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ABSTRACT

In this work, we present a blind technique for the estima-
tion of the material abundances per pixel (endmembers) in
hyperspectral remote-sensed images. Classical spectral un-
mixing techniques require the knowledge of the existing ma-
terials and their spectra. This is a problem when no prior
information is available. Some techniques based on indepen-
dent component analysis did not prove to be very ef�cient
for the strong dependence among the material abundances
always found in real data. We approach the problem of blind
endmember separation by applying the MaxNG algorithm,
which is capable to separate even strongly dependent signals.
We also present a minimum-mean-squared-error method to
estimate the unknown scale factors by exploiting the source
constraint. The results shown here have been obtained from
either synthetic or real data. The synthetic images have been
generated by a noisy linear mixture model with real, spa-
tially variable, endmember spectra. The real images have
been captured by the MIVIS airborne imaging spectrometer.
Our results showed that MaxNG is able to separate the end-
members successfully if a linear mixing model holds true and
for low noise and reduced spectral variability conditions.

1. INTRODUCTION

Modern airborne and satellite-borne optical sensors are able
to provide a huge amount of data with high resolution in the
spatial domain as well as in the spectral domain. Multispec-
tral images, i.e., images with less than ten spectral channels,
have allowed whole pixels to be classi�ed [17], but the analy-
sis of the individual substances that constitute each pixel is
limited by the small number of channels available [12]. On
the other hand, in hyperspectral images, where hundreds of
channels are normally available, it is possible to obtain an es-
timation of the material (endmember) percentages per pixel.
This task is called spectral unmixing and is a new and fasci-
nating �eld of research.
Under certain conditions (see [16], [12] and all the ref-

erences therein for details), the spectral radiance upon the
sensor location can be assumed to be well approximated by a
linear mixture of the endmember radiances weighted by the

correspondent fractional abundances1, plus additive noise.
This is called the linear mixing model and, basically, it is
valid when multiple scattering among distinct endmembers
is negligible and the surface is partitioned according to the
fractional abundances [12].
Many spectral unmixing algorithms have been devel-

oped by exploiting a linear mixing model. The classical ap-
proaches require some knowledge of the existing materials
and their spectra. If the endmember spectra are known, then
the estimation of the abundances is an inverse problem that
has been solved, for example, by least squares methods [12]
and other approaches [1]. In any case, endmember determi-
nation is not an easy task, being usually achieved through
an educated trial-and-error approach, and the analyst should
have some knowledge of the �eld. For this reason, during
the last years, many efforts were made to derive blind spec-
tral unmixing techniques that may not require users to have
any knowledge about the endmembers.
This kind of problem (blind source separation, or BSS)

was deeply studied during the last 10 years for the special
case where the sources are mutually independent (indepen-
dent component analysis, or ICA [10], [11]). Some authors
applied ICA to the spectral unmixing problem and obtained
some promising results [5], [8], [13], [15]. At the same time,
however, ICA algorithms did not prove to be well suited for
this problem, and many issues are still open to solve. The
main reason why ICA is not a good solution is that, in the
spectral unmixing framework, the endmember abundances
(also referred to as sources in the BSS-ICA context) are not
independent, being constrained to add up to one [16].
The separation of dependent sources, or dependent com-

ponent analysis (DCA) [2], [3], was attempted by a few re-
searchers in remote sensing. In [6] and [7], a new algorithm
called MaxNG was introduced for the separation of depen-
dent sources, based on a non-Gaussianity measure and using
the Euclidean distance between probability distributions cal-
culated by the Parzen windows technique.
In this paper, we propose to approach the spectral unmix-

ing problem through the MaxNG algorithm. This paper is or-
ganized as follows: in Section 2, the linear mixing model for

1The phrase fractional abundance, widely used in spectral unmixing pa-
pers (see [16]), denotes the percent contribution of an endmember to a pixel.



hyperspectral images is presented, which includes the end-
member spectra, their variability and the effects of the sys-
tem noise; in Section 3, a general presentation of the MaxNG
DCA approach is given, along with a useful minimum-mean-
squared-error technique for the removal of scale ambigui-
ties; in Section 4, experimental results are presented with
synthetic and real data sets; �nally, in Section 5, our main
conclusions are outlined.

