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Abstract The out-of-equilibrium character of active particles, responsible for accumulation at boundaries
in confining domains, determines not-trivial effects when considering escape processes. Non-monotonous
behavior of exit times with respect to tumbling rate (inverse of mean persistent time) appears, as a con-
sequence of the competing processes of exploring the bulk and accumulate at boundaries. By using both
1D analytical results and 2D numerical simulations of run-and-tumble particles with different behaviours
at boundaries, we scrutinize this very general phenomenon of active matter, evidencing the role of accu-
mulation at walls for the existence of optimal tumbling rates for fast escapes.

1 Introduction

Consider a persistent random walk in a bounded
domain. The motion is described by two parameters:
the finite speed v and the inverse of persistent time α,
also known as tumbling rate in run-and-tumble models
[1–8]. Suppose there is a small aperture in the bound-
ary allowing the walker to exit. We wonder about the
existence of an optimal exit time with respect to sys-
tem parameters. While a trivial decrease of exit times
for faster walkers is evident, the role of α is quite more
difficult to evaluate. We expect that the peculiar prop-
erty of active matter to accumulate at boundaries plays
a crucial role in determining the behavior of the system
[9–23]. In general, we expect a competition between
two characteristic times, the one spent by the walker
in the bulk τ

bulk
, expected to grow with α (the more

you tumble, the more you wander around), and the one
spent on boundary τ

boundary
, expected to decrease with

α (tumbling promotes moving away from boundaries),
giving rise to the possible existence of optimal tum-
bling rate values corresponding to minimum exit times.
We can give semi-quantitative arguments supporting
this picture. We suppose that the time spent in the
bulk by a persistent random walker before reaching the
boundary is a growing function of α (assuming, on first
approximation, linear dependence, in agreement with
first-passage expressions [24,25]),

τ
bulk

= a + b α, (1)

with a and b generic constants depending on v and geo-
metrical parameters. The time spent on boundary can
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be instead represented by a inverse proportionality:

τ
boundary

=
c

α
, (2)

where we have assumed that the time spent on the
boundary could diverge in the limit of null tumbling
rate (infinite persistent time), corresponding to a block-
ing situation on the walls (sticky boundaries). Before
exit, the particle spends part of the time in the bulk and
part in the boundary, so we can write the particle’s life-
time as the sum of the two times, τ = τ

bulk
+ τ

boundary
,

getting the expression

τ = a + b α +
c

α
. (3)

Therefore, we expect the existence of a minimum value
τ∗ = a+2

√
bc, obtained at a finite value of the tumbling

rate α∗ =
√

c/b. Generalizing the argument to more
complicated situations we can relax the hypothesis of
complete blocking of particles at walls, and write the
exit time as

τ =
f(α)

α + α0
, (4)

where f(α) is a smooth function of α1 and α0 is a
parameter that depends on the properties of the bound-
ary and the interactions between particle and wall. We

1 By requiring that for (α, v) → ∞ with finite v2/α ∼ D
(with D the diffusion constant), one recovers the diffu-
sive limit τ ∝ D−1 [26], we can take f as a polynomial
quadratic function. We can generalize (4) to generic power
τ = f(α)(α + α0)

−n, with f a polynomial function of order
n + 1.
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note that for α0 = 0 the exit time (4) can be put
in the form (3), retrieving the perfect sticky bound-
ary situation. In the general case we have that the
optimal exit time is obtained at finite α∗ satisfying
f(α∗) = (α∗ +α0)f ′(α∗), but, in certain range of values
of parameter α0, it is reached at α∗ = 0. In other words,
there is a critical value of the parameter α0, discrimi-
nating a region where the optimal escape corresponds
to a finite tumbling rate from a region where the fastest
escapees are non-tumbling walkers.

