
Self-adaptive Testing in the Field: Are We There Yet?

Samira Silva
Gran Sasso Science Institute (GSSI)

L’Aquila, Italy

samira.silva@gssi.it

Antonia Bertolino
ISTI-CNR

Pisa, Italy

antonia.bertolino@isti.cnr.it

Patrizio Pelliccione
Gran Sasso Science Institute (GSSI)

L’Aquila, Italy

patrizio.pelliccione@gssi.it

ABSTRACT

Testing in the field is gaining momentum, as a means to detect

those failures that escape in-house testing by continuing the test-

ing even while a system is operating in production. Among several

approaches that are proposed, this paper focuses on the important

notion of self-adaptivity of testing in the field, as such techniques

need to adapt in many ways their strategy to the context and the

emerging behaviors of the system under test. In this work, we inves-

tigate the topic by conducting a scoping review of the literature on

self-adaptive testing in the field. We rely on a taxonomy organized

in some categories that include the object to adapt, the adapta-

tion trigger, the temporal characteristics, the realization issues, the

interaction concerns, the type of field-based approach, and the im-

pact/cost. Our study sheds light on self-adaptive testing in the field

by identifying related key concepts and key characteristics and

extracting some knowledge gaps to better guide future research.

KEYWORDS

Software testing in the field, Self-adaptive testing, Knowledge gaps

ACM Reference Format:

Samira Silva, Antonia Bertolino, and Patrizio Pelliccione. 2022. Self-adaptive

Testing in the Field: Are We There Yet?. In 17th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS

’22), May 18–23, 2022, PITTSBURGH, PA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3524844.3528050

1 INTRODUCTION

Although traditionally software testing was reckoned as an activity

for fault removal during development [1], in recent years awareness

is growing among both academic researchers and practitioners of

the necessity to prolong testing beyond software release, even

while the system is operating in the field, e.g., [3, 5, 19, 40]. In

fact, due to the high complexity, evolvability, and connectivity of

modern software-intensive systems, many of the failures reported

in production correspond to faults that would be very hard, if not

impossible, to detect by in-house testing [23].

A recent systematic literature review (SLR) of field-based testing

techniques [6] selected 80 primary studies published until 2017 and

classified them according to several dimensions, including, among

others, how, when, and where field tests are generated and activated.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9305-8/22/05. . . $15.00
https://doi.org/10.1145/3524844.3528050

For several of the reviewed works, the authors of the SLR noticed

that the proposed approaches perform some adaptation strategy,

in order to deal with uncertainty or face emergent behaviours of

the SUT (System Under Test). Moreover, in summarizing open chal-

lenges related to field-test cases generation, they conclude that

these “shall adapt to the production environment” [6], whereas con-

cerning the oracles for field testing, they observe that these “need

to adapt to the unknown execution conditions that can emerge in the

field” [6].

The concept of adaptive testing is also developed within the

recent area of “software cybernetics” [10], which investigates the

interplay between software and control processes. In this context,

adaptive testing means that a software testing strategy is optimized

by leveraging the knowledge collected during the testing that im-

proves our understanding of the tested system [9]. However, this

thread does not refer to testing in the production environment,

which is our concern here.

In fact, we believe that exactly the same motivations that support

moving the testing activity from in-house to the field, such as ad-

dressing uncertainty, dynamism and context-dependence, motivate

as well the need for a self-adaptive testing strategy. From a more

practical point of view, there are two types of systems for which

a self-adaptive testing in the field approach would be extremely

important: (i) self-adaptive systems (e.g., [20]) and (ii) systems that

could be updated over time, due to the raise of new needs, among

other reasons (e.g., [36]). In both cases, the precise and automatic

adaptation of the testing process would reduce the efforts associ-

ated with the system adaptation. That is to say, self-adaptability

represents an extremely important feature when carrying

out field testing activities.

Nowadays self-adaptive systems are actively studied [12, 32, 44].

They are characterized as software-intensive systems that adjust

themselves during their operation; such adjustments may be trig-

gered by internal causes or by the context in which they operate,

and may depend on specified properties or policies [44]. We think

that this depiction well suits also the case of a software framework

whose goal is to conduct testing in the field: the test approach itself

may need to be adjusted based on what happens in the field, or

due to changing requirements or expectations. We refer to such

characterization of testing approaches as “self-adaptive testing in

the field” (SATF for short). In general, SAFT can be a good choice

not to replace traditional testing but to complement it.

Indeed,many of the approaches proposed for testing self-adaptive

systems (SAS) are naturally conceived for being applied at runtime,

typically when an adaptation occurs, and are themselves conceived

as adaptive (we review several such papers in Section 4). However,

we do not think that SATF scope is limited to SAS. For sure, it is an

advisable approach for the testing of emerging service choreogra-

phies, as early prospected in the Choreos European project [7] in

58

17th Symposium on Software Engineering for Adaptive and Self-Managing Systems

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Samira Silva, Antonia Bertolino, and Patrizio Pelliccione

which policies were defined to adapt the runtime testing strategy.

More in general, in a recent opinion paper exploring challenges and

promising directions in testing “changing software in a changing

world” [8], Bertolino and Inverardi state that the testing approach

should provide for the adaptive generation of test plans.

In the above-cited review of field-based testing [6], although

self-adaptation aspects emerge in several points throughout the

study, they are not studied as a self-standing dimension. This work

aims to complement that previous SLR by focusing specifically

on self-adaptive approaches to field testing. More precisely, the

research questions we aim to answer are:

RQ1 What are the key concepts/definitions in self-adaptive field-

based testing?

RQ2 What are the key characteristics of self-adaptive field-based

testing?

RQ3 What are the known gaps/challenges in self-adaptive field-

based testing?

RQ1 aims at defining SATF in a comprehensive way by looking at

existing specific definitions. RQ2 aims at proposing a categorization

for SATF. Finally, RQ3 aims at identifying the research gaps and

challenges faced when performing SATF. To answer these questions,

we conducted a systematic scoping review [39] of literature, and

report here our findings. As we further explain in Section 3, scoping

review is a better-suited method for the review of emerging topics

and for outlining a conceptual framework. Our study reveals that

SATF is still in its infancy, and proposes a taxonomy and a list of

open challenges to foster future research.

In the next section, we briefly overview related reviews; in Sec-

tion 3 we describe the search methodology; in Section 4 we report

the results of the study, structured into three subsections, one per

RQ; finally, in Section 5 we discuss the results, identify limitations

and threats to validity, and hint at promising future research direc-

tions.

2 RELATED REVIEWS

This work overviews the literature on approaches for self-adaptive

testing in the field. While we can report about a few secondary

studies that partially overlap with our topic, we are not aware of

any previous literature review that specifically addresses the same

goal. In 2016, Siqueira et al. [45] conducted a SLR with the aim of

identifying and classifying the challenges faced in testing adaptive

systems. This paper selected 25 primary studies (spanning from

2003 to 2015) and collected 12 classes of challenges to be addressed.

For lack of space, we leave out a summary of such challenges and

refer to the cited survey for their enlightening discussion. We find

that some of such challenges could be easily adapted when consid-

ering adaptive testing in the field. They mention, for example, the

high number of configurations to be tested, or context-dependency,

among others. Nevertheless, we still think that an ad hoc study of

SAFT challenges is advisable and worthy of study.

In 2021, two parallel SLRs have been published that focus both

on approaches for testing a software system at runtime in its final

execution environment. In the already cited SLR on field-based

testing [6], Bertolino et al. distinguish between testing approaches

that are conducted in production (in-vivo) or use data from produc-

tion (ex-vivo). On the one side, their search query is broader than

ours, in that they do not focus on adaptive approaches as we do,

and also include non-adaptive ones. Thus in principle, our set of

primary studies would be a subset of theirs. However, on the other

side: their search of literature included papers published until 2017,

whereas we searched the literature until 2021, and 6 out of the 16

(i.e., 38%) primary studies we selected are indeed newer than 2017.

