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A B S T R A C T

Ocean colour (OC) remote sensing benefits society by providing continuous biological and ecological parameters
relevant to sustainable marine resource exploitation. It enhances our understanding of climate change and allows
us to monitor oceanographic phenomena over various scales of variability. However, significant data gaps occur
daily due to cloud cover, atmospheric correction failures, sun-glint contamination, and satellite coverage limi-
tations. Level 4 (L4) gap-free images are generally created by averaging over specific periods (e.g., weekly,
monthly, seasonal) or re-gridding data with coarser resolution to overcome these limitations. These approaches,
however, often fail to capture anomalous events or fine-scale resolution processes, calling for more advanced
methods. The Data Interpolating Empirical Orthogonal Function (DINEOF) method has proved effective in
reconstructing missing OC data and capturing smaller-scale features in noisy fields. To the best of authors
knowledge, DINEOF is here used for the first time to interpolate multispectral Remote Sensing Reflectance (Rrs)
to produce a consistent and gap-free L4 Rrs dataset, minimizing errors in inferred ocean products, such as
Chlorophyll-a (Chl), the most widely used proxy for phytoplankton biomass. Specifically, using a multivariate
approach, we assessed the DINEOF technique’s capability to reconstruct Rrs, focusing on six bands (412, 443,
490, 510, 555, and 670 nm) and validating the results using extensive in situ datasets. Our outcomes show that
this “upstream interpolation” method can generate a consistent Rrs dataset, thereby improving the accuracy of L4
Chl predictions when used as input in algorithms for remote Chl estimation. We anticipate further improvements
in L4 Rrs accuracy using richer spectral information from upcoming hyperspectral satellite missions. This study
highlights the effectiveness of using Rrs as a standalone dataset for DINEOF interpolation. Operationally, it can
derivate various gap-free and consistent biogeochemical parameters with reduced uncertainty, thus providing a
more reliable and versatile method.

1. Introduction

Remote sensing observations are at the forefront of numerous
monitoring systems of the global ocean, such as the Copernicus Marine
Environment Monitoring Service (CMEMS) or the National Oceanic and
Atmospheric Administration (NOAA) CoastWatch (Liu and Wang,
2018). These observations offer cost-effectiveness and the opportunity
for synergistic use of different ocean products. Satellite oceanographic
data are increasingly being used to extract crucial marine ecosystem
indicators (Blondeau-Patissier et al., 2014; Polovina and Howell, 2005;
Racault et al., 2014) and to identify and track biological hotspots

(Marchese, 2015; Palacios et al., 2006). Specifically, ocean colour (OC)
data are essential to understanding the optical, biological, and ecolog-
ical aspects of marine ecosystems, providing a valuable means for
improving physical and biogeochemical models of the ocean (Yoder
et al., 2010). Essential Ocean and Climate Variables (EOVs – ECVs) are
environmental parameters that characterize the Earth’s climate
(Hollmann et al., 2013). These variables include oceanographic pa-
rameters like phytoplankton biomass, frequently indexed by the
chlorophyll-a concentration (Chl), which can be retrieved from OC data.
Consequently, there is an imperative demand for continuous and precise
global-scale OC measurements.
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Despite the recognized potential of OC data, several constraints limit
the volume of usable data, making it challenging to obtain continuous
time series. Missing OC data are usually due to clouds obstructing ocean
reflectance measurements, the contaminating effects of sun-glint, ice in
polar regions, adjacency effects from land, and bottom reflectance in
optically shallow waters (Groom et al., 2019; Hilborn and Costa, 2018).
These physical limitations lead to satellite data gaps, reducing the sat-
ellite’s effectiveness. Regarding cloud cover, the seasonal average per-
centages in the Mediterranean Sea hardly exceed ~ 60 % in winter; the
rate decreases in spring, reaching around 35 % in summer and again
close to ~ 55 % in autumn (Enriquez-Alonso et al., 2016) The OC data
availability can drop dramatically in other marine regions (e.g., the
North Atlantic and the Arctic Ocean), where the cloud cover is generally
more persistent (Cole et al., 2012) than in the Mediterranean Sea. This
can have a limited impact on climate studies, where the scales of vari-
ability are much larger. However, it represents a significant drawback
when investigating smaller mesoscale phenomena such as those asso-
ciated with coastal areas. As such, gaps in biogeochemical data retrieved
from OC at various space and time scales call for further research into
effective data interpolation methods.

While future satellite OC missions and novel analytical tools may
reduce data gaps, they still exist in available OC datasets. Traditional
methods for filling data gaps in OC satellite images reduce the space-
–time resolution, while newer methods combine satellite data with nu-
merical models for reconstruction (Konik et al., 2019). Over time,
various sophisticated data-driven reconstruction techniques have been
devised to effectively address the issue of long-term data gaps. These
techniques span from kriging to optimal interpolation, empirical
orthogonal function (EOF), and machine learning methods (Ćatipović
et al., 2023). Among EOF interpolation methods, the Data INterpolating
Empirical Orthogonal Functions (DINEOF; Beckers and Rixen, 2003) is
likely the most widely used to fill gaps in OC data time series. DINEOF is
a robust and advanced statistical method that identifies the dataset’s
dominant spatial and temporal patterns, allowing for the accurate
reconstruction of missing data without a priori statistical information
(Taylor et al., 2013).