These semi-quantitative arguments suggest that active
random walks can exhibit very rich behaviors in escape
processes, depending on the nature of the interaction
with the boundary. Recent experimental studies have
shown the importance of boundary interactions for
the escape of microalgae from circular pools [27]. Evi-
dences of optimal escapes or optimal search strate-
gies have been previously observed in numerical inves-
tigation of active particles in circular domains [28–
32]. In this work we analyze in detail the role played
by particle-boundary interactions for the occurrence
of optimal exit times of run-and-tumble particles in
bounded domains. In particular, we will focus on one-
dimensional and two-dimensional systems, studying dif-
ferent boundary conditions. For the one-dimensional
case we will exploit recent analytical results obtained
for the run-and-tumble equations in the presence of par-
tially absorption [33,34], sticky boundaries [22,23] and
generic boundary conditions [35]. In Ref. [35] a very
general expression of the mean exit time was obtained,
valid for a variety of different types and combinations of
boundaries, from reflecting to partially absorbing and
sticky-like, resulting in non trivial behaviors as a func-
tion of physical parameters, with the possible existence
of non-monotonic trends in certain case studies. Start-
ing from these preliminary observations and results we
conduct a detailed analysis and discuss in depth the
conditions under which such a non-monotonic behav-
iors are present, evidencing the role of accumulation at
boundaries by using tunable parameters to modulate
its relevance. The two-dimensional case will be stud-
ied considering circular domains with the presence of
a narrow aperture on the boundary, that allows par-
ticles to escape. By numerically investigating the par-
ticle dynamics for different particle-boundary interac-
tions (cases of complete, partial or absent alignment
of the self-propelled orientation of the particle on the
boundary) we will be able to scrutinize the exit pro-
cesses, elucidating the role of boundaries in determining
optimal escapes.

2 1D exact results

We consider a run-and-tumble particle, with speed v
and tumbling rate α, confined in a 1D segment (−R,R)
[1–8,22,34]. We assume that the particle starts its
motion at the origin x = 0. Boundary conditions are
as follows. There is an hard wall at x = −R, allow-
ing particle accumulation, i.e., the particle gets stuck

Fig. 1 Schematic representation of the analyzed cases cor-
responding to a 1D run-and-tumble particle – moving with
velocity v = êv (ê = ±x̂) and tumbling rate α – in a finite
domain with an absorbing boundary on the right side of
the interval and different boundary conditions on the left
side. (1) Sticky boundary: the particle remains stuck at the
boundary until it reverses its direction of motion with rate
α/2 (the factor 1/2 comes from the fact that, after a tum-
ble, the particle can, with equal probability, maintain its
direction of motion or reverse it). (2) Reflecting boundary:
when the particle hits the wall it instantaneously reverses its
direction of motion (corresponding to an infinite tumbling
rate at the wall). (3) Sticky-reflecting boundary: the particle
remains stuck at the boundary until it reverses its direction
of motion with rate (α + γ)/2. (4) Sticky-absorbing bound-
ary: the particle at the boundary can reverse its direction
of motion (with rate α/2) or be absorbed (with rate λ)

to the wall until a tumble event reverses its direction of
motion [22,23]. An absorbing barrier is present at the
exit point x = R. A schematic representation of the sys-
tem is shown in Fig. 1 (case 1). Following similar analy-
sis of Ref. [22], where only symmetric cases were taken
into account, it is possible to obtain the exact expres-
sion of the mean exit time, i.e. the mean first passage
time for the particle to reach the exit point x = R – see
the Appendix A and [35], in which a general treatment
is given for generic boundaries – obtaining (Fig. 2, blue
full line)

τ1 = 3
R

v
+

3
2

R2

v2
α +

1
α

. (5)

This expression is exactly what expected by qualitative
arguments considering the exit time as a sum of bulk-
time (1) and boundary-time (2), with a = 3R/v, b =
3R2/2v2 and c = 1. The mean exit time diverges as α−1

and α at small and high tumbling rates, respectively
(see Fig. 2). Therefore, there exists a minimum value
τ∗
1 = (3 +