Besides, in [6] the notion of adaptivity is not a primary concern, as

for us, and even though existing SAFT approaches are included, the

specific aspects of adaption: what is adapted, how and when, are

not discussed. The other SLR on runtime testing restricts the study

to approaches devoted to dynamically adaptable and distributed

systems [33], and in fact they selected a lower number of papers in

comparison with Bertolino et al. who did not restrict the domain of

the tested application (precisely, 43 from 2006 to 2020, against 80

from 1989 to 2017). The authors of [33] ask eight research questions

concerning characteristics of runtime test approaches, and among

these the one that would appear as closely related to our study is

RQ5 which is formulated as follows: “What kind of dynamic adap-

tations can these approaches support?”. However, looking to how

the question is answered, we understand that the adaptation they

address refers again to the system under test, whereas the study

does not discuss adaptation of the testing approach itself, as we

aim to do here.

Finally, another interesting survey we found is a recent SLR

by Siqueira et al. [46] of the types of faults that are encountered

when testing adaptive systems and context-aware systems. As the

authors explain, such a study can be useful for first understanding

the nature of faults specific to those kinds of systems and then

conceiving appropriate testing approaches to detect those types

of faults. Hence they more specifically target fault-based testing

techniques.While relevant, their SLR addresses completely different

topics than our current study, that is, they are not providing any

characterization on self-adaptive testing in the field, as we aim to

do.

3 METHODOLOGY

To answer the research questions described in the introduction, we

decided to follow the scoping review research methodology [13,

39, 41]. According to [39], scoping reviews are similar to system-

atic reviews since they follow a rigorous structured process. How-

ever, they have different ambitions and present some different key

methodological points. In cases where systematic reviews fail to

achieve the necessary aims or criteria of knowledge users, scoping

reviews are increasingly considered a viable option.

We believe that scoping review is the most appropriate research

methodology since SATF is not yet mature to properly conduct a

systematic literature review. This work may also be a helpful pre-

cursor to future systematic reviews since it identifies and analyses

knowledge gaps in self-adaptive testing in the field. According to

the typical purposes for conducting a scoping review [39], this work

will help to (i) identify knowledge gaps and key characteristics or

factors related to a concept, (ii) scope a body of literature, and (iii)

clarify concepts and definitions in the literature. The scoping review

research methodology is largely used in health care [13, 39, 41], but

is getting attention also in the software engineering community [2].

We make available a replication package of this study at [https:

59

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

Self-adaptive Testing in the Field: Are We There Yet? SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

//samirasilva.github.io/publication/seams_2022/]. We present the

review protocol as follows.

3.1 Search Strategy

Considering the research questions described in the introduction,

it was established that the search string that would be used for

searching the relevant papers should contain variations of the fol-

lowing terms: “software”, “online testing”, “runtime testing”, “field-

based testing”, “self-adaptive”, “self-organizing”, “autonomous”,

“self-managing”, and “adaptive”. Then, these terms were combined

with the Boolean operators AND and OR to be linked. The resulting

search string was defined as follows:

software AND (“online test*” OR “run-time test*” OR
“runtime test*” OR “field-based test*”) AND (self-adaptive
OR “self adaptive” OR self-organizing OR “self organizing”
OR autonomous OR self-managing OR “self managing” OR
“self organising” OR self-organising OR adaptive)

To reduce the number of irrelevant search results, we have ap-

plied our search over the “full text” of the papers under investiga-

tion, that is, only the parts with relevant contents are considered,

excluding references, for example.

The databases in which the query above mentioned is applied

are presented in Table 1. Our scoping review was conducted using

three of the most widely used databases: IEEExplore, ACM Digital

Library and Scopus.

Table 1: Search engines for scientific papers.

#No Database URL

1 IEEExplore https://ieeexplore.ieee.org/

2 ACM Digital Library https://dl.acm.org/

3 Scopus https://www.scopus.com/

By using the above-mentioned databases and the proposed search

string, and considering only papers published from 2012 to 2021,

the number of records extracted is equal to 591, 383 and 19, for

Scopus, ACM Digital Library and IEEExplore, respectively1.

3.2 Screening and Duplicate Removal

Since there were several papers that matched the query but were

not relevant, we screened the papers by only reading the title and

abstract and removed those which were clearly irrelevant. Then,

merging the results obtained from screening for different databases

into a single set, we removed the duplicates, resulting in 118 papers.

3.3 Selection Criteria

This search is mainly centered on the study of the existing literature

on self-adaptive testing in the field. Therefore, the search scope

was restricted to this topic through inclusion and exclusion criteria.

The inclusion criteria are motivated by the research questions. On

the other hand, the exclusion ones are standard quality criteria

frequently used. At this stage, we aimed at comprehensiveness,

thus we took into consideration papers published in the last ten

years that are in English and could be downloaded. It is important

to mention that despite the existence of exclusion criteria aiming

1The searches were conducted on 30/11/2021 (ACM and IEEE) and 06/12/2021 (Scopus).

at removing papers in languages other than English or that could

not be downloaded, our search did not report any paper in this

situation.

Finally, the application of inclusion and exclusion criteria re-

sulted in 36 papers. Table 2 summarizes the selection criteria.

Table 2: Inclusion and exclusion selection criteria.

Inclusion criteria Exclusion criteria

I1 - Papers that provide a definition

on self-adaptive testing in the

field.

I2 - Papers that describe charac-

teristics of approaches to perform

self-adaptive testing in the field.

I3 - Papers that describe

gaps/challenges in self-adaptive

testing in the field.

I4 - Related papers published from

2012 up to 2022.

E1 - Papers that cannot be down-

loaded.

E2 - Studies in languages other

than English.

E3 - Papers published before 2012.

E4 - Unpublished papers.

E5 - Secondary studies papers.

E6 - Duplicate and out-of-scope pa-

pers (i.e. not fulfilling I1, I2 or I3).

3.4 Final List Selection

After applying the selection criteria, the selected papersweremerged

and assigned to two of the authors to be reviewed. Each reviewer

went over the full text of every paper independently deciding

whether it should be included or not. All papers that resulted in

diverging opinions were discussed in plenary meetings. Then, after

a final consensus, we got 16 papers as the final list.

3.5 Data Extraction

In the stage of reading the full text, every author independently also

extracted the relevant data for answering the three RQs anticipated

in the Introduction (Section 1). For each paper thus we had two in-

dependent readings and classifications (in particular, for answering

RQ2, we used a spreadsheet available from the replication pack-

age), which were then discussed in a series of meetings attended by

the authors, for clarifying unclear categories, and solving possible

conflicting opinions.

3.6 Review Protocol Summary

This research has focused mainly on papers describing approaches

for self-adaptive testing in the field. Figure 1 shows the complete

protocol employed in this scoping review. A total number of 134

records were identified from 3 different databases. Then, 118 records

were identified to be irrelevant with respect to our topic and were

excluded. Thus, at the end of the process, only 16 records were

identified to be relevant. The list of primary studies included in this

paper is shown in Table 3.

4 RESULTS

In the following, we report the results from our analysis of the 16

selected studies. We structure the discussion into three subsections,

correspondingly with the three RQs to be answered.

60

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Samira Silva, Antonia Bertolino, and Patrizio Pelliccione

Research Question

Search Query

Total of Papers Collected (134)

After Duplicate Removal (118)

Extracted Papers (36)

Presentation of the Findings

Scopus (591) ACM DL (383) IEEExplore (19)

Scopus (76) ACM DL (44) IEEExplore (14)

Define Research Question

Conduct Search

Screen Papers

Apply Inclusion &
Exclusion Criteria

Full-text Checking (16)

Data Extraction

Figure 1: Summary of the selection protocol for this scoping

review.

