regulating active/inactive pre-existing configurations, we did
not exclude that states A and I might coexist on a local scale.
Consistent with the hierarchy of time scales in protein motions
and the extended conformational selection model for
allostery,4,6 the coexistence of opposite local patterns at
responsive TRAP1 elements in a near-native energy minimum
may locally initiate a dynamic change that results in a global
population shift in a more efficient way. Alternatively, one of

them could be simply stabilized or destabilized as a
consequence of allosteric perturbation and as a function of
the ligand mechanism of action. In this respect, NB models are
built so that conditional probabilities of features in a given class
could be extracted and the weight of a feature quantified in
each state. This property enables the identification of
individual or combined contribution of the features to each
classified MD frame and could assist further integrative biology
studies to rationalize the diverse nature of allosteric
modulations or, more widely, perturbing mechanisms. From
the drug discovery standpoint, we showed that by building and
validating balanced NB models on the most active ligands of a
known series the models could learn patterns which generalize
on the behavior of a much larger ensemble of completely
“unseen” trajectories. The KNB model trained on the extended
training set provided a useful interpretation of the degree of
inhibitor-induced perturbation of the local functional dynamics
and was retrospectively validated by achievement of mean-
ingful correlation (0.71) between TPR% and percentages of
TRAP1 inhibition. By relying on this model, compounds
showing weaker inhibition of chaperone function could have
been filtered out from the set, without losing the most
promising hits and avoiding experimental testing.

■ CONCLUSION AND PERSPECTIVES
By applying our strategy to a real-world example, we
highlighted the interesting potential of ML in maximizing the
information contained in (chaotic but) easy-to-access MD
simulations in the ns−μs time scale. Here, experimentally
guided selection of local functional features coupled to the
choice of a proper analysis framework enhanced the
identification of significant trends within a carefully built set
of perturbed and unperturbed ensembles of states. The
generated ML models were retrospectively validated on ligands
having of inhibitory efficacy equal (large test set) or lower
(small test set) than those used for training. In summary, our
results suggest that ML-driven interpretation of local dynamics
in a complex system could be transformed into novel
knowledge that can be aptly exploited for mechanistic or hit-
to-lead optimization studies. In the latter case, we envision
perspective applications of ML analysis to fast MD simulations
to generate comparative ensembles able to discriminate and
predict the functional effect of allosteric ligands on a given
target, thus complementing docking affinity data.
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