√
6)R/v obtained for the optimal tumbling

rate α∗ =
√

2/3 v/R.
In order to study the role of particle-boundary inter-

action in determining the presence of an optimal exit
time at finite α we now consider different kinds of
boundaries. Let us first assume a totally reflecting
boundary at x = −R. In this case, arriving at the
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Fig. 2 Mean exit times τ as a function of the tumbling
rate α for a 1D run-and-tumble particle in a finite inter-
val [−R, R] with absorbing boundary at x = R. Different
boundary conditions are considered at x = −R. τ1 corre-
sponds to sticky boundary (see expression (5) in the text),
τ2 to reflecting boundary (6), τ3 to sticky-repelling bound-
ary with enhanced tumbling rate at wall α+γ (7). Inset. Exit
times for the case of sticky-permeable wall at x = −R, with
exit rate λ (12); the reported cases correspond to (from up to
bottom) λ = 0, 10−3, 10−2, 10−1, 0.4, +∞. We set v = R = 1
(γc � 0.549, λc � 0.366)

boundary, the particle, is no more stuck at wall, but it
reverses instantaneously its direction of motion (Fig. 1,
case 2). Now there is no more accumulation at bound-
aries and the exit time has the following form – see the
Appendix A and Refs. [34,35] –

τ2 = 2
R

v
+

3
2

R2

v2
α. (6)

In other words the boundary-time vanishes (c = 0), the
exit time becomes a simple growing function of α and
its minimum value τ∗

2 = 2R/v is reached at α∗ = 0 (see
Fig. 2, black dashed curve), with only the presence of a
crossover when the run length v/α is comparable with
the system size R.

We now analyze an intermediate situation between
the previous two. We generalize the first analyzed case,
by considering that a particle stuck at the x = −R
boundary reorients its self-propelling direction at a rate
α + γ instead of α, i.e., the tumbling rate at the wall is
higher than that on the bulk, reducing the stickiness of
the wall (Fig. 1, case 3). Therefore we introduced a new
parameter γ governing the behavior of the boundary.
For γ = 0 we recover the first case of sticky bound-
ary, while for γ → ∞ we get the reflecting case. The
parameter γ, as we will see, allows us to switch between
different behaviors, suppressing the presence of optimal
exit times at finite α for certain parameter values. In
this case we can show that the mean exit time is – see
the Appendix A and Ref.s [22,35] –

τ3 = 2
R

v
+

3
2

R2

v2
α +

1 + αR/v

α + γ
. (7)

It is evident here a more complex form of the exit time,
due to the non trivial particle-boundary interaction at
wall. The above expression interpolates the previous
two: for γ = 0 we get (5), while for γ → ∞ we recover
(6). We also note that (7) can be cast in the form (4),
with α0 = γ. Analyzing the behavior of τ3 as a function
of the tumbling rate, we find that the condition for the
existence of an optimal exit time at finite α∗ is

γ < γc =
v

R

√
7 − 1
3

, (8)

determined by studying the solutions of ∂τ3/∂α = 0.
We obtain the expressions

α∗ = −γ +
v

R

√
2(1 − Rγ/v)

3
, (9)

and
τ∗
3 =

3R

v
[1 + (α∗ + γ/2)R/v]. (10)

For γ > γc, instead, the minimum exit time is reached
by non-tumbling particles (α∗ = 0), due to the less
relevance of the time spent at wall:

τ∗
3 =

2R

v
+

1
γ

. (11)

In Fig. 2 we report some examples of exit times for dif-
ferent values of the parameter γ, above and below the
critical value γc (red dot-dashed curves).

In Fig. 3 we show the behavior of the optimal exit
time τ∗

3 and tumbling rate α∗ as a function of the
parameter γ, evidencing the crossover at the critical
value γc, where the optimal tumbling rate goes to zero
and the minimum exit time changes from (10) to (11).