4.1 Concepts and Definitions

In this section, we aim at answering RQ1, i.e., what are the key

concepts/definitions in self-adaptive field-based testing?, and

at defining SATF by analyzing the current literature on this subject.

We will start from an overview of the different views/proposals

about SATF in the selected papers. Generally speaking, each of

the works found presents their own vision of SATF, with respect

for example to what to monitor, what to adapt, when to adapt,

how to adapt, etc. Even though they are not providing a single and

standard definition for SATF, their similarities may contribute to

the definition of one. The works in [21] and [20] adapt, at runtime,

test cases that are aligned with the requirements, according to the

system and environmental conditions. Cooray et al. [14] react to

service operations, operation arguments, and service composition

changes. Similarly, the work in [26] inspects changes occurring

in the way the service is provisioned or used to trigger testing

sessions. Contrarily, Ceccato et al. [11] monitor the system in order

to detect untested configurations and trigger the testing. In the

work of Hänsel and Giese [28], the observation of multiple instances

Table 3: SATF approaches.

Final list of papers

Ref. Year Title

[38] 2012 Verification and testing at run-time for online quality

prediction

[22] 2013 Towards run-time testing of dynamic adaptive systems

[14] 2014 Dynamic test reconfiguration for composite web services

[21] 2014 Towards run-time adaptation of test cases for self-

adaptive systems in the face of uncertainty

[20] 2015 Automated generation of adaptive test plans for self-

adaptive systems

[36] 2016 Automated workflow regression testing for multi-tenant

saas: integrated support in self-service configuration

dashboard

[34] 2016 Safe and efficient runtime testing framework applied in

dynamic and distributed systems

[30] 2016 Towards autonomous self-tests at runtime

[43] 2017 Self-test framework for self-adaptive software architec-

ture

[28] 2017 Towards collective online and offline testing for dynamic

software product line systems

[42] 2018 Run-time reliability estimation of microservice architec-

tures

[26] 2019 A hybrid framework for web services reliability and

performance assessment

[35] 2019 The SAMBA approach for Self-Adaptive Model-BAsed

online testing of services orchestrations

[11] 2020 A Framework for In-Vivo Testing of Mobile Applications

[27] 2021 On-demand Test as a Web Service Process (OTaaWS

Process)

[18] 2021 Runtime testing of context-aware variability in adaptive

systems

of systems derived from a dynamic software product line, along

with their applied configurations, is considered with the aim of

estimating an up-to-date operational profile. Posteriorly, test cases

are incrementally run based on this estimated profile. The work

of Heck et al. [30] supports the idea that an “autonomous self-

organising system must be capable of self-analysis to detect system

components that are faulty”. In this sense, it proposes an approach

in which the multiple components of a self-organising system are

able to test each other. In passive tests, a component evaluates the

behavior of the testee during normal system activity. In active tests,

it generates test events and observes the testee’s reaction.

The online prediction of failures allows the system to anticipate

adaptations and prevent further actual occurrence of failures. Met-

zger et al. [38] make use of SATF for this purpose, by collecting

usage rates from constituent services and executing online tests

against these services to obtain quality data only if the usage rates

are below a predetermined threshold. Then, failure prediction is

performed based on the combination of monitoring and testing

data. The work by Fredericks et al. [22] proposes a feedback loop

to supplement runtime testing strategies named MAPE-T. This is

composed of the traditional Monitoring, Analyzing, Planning, and

Executing stages of a SAS, here conceived for supporting the Testing

activities.With their proposal, they aim at claiming that tests should

be treated as “first-class entities that can evolve as requirements

61

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

Self-adaptive Testing in the Field: Are We There Yet? SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

change and/or self-reconfigurations are applied” [22]. Besides, they

also posit that test evolution is a multidimensional goal, and based

on the current context of the system, it must adapt and safely run

test cases. Keeping the test cases consistent allows for their reuse at

runtime to check not only if they satisfy the specification, but also

possible conditions that make the adaptation necessary. A method-

ology to support the runtime testing of modifications resulting

from self-testing components in SAS is also proposed in [43]. Their

work aims at making self-testing an implicit characteristic of the

systems.

Tests may also be activated on demand. The work in [42] allows

for the estimation of microservice reliability at runtime upon re-

liability assessment requests that can be performed periodically

or at every new release of a microservice, for example. Santos et

al. [18] evaluate the variability of an adaptive system at runtime

by verifying the need for runtime testing after adaptation rules

being performed by the system. Whenever it is necessary, their

approach generates test cases with abrupt changes of context to

encourage adaptation responses and find failures. The SAMBA

approach, proposed in [35], addresses functional and regression

testing of services orchestrations at runtime since it intends to dis-

cover faults originated from evolutionary behaviors, such as the

addition of new functionalities. A model is extracted or updated

from the orchestration description. If changes are detected in the

orchestration, model updates are also triggered. To automatically

generate test cases, their approach takes into consideration this

model.

Also concerning regression testing at runtime, the approach of

Makki et al. [36] does not include a monitor component. Instead,

it directly derives test cases from successful executions that are

chosen by the tenant administrator. Another approach that also

does not include the monitoring phase is proposed by Habibi and

Mirian-Hosseinabadi [27] to test a Service- Oriented Architecture

(SOA) application. In their approach, test data are automatically

generated based on requirements and input data of the consumer’s

application, and executed on demand. Finally, the work in [34] pro-

poses the evaluation of dynamic and distributed systems through

the framework RTF4ADS that performs execution in the field of

“test cases covering only software components or compositions

affected by the dynamic change” [34].

From our analysis of the selected studies, none of them explicitly

provides a definition of SATF, and indeed as we have summarised

they also present different approaches. In the already cited SLR

about field testing [6], field testing is defined as “any type of testing

activities performed in the field”, which is a very abstract and com-

prehensive definition. Based on the above analysis of the current

literature in SATF and taking into account the shared key concepts,

we adapted the above generic definition as follows:

Self-Adaptive Testing in the Field (SATF) is any type of testing

activities performed in the field, which have capability to self-adapt

to the different needs and contexts that may arise at runtime.

Such a generic definition can embrace all the previously men-

tioned studies, which expose thementioned “capability to self-adapt”

in different ways.

4.2 A Taxonomy for SATF

To answer RQ2, i.e., what are the key characteristics of self-

adaptive field-based testing?, we propose a categorization of

self-adaptive approaches to test in the field. The categorization is

based on a preliminary taxonomy that we identified by considering

4 highly cited surveys proposed by the self-adaptive systems com-

munity [12, 15, 32, 44] and a recent survey in testing in field [6].

This initial categorization is then exercised on the collected papers

and refined according to the specific characteristics of self-adaptive

approaches to test in the field. In the following, we describe the final

version of the categorization. The main categories of self-adaptive

field-based testing are (i) the object to adapt, (ii) adaptation trigger,

(iii) temporal characteristics, (iv) realization issues, (v) interaction

concern, (vi) class of field-based approach, and (vii) impact and

cost. It is important to highlight that the work in [22] is not con-

sidered for RQ2 since the work is contributing to a feedback loop

approach without providing enough information about a concrete

approach, as we instead would need to answer RQ2. However, the

paper provides very useful information to answer RQ1 and RQ3.

4.2.1 Object to Adapt. In a self-adaptive field-based testing pro-

cess, its components may self-adapt in order to handle information

collected from the field. Considering the components of testing

activity, we consider that the components of testing in the field that

could need to be adapted can include the test cases, the oracle, the

monitor or the test approach itself (e.g. the test criterion, the test

plan, etc). Table 4 shows the sub-categories of the Object to adapt

category.