2. HYPERSPECTRAL DATA MODEL

At any �xed pixel, a simpli�ed linear mixing model for M
sensors (bands) and P endmembers (usually P <<M in hy-
perspectral images) can be written as follows:

x=ΦAs+n (1)
where x is a M� 1 vector which contains random variables
assigned to the measures for each band, A is the mixing ma-
trix (M� P), which contains the spectral signatures of the
endmembers s existing in the covered area, Φ is a diagonal
randommatrix with E[Φ] = I (where E[�]means expectation)
that represents the spatial variability of the endmember spec-
tra, and n is aM�1 vector containing the system noise. Note
that effects that are often important, such as the ones derived
from the topography, are not included in this simple model.

3. DEPENDENT COMPONENT ANALYSIS
APPROACH

For simplicity, we restrict the analysis of the linear mixing
model in Equation (1) to the noiseless case. We consider the
following model, which is expected to be very close to reality
in low-noise cases:

x= As (2)
If A is known, then the solution can be obtained by using the
pseudoinverse matrix, i.e. s=A�x (A� = (ATA)�1AT ).
Some preprocessing steps are needed in order to enable

MaxNG to work correctly. As it is also usual in ICA, we �rst
need to remove the mean data vector and to apply a spatial
whitening �lter. This is to obtain uncorrelated unit-variance
variables and, at the same time, to reduce the dimensionality
of the data2. It is important to stress that the purpose of spa-
tial whitening is also to restrict the solution to unit-variance
source estimates (see [7] for details). To this purpose, we
de�ne the centered vectors s0= s� s and x0= x�x (where
s = E[s] and x = E[x]) . To reduce the dimensionality of
the data and decorrelate them, we use the classical princi-
pal component analysis [11], i.e. we de�ne the following
Q-vector:

ex= Λ�1=2V Tx0 (3)
whereV is theM�Q (Q� P<M) matrix of the Q dominant
eigenvectors of the covariance matrix Rx0x0 = E[x0x0T ] and
Λ is the diagonal matrix of the related eigenvalues3.
In the blind scenario, A is unknown and our DCA algo-

rithm should estimate the sources bs by �nding a separation
matrix eD that veri�es the following relationship:

2For example, one of our data sets has M = 102 mixtures (sensors), and
the expected number of sources is 9. This makes the data set highly redun-
dant.

3Note that, if no noise is considered in the model, the actual dimension-
ality of the data space is Q= P�1, because the sources are restricted to add
up to one, thus reducing by one the effective dimensions.

bs=Ws0 = eDex (4)

whereW is a permutation and/or scale matrix [9], [11].
The MaxNG algorithm searches for the matrix eD row by

row, by maximizing a measure of non-Gaussianity and re-
stricting the search over the unit-variance source subspace
(see [7] and [6] for details). It is important to bear in mind
that maximizing non-Gaussianity is equivalent to minimiz-
ing mutual information only for independent sources, which
is not the case in hyperspectral images.

3.1 Scale ambiguity treatment
Like most BSS algorithms, and as is apparent in Equation
(4), MaxNG provides an estimate of the sources up to scal-
ing and permutation. The permutation indeterminacy is not
important for our purposes, but scaling is critical for allow-
ing us to make a correct interpretation of the results, taking
into account that, in general, different scale factors can be
observed for different sources. Assuming no permutation,
we formally de�ne the vector of scale factors as follows:
hT = [h0 h1:::::hP�1]. For each centered source, we have
s0i = hibsi.
Our idea to solve the scale ambiguity is to use the con-

straint on sources (∑P�1i=0 si = 1) for the calculation of the
scale factor vector h. First, we note that, for the centered
sources, the above constraint implies ∑P�1i=0 s

0
i = 0. In a real-

world situation, this summation will not be exactly equal
to zero but it may be small enough. Therefore, we de�ne
the mean square error as follows: ρ = E

h�
∑P�1i=0 s

0
i�0

�2i.
Working with this expression and setting it to zero (the mini-
mum attainable error), we �nally obtain the following result:

ρ =
P�1
∑
i=0

P�1
∑
j=0
hih jE [bsibs j] = hTRbsbsh= 0 (5)

Looking at Equation (5), we conclude that any scale fac-
tor vector h that lets the mean squared error be zero belongs
to the null space of the covariance matrix Rbsbs. Note that the
constraint on sources implies that the dimensionality of the
source space is reduced by one and, therefore, the existence
of a non-empty null space is guaranteed.