The last non trivial situation we consider is that of a
partially permeable wall at x = −R, allowing particles
to exit with rate λ. Now the particle can exit, as before,
reaching the exit point x = R, but also with rate λ when
it is stuck at x = −R (Fig. 1, case 4), then reducing the
sticky property of the wall. In this case the exit time
reads – see the Appendix A and Ref.s [22,35] –

τ4 =
R

v
+

1
2

R2

v2
α +

(1 + αR/v)2

α + 2λ(1 + αR/v)
. (12)

We note that for λ = 0 we retrieve the expression of
impermeable wall (5), while, for λ → ∞, we obtain
the first-passage time in the presence of two absorbing
boundaries, τ4 = R/v+R2α/2v2 [25,34,35]. Also in this
case the expression (12) can be cast in the form (4), with
α0 = (1/2λ + R/v)−1. We have that the condition for
the existence of an optimal exit time τ∗ at finite α∗, is

λ < λc =
v

R

√
3 − 1
2

. (13)
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Fig. 3 Minimum mean exit time τ∗
3 and corresponding

optimal tumbling rate α∗ as a function of the parameter γ
in the third model analyzed in this work – sticky-repelling
boundary, see Fig. 1 case 3 and Fig. 2, red dot-dashed lines.
For γ < γc the optimal value of the tumbling rate is finite,
see equation (9), and the corresponding minimum exit time
is given by (10). For γ > γc the minimum value of the exit
time is given by (11), corresponding to vanishing tumbling
rate α∗ = 0. We set v = R = 1, for which γc � 0.549

For λ > λc the minimum exit time is at α∗ = 0. In
Fig. 2 (inset) we report the exit times (12) for different
values of the parameter λ.

Summarizing, we can conclude that the accumula-
tion at the wall is responsible for the increase in the
time that particles spend on the boundary as the tum-
bling rate decreases, in contrast to the opposite trend
of the time spent by particles in the bulk. This results
in the existence of optimal escape times at a finite value
of the tumbling rate α∗. When boundary accumula-
tion is progressively inhibited, for example increasing
the tumbling rate on the boundary or allowing particle
absorption at wall, the optimal α∗ begins to decrease
and finally reaches zero at a certain value of the addi-
tional parameters (γ or λ in the previous models) that
describe the inefficiency of the wall in allowing particles
accumulation.

3 2D numerical results

We now turn to analyze the case of planar motions.
We consider a 2D run-and-tumble particle in a circu-
lar domain of radius R. The particle moves at con-
stant speed v (in the bulk) and reorients its direction of
motion at rate α, with the tumbling angle chosen from
a uniform distribution.

The equation of motion of the particle in the bulk is

∂tr = vê, (14)

Fig. 4 Schematic representation of the different boundary-
particle interactions considered for a 2D run-and-tumble
particle inside a circular domain. The upper case corre-
sponds to the not-alignment situation (NA), in which the
particle, hitting the edge, does not change its self-propelling
orientation ê and continues to move (with decreasing speed)
along the border until its orientation is parallel to the
boundary normal (unless it has tumbled or encountered
the exit in the mean- time). The second case corresponds
to an (instantaneous) complete-alignment (CA) of the self-
propelling orientation with the boundary wall. The particle
continues its motion along the boundary at speed v. The
last case refers to the partial-alignment (PA) of ê along the
boundary, with a finite value of the angle ϕ between it and
the tangent to the boundary. The particle proceeds at speed
v cos ϕ