(1) Test Cases. The test suit, i.e., the set of test cases, can be

adapted by either modifying existing test cases or generating new

ones, according to what is observed in the field. As shown in Table 4

in many approaches the object to adapt are the test cases. The strat-

egy of generating new test cases requires more effort with respect

to generating them at design time; however, it solves the problem

of keeping aligned a pre-generated test suite [26]. In other cases,

it becomes inevitable since test cases might become invalid due to

system adaptation [21]. Existing test cases might be also adapted, as

described, e.g., in [20–22, 28]. Some approaches have also multiple

objects to adapt. For instance, the work in [20] adapts test cases

for fine-grained adaptation, and adapts the test suites/plans for

coarse-grained adaptation.

(2) Oracle. Field-based approaches rely on different types of oracle

to decide the test outcome [6]. Oracles can be based on specifica-

tions, defined by users or some QoS, or they can exploit the detec-

tion of crashes or unchecked exceptions. In our study, only one

approach has the oracle as the object to adapt [18]. More specifically,

oracles are generated at runtime based on the extended Context

Feature Model (eCFM) [16], which is exploited to model systems

Table 4: Characteristics of SATF: Object to adapt.

Test case [11, 14, 18, 20, 21, 26–28, 35, 36, 42, 43]

Oracle [18]
Object to adapt

Monitor

Test approach [11, 20, 30, 34, 36, 38, 43]

62

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Samira Silva, Antonia Bertolino, and Patrizio Pelliccione

that adapt their features according to the environment. In the con-

text of this paper, oracles are propositional formulas that declare

the correct state of the features.

(3) Monitor. The monitor may also be the object to adapt. It is

responsible for dynamically collecting and interpreting data about

the execution of the SUT [6]. The process of monitoring is essential

in field-based testing since this task is based on data that is collected

by this component. In the surveyed works we did not find examples

of adaptation of monitor. However, we decided to keep it as an

option in the object to adapt category since it can make sense to

adapt monitors at runtime according to the potential evolution of

the SUT.

(4) Test Approach. The test approach itself may also be the object to

adapt. Possible adaptations are, for instance, the adaptation of the

test plan or timing in the case of the tests to be executed are period-

ically scheduled (periodical trigger of Table 5). Various works adapt

the test approach. The work in [34] aims at testing dynamic and

distributed systems and performs an adaption of both test selection

and test placement, i.e. the assignment of test components to the

execution nodes. As another example, the work in [36] adapts both

the test case selection and the workflow regression testing for mul-

ti-tenant SaaS in order to bypass costly, halting, or time-consuming

workflow steps.

4.2.2 Adaptation Trigger. This category describes the adaptation

characteristics of self-adaptive approaches to test in the field con-

cerning the trigger of adaptation, i.e., how the adaptation is initiated.

Table 5 shows the Adaptation Trigger category. A trigger identifies

the events that lead to the activation of field test cases. More pre-

cisely, “a trigger is any kind of event, scenario, or configuration

whose occurrence leads to the execution of some field test cases” [6].

The adaptation can be triggered (i) periodically, (ii) by the internal

events of the SUT or changes in its environment or in its technical

resources, (iii) by some policy, or (iv) on a request of a testing ses-

sion from testers, runtime infrastructure/container, etc. Most of the

approaches have the SUT as a trigger, which can be a change in the

environment or a SUT internal event [11, 21], change in a technical

resource [20], upon changes or adaptation in the SUT [18, 34], or

when the usage rate of the SUT falls below a certain threshold [42].

Besides of periodical triggers or triggers based on some defined

policies, adaptation can be also triggered on demand by, e.g., the

testing infrastructure [21] or the tenant administrator [36]. Finally,

for the work in [30] the adaptation trigger is not specified.

4.2.3 Temporal Characteristics. Temporal characteristics are re-

lated to issues concerningwhen artifacts can/need to be changed [44].

It presents two main sub-facets: the type of monitoring and the

Table 5: Characteristics of SATF: Adaptation trigger.

Periodical [27]

SUT [11, 18, 20, 21, 26, 28, 34, 35, 38, 43]
Adaptation trigger

Policy [14, 20, 21]

On-demand [21, 27, 28, 36, 42]

foreseeability. Table 6 shows the subcategories of the Temporal

characteristics category.

(1) Type of Monitoring. This sub-facet defines whether the moni-

toring process is Continuous, that is, it is “continually collecting and

processing data” [44] or Discontinuous (named Adaptive in [44]),

so that a small number of features are monitored and if an anomaly

is found, the monitor acts by collecting more data. The decision

with respect to this sub-facet influences the monitoring cost and

detection time. The majority of approaches have continuous moni-

tors and none of the surveyed works has a discontinuous monitor.

There are also some approaches that have no monitor. This is for

instance the case of [20], where, since they are testing a SAS, the

authors rely on the monitoring component of the SUT.

(2) Foreseeability. This sub-facet concerns whether “change can

be predicted ahead of time” [12]. The approaches are classified ac-

cording to the degree of foreseeability: Foreseen (taken care of) and

Foreseeable (planned for) [12]. We did not include Unforeseen (not

planned for) in the taxonomy since we did not find it suitable for

testing approaches. All the surveyed approaches are classified as

foreseeable.

4.2.4 Realization Issues. This facet aims at capturing “how the

adaptation can/need to be applied” [44]. Table 7 shows the subcate-

gories of the Realization issues category.

(1) Technique. This sub-facet aims at answering the question

“what kind of change is needed?” [32], that is, according to what is

observed, what adaptations are necessary. The work in [32] cate-

gorizes adaptation techniques into Parameter, Structure, and Con-

text. Parameter techniques perform adaptation through parameter

change; examples might be found in [20, 42]. Structure techniques

refer to the changes in the structure of the testing system, and they

also include the removal/addition of test cases or the update of test

reports [14, 28], test placement [34] or test plan and identification

on where to test [43]. Finally, context techniques concern changes

in the context, such as the testing rate being adapted according to

the usage rate [38]. These three adaptation techniques may also

be combined. As an example, the work in [20] uses parameters for

fine-grained adaptation and structure for coarse-grained.

(2) Decision Making. The static decision-making consists in hard–

coding the decision process, so its modification demands the re-

compilation and redeployment of the system (or its components).

The dynamic decision-making, instead, makes policies, rules, or QoS

easily manageable during runtime to encompass a new behavior re-

lated to functional and non-functional software requirements [44].

All the surveyed approaches present static decision-making.

Table 6: Characteristics of SATF: Temporal characteristics.

Type of monitoring

Continuous [11, 14, 18, 21, 26, 28, 30, 34, 35, 38, 42, 43]

Discontinuous

No monitor [20, 27, 36]Temporal

characteristics
Foreseeability

Foreseen

Foreseeable [11, 14, 18, 20, 21, 26–28, 30, 34–36, 38, 42, 43]

63

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

Self-adaptive Testing in the Field: Are We There Yet? SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

Table 7: Characteristics of SATF: Realization issues.

Technique

Parameter [20, 42]

Structure [11, 14, 20, 21, 26–28, 30, 34–36, 43]

Context [18, 38]

Decision making

Static [11, 14, 18, 20, 21, 26–28, 30, 34–36, 38, 42, 43]

Dynamic

Type of adaptation

Internal [11, 14, 18, 20, 21, 26–28, 30, 34–36, 38, 42, 43]

External

Openness

Open [18]

Close [11, 14, 20, 21, 26–28, 30, 34–36, 38, 42, 43]

Degree of decentralisation

Decentralised [30]

Hybrid [11]

Centralised [14, 18, 20, 21, 26–28, 34–36, 38, 42, 43]

Realization

issues

Trigger

Proactive [20, 21, 28, 30, 38, 42]

Reactive [11, 14, 18, 26, 27, 34–36, 38, 43]

(3) Type of Adaptation. The type of adaptation is related to the sep-

aration of the adaptation mechanism and application logic [44]. In

this sense, approaches can be categorized into Internal or External.

Internal approaches merge the application and adaptation logic.