DINEOF has recently proven effective in filling observational gaps in
ocean products derived from satellite data, such as sea surface salinity
(Alvera-Azcárate et al., 2016), water turbidity (Alvera-Azcárate et al.,
2015), sea surface level (Volpe et al., 2012), and suspended particulate
matter (Alvera-Azcárate et al., 2021). It has also been used in a multi-
variate approach to leverage natural correlations among variables
(Alvera-Azcárate et al., 2007). Due to its versatility and robustness,
DINEOF has been thus widely applied to remotely sensed data across
various marine ecosystems, including the Gulf of Maine (Li and He,
2014), the Gulf of Cadiz (Navarro et al., 2012), and the Mediterranean
Sea (Rinaldi et al., 2014). It has also been successfully used in high-
latitude regions, such as the Gulf of Alaska (Waite and Mueter, 2013)
and the mid-North Atlantic (McGinty et al., 2016). However, sub-polar
and polar seas present additional challenges due to significant data
gaps caused by frequent cloud cover, sea ice, and low solar angles, which
limit valid satellite ocean colour observations. The extreme seasonal
cycles in light availability—especially the absence of satellite observa-
tions during polar night—further complicate data reconstruction in
these regions. Despite these constraints, DINEOF remains a valuable tool
for reconstructing missing biogeochemical data in the polar areas. By
excluding from the time series days with poor observations and applying
masks to avoid interpolation over ice-covered areas, DINEOF can still
compensate for limited satellite coverage (Marchese et al., 2017) across
these remote and harsh environments. However, it is worth noting that
the reduced temporal dimension (i.e., shortened temporal series) may
impact the quality of the outcomes of DINEOF for spatially recon-
structing satellite datasets (Hilborn and Costa, 2018).

Probably because of their ecological value, sea surface temperature
(SST) and Chl (Ćatipović et al., 2023) remain the most widely used
variables in studies exploring the biophysical connections in the oceans

(Hobday and Hartog, 2014; Volpe et al., 2012) and, as such, are used as
input to interpolation procedures. However, the primary product of OC
remote sensing is the spectral Remote Sensing Reflectance (Rrs), which
is defined as the ratio of the water-leaving radiance to the downwelling
irradiance at the sea surface (Morel et al., 1995; Gilerson et al., 2022).
Numerous ad hoc algorithms exist to retrieve bio-optical properties such
as the absorption of coloured dissolved organic matter (aCDOM), partic-
ulate backscattering coefficient (bbp), phytoplankton abundance, groups
and species, particulate inorganic and organic carbon, and particle size
distribution; the totality of these parameters is derived from measured
Rrs spectra. Therefore, applying DINEOF techniques directly to primary
Rrs instead of ocean products might help derive several gap-free
biogeochemical parameters. Furthermore, Rrs measurements typically
align more closely with the statistical assumptions behind DINEOF, such
as linearity and Gaussian distributions, potentially resulting in more
accurate interpolations. However, despite these advantages, to our
knowledge, no specific scientific publications directly evaluate the use
of DINEOF or any other interpolation approach to Rrs observations.
CMEMS currently does not distribute any L4 Rrs products, though this
data type could greatly benefit ecological, oceanographic, and climatic
applications by providing gap-free radiometric information for deriving
ocean variables.

In this context, this study investigated the effectiveness of applying
the DINEOF method directly to Rrs data and using the derived
Chlorophyll-a (Chl) product as a case study. From a remote sensing
perspective, Chl provides an excellent index of phytoplankton biomass.
It is associated with the net primary production in marine ecosystems,
and physical and biochemical processes strongly influence its variability
(Huot et al., 2007). Different analyses have been performed to
discriminate among various DINEOF settings and assess their final
products’ quality.

The findings suggested that the interpolated Rrs can serve as a
standalone dataset, simplifying the production of various comprehen-
sive geophysical products without data gaps. The Mediterranean Sea
was chosen as a case study because it has relatively low cloud cover
compared to other oceanic areas, facilitating the comparative analyses.
It, therefore, provided an ideal environment for testing the impact of
data density on the interpolation of OC satellite observations.

2. Material and methods

2.1. Datasets

2.1.1. Satellite OC dataset
Two satellite OC datasets were used: the multi-sensor Rrs (sr-1) data

and the derived Chl (mg m− 3) product. Both were downloaded from the
CMEMS web portal as Level 3 (L3) (Product ID: OCEAN-
COLOUR_MED_BGC_L3_MY_009_143). The L3 data correspond to grid-
ded products with gaps. Briefly, within CMEMS, single-sensor Rrs data
are routinely downloaded from the respective space agencies as Level 2
(L2) data, meaning each sensor undergoes its atmospheric correction
algorithm depending on the space agency (Volpe et al., 2012; 2019;
Colella et al., 2023). The number of sensors contributing to the multi-
sensor product time series changed over the years with one sensor
(SeaWiFS) in the years 1997 to 2002 to five sensors (MODIS-Aqua,
VIIRS-SPP/NOAA, and OLCI-Sentinel3A/B), at the time of writing. After
a series of processing steps aimed at addressing sensor-specific issues
and resampling at 1 km spatial resolution, single-sensor Rrs are merged
into a multi-sensor product (i.e., RrsL3) that accounts for inter-sensor
biases (Volpe et al., 2019; Colella et al., 2023). Therefore, starting
from the multi-sensor RrsL3, the generation of the Chl product (ChlL3,
Fig. 1a) involves four main steps:

(1) Applying the MedOC4.2020 regional Chl algorithm, suited for
Case I waters (Colella et al., 2023), to the entire RrsL3 field. Note
that the MedOC4.2020 shares the functional form of traditional
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empirical OCx NASA algorithms (O’Reilly et al., 2000) but fea-
tures polynomial coefficients optimized for the Mediterranean
Sea (Volpe et al., 2007);

(2) Applying the AD4 regional Chl algorithm, suited for Case II wa-
ters (Berthon and Zibordi, 2004), to the entire RrsL3 field;

(3) determination of the pixels belonging to the two water types and
identifying those that do not strictly belong to either type. Spe-
cifically, identifying Case I or Case II water type membership
involves comparing the satellite RrsL3 spectra (from 443 nm to
670 nm) with in situ Rrs spectra from the MedBiOp dataset (see
section 2.1.2) at pixel scale and using k-means clustering to
distinguish pure Case II spectra from others (Colella et al., 2023);

(4) merging of the two Chl images according to the water type
membership of each pixel.

In the RrsL3 and ChlL3 images used in the analysis, gaps were intro-
duced to simulate 25 %, 50 %, and 75 % of cloud coverage (Fig. 1b, see
section 2.3). Specifically, data gaps were progressively added for each
daily image from the same day of previous years until they reached the
defined cloud cover threshold. The cloud patterns were sourced from
other images to ensure the coverage looks authentic because clouds are
not homogeneously distributed.