where r is the position of the particle and ê the unit vec-
tor indicating its direction of motion, which is changed
with rate α and extracted from a uniform distribu-
tion. When the particle arrives on the boundary it
moves along it in a way that depends on the par-
ticular particle-boundary interaction we consider (see
below and the Fig. 4 for a schematic representation of
the different cases analyzed). A narrow aperture on the
boundary allows the particle to exit. We will examine
three case studies, corresponding to different particle-
boundary interactions. The first case is that of a parti-
cle that does not change its orientation when arriving
at the border. This is the case, for example, of spher-
ical active particles, where torques are absent [9,36].
We refer to this case as not-alignment case (NA). The
second case is that of a complete alignment (CA) of
particle orientation along the boundary. When colliding
to the border the particle changes instantaneously its
self-propelling direction of motion parallel to the wall.
This is the case, for example, of elongated particles,
such as E.coli bacteria [37] (we are neglecting the tran-
sient time for the complete alignment of the particle
orientation to the boundary). The last case analyzed
is that of partial alignment (PA), corresponding to a
particle that maintains a fixed angle ϕ between its ori-
entation and the tangent vector to the boundary. This
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Fig. 5 Mean exit times τ as a function of the tumbling
rate α for a 2D run-and-tumble particle inside a disk of
radius R with a small aperture on the boundary of size δ,
with δ/R = π/180 (angular aperture of 1o). The reported
cases correspond to not-alignment of particle velocity along
the boundary (NA, blue full circles), complete alignment
(CA, black full squares), finite angle ϕ between the particle
orientation and the tangent to the boundary (PA, red open
diamonds) – see the schematic pictures in Fig. 4. The lines
are guides to the eye. The asymptotic limit α → 0 of PA
curves is τ(0) = R/v[1 + (2π − δ/R)2/(4π cos ϕ)] (dashed
lines, see Appendix B). We set v = R = 1

happens, for example, in the case of sperm cells, where
the extension of flagellum prevent a complete alignment
of the cell along the boundary [38,39]. Summarizing,
we are considering a particle that, when arriving at the
boundary, proceeds its motion along it with: decreasing
speed in the NA case, with speed v in the CA case, and
with speed v cos ϕ in the PA case. The particle motion
ends when it encounters the aperture and exits from
the domain (we consider point-like particles that exit as
soon as they cross the exit zone, if they come from the
bulk, or touch its edge, if they come from the circular
boundary). A schematic representation of the analyzed
cases is shown in Fig. 4. We use numerical simulation
to investigate such active random walks in 2D circular
geometry, proceeding as follow. We start with a particle
at the center of the circular domain. We then sequen-
tially extract directions of motion with uniform angular
distribution and rum times from an exponential dis-
tribution α exp (−αt). The particle moves at constant
speed v along straight lines in the bulk and, when it hits
the boundary, it proceeds along the border for the rest
of the run time, proceeding with a speed which depends
on the case analyzed (as described before). The motion
of the particle ends when it reaches the small aperture
and exits the domain. Average over 104 up to 105 runs
are considered.

In Fig. 5 we show the mean exit times as a function
of the tumbling rate α for the different cases analyzed.
It is evident the presence of a minimum at finite values

Fig. 6 Mean exit times τ decomposed as a sum of the time
spent in the bulk τbulk and on the boundary τboundary as
a function of the tumbling rate α in the partial-alignment
model (PA). The four panels refer to different values of the
angle ϕ (see the text and Fig. 5). We set v = R = 1

of α in the NA case and PA case for sufficiently high
values of the alignment angles ϕ (close to π/2). We
note that the PA case with ϕ = π/2 shows a diver-
gent exit time at small α, similarly to the NA case,
because of the perfect sticky condition that occurs at
the boundary in these cases. For smaller angles, down to
the case of complete alignment (PA with ϕ = 0, corre-
sponding to CA), the minimum exit time is reached by
non-tumbling particles (α = 0). The reported trends
are very similar to the cases analyzed in 1D, high-
lighting the ability of the simplified one-dimensional
models to effectively capture the essential aspects of
the physics of the problem. However, we note that the
specific functional dependencies in 1D and 2D can be
different, and, for example, the τ(α) trends (see the
PA curves in the figure) cannot always be captured by
a simplified expression like Eq.(4), requiring, instead,
more involved functional forms (see the footnote at page
1). A deeper analysis reveals the role played by bound-
aries at different tumbling rates. We can decompose
the exit time as the sum of the time spent by the par-
ticle in the bulk and on the boundary before exiting
the domain, τ = τbulk + τboundary. In Fig. 6 we report
these times for the case of PA model with different val-
ues of the angle ϕ. It is evident the dominant role of
the bulk and boundary times, respectively at high and
low tumbling rate values. Moreover, their behavior as
a function of α influences the whole behavior of the
exit times, with the possible existence of non-monotonic
trends and optimal values. Summarizing, we can then
say that, even in the two-dimensional case, the accumu-
lation at boundaries determines the existence of optimal
exit times at finite values of the tumbling rate, which
eventually becomes zero when the sticky properties of
boundaries are reduced.
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4 Conclusions