In this category, sensors, effectors, and adaptation processes are

mixed with the application code. It can be useful for handling local

adaptations, although it may result in problems with scalability

and maintainability. External approaches make use of an exter-

nal adaptation engine comprehending the adaptation processes.

A significant advantage of external approaches is the reusability

of the adaptation engine. It can be modified to handle different

configurations of applications. Each of the approaches we surveyed

is internal. In the future, we might imagine having external ap-

proaches to benefit from the reusability of the adaptation engine

and to facilitate the transformation of non-adaptive existing field-

-based testing towards self-adaptiveness.

(4) Openness. It refers to the openness of the set of adaptive ac-

tions [44]. A close-adaptive system presents an established number

of adaptive actions, that is, no new action can be introduced during

runtime. Differently, an open-adaptive system can be extended, and

therefore new adaptive actions can be added, resulting also in the

possibility of including new entities in the adaptation mechanism.

All the surveyed approaches are close with the only exception of

the work in [18], which is open. In their work, the adaptation is

based on adaptation rules that might be changed throughout time.

(5) Degree of Decentralisation. This sub-facet corresponds to the

degree of decentralisation held by the adaptation logic [32]. A cen-

tralised adaptation logic is recommended for small systems, contain-

ing few resources to be managed. On the other hand, large systems,

Table 8: Characteristics of SATF: Interaction concern.

Human involvement

No human involvement [20, 21, 26, 27, 34, 35, 38, 42, 43]

Human involvement [11, 14, 18, 28, 36]
Interaction

concern

Trust [30, 34]

comprising a large number of components to manage, require a

decentralised adaptation approach, in order to split responsibili-

ties and improve the system performance for adaptation. Finally,

hybrid adaptation approaches introduce central components to de-

centralised approaches or split the adaptation logic functionality

into sub-systems. Since the testing system is often composed of a

relatively small number of components, most of the approaches

are centralised. We mention a few exceptions to decentralised test-

ing. The work in [30] aims at testing a self-adaptive system com-

posed of a number of independent agents. Each agent can test other

agents. When an agent identifies another agent as malfunctioning

it can also happen that the testing agent is faulty. For this reason,

before reporting a malfunctioning, there should be more than 𝑘
agents reporting a malfunction of the same node, according to the

k-resilience notion [29]. Another example of decentralisation is

described in [11], where the testing in the field is applied to the

mobile domain. In vivo tests are decentralised but there is a central

server orchestrating the overall testing activities. For this reason,

we categorize this approach as hybrid. The other works are catego-

rized as centralised.

(6) Trigger. This sub-facet is related to the question “When should

we adapt?”. Therefore, approaches are categorized according to the

time they adapt. According to [32], the temporal aspects of the adap-

tation can be divided into two dimensions: Reactive and Proactive.

By adapting to testing the general description in [44], in the case

of reactive approaches, the testing system responds when a change

has already happened, while in the case of proactive approaches,

the testing system predicts when the change is going to occur and

can anticipate its self-adaptation. The majority of approaches sur-

veyed are reactive, but some of them are proactive. A clear example

of a proactive approach is presented in [38] in which external and

local failures of the system are predicted and the testing process

self-adapt to handle these predictions. On the other hand, the work

in [28] performs adaptations based on an estimated operational

profile.

4.2.5 Interaction Concern. This facet concerns issues involving the

interactionwith humans and/or other self-adaptive systems/elements

through the use of interfaces [44]. In this case, the approaches are

categorized according to Human Involvement and the “Trust". Ta-

ble 8 shows the subcategories of the Interaction concern category.

(1) Human Involvement. This sub-facet consists in who is the

agent of change. For some approaches, there is No Human Involve-

ment. On the other hand, we also identified works that require

human involvement. The work in [36] focuses on testing Multi–

Tenant SaaS. The tenant administrator (human) triggers the testing

64

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Samira Silva, Antonia Bertolino, and Patrizio Pelliccione

Table 9: Characteristics of SATF: Class of Field Test (FT).

Ex-vivo testing

Functional

Non-functional [26]

Offline testing

Functional [43]

Non-functional

Class of FT

Online testing

Functional [11, 14, 18, 20, 21, 27, 28, 30, 34–36, 38, 42, 43]

Non-functional

and instructs the test cases generation by selecting from a previous

execution of the workflow. The work in [11] requires the involve-

ment of developers when unknown configurations are found. The

work in [14] requires human involvement for the analysis of test

reports by the service provider. Finally, the work in [28] requires

humans to decide whether to trigger online tests or analyze reports.

(2) Trust. With this sub-facet, approaches are evaluated with respect

to the trust they present. According to [44], “trust is a relationship of

reliance, based on past experience or transparency”. It may involve

aspects concerning security [17], assurance, dependability [24] and

predictability [31, 37]. On one side, testing can be considered an

instrument that can help in improving trust towards the SUT. This

is especially true for field-based testing since it is devoted to testing

systems in the field or via the use of data coming from the field.

However, trust is also extremely important in the approach that

is used for testing the system. Besides trusting that testing will

reliably find bugs, in field-based testing, and especially in online

testing, trust takes also the dimension of building confidence that

the testing will not compromise the correct behavior of the SUT and

will “not interfere or delay required adaptations” [22]. As identified

in [34] a key prerequisite for enabling safe runtime testing is the

runtime testability, which includes test sensitivity, i.e. whether the

component under test can be tested without unwanted side-effects,

and test isolation to prevent test processes from interfering with

the SUT behavior. Trust is a very important sub-facet but not much

considered so far in self-adaptive field-based testing approaches.

The approach in [30] investigates the problem of trusting the results

of testing. The work aims at testing various independent agents

and, more specifically, an agent is tested by other agents. In order to

trust a malfunction result of a test, the authors propose the collect

at least k malfunction reports before recording the presence of a

malfunction.

4.2.6 Class of SATF. According to [6], field-based testing approaches

can be categorized into Ex-vivo, Offline and Online, depending on

when testing activities are performed andwhether the actual system

is used by these activities. Finally, they are also classified accord-

ing to the type of faults they are approaching. An approach may

aim to find Functional or Non-Functional faults. Table 9 shows the

subcategories of the Class of field-based approach category.

(1) Ex-vivo Testing. This sub-facet comprises testing approaches

“performed in the development environment using information ex-

tracted from the field” [6]. We only found one approach that is

Table 10: Characteristics of SATF: Impact and cost.

Measured [11, 18, 20, 26, 34]
Impact and cost

Not measured [14, 21, 27, 28, 30, 35, 36, 38, 42, 43]

performing ex-vivo testing, i.e. [26]. More precisely the work is per-

forming online non-functional testing for estimating the reliability

and/or performance of a web service.

(2) Offline Testing. This sub-facet comprises testing approaches

“performed in the production environment on a SUT separated

from the actual system” [6]. We only found one work that is per-

forming offline and online testing [43].

(3)Online Testing. This sub-facet comprises testing approaches “per-

formed in the production environment on the actual system” [6].

The majority of the surveyed works perform online functional test-

ing.

4.2.7 Impact and Cost. According to [44], the impact “describes the

scope of after effects”, and concerns the “execution time, required

resources, and complexity of adaptation actions”. This facet refers

to what and how the adaptation action will be applied to. Table 10

shows the subcategories of the Impact and cost category. In this

work, we make a distinction between works that measure the im-

pact, cost, or overhead of using the approach and those that instead

are not measuring them. The work in [44] takes into account both

impact and cost and classifies adaptation actions into theWeak and

Strong categories. We found that with the information available in

the surveyed papers we were not able to provide a judgment on

whether the impact and cost are weak or strong. We might conclude

that impact and cost are important aspects to be considered when

performing self-adaptive testing in the field. However, we did not

find many approaches that seriously discuss them.