Finally, climatology daily maps were created using the original L3
data from 1998 to 2023, falling into a moving temporal window of ± 5
days (Fig. 1c). In other words, the climatological value for each calendar
day was computed by averaging the variable (either single RrsL3 bands
or ChlL3) from the same date across years within an eleven-day window,
encompassing the five days before and after the reference date. These
products were referred to as RrsClima and ChlClima according to the Rrs or
Chl data. Table 1 summarizes the key parameters adopted in this study.

2.1.2. In situ OC dataset
The MedBiOp dataset (Volpe et al., 2019) was extended to 2023

(Volpe et al., 2019; Colella et al., 2023) to be used as a reference to
compute the uncertainties associated with satellite interpolated prod-
ucts via matchup analysis. The MedBiOp dataset includes optical and
Chl data, whose space–time distribution is shown in Fig. 2. The valida-
tion dataset includes additional radiometric measurements from three
fixed stations (marked with stars in Fig. 2). These stations include two
AERONET sites, which are equipped with above-water hyperspectral
radiometers (AAOT and Casa Blanca located in the North Adriatic Sea
and off the north-eastern coast of Spain, respectively), and the Meda of
Lampedusa Island in the south-central basin equipped with in-water
hyperspectral radiometers (Cazzaniga and Mélin, 2024; Di Sarra et al.,
2019; Zibordi et al., 2021). AAOT has provided data since 2002, while
Casa Blanca and the Meda of Lampedusa have only provided data since
2019. In these three fixed stations, Chl measurements were only
sporadically available.

2.2. DINEOF interpolation procedure

Missing data reconstruction was carried out through the DINEOF
method, initially introduced by Beckers and Rixen (2003) and success-
fully applied in the Mediterranean Sea by Volpe et al. (2018, 2012). The
DINEOF temporal interpolation works sequentially. Firstly, in our case,
a data matrix is built using nine days of satellite L3 data: four before and
four following the day that must be interpolated (Fig. 3). This configu-
ration of the input data matrix accounts for the short decorrelation time
scale of OC data over the Mediterranean Sea (Volpe et al., 2018). An
analysis was also conducted using a larger time window of ±7 days that
did not produce significantly different results (results not shown).
Therefore, choosing a nine-day window struck an optimal trade-off be-
tween capturing as many relevant images as possible and minimizing the

Fig. 1. a) Original L3 Chl observations for February 15th, 2023, as available
from CMEMS multi-sensor product time series. The three numbered areas were
used to evaluate the spatial coherency of the interpolated products. b) An
example of artificial cloud cover, with pixels marked in light grey, corre-
sponding to 25 % of cloud cover, dark grey to 50 %, and black to 75 %. c) An
example of daily Chl climatology for February 15th was used to build the input
data matrix and in the validation analysis.

Table 1
List of symbols used throughout this work. In the Chlinsitu, the equation is Zpd the
light penetration depth (m) (roughly equivalent to one-fifth of the euphotic
depth), and Kd is the diffuse light attenuation coefficient (m− 1) (Volpe et al.,
2007).

Symbol Description

ChlL3 Non-interpolated (L3) satellite Chl
RrsL3 Non-interpolated (L3) satellite Rrs observations
ChlClima Mean climatological Chl values
RrsClima Mean climatological Rrs values
ChlChlL4

Gap-free (L4) Chl concentrations derived from the L3 Chl processing over
L3 Chl observations

ChlsRrsL4
Gap-free (L4) Chl derived from the application of the Chl algorithm
(MedOC4.2020) after the single-band interpolation processing of the L3
Rrs (one run per Rrs band)

ChlmRrsL4 Gap-free (L4) Chl derived from the application of the Chl algorithm
(MedOC4.2020) after the simultaneous multi-band interpolation
processing of the L3 Rrs (one run per Rrs spectrum)

Chlinsitu ∫Zpd

0
Chl(z)e− 2•Kd•Zpd dz

∫Zpd

0
e− 2•Kd•Zpd dz

RrssRrsL4 Gap-free (L4) Rrs derived from the single-band interpolation processing of
the L3 Rrs (one run per Rrs band)

RrsmRrsL4 Gap-free (L4) Chl derived from the simultaneous multi-band interpolation
processing of the L3 Rrs (one run per Rrs spectrum)
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impact of unrelated observations on the reconstruction process. Sec-
ondly, all missing data in the matrix are replaced with respective daily
climatological mean values (RrsClima or ChlClima, see Table 1 for naming
convention). A binary mask, namely “holes”, is built with zeros corre-
sponding to effective observations and ones where climatological mean
values were used. The replacement is made through a smoothing pro-
cedure that prevents the creation of artificial gradients.

Thus, the resulting data matrix constitutes the input to the iterative
EOF procedure, which uses the singular-value decomposition (SVD)
technique (Taylor et al., 2013). After each iteration, the input data
matrix to the following SVD iteration is built with original observations
in correspondence of the zeros within the holes mask and with the field
reconstructed from the SVD output of the previous iteration for holes
equal to 1. The reconstruction uses the number of modes corresponding
to the iteration number. After the first iteration, the climatology is
replaced with the first EOF mode, which is subsequently replaced with
the field reconstructed with the first two modes after the second

iteration, and so on. DINEOF explicitly identifies areas with different
sources of space–time variability through iterative EOF estimation. To
determine the optimal number of iterations, the variance explained by
each mode is compared with the one explained by the noise, which is, in
turn, determined by an independent EOF run performed using a random
number matrix with the exact dimensions as the input data matrix. The
number of modes may thus differ daily. This short data temporal vari-
ability associated with the input data matrix (only nine days) called for a
test on the validity of the abovementioned approach used to define the
optimal number of modes. We observed that all available (nine) modes
did not yield significantly better results than those obtained with the
number of modes defined by noise variance (results not shown), but
using all modes doubled the computational time. The final interpolated
field is a multi-scale product. It is made of original L3 observations in
correspondence with holes = 0 and of interpolated data in correspon-
dence with original data gaps (holes = 1). The two fields are merged
through a smoothing procedure to prevent spurious spatial gradients.