3.2 Further indeterminacy calculation
From the result obtained in the previous subsection, we ob-
serve that the scale factor vector h cen be determined up to
a global scale factor α , which remains undetermined. How-
ever, we observe that the determination of vector h is the
most important step, and no further indeterminacy analysis
is needed because knowledge of h allows the analyst to com-
pare the estimated fractional abundances in the same scale.
For a further indeterminacy analysis, and assuming no

permutation ambiguity, we have that abundance estimates
are:

s=s+αΘs0 (6)

where Θ is a P�P diagonal matrix with h0;h1; :::::;hP�1 as
elements of the main diagonal.
For a complete determination of the source estimates, we

still need to calculate P+ 1 parameters: s0;s1; :::::;sP�1 and



α .4 It is important to note that, if the mixing matrix A is
known, using Equations (2) and (4), we can calculate all the
missing parameters using the following formulae:

s = A�x (7)

αhi =
q
[A�Rx0x0A�T ](i;i) (8)

where the notation [�](i;i) stands for the element of row i and
column i of the matrix in brackets.
Of course, in a blind scenario, we don't have access to

A and we should estimate the parameters s and α by using
some assumption on the available dataset. For example, if
we assume that there are some pixels where an endmember
has zero abundance, and some other pixels with only one
endmember, then we can adjust the parameters by forcing
some abundances to the values zero or one in the selected
pixels.

4. EXPERIMENTAL RESULTS

In this section, we present some experimental results that
show the ef�ciency of MaxNG as a tool for blind spectral
unmixing of hyperspectral images. In order to evaluate the
proposed separations, we need to know exactly which are the
original material abundances. To this purpose, in the �rst part
of our experiments, we present the results obtained by apply-
ing MaxNG to a synthetic dataset and compare our source
estimates with the original sources. We evaluate the perfor-
mance of the algorithm for the cases of additive noise and
of random spectral variability. In the second part of our ex-
periments, we apply MaxNG directly to a real hyperspectral
image.
For our experiments, we used a real, radiometrically

corrected hyperspectral image of a Rome city area, and a
ground truth classi�cation in nine classes, both provided
by the Airborne Laboratory for Environmental Research at
IIA-CNR in Rome, Italy (see Fig. 1). The 540� 337-
pixel original image comes from the MIVIS sweepbroom
airborne imaging spectrometer, and contains 102 spectral
channels from four independent sensors in different bands:
channels 1� 20 (0:43� 0:83µm); channels 21� 28 (1:15�
1:55µm); channels 29� 92 (2:00� 2:50µm) and 93� 102
(8:20� 12:70µm). The classi�cation map (Fig. 1, bottom)
has been obtained by the standard spectral angle mapper
(SAM) method [14] integrated by a series of color stereo im-
ages and direct �eld inspections. The classes extracted are:
bricks (red), grit (yellow), other surfaces (grey), infrastruc-
tures (brown), trees (dark green), bush (green), meadows
(light green), water (blue) and unclassi�ed (black).

4.1 Synthetic data
A synthetic data set was simulated using real spectra. For the
calculation of each endmember spectrum, we took the aver-
age of the spectra of pixels belonging to each class.5 Using
the original classi�cation image (Fig. 1, bottom) we gener-
ated a simulated low resolution image by mixing the spectra
of existing materials for each 8�8 pixel subarea. In this way,

4Actually, only P parameters are missing because, having P� 1 entries
of s, we can derive the missing entry by using the source constraint.

5It is obvious that each pixel is not composed by only one material, but
this is not important for the purpose of this test.

Figure 1: Top: RGB channels of our original hyperspectral
image (540�337 pixels). Bottom: ground truth image; nine
classes are provided.