4.3 Challenges

In this section, we aim at answering RQ3, i.e.,what are the known

gaps/challenges in self-adaptive field-based testing?, and at

revealing the main research gaps and challenges in SATF. We list

some of them as follows.

4.3.1 Uncertainty. One of the toughest problems in SATF is un-

certainty. This difficulty may arise from the fact that the system

under test might face different operating situations that are hard

to predict [21], and such uncertainty is of course reflected in the

testing system itself. When testing mobile applications, for example,

the number of possible configurations can be exponential [11]. The

work in [20] also emphasizes that adapting testing to a self-adaptive

system as it reconfigures is challenging. Besides, at runtime, inter-

actions that are not predicted could be found [34] and the testing

approach should be able to handle them. A concrete example on the

impact of uncertainty is provided in [22]. They show that changes

in the requirements or in the environment may compromise the ef-

fectiveness of test cases and/or oracles. In their work, they also raise

the problem of how to know when to test and what characteristics

of the system should be monitored by the testing approach.

65

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

Self-adaptive Testing in the Field: Are We There Yet? SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

4.3.2 Overhead. The overhead in terms of memory, network, and

execution time is the concern of several testing approaches [4].

However, in SATF, addressing this problem is even more imper-

ative since the testing process may introduce some overhead to

the SUT. It comes from the fact that self-adaptive testing may con-

sume resources to perform adaptations and provoke an overhead

that might harm the system’s execution. To make such type of

testing acceptable to the end-user, the overhead incurred should

be minimized [11]. The approach in [11] analyzes the overhead

imposed by the monitoring stage and concludes that in their case,

it is unnoticeable to negligible. The work in [34] proposes an ap-

proach to test dynamic and distributed systems and assesses that

the overhead, in terms of execution time and memory consumption,

is relatively low and tolerable, mainly if dynamic adaptations are

not commonly requested. The size of test sequences may be an im-

portant factor to evaluate the overhead. Small test sequences may

result in a low overhead, while large test sequences may impact

considerably the system execution [18]. The approach proposed

in [22] states the importance of the balance between maximizing

test coverage and minimizing test overhead. In their approach, the

schedule for the test execution is organized in a way that testing

does not affect negatively the system performance. This balance

between the gain obtained and the cost incurred is left as future

work for the approach proposed in [26]. Considering the overhead

in terms of memory consumption and execution time, the work in

[20] concludes that for their SATF approach, a significant impact

on the system execution time was observed, while memory is in-

significantly affected. Finally, the work in [27] reports an increase

in the response time to the user due to an overhead that they are

not able to handle.

4.3.3 Human Intervention. SATF approaches may need, at some

point, manual intervention. In an ideal scenario, the testing ap-

proach should be fully self-adaptive. Generally speaking, it reduces

costs related to human intervention, not only financially, but also

in terms of computational resources. However, this is not the sce-

nario of several approaches [11, 14, 28, 36]. In this sense, many

self-adaptive testing approaches still require a certain degree of hu-

man intervention. In the testing of critical systems, for example, this

intervention may even be crucial. However, for some approaches, it

may be important to reduce human intervention, as it can involve

costs that can be avoided.

4.3.4 Test Isolation. A well-known issue for any field testing ap-

proach is test isolation as stated in [6]. This term means that the

testing process should not be intrusive, that is, “should not interfere

with the processes running in production and their data” [6]. This

challenge may become even more important in SATF, since the

adaptations performed in the testing process may result in unex-

pected access to parts of the system that are critical. Approaches

to testing in the field must provide a strategy to minimize the sys-

tem’s sensitivity to its execution at runtime and this leads to a

reduction of potential impacts on the system and environment [18].

The system’s sensitivity describes which operations, that are part

of the testing, when performed interfere with the running system

or the environment in an undesirable way [25]. The work in [22]

isolates particular test cases to prevent failures from affecting the

real system’s operation. Also, new bugs may emerge as a result

of runtime adaptations of component-based systems, which may

result in malfunctions and drive its execution to an unsafe state [34].

Although the approach proposed in [26] does not face this chal-

lenge, it mentions that online testing sessions can have an impact

on how the services work or in some circumstances jeopardize the

correct operation of the service. The work in [36] affirms that when

in the production environment, a test workflow should be con-

ducted in such a way that the operational database is not impacted.

Some examples of this undesirable impact are the modification of

mission-critical data or sharing them with unauthorized people.

Finally, the work in [11] makes use of managed profiles2 to isolate

the runtime testing session from the normal user session.

4.3.5 Other Challenges. The previous subsections summarize con-

siderably the key challenges when performing SATF. However, it

is important to mention that other more specific and minor chal-

lenges related to the SATF were also found but they are not detailed

here. This list includes constraints arising from the specific tech-

niques employed [14, 28] (e.g. with respect to the complexity of

data type handled), strategies to make test events indistinguishable

from normal events [30], proper reaction to identified malfunc-

tions [30], provisions for reliable traceability between test cases

and requirements [22], specification of adaptation constraints [22],

etc.

5 DISCUSSION AND FINAL REMARKS

We presented the first review of literature on SATF, i.e, testing ap-

proaches that i) are conducted in the field, and ii) undergo different

kinds of adaption to face uncertainty, changing requirements, or

evolution. Based on a final set of 16 primary studies, we provided

a tentative definition of SATF concepts, a taxonomy of its charac-

teristics mapped onto the selected papers, and a discussion of the

main challenges.

5.1 Retrospective Discussion

Our study evidenced - as we expected - that the topic of SATF is still

immature and not yet recognized by software testing researchers

as a self-standing emerging discipline. One immediate sign of this

is of course the low number of papers we could eventually select,

which contrasts against the wealth of challenges to solve and the

clear need for adaptive techniques to test an application in its

operative environment. Other signs of immaturity also emerge

from our analysis of the selected papers: there exists neither a

common terminology nor a shared structuring of the papers. One

would expect for example that if a test approach is proposed for

execution in the field, its overhead should be at least considered, if

not measured, but very few of the selected papers did so, with the

large majority not even mentioning the argument.

Another observation that is worth attention is the ambiguity

of the term “online”, which was also included in our search query.

After having selected 36 papers based on title and abstract, we

eventually reduced the set to 16, because many of the 20 excluded

papers used online testing with the meaning of deriving the next

test cases based on the results of the previously executed ones,

but were not addressing field testing. Such ambiguity was already

2https://source.android.com/devices/tech/admin/managed-profiles

66

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Samira Silva, Antonia Bertolino, and Patrizio Pelliccione

recognized in [6] (see their exclusion criterion 4), but could even

become more complicated by considering that in some approaches

also the adaptation could be interleaved with test execution.

Of course, being SATF approaches a subclass of the broader

topic of field testing previously surveyed by Bertolino et al. in [6],

they inherit all the characteristics, concerns, and challenges already

widely discussed in that SLR. In this paper, we wanted rather fo-

cus on the additional aspects, issues, and opportunities as well,

stemming from self-adaptation capability, and for this reason, our

taxonomy for RQ2 was mostly inspired by the ones adopted in the

SAS community. However, while proceeding with the analysis, we

realized that a self-adaptive testing system may expose -luckily-

some simplifications with respect to a generic concept of a SAS. For

example, almost all of the studies we analyzed are close-adaptive

and centralized, and this can make their development easier.

A clear demarcation descends from the nature of the application

under test. Eleven[18, 20–22, 27, 28, 30, 34, 35, 38, 43] out of the 16

selected studies targeted self-adaptive systems, and this is easily

explainable when testing such types of systems. The need for test-

ing approaches that are themselves adaptive (at the very least for

adjusting the test cases to the new system version) is immediately

evident. Nevertheless, as we anticipated in the introduction, SATF

is not exclusively conceived for SAS, and few works demonstrate

that it can be useful also for field testing of not adaptive systems,

for example for mobile [11] or service-oriented [14] applications.