We have investigated the escape processes of confined
active particles. In particular, we focused on the pos-
sible existence of optimal escape times. We found that
the peculiar property of active matter to accumulate
at walls gives rise to the existence of optimal tum-
bling rates corresponding to fast escapes. By introduc-
ing four different kinds of boundary conditions in 1D
run-and-tumble models, we were able to obtain analyt-
ical expressions of escape times, which allow us to dis-
cuss the relevance of accumulation processes at bound-
aries for the existence of optimal finite values of tum-
bling rates. These findings are corroborated by the
analysis of 2D run-and-tumble particles confined in a
circular domain. By numerically studying the escape
dynamics for different kinds of particle-boundary inter-
actions (not/complete/partial - alignment of particle’s
self-propulsion with the boundary wall) we find again
the existence of optimal tumbling rate values for fast
escapes, which tend to zero (the particles that come
out the fastest are the ones that do not tumbling) by
inhibiting the sticky properties of the walls. We expect
this is a very general behavior of active matter, occur-
ring whenever particles accumulation is present. Opti-
mal escapes are, in fact, present also in physical sit-
uations where the escape (absorbing) regions are in
the bulk and not along the boundary [31], or in the
case in which the confinement of particles is due to
external fields (potential barriers or confining poten-
tials) instead of geometrical constraints [40–42]. Indeed,
also in these cases, we have particles accumulation and
the presence of competition between times spent on the
bulk and on the boundary, which we have demonstrated
are essential ingredients to have optimal escapes. Pos-
sible directions for future investigations could be to
explore different geometries of the confining box, with
the possible presence of curvature-dependent accumu-
lation [43], to analyze the differences with respect to
other active particles models, such as the active Brow-
nian particle model [44], or to extend the investigation
to three-dimensional domains and including particle-
particle interactions. Finally, it would be interesting to
investigate optimal escapes in experiments, for exam-
ple, by devising genetically modified bacteria, with tun-
able tumbling rate controlled by external fields, in anal-
ogy to light-controlled speed in photokinetic bacteria
[45]. The challenge here, in addition to synthesize these
new kind of bacteria, is to develop an experimental set-
up to study microswimmers in confined environments
with the presence of narrow apertures enabling escape,
with all the difficulties associated with the presence of
effects not easily controlled at these microscales, such
as hydrodynamic interactions with bourdaries. Alter-
natively, one could use non-living particles, such as
shaped active Brownian colloids with controlled rota-
tional dynamics [46] or the recently employed commer-
cially toy robots Hexbugs [47]. We finally note that the
possible existence of optimal escapes by varying parti-
cles tumbling rate should correspond to different trends

of exit times of particles with fixed tumbling rate by
changing the size of the confining domain [28]. This
might be an alternative way to experimentally validate
the reported findings, although varying the size of the
system by orders of magnitude might not be such an
easy task to accomplish.
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Appendix A: Derivation of the mean exit
time

We derive here the expressions of the mean exit times of
a run-and-tumble particle in a bounded one-dimensional
domain. The probability density function P (x, t) to find the
particle at position x at time t obeys the so-called telegra-
pher’s equation [2]

(v2∂2
x − ∂2

t − α∂t)P = 0, (15)

where v is the particle’s speed, α its tumbling rate (inverse
of the persistence time) and we denote with ∂t = ∂/∂t
and ∂2

t = ∂2/∂t2 the first- and second-derivative operators.
Assume that the particle starts its motion at the origin x =
0 and that the domain extends from −R to R. The Laplace
transformed function P̃ (x, s) =