2.3. DINEOF application

DINEOF was applied to each daily image with at least one in situ
measurement for 3910 daily satellite images over 25 years. This pro-
cessing was performed using the best configuration outcome revealed by
a previous analysis. Twelve L3 Rrs satellite images were processed under
varying synthetically applied cloud cover conditions (25 %, 50 %, and
75 %) to original L3 Rrs and Chl images. The choice to interpolate twelve
days (the 15th of every month of 2023) spread over one year on one side
ensured that the data captured a sufficiently large environmental vari-
ability and, on the other, helped minimize computational time and re-
sources. For assessing the accuracy and efficiency of applying the
DINEOF interpolation method directly to Rrs versus its application to
Chl, three different runs allowed testing the "upstream" versus the
"downstream" interpolation approaches. In the first run (hereafter
referred to as L3 Chl Processing or downstream interpolation), the
DINEOF interpolation was directly applied to the original ChlL3 obser-
vations, estimated from the non-interpolated Rrs (RrsL3). This processing

resulted in the gap-free (L4) Chl referred hereafter to as ChlChlL4 .

Fig. 2. Space-time distribution of the satellite-in situ matchup dataset with
crosses denoting missing L3 satellite observations and filled circles indicating
the location of matching satellite-in situ measurements. The pink stars indicate
the position of fixed stations (Casa Blanca, Lampedusa and AAOT). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Schematics of the input data matrix with the bands on the columns and days on the rows, the day that must be interpolated (red rectangle), plus and minus
four days. In the single-band approach, the bands are interpolated via individual runs – one run per column − while in the multi-band approach, all bands are used in
one single run. In the current work, the number of sea pixels – green areas. is 1957817. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Therefore, this procedure embodies the traditional method of filling in
missing data for satellite ocean products that are usually obtained at the
concluding stages of a workflow, frequently involving specific algo-
rithms (e.g., Volpe et al., 2007; Liu and Wang, 2022, 2019).

The two other runs focused on directly interpolating the RrsL3 field (i.
e., upstream interpolation). In the Single Band Processing, each spectral
band was interpolated individually as a standalone process using the
nine-day data of the same band hereafter referred to as RrssRrsL4 . The latter
was afterward used as input for the Mediterranean Chl estimation using
the described regional process (see section 2.1.1) yielding the gap-free
(L4) Chl derived from the RrssRrsL4 and was referred to ChlsRrsL4 . In the
Multi Band Processing, the input data matrix was built using all bands
for the nine days simultaneously, thus interpolating the RrsL3 spectrum
to retrieve RrsmRrsL4 . Since all bands were simultaneously used, this
approach can be considered a multivariate use of DINEOF (Alvera-
Azcárate et al., 2007). After interpolation, the retrieved RrsmRrsL4 . dataset
was used to compute the gap-free (L4) Chl, ChlmRrsL4 , using the same
regional process.

2.4. DINEOF performance analysis and statistical metrics

Here, to qualify the DINEOF interpolation results, we performed two
analyses meant to characterize the final output statistically: 1)

assessment of satellite L4 against satellite L3 data (satellite Chl product
comparison, see section 3.1) and 2) evaluation of satellite data against in
situ observations (matchup analysis, see section 3.2).

In the first analysis (i.e., the satellite Chl product comparison),
several spatially coherent valid ChlL3 pixels (synthetic clouds) were set
aside. These pixels were not used in the interpolation procedure and
were considered references for comparing the goodness of the interpo-
lated fields. Note that for each interpolation run (i.e., each L4 Chl
product), three interpolated results were available from the 25 %, 50 %,
and 75 % cloud coverage of satellite images. This provided an estimate
of the impact of the total amount of available observations over the
goodness of the results, allowing us to evaluate the limit of applicability
of the interpolation procedure. In other words, it helped determine the
expected uncertainty associated with a given interpolated field as a
function of the number of available observations. Besides providing
many observations in the final comparison, this exercise also allowed the
visual control of any spurious structure resulting from the interpolation
procedure.

The in situ data set was used in the matchup analysis to assess the
pixel-scale satellite data regarding basic statistical parameters, as re-
ported in Table 2. For this analysis, satellite RrsL3, ChlL3, ChlClima, and all
the L4 interpolated products were extracted from a 3x3 grid pixels
centred over the geographical coordinates of in situ measurements. At
least 50 % of the 3x3 grid pixels for the matchup station must be valid.
The variation coefficient (the ratio between the standard deviation and
the mean value) computed over the 3x3 pixel window must be lower
than 20 %. None of the in situ data in the matchup exercise was part of
the calibration dataset used to tune the MedOC4.2020 and AD4 Chl al-
gorithms. Since the processed interpolated data were gap-free daily
fields, all in situ observations within the solar day (24 h) constituted
potential valid matchups without any further temporal constraint. After
this screening, the median value of the 3x3 pixel grid was contrasted
against co-located in situ measurement. These criteria yield more than
4600 and roughly 2000 matchups for Rrs and Chl, respectively (Table 3).
Other criteria allow for discerning the impact of the interpolation pro-
cedure on the overall quality of the final product, which is worth
remembering. It comprises available original observations and inter-
polated data where the observations were missing. For example, the
statistics associated with comparing the original L3 and in situ obser-
vations somehow define the best target of agreement that the L4 – in situ
comparison should tend to. Similarly, comparing only interpolated

Table 2
Accuracy metrics used throughout this work to compare the estimated (satellite) dataset, XE

i to a reference, measured in-situ dataset XM
i . XE and XM are the average

fields of both estimated and reference datasets, respectively. N corresponds to the sampling size. Apart from RPD (mean relative percent difference) and APD (mean
absolute percent difference), when applied to Chl data, all other metrics are computed over the log10-transformed data. The S (slope) and I (intercept) are the type-2
linear regression coefficients.