We think indeed that the need for self-adaptation should be a first-

class citizen for any field-testing approach, and we expect that the

growing attitude toward continuing testing after deployment will

automatically also increase the attention towards SATF concerns.

5.2 Limitations and Threats to Validity

This study only aimed at providing a first characterization of SATF,

which is a topic not yet well-established in the literature, to un-

derstand its relevance and comprehension among the authors that

propose such kinds of approaches. As such, in this scoping review,

we relaxed some of the usually adopted inclusions and exclusion

criteria in similar studies, for the sake of collecting visions and

definitions on the topic, even if not supported by rigorous valida-

tion. For this reason, in our set of primary studies, we also include

a couple of opinion papers, which could provide information not

supported by scientific experimentation. Also, having only two

authors’ opinions on a paper could be seen as a threat, but as men-

tioned this is mitigated by the fact that we discussed all papers

that we were not crystal-clear about the inclusion during plenary

meetings.

Another possible threat to validity is lack of completeness: our

review is based on a rigorous search over three popular reposito-

ries, but we have not (yet) completed the collection process with a

snowballing cycle. The reason is that the process of selecting the

final set of studies has been very effort-prone, requiring careful

reading and several discussions among the authors for reaching

a consensus, also due to the above-mentioned lack of shared ter-

minology which hindered comprehension. In other terms, in this

study we prioritized depth vs. breadth: we might have missed some

additional approaches, but for the purpose of a scoping review we

consider a more thoughtful analysis of concepts more useful.

5.3 Future Research Directions

We can hint at various relevant research directions for progressing

the SATF topic. Our review extracted several open challenges from

the studies analyzed, as we discuss in Section 4.3, and consequently

of course future research in SATF should investigate approaches

that can help address those challenges.

In addition to these challenges, throughout the development of

this research, we noticed that some important characteristics of

SATF approaches that are present in our taxonomy are not com-

pletely addressed by the works found. Therefore, these character-

istics can still be seen as open challenges and they are described

in the following of this section. First, we emphasize the need to

establish trust in the testing results. Considering a test technique

that can autonomously change its approach and/or test cases, how

can reliance be posed on the test outcome? Probably together with

a self-adaptation strategy, the approach should also account for a

self-evaluation following own changes. With the pervasiveness of

critical software systems, we see this as a crucial research challenge.

Another aspect that we did not encounter was oracle adaptation,

although this seems a necessity. The oracle problem remains a

tough challenge for any testing approach, but when the test cases

have to change based on uncertainty or context-dependence, their

oracle should adapt as well. Surprisingly, with the only exception

of [18], this evident need was not explicitly considered in any of

the surveyed studies. The question of how to ensure that the test

oracle remains up-to-date in the face of evolution remains open.

On a different plane, we can think of challenges for monitoring

the context and the application under test in lightweight and unob-

trusive mode, for understanding when the test strategy needs to be

updated. So far, in fact, we have only found SATF approaches whose

adaptation is statically decided. How could we conceive dynamic

adaptation of field testing, so to autonomously decide when the test

strategy is no longer effective or valid? Such challenge is somehow

related to uncertainty, already mentioned in Section 4.3.1.

The technical aspects beyond the conceptual design of a SATF

approach also will require considerable attention. We already men-

tioned the need to limit the overhead of tools implementing SATF.

Indeed, SATF is itself applying a MAPE loop, and as such requires

a complex architecture for implementing its components.

Finally, in view of the newness of the topic, and of the many

open challenges along with different directions, we close with an

invitation: the most rapid way to attract awareness and establish a

common vocabulary could be the organization of a dedicated work-

shop or seminar, in the “Dagstuhl style”. This could perhaps stem

even from the testing researchers within the SEAMS community.

ACKNOWLEDGMENTS

This paper has been partially supported by the Italian MIUR PRIN

2017 Project: SISMA (Contract 201752ENYB).

REFERENCES
[1] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. 2004. Basic

concepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing 1, 1 (2004), 11–33.

[2] Morena Barboni, Antonia Bertolino, and Guglielmo De Angelis. 2021. What
We Talk About When We Talk About Software Test Flakiness. In Quality of
Information and Communications Technology, Ana C. R. Paiva, Ana Rosa Cavalli,

67

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

Self-adaptive Testing in the Field: Are We There Yet? SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

Paula Ventura Martins, and Ricardo Pérez-Castillo (Eds.). Springer International
Publishing, Cham, 29–39.

[3] Luciano Baresi and Carlo Ghezzi. 2010. The disappearing boundary between
development-time and run-time. In Proceedings of the Workshop on Future of
Software Engineering Research (FoSER).

[4] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07). IEEE, 85–103.

[5] Antonia Bertolino, Guglielmo De Angelis, Sampo Kellomaki, and Andrea Polini.
2012. Enhancing Service Federation Trustworthiness through Online Testing.
Computer 45, 1 (2012), 66–72. https://doi.org/10.1109/MC.2011.227

[6] Antonia Bertolino, Pietro Braione, Guglielmo De Angelis, Luca Gazzola, Fitsum
Kifetew, Leonardo Mariani, Matteo Orrù, Mauro Pezzè, Roberto Pietrantuono,
Stefano Russo, et al. 2021. A Survey of Field-based Testing Techniques. ACM
Computing Surveys (CSUR) 54, 5 (2021), 1–39.

[7] Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini. 2012. Governance
policies for verification and validation of service choreographies. In International
Conference on Web Information Systems and Technologies. Springer, 86–102.

[8] Antonia Bertolino and Paola Inverardi. 2019. Changing Software in a Changing
World: How to Test in Presence of Variability, Adaptation and Evolution? Springer
International Publishing, Cham, 56–66. https://doi.org/10.1007/978-3-030-30985-
5_5

[9] Kai-Yuan Cai. 2002. Optimal software testing and adaptive software testing in
the context of software cybernetics. Information and Software Technology 44, 14
(2002), 841–855. https://doi.org/10.1016/S0950-5849(02)00108-8

[10] Kai-Yuan Cai, JoãoW Cangussu, Raymond A DeCarlo, and Aditya P Mathur. 2003.
An overview of software cybernetics. In Eleventh Annual International Workshop
on Software Technology and Engineering Practice. IEEE, 77–86.

[11] Mariano Ceccato, Davide Corradini, Luca Gazzola, Fitsum Meshesha Kifetew,
Leonardo Mariani, Matteo Orrù, and Paolo Tonella. 2020. A Framework for In-
Vivo Testing of Mobile Applications. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, 286–296.

[12] Betty H Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jes-
per Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al.
2009. Software Engineering for Self-Adaptive Systems: A Research Roadmap. In
Software Engineering for Self-Adaptive Systems. 1–26.

[13] Heather L. Colquhoun, Danielle Levac, Kelly K. O’Brien, Sharon Straus, Andrea C.
Tricco, Laure Perrier, Monika Kastner, and David Moher. 2014. Scoping reviews:
time for clarity in definition, methods, and reporting. Journal of Clinical Epidemi-
ology 67, 12 (2014), 1291–1294. https://doi.org/10.1016/j.jclinepi.2014.03.013

[14] Mark B Cooray, James H Hamlyn-Harris, and Robert G Merkel. 2014. Dynamic
test reconfiguration for composite web services. IEEE Transactions on Services
Computing 8, 4 (2014), 576–585.