∫ ∞
0

dt exp(−st)P (x, t) obeys
the equation

[v2∂2
x − s(s + α)]P̃ = −(s + α)δ(x). (16)

We assume that there is an absorbing boundary at x = R,
corresponding to the boundary condition – see equation (24)
of [34] with ε = 1 –

(v∂x + s + α)P̃ |x=R = 0. (17)
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In this work we consider different types of boundary at
x = −R, see figure 1. The first one is a sticky boundary,
where the particle, once arriving on it, remains stuck until
a tumble event reverses its direction of motion. In this case
the boundary condition reads – see equation (11) in [22] –

(v∂x − s)P̃ |x=−R = 0. (18)

The second case we consider is that of a reflecting boundary,
where the particle reverses instantaneously its direction of
motion. Now the boundary condition becomes – see equa-
tion (23) of [34] with ε = 0 –

v∂xP̃ |x=−R = 0. (19)

The third case is that of a sticky-repelling boundary, where
the stuck particle reorients its direction of motion with a
rate α+γ (with γ > 0), higher than that of the particle in the
bulk α. The boundary condition now reads – see equation
(25) of [22] with αW = α + γ –

[v∂x − s(s + α)/(s + α + γ)]P̃ |x=−R = 0. (20)

The last case considered is a sticky-absorbing boundary,
where the stuck particle can be absorbed with rate λ. The
corresponding boundary condition is – see equation (33) in
[22] –

[v∂x − (s + α)(s + λ)/(s + α + λ)]P̃ |x=−R = 0. (21)

The solutions of eq. (16) are given by the superposition
of exponential functions exp(±cx), with v2c2 = s(s + α),
and with coefficients obtained by imposing boundary con-
ditions and the continuity (discontinuity) of P̃ (∂xP̃ ) at

x = 0 [22,34]. Once obtained the solutions P̃ for the dif-
ferent boundary conditions analyzed, the probability distri-
bution ϕ(t) of the exit time is obtained as the (minus) time-

derivative of the survival probability P =
∫ +R

−R
dx P + W ,

where W is the probability to find the particle stuck at
x = −R in the case of sticky-like property of the boundary
[22,35]. There is a relation between W and P |x=−R. For
example, in the case of sticky boundary, from the continu-
ity equation ∂tW = −J |x=−R (J is the current vP+ − vP−,
with P± the right- and left-oriented particle distribution)
and the boundary relation vP+|x=−R = αW/2 (the flow
of right moving particles at the left boundary is given
by the fraction of stuck particles that reverse their direc-
tion of motion) [22], we obtain (∂t + α)W = vP |x=−R,

or, in the Laplace domain (s + α)W̃ = vP̃ |x=−R. In the
case of reflecting boundary there are no stuck particles,
i.e., W = 0. For sticky-repelling boundary we have that
∂tW = −J |x=−R and vP+|x=−R = (α + γ)W/2 [22], lead-

ing to the relation (s + α + γ)W̃ = vP̃ |x=−R. For the
fourth case analyzed, the sticky-absorbing boundary, from
∂tW = −J |x=−R − λW and vP+|x=−R = αW/2 [22], we

obtain (s+α+λ)W̃ = vP̃ |x=−R. The expression of the mean

exit time distribution can be obtained by using ϕ̃ = 1 − sP̃,
leading to ϕ̃ = vP̃ |x=R + vhP̃ |x=−R, where h = 0 for
the first three boundaries and h = λ/(s + α + λ) for the
fourth case. The mean exit time can be finally obtained as
τ =