Mathematical expressions of the accuracy metrics

S =

∑N
i=1

(
XE
i − XE)2

−
∑N

i=1
(
XM
i − XM)2

+

{[∑N
i=1

(
XE
i − XE)2

−
∑N

i=1
(
XM
i − XM)2

]2
+ 4

[∑N
i=1

(
XE
i − XE)( XM

i − XM)
]2
}1/2

2
∑N

i=1
(
XE
i − XE)( XM

i − XM)

I = XE
− SXM

r2 =
[
∑N

i=1
(
XE
i − XE)( XM

i − XM)
]
2

∑N
i=1

(
XE
i − XE)2∑N

i=1
(
XM
i − XM)2

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(
XE
i − XM

i
)2

N

√

bias =
1
N
∑N

i=1
(XE

i − XM
i )

RPD = 100 •
1
N
∑N

i=1
XE
i − XM

i
XM
i

APD = 100 •
1
N
∑N

i=1

⃒
⃒XE

i − XM
i
⃒
⃒

XM
i

Table 3
Number of in situ – satellite matchup points as a function of the dataset (Chl or
Rrs) and processing level (observations, L3, interpolated, L4). The data used in
the matchup exercises do not include those used to develop the Chl algorithms.

Dataset Processing
Level

Criteria # of
Matchups

Chl L3 All 821
L4 Without L3 1180

All 2001
Rrs L3 In-water radiometry only 552

All 3518
L4 In-water radiometry only 855

In-water radiometry only
without L3

300

without L3 1125
All 4643
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pixels with in situ observations provides a means to assess the role of the
interpolation procedure over the final product.

3. Results and discussion

3.1. Satellite chlorophyll product comparison

To evaluate the accuracy of the L4 Chl products generated by the
DINEOF interpolation method through statistical parameters (Table 2),
we compared L4 fields over artificially gapped pixels against ChlL3 ob-
servations (similar to Hilborn and Costa, 2018). We also compared ChlL3
against ChlClima, where no interpolation method was applied, assuming
that it might be the only available source for inferring the daily Chl
values (Fig. 4). Indeed, ChlClima values are also used as a first guess within
our DINEOF interpolation processing (see section 2.2). ChlClima showed a
tendency to overestimate ChlL3, as evidenced by the positive bias of
0.046 mg m− 3, and RPD of 16 %. While it is impressive that it can
explain as much as 65 % (r2) of the daily chlorophyll variability at the
km spatial scale, it remains a poor predictor of the daily Chl field,
particularly in highly variable marine environments, where extreme
events such as Marine Heat Waves (MHW) can impact on phytoplankton
production and community composition (Li et al., 2024; Arteaga and
Rousseaux, 2023). Overall, climatology or re-gridding data into a
coarser grid can help increase data coverage and thus allow for consis-
tent monitoring and analysis over time. However, these basic methods
may not be sufficient to capture specific anomalous bloom events or
variations during the missing periods, making it challenging to interpret
correctly, for example, phytoplankton dynamics in time and space (Cole
et al., 2012).

The outcomes associated with applying the DINEOF method to both
L3 Chl and L3 Rrs are presented in Fig. 5. Predictably, a slight decrease
in accuracy was observed with increasing cloud cover, significantly
when the 50 % threshold was surpassed (Alvera-Azcárate et al., 2005).
Overall, as cloud cover increases from 25 % to 75 %, there is a noticeable
rise in APD from 9 % to 19 %, with RMSE and bias increasing to 0.122
mg m− 3 and 0.024 mg m− 3, respectively (Fig. 5). However, this ana-
lysis’s first essential and significant outcome is that all DINEOF-derived
fields (ChlChlL4 ,ChlsRrsL4 and ChlmRrsL4 ) do perform better than Chlclima under all
cloud cover scenarios (Fig. 5). This result is highlighted by the statistical
metrics (higher r2 and lower RMSE and RPD) that suggest greater

accuracy and consistency when using DINEOF approaches. Even in the
worst scenario with 75 % clouds, the ChlChlL4 product (Fig. 5g) showed an
increase of approximately 6 % in r2, while reductions of ~ 26 % in RMSE
and ~ 43 % in RPD when comparing to Chlclima (Fig. 4). This result in-
dicates that the DINEOF algorithm successfully assimilates the vari-
ability of the initial data matrix and accurately incorporates it into the
resulting output. Indeed, r2 values of 0.69 or higher for the various L4
Chl products derived from DINEOF under the three different cloud cover
conditions (Fig. 5) somewhat underscore the reliability of the interpo-
lation method. DINEOF allows a more accurate reconstruction of
missing data by identifying the dominant spatial and temporal patterns
(Alvera-Azcárate et al., 2005). Instead, filling gaps using climatological
values may suppress the natural inter-annual variability. DINEOF pri-
marily retains information at meso and large scales (Liu and Wang,
2018). Still, it can also be applied to high spatial resolution biogeo-
chemical data to resolve complex coastal dynamics (Alvera-Azcárate
et al., 2024).

Interestingly, ChlChlL4 and ChlsRrsL4 exhibited very similar accuracy
within the different cloud cover percentages (Fig. 5 – first and second
columns). This lack of differences suggests that using the DINEOF al-
gorithm to individually interpolate the six RrsL3 spectral bands to create
a gap-free dataset, from which retrieve ChlsRrsL4 , produces similar results
than directly interpolating the original ChlL3 observations. However, to
provide a comprehensive and consistent data archive of gap-free OC
products (Kd490, CDOM concentration, IOPs, etc.), interpolating the Rrs
is still preferable to interpolating the single parameters. On the contrary,
ChlmRrsL4 (Fig. 5 – the rightmost column) yielded higher accuracy across all
levels of cloud cover. For instance, within 75 % of cloud cover ChlmRrsL4

(Fig. 5i) showed a higher r2 value of 0.74 than ChlChlL4 and ChlsRrsL4 at 25 %
(Fig. 5a and b) and similar RMSE, bias, and RPD. This last outcome
clearly shows that interpolating the six bands (i.e., 412, 443, 490, 510,
555, and 670 nm) simultaneously in a single run via a multivariate
DINEOF approach allows producing a consistent and gap-free Rrs field
(i.e., RrsmRrsL4 ), which is here used as input of the Mediterranean-specific
regional Chl algorithm.