[15] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M. Villegas, Thomas
Vogel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun,
Bojan Cukic, Ron Desmarais, Schahram Dustdar, Gregor Engels, Kurt Geihs,
Karl M. Göschka, Alessandra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor
Karsai, Jeff Kramer, Antónia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii,
Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian
Prehofer, Wilhelm Schäfer, Rick Schlichting, Dennis B. Smith, João Pedro Sousa,
Ladan Tahvildari, Kenny Wong, and Jochen Wuttke. 2013. Software Engineering
for Self-Adaptive Systems: A Second Research Roadmap. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–32. https://doi.org/10.1007/978-3-642-35813-5_1

[16] Ismayle de Sousa Santos, Magno Luã de Jesus Souza, Michelle Larissa Luciano Car-
valho, Thalisson Alves Oliveira, Eduardo Santana de Almeida, and Rossana Maria
de Castro Andrade. 2017. Dynamically Adaptable Software Is All about Modeling
Contextual Variability and Avoiding Failures. IEEE Software 34, 6 (2017), 72–77.
https://doi.org/10.1109/MS.2017.4121205

[17] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaïti, Erol Ge-
lenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco
Zambonelli. 2006. A Survey of Autonomic Communications. ACM Transactions
on Autonomous and Adaptive Systems. (2006).

[18] Erick Barros dos Santos, Rossana MCAndrade, and Ismayle de Sousa Santos. 2021.
Runtime testing of context-aware variability in adaptive systems. Information
and Software Technology 131 (2021), 106482.

[19] Brian Fitzgerald and Klaas-Jan Stol. 2017. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software 123 (2017), 176–189.

[20] Erik M Fredericks and Betty HC Cheng. 2015. Automated generation of adaptive
test plans for self-adaptive systems. In 2015 IEEE/ACM 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems. IEEE,
157–167.

[21] Erik M Fredericks, Byron DeVries, and Betty HC Cheng. 2014. Towards run-
time adaptation of test cases for self-adaptive systems in the face of uncertainty.
In Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. 17–26.

[22] Erik M Fredericks, Andres J Ramirez, and Betty HC Cheng. 2013. Towards run-
time testing of dynamic adaptive systems. In 2013 8th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
169–174.

[23] Luca Gazzola, Leonardo Mariani, Fabrizio Pastore, and Mauro Pezze. 2017. An
exploratory study of field failures. In 2017 IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 67–77.

[24] John C Georgas, André van der Hoek, and Richard N Taylor. 2005. Architec-
tural runtime configuration management in support of dependable self-adaptive
software. ACM SIGSOFT Software Engineering Notes 30, 4 (2005), 1–6.

[25] Alberto González, Eric Piel, and Hans-Gerhard Gross. 2009. A model for the
measurement of the runtime testability of component-based systems. In 2009 In-
ternational Conference on Software Testing, Verification, and Validation Workshops.
IEEE, 19–28.

[26] Antonio Guerriero, Raffaela Mirandola, Roberto Pietrantuono, and Stefano Russo.
2019. A hybrid framework for web services reliability and performance assess-
ment. In 2019 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 185–192.

[27] Elaheh Habibi and Seyed-Hassan Mirian-Hosseinabadi. 2021. On-demand Test
as a Web Service Process (OTaaWS Process). In 2021 7th International Conference
on Web Research (ICWR). IEEE, 16–23.

[28] Joachim Hänsel and Holger Giese. 2017. Towards collective online and offline
testing for dynamic software product line systems. In 2017 IEEE/ACM 2nd Inter-
national Workshop on Variability and Complexity in Software Design (VACE). IEEE,
9–12.

[29] Henner Heck, Christian Gruhl, Stefan Rudolph, Arno Wacker, Bernhard Sick, and
Joerg Haehner. 2016. Multi-k-Resilience in Distributed Adaptive Cyber-Physical
Systems. InARCS 2016; 29th International Conference on Architecture of Computing
Systems. 1–8.

[30] Henner Heck, Stefan Rudolph, Christian Gruhl, Arno Wacker, Jörg Hähner, Bern-
hard Sick, and Sven Tomforde. 2016. Towards autonomous self-tests at runtime.
In 2016 IEEE 1st International Workshops on Foundations and Applications of Self*
Systems (FAS* W). IEEE, 98–99.

[31] Markus C Huebscher and Julie A McCann. 2008. A survey of autonomic comput-
ing—degrees, models, and applications. ACM Computing Surveys (CSUR) 40, 3
(2008), 1–28.

[32] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2015. A survey on engineering approaches for self-adaptive
systems. Pervasive and Mobile Computing 17 (2015), 184–206.

[33] Mariam Lahami and Moez Krichen. 2021. A survey on runtime testing of dy-
namically adaptable and distributed systems. Software Quality Journal (2021),
1–39.

[34] Mariam Lahami, Moez Krichen, and Mohamed Jmaiel. 2016. Safe and efficient
runtime testing framework applied in dynamic and distributed systems. Science
of Computer Programming 122 (2016), 1–28.

[35] Lucas Leal, Andrea Ceccarelli, and Eliane Martins. 2019. The SAMBA approach
for Self-Adaptive Model-BAsed online testing of services orchestrations. In 2019
IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC),
Vol. 1. IEEE, 495–500.

[36] Majid Makki, Dimitri Van Landuyt, and Wouter Joosen. 2016. Automated work-
flow regression testing for multi-tenant saas: integrated support in self-service
configuration dashboard. In Proceedings of the 7th International Workshop on
Automating Test Case Design, Selection, and Evaluation. 70–73.

[37] Julie A McCann, Rogeŕio De Lemos, Markus Huebscher, Omer F Rana, and
Andreas Wombacher. 2006. Can self-managed systems be trusted? some views
and trends. The Knowledge Engineering Review 21, 3 (2006), 239–248.

[38] Andreas Metzger, Eric Schmieders, Osama Sammodi, and Klaus Pohl. 2012. Veri-
fication and testing at run-time for online quality prediction. In 2012 First Inter-
national Workshop on European Software Services and Systems Research-Results
and Challenges (S-Cube). IEEE, 49–50.

[39] Zachary Munn, Micah DJ Peters, Cindy Stern, Catalin Tufanaru, Alexa McArthur,
and Edoardo Aromataris. 2018. Systematic review or scoping review? Guidance
for authors when choosing between a systematic or scoping review approach.
BMC medical research methodology 18, 1 (2018), 1–7.

[40] Christian Murphy, Gail Kaiser, Ian Vo, and Matt Chu. 2009. Quality assurance of
software applications using the in vivo testing approach. In 2009 International
Conference on Software Testing Verification and Validation. IEEE, 111–120.

[41] Micah Peters, Christina Godfrey, Hanan Khalil, Patricia McInerney, Deborah
Parker, and Cassia Baldini Soares. 2015. Guidance for conducting systematic
scoping reviews. International Journal of Evidence-Based Healthcare 13, 3 (2015),
141 – 146. https://doi.org/10.1097/XEB.0000000000000050

[42] Roberto Pietrantuono, Stefano Russo, and Antonio Guerriero. 2018. Run-time
reliability estimation of microservice architectures. In 2018 IEEE 29th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 25–35.

[43] Y Mohana Roopa andM Ramesh Babu. 2017. Self-test framework for self-adaptive
software architecture. In 2017 International conference of Electronics, Communica-
tion and Aerospace Technology (ICECA), Vol. 2. IEEE, 669–674.

[44] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and research challenges. ACM transactions on autonomous and adaptive systems
(TAAS) 4, 2 (2009), 1–42.

68

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Samira Silva, Antonia Bertolino, and Patrizio Pelliccione

[45] Bento Rafael Siqueira, Fabiano Cutigi Ferrari, Marcel Akira Serikawa, Ricardo
Menotti, and Valter Vieira de Camargo. 2016. Characterisation of challenges
for testing of adaptive systems. In Proceedings of the 1st Brazilian Symposium on
Systematic and Automated Software Testing. 1–10.

[46] Bento R Siqueira, Fabiano C Ferrari, Kathiani E Souza, Daniel SM Santibáñez, and
Valter V Camargo. 2020. Fault Types of Adaptive and Context-Aware Systems
and Their Relationship with Fault-based Testing Approaches. In 2020 IEEE Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 284–293.

69

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on July 18,2022 at 14:38:21 UTC from IEEE Xplore. Restrictions apply.