∫ ∞
0

tϕdt = −∂sϕ̃|s=0.
For the sake of simplicity we report here only the explicit

solution for the first kind of boundary, i.e., the sticky bound-
ary (18). For the other types of boundaries one can repeat
exactly the same procedure to obtain the final expressions

of the mean exit times. For boundary (18) we have that the

solution of (16) reads P̃ = A1e
cx + A2e

−cx for x > 0 and

P̃ = B1e
cx + B2e

−cx for x < 0, where the coefficients are

A1 = (c/2s)(vc − s − α)e−cRF/Q,

A2 = (c/2s)(vc + s + α)e+cRF/Q,

B1 = (c/2s)(vc + s)e+cRG/Q,

B2 = (c/2s)(vc − s)e−cRG/Q,

and

F = vc cosh(cR) + s sinh(cR),

G = vc cosh(cR) + (s + α) sinh(cR),

Q = vc(2s + α) cosh(2cR)

+[v2c2 + s(s + α)] sinh(2cR).

The exit time distribution is in this case

ϕ̃ = (s + α)F/Q, (22)

and the mean exit time reads

τ =
3R

v
+

3R2α

2v2
+

1

α
, (23)

that is the expression (5) reported in the main text. Similar
derivations can be made for the other boundaries consid-
ered in this work, obtaining the corresponding expressions
of the mean exit times given in the main text. A very gen-
eral and complete derivation, considering generic boundary
conditions, is given in [35].

Appendix B: Mean exit time of a non-
tumbling particle in a circular domain

Here we derive the exact expression of the mean exit time
of a non-tumbling particle in a 2D circular domain of radius
R with a small aperture on its border. The particle starts
its motion at the center of the domain, moves along straight
lines at constant speed v in the bulk and, when hitting the
boundary, proceeds along it with a speed v cos ϕ, where ϕ is
a fixed angle between the particle’s self-propelling orienta-
tion ê and the tangent to the boundary – partial-alignment
(PA) case, see Fig. 4 in the main text.

Starting its motion at the origin the particle reaches the
boundary radially and, we assume, proceeds along it clock-
wise or counterclockwise with equal probability. Let β be
the angular width of the exit interval along the boundary.
By indicating with θ the angle with respect to x-axis of the
initial self-propelling direction of the particle, we have that
the mean exit time for the particle to reach the exit along
the clockwise direction is (see Fig. 7)

τcw(θ) =
R

v
+

R

v cos ϕ
(θ − β/2), (24)

where we are assuming that θ ∈ [β/2, π], i.e., the particle
does not point directly towards the exit, and, for symmetric
reasons, we consider only the upper half-plane 0 ≤ θ ≤
π. Similarly, considering the counterclockwise direction, we
have

τccw(θ) =
R

v
+

R

v cos ϕ
(2π − θ − β/2). (25)
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Fig. 7 Example of trajectory of a non-tumbling particle
starting its motion at the center of a circular domain of
radius R with initial velocity orientation θ. When hitting
the boundary the particle continues its motion along it whit
a reduced speed v cos ϕ (partial-alignment, PA case of the
main text) until it reaches the exit region of angular width
β. We assume that, arriving at the boundary, the particle
chooses the clockwise and counterclockwise directions with
equal probability (we show in the figure the case of the clock-
wise direction only)

We then have that the mean exit time is independent of
θ ∈ [β/2, π]

τ1(θ) =
τcw(θ) + τccw(θ)

2
=

R

v
+

R

v cos ϕ
(π − β/2). (26)

On the other hand, when the initial particle direction points
towards the exit, i.e. θ ∈ [0, β/2), we have

τ2(θ) =
R

v
. (27)

By averaging over equally distributed initial directions we
obtain

τ =
1

π

∫ π

0

dθ τ(θ) =
1

π

∫ β/2

0

dθ τ2 +
1

π

∫ π

β/2

dθ τ1

=
1

π
[τ2β/2 + τ1(π − β/2)], (28)

and, finally,

τ =
R

v

[

1 +
(2π − β)2

4π cos ϕ
,

]

(29)

which, by denoting with δ = Rβ the arc length of the exit
interval, is the expression reported in the main text (caption
of Fig. 5).
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