The performance improvement of multi-band processing arises from
the increased amount of relevant information, which is only accessible
through this method, unlike others such as L3 Chl Processing or Single
Band Processing. Using more Rrs bands enhances spatiotemporal
coverage. By incorporating all available spectral information, DINEOF
more accurately identifies and reproduces the principal modes of vari-
ability in the dataset (Alvera-Azcárate et al., 2021). In our case, the
multivariate approach captures more modes of variability by exploiting
the closer relationships between different Rrs bands (Huot and Antoine,
2016). In other words , the multivariate version of DINEOF, when
handling multiple Rrs bands simultaneously, allows for more sophisti-
cated reconstructions through EOF decomposition, which improves gap-
filling by leveraging correlations between the different spectral bands.
As such, the algorithm can capture subtle spectral correlations and
variations that might have been missed when processing each Rrs band
individually. Moreover, correlations between variables can also help
regions where one variable has more complete coverage than others,
resulting in better overall reconstructions than a univariate approach
(Alvera-Azcárate et al., 2007). For example, missing Chl data can be
reconstructed using correlations with sea surface temperature or other
available variables (Alvera-Azcárate et al., 2007). This aspect could be
relevant in polar and sub-polar seas with prolonged high cloud cover
extent (Bélanger et al., 2013). Thus, more significant input information
provides a more comprehensive representation of the data’s natural
variability and recurring patterns, leading to more reliable and accurate
reconstructions of missing values. In this regard, we also repeated the
multivariate interpolation at 25 % of cloud cover, feeding DINEOF with
RrsL3 at only five spectral bands (i.e., those used to compute the Chl:
443, 490, 510, 555, and 670 nm). We observed very similar results when

Fig. 4. Scatterplot of the Chl climatology against original satellite L3 obser-
vations in correspondence with the 25% cloud cover pixels (see main text for
more details).
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comparing the statistics of this last run (see Figure S1 in the supple-
mentary material) with those in Fig. 5c. However, the interpolation
using all six bands concurrently (Fig. 5c) indicated a marginally better
result. Therefore, we speculate that when the number of interpolated
spectral bands via the multivariate approach is more significant, more
conspicuous differences may become apparent compared to the uni-
variate approach, mainly because of the multivariate nature of the Rrs
and correlations between wavelengths (Huot and Antoine, 2016). Based
on this result and given that the multi-band interpolation outperformed
the single-band interpolation, we foresee that increasing spectral reso-
lution in the region 412 – 670 nm (i.e., using hyperspectral data) could
result in more accurate and reliable satellite Rrs gap-free datasets for
bio-optical parameter retrieval. However, this is a non-trivial task, and
further research is needed to test the multivariate DINEOF method for
handling hyperspectral data to balance the final output performance
with the computational complexity. This may be possible in the fore-
seeable future thanks to new missions such as NASA’s PACE (Plankton,

Aerosol, Cloud, ocean Ecosystem). From a computational standpoint,
reconstructing multiple variables together should be more efficient than
running separate reconstructions for each variable. Incorporating
hyperspectral data into the multivariate approach holds promise for
achieving more accurate and consistent reconstructions across the entire
spectral range, enhancing spatial and spectral data quality without
compromising computational efficiency.

Comparing interpolation performance under various cloud cover
conditions is crucial to evaluate their reliability and effectiveness in
mapping spatially continuous fields for ecosystem modelling (Gregg,
2008), analysing phytoplankton phenology and bio-physical correla-
tions (Marchese et al., 2019, 2017; Mayot et al., 2020), and partitioning
the ocean surface (Huot et al., 2019; Marchese et al., 2022). In general,
areas with high cloud coverage experience more significant errors in the
reconstruction (Alvera-Azcárate et al., 2011). When visually checking
maps (Figure S2 in supplementary material), all processing methods
effectively compensate for the cloud cover to some extent, maintaining

Fig. 5. Scatterplot of the L4 Chl against original satellite Chl!“ observations in correspondence of the 25 % (a, b, c), 50 % (d, e, f), and 75 % (g, h, i) cloud cover
pixels. The L4 outputs are derived from interpolation of Chl!” (Chl!# $%&,in panels a, d, and g,), from single-band Rrs interpolation processing (Chl!# ’()’, in panels
b, e and h) and multi-bandRrs interpolation processing (Chl!# *()’, in panels g, f and i). To facilitate the comparison, statistics are computed over the same set of
pixels (N = 3604821).
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detail and continuity in the Chl data presentation. However, zooming in
on specific areas (Fig. 1a) reveals subtle differences among the various
processing approaches and imposed cloud percentages (Fig. 6). Indeed,
all methods consistently showed patchy behaviour with local Chl un-
derestimation/overestimation within the three cloud cover percentages
(i.e., 25 %, 50 %, 75 %). However, upon closer examination, ChlClima
exhibited a higher magnitude in the differences, both positive and
negative, than the DINEOF-derived fields, reflecting its inability to
predict Chl within diverse zones (Fig. 6a, 6e, and 6i). This is particularly
noticeable at the 25 % and 50 % levels but less evident at 75 %. The
lowest differences were displayed by ChlmRrsL4 across all levels of cloud
cover, demonstrating better performance with areas of overestimation
and underestimation less marked (Fig. 6d, h, and l). Overall, the dif-
ferences were more balanced and presented fewer extreme values than
the other methods.

Fig. 6 shows that the multi-band processing interpolation is more
accurate than the other tested approaches. Nevertheless the DINEOF
reconstruction are impacted by several factors, including data quality
and the number of available observations in the time series. For
instance, the accuracy of the input data is heavily influenced by atmo-
spheric correction, which is critical for ensuring reliable ocean color
retrievals. Therefore, effective preprocessing, including robust atmo-
spheric correction and quality control, is essential to minimize errors in
DINEOF reconstructions (Hilborn and Costa, 2018). Additionally, un-
derrepresented oceanic processes are more challenging to reconstruct,
making data coverage crucial. The total amount and distribution pattern
of the data availability can vary across ocean basins and over the years
thus influencing the interpolation outcomes. For instance, Zhao et al.
(2024) found that in the oligotrophic regions between 40◦N and 40◦S,
daily Chl coverage can be improved by an average of 43 %–55 %,
resulting in an almost complete daily time series. In contrast, the polar
oceans saw only a 4.66 % increase in coverage. Therefore, greater spatial
and temporal availability improves reconstruction accuracy by allowing

more EOF modes to be calculated, capturing finer-scale variability in the
data (Hilborn and Costa, 2018).