Figure 2: Images corresponding to material abundances (nine
endmembers). Zero corresponds to black and one corre-
sponds to white.

we were able to calculate the material abundances as the per-
centages of the classes contained in each subarea. In Fig. 2,
the nine material abundances are shown.
In order to quantify estimation accuracy, we used a

measure of closeness of source estimates to the origi-
nal sources. For each pixel, we de�ne the error vector
as the difference between the estimated and the original
source vectors, e= sestimated � s. On this basis, we eval-
uate the signal-to-interference ratio (SIR) as it is usually
adopted in the literature, that is, for the i-th source: SIRi =
10log10(var(si)=var(ei)). In general, SIR values below a 10-
12 dB threshold are indicative of a failure in obtaining the
desired source separation [4].
As a �rst experiment, we applied MaxNG to hyperspec-

tral data generated with Equation (1) in an ideal scenario with
no noise (n= 0) and no spectral variability (Φ= I). In Table
1, the SIR values obtained for each source are shown. Note
that all the sources were perfectly recovered from their mix-
tures.



Figure 3: Comparison of original and estimated sources for
the light green class (source 7, top) and the blue class (source
8, bottom)

Table 1: SIR values of abundance estimates (no noise and
no spectral variability)

For a visual comparison of the results, in Fig. 3, two
original sources (meadows - light green, and water - blue)
and their estimates are shown as time series. These are the
classes estimated with minimum and maximum SIR, respec-
tively (see Table 1). To normalize the source estimates, Equa-
tions (7) and (8) were used.
The second experiment consisted in applying MaxNG to

a data set generated by using Equation (1) again, with Φ= I
and with different levels of Gaussian noise n. For each chan-
nel, we de�ne the Signal To Noise Ratio (SNR) as usual by
SNR(dB) = 20log

�
σx
σn

�
, where σ x is the standard deviation

of the useful signal in the channel and σn is the standard de-
viation of noise added to the channel. The results are shown
in Fig. 4, left panel.
As a third experiment, the spectral variability was sim-

ulated and the data were generated again through Equation
(1) with n= 0 and matrix Φ composed by random variables
with unit mean and different standard deviations. The results
are shown in Fig. 4, right panel.

4.2 Real Data
As a �nal experiment, we applied MaxNG to a portion of the
original image. A small piece of 50�50 pixels was selected
to minimize the spectral variability and the topographic ef-

Figure 4: Mean SIR value obtained as a function of the noise
level (left) and as a function of the spectral variability (right).

Figure 5: Hyperspectral image (50� 50) under analysis in
RGB format (left) and its ground-truth image (right).

fects. In Fig. 5, we show the selected area and the related
ground truth.
MaxNG has detected six materials, but it is important to

note that some of the sources detected are possibly false lo-
cal maxima of the nongaussianity measure, and must be dis-
carded. After a visual analysis of the sources detected, it
seems that only four sources correspond to actual materials.
The scale ambiguity removal technique was applied in order
to reach a set of comparable material abundances. In Fig. 6,
the four materials detected are shown. By visual inspection,
it is easy to identify the detected sources: source a) corre-
sponds to grit (yellow), source b) to brick (red), source c)
to trees, bush and meadows (green) and source d) to water
(blue).

5. CONCLUSIONS

A new approach to blind spectral unmixing was proposed,
based on a recently presented DCA algorithm called MaxNG
[7], [6]. This approach avoids the problem existing in ICA
because the independence of sources is not required. We
have presented a set of experimental results showing that

Figure 6: Detected material abundances



MaxNG is able to separate material abundances from syn-
thetic hyperspectral images generated by using real spectra.
The effects of additive noise and spectral variability were
also analyzed. The problem of scale ambiguity in ICA/DCA
was approached and a solution was proposed. Exploiting the
source constraint, we have obtained a way of calculating the
scale factors in a blind fashion, which is really important be-
cause it allows the analyst to make comparisons among de-
tected sources with the same scale and sign.
Finally, a real image example was presented, showing

that real material abundances seem to be correctly separated
by using MaxNG. As an open issue of this approach, we
should mention that MaxNG can detect more sources than
actual materials present in the scene, because false local max-
ima can be present in the optimization landscape [7], [6]. The
user needs to visually evaluate all the sources detected to de-
cide which of them are acceptable and which are not.
As a �nal remark, we say that additive noise and spectral

variability noticeably affect the estimation, but the results ob-
tained on real data show that the algorithm is able to separate
endmembers with results that are comparable with the ones
available in the literature (for example in [16]).
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