3.2. Matchups analysis

The primary objective of the previous section was to define the best
interpolation configuration, and the outcome was that the multi-band
processing consistently outperformed all other tested approaches.
Based on this result, this section aimed to evaluate Satellite L3 and L4
Rrs and Chl products resulting from the multi-band processing by
comparing them to in situ measurements. Validation is crucial for remote
sensing, as it quantitatively assesses whether satellite observations meet
user requirements and agency expectations and thus suit their intended
use (Concha et al., 2021).

Overall, the RrsL3 observations agreed well with the in situ Rrs
measurements across all bands (Fig. 7). However, 412 and 670 nm bands
exhibit higher RMSE than mid-spectrum bands (i.e., 443 nm, 490 nm,
510 nm, and 555 nm). While Rrs at 412 nm is generally underestimated,
at 670 nm, it is slightly overestimated. These trends are consistent across
both observed RrsL3, and interpolated RrsmRrsL4 data. However, the
observed data typically exhibited better performance. Nonetheless, the
spectral bands between 443 and 555 nm showed an excellent perfor-
mance in both observed and interpolated data, with RPD between 12
and 29 % (Fig. 7). These central bands are critical for Chl retrieval
regardless of the algorithms used. In contrast, the band at 670 nm here
gives only marginal information to identify the optical water type
membership. These results demonstrate that the DINEOF interpolation
with the multi-band approach can provide robust gap-free Rrs data
suitable for distribution by CMEMS as an L4 product.

A good agreement was found when comparing ChlL3 satellite obser-
vations to Chlinsitu, (Fig. 8a) with an RMSE = 0.26, r2 = 0.79, and a bias
equal to 0.0053, indicating excellent performance of the regional algo-
rithms when applied to RrsL3 data. Furthermore, this first comparison

Fig. 6. Example of the percent difference between DINEOF-derived fields according to the three column’s processing configurations and original Chl!“ observations
in correspondence of the boxes defined in Fig. 1a for the 15th February 2023. Each box was used to qualitatively verify the interpolation process under the different
cloud cover percentages (see Section 2.3); these boxes provided a closer zoom on the various fields, which might otherwise have appeared too similar (see Figure S2).
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showed a slope closest to 1 (0.975), indicating the best fit among the
three plots (Fig. 8). As expected, these values tend to slightly worsen as
interpolated pixels are grouped with observations (Fig. 8b) or consid-
ered alone (Fig. 8c) in the analysis; this is true for the regression line and
RMSE and bias, although the correlation coefficient shows minor im-
provements, probably linked to the higher number of observations
involved in two latter cases (i.e., Fig. 8b, 8c). The opposite is true when
considering the relative comparisons between satellite and in situ data,
with both APD and RPD improving from 21 % and 55 % in correspon-
dence with observations (Fig. 8a) to 11 % and 48 % when observations
and interpolated pixels are considered together (Fig. 8b) and to 4 % and
44 % when interpolated pixels considered alone (Fig. 8c). This

inconsistency suggested a closer look at the relative percent difference
distribution of the three plots of Fig. 8. The outcome is that these un-
expected APD and RPD values are because the upper part of the data
plots in Fig. 8 all show a higher degree of divergence, at least as
compared to the lower parts. This along with the non-Gaussian distri-
bution of these three data subsets translates in the average being not the
best predictor for the comparison performance. Values in Table 4 show
the percentiles of the relative difference distribution associated with the
three plots of Fig. 8. The increase of the median relative difference (e.g.,
middle column of Table 4) with the inclusion in the analysis of the
interpolated values (e.g., going from Fig. 8a to Fig. 8c) somehow meets
the expectations, gives consistency back to the entire analysis and most

Fig. 7. Scatterplots of original L3 satellite Rrs observations against in situ Rrs measurements (panels a to f) and scatterplots of only interpolated pixels as derived from
multi-band processing (L4) against in situ Rrs measurements (panels g to l).
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of all shows that the interpolation configuration developed here in this
work is solid by providing excellent comparison against in situ
observations.

Overall, these results show the effectiveness of the interpolation
procedure and highlight that multi-band interpolation reduces the
magnitude of percentage errors in the satellite-derived L4 Chl dataset,
making it more reliable for further applications. However, the potential
applications of DINEOF go beyond the specific dataset on Chl. Indeed, as
we interpolated multispectral Rrs, similar improvements in accuracy
could also be expected for other biogeochemical variables, such as
aCDOM and bbp.

4. Summary and conclusions

Satellite remote sensing is valuable for monitoring OC parameters
over extensive spatial and temporal scales. However, the amount of
missing data in OC observations can be significant. Approximately 75 %
of the ocean surface is usually cloud-covered, blocking visible electro-
magnetic radiation (Barth et al., 2024). This poses a challenge for sat-
ellite sensors relying on the visible light spectrum to measure OC data. In
addition to cloud cover, data can be missing due to other issues such as
atmospheric dust, sun glint contamination, and high sensor-zenith an-
gles (Barth et al., 2024). The scarcity of biogeochemical data at various
scales, from regional to global, underscores the need for broader
coverage and improved detection of temporal and spatial variations.
This issue extends beyond specific regions and encompasses various
biogeochemical parameters, crucial for monitoring ocean ecosystem
health and productivity and assessing the impacts of climate variability
and change. Therefore, the effort made in this work was to evaluate an
“upstream interpolation” approach for reducing data gaps in OC data
time series.

In this context, the DINEOF technique has been explicitly assessed for
the first time to reconstruct Rrs, the core parameter in OC remote
sensing. Specifically, the novelty of this work stands in having interpo-
lated the six RrsL3 bands (i.e., 412, 443, 490, 510, 555, and 670 nm),

following a multivariate-based approach. Employing DINEOF signifi-
cantly enhanced data coverage of the daily Rrs dataset. As demonstrated
by our results, the resulting gap-free Rrs dataset can be used to improve
the accuracy of L4 Chl prediction. Furthermore, instead of performing
EOF decomposition multiple times, for example, once for each Rrs band,
the DINEOF multivariate approach does it all at once. This reduces the
computational burden by avoiding redundant calculations and allows
the algorithm to minimize processing time, making the multivariate
approach more effective and efficient.

Moreover, we expect the accuracy of the RrsmRrsL4 to be further
enhanced if the DINEOF algorithm exploits richer spectral information,
mainly using hyperspectral reflectance data from, for example, new
satellite missions such as PACE. Transitioning from multi-spectral to
hyperspectral satellite sensors for ocean colour is expected, for example,
to significantly improve satellite identification of phytoplankton biodi-
versity, a crucial component of the functioning of marine ecosystems
and the upper ocean biogeochemistry. Hence, given the importance of
using these data streams, this study underscores the utility and critical
role of Rrs as a standalone dataset on which the DINEOF interpolation
method can be applied to derive several gap-free biogeochemical pa-
rameters. From an operational point of view, the results of this paper
demonstrate that using the DINEOF method with the proposed data
processing configuration does not add any significant source of uncer-
tainty and makes it possible to generate daily OC products routinely
without any gaps. This may provide valuable global OC data, enhancing
reliability and stability in operational satellite data processing
workflow.

This study specifically targeted the Mediterranean Sea due to the
large in situ dataset available for validation and its relatively low cloud
coverage, which permitted well-designed experiments. Although the
DINEOF multi-band interpolation method theoretically applies to any
region, including coastal waters, tropical areas, subpolar regions, and
even globally, its performance must be deeply evaluated (Zhao et al.,
2024; Hilborn and Costa, 2018). As this work thoroughly highlighted,

Fig. 8. Scatterplot of in situ Chl measurements against (a) Chl!“ (Chl algorithm applied to original satellite Rrs!” observations), (b) to all available Chl!# *()’collocated
data (Chl algorithm applied to original Rrs!“ observations and available interpolated Rrs!# *()’) and (c) to all available interpolated Chl!# *()’collocated data only
(Chl algorithm applied only to interpolated Rrs!# ’()’) using the multi-band processing.

Table 4
Percentiles of the distribution of the relative difference (computed as the ratio between the ChlSatellite-Chlinsitu difference and Chlinsitu) between the in situ and the
satellite Chl data shown in Fig. 8. The second row refers to the comparison of in situ Chl against both ChlL3 (original observations) and ChlmRrsL4 (interpolated values). For
a complete description of the symbols, please refer to Table 1.

Satellite
Data

Percentiles of relative % difference

0 5 25 50 75 95 100

ChlL3 − 88.93 − 55.41 − 34.79 − 0.31 47.05 169.08 776.54
Fig. 8a

ChlL3&ChlmRrsL4
− 90.74 − 62.04 − 35.63 − 8.56 36.73 150.26 776.54

Fig. 8b

ChlmRrsL4 − 90.74 − 63.91 − 36.37 − 12.05 27.30 128.85 507.07
Fig. 8c
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the performance of any interpolation approach strongly depends on
observation quality, distribution, and availability.
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Alvera-Azcárate, A., Barth, A., Parard, G., Beckers, J.-M., 2016. Analysis of SMOS sea
surface salinity data using DINEOF. Remote Sens. Environ. 180, 137–145. https://
doi.org/10.1016/j.rse.2016.02.044.
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and climactic effects of chlorophyll-a variability around Iceland using reconstructed
satellite data fields. J. Mar. Syst. 163, 31–42. https://doi.org/10.1016/j.
jmarsys.2016.06.005.

Morel, A., Voss, K.J., Gentili, B., 1995. Bidirectional reflectance of oceanic waters: a
comparison of modeled and measured upward radiance fields. J. Geophys. Res.
Oceans 100 (C7), 13143–13150. https://doi.org/10.1029/95JC00531.

Navarro, G., Caballero, I., Prieto, L., Vázquez, A., Flecha, S., Huertas, I.E., Ruiz, J., 2012.
Seasonal-to-interannual variability of chlorophyll-a bloom timing associated with
physical forcing in the Gulf of Cádiz. Adv. Space Res. 50 (8), 1164–1172. https://doi.
org/10.1016/j.asr.2011.11.034.

O’Reilly, J.E., Maritorena, S., Siegel, D.A., O’Brien, M.C., Toole, D., Mitchell, B.G.,
Kahru, M., Chavez, F.P., Strutton, P., Cota, G.F., Hooker, S.B., McClain, C.R., Carder,
K.L., Muller-Karger, F., Harding, L., Magnuson, A., Phinney, D., Moore, G.F., Aiken,
J., Arrigo, K.R., Letelier, R., Culver, M., 2000. Ocean Color Chlorophyll a Algorithms
for SeaWiFS, OC2 and OC4: Version 4. In: Hooker, S.B., Firestone, E.R. (Eds.),
SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA Tech. Memo.
2000-206892 11. NASA Goddard Space Flight Center, Greenbelt, pp. 9–23.

Palacios, D.M., Bograd, S.J., Foley, D.G., Schwing, F.B., 2006. Oceanographic
characteristics of biological hot spots in the North Pacific: a remote sensing
perspective. Deep Sea Res. Part II 53, 250–269. https://doi.org/10.1016/j.
dsr2.2006.03.004.

Polovina, J., Howell, E., 2005. Ecosystem indicators derived from satellite remotely
sensed oceanographic data for the North Pacific. ICES J. Mar. Sci. 62, 319–327.
https://doi.org/10.1016/j.icesjms.2004.07.031.

Racault, M.-F., Platt, T., Sathyendranath, S., A irba, E., Martinez Vicente, V., Brewin, R.,
2014. Plankton indicators and ocean observing systems: support to the marine
ecosystem state assessment. J. Plankton Res. 36, 621–629. doi: 10.1093/plankt/fbu0
16.

Rinaldi, E., Buongiorno Nardelli, B., Volpe, G., Santoleri, R., 2014. Chlorophyll
distribution and variability in the Sicily Channel (Mediterranean Sea) as seen by
remote sensing data. Cont. Shelf Res. 77, 61–68. https://doi.org/10.1016/j.
csr.2014.01.010.

Taylor, M.H., Losch, M., Wenzel, M., Schröter, J., 2013. On the sensitivity of field
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