An Automatic Quality Evaluation for Natural
Language Requirements :

F. Fabbrini, M. Fusani, S. Gnesi, G. Lami

Abstract g S
This paper presents a tool called OuARS (Quality Analyzer for Software Requirements

Specifications) for the analysis of natural language software pequirements. The definition of { R‘“32 (@OQ .i)

OuARS was based on a special Quality Model for software requivements. The Quality Model
aims to provide a guartitalive, corrective and repeatable evaluation of software requirement
documents. To validate the Quality Model several real software requiretienl documents were
analyzed using our tool with some interesting results.

Categories: D.2.1 [Software Engineering] Requirements/Speciﬁcations; p.2.8 [Software
Engineering] Metrics

1. Introduction

The achievement of the quality of software requirements is the first step towards sofiware quality. The
process leading to the quality of requirements starts with the analysis of the requirements expressed in
natural language (NL) and continues with their formalization and verification (for example by using
formal methods).

Despite its inherent ambiguity and informality that determine a difficult proving for correctness,
natural language is largely used in the software industry for specifying software requirements. Besides
the inherent problems of NL, there are other problems which desive from current practices in the
industrial SW development process. For example the volatility of the requirements during the
development process and the variable levels of linguistic quality due to the different sources they
come from [16], means that NL requirement specifications is considered as highly risky for software
projects.

Anyway, the use of NL for specifying requirements indeed has some advantages such as, for example,
the ease with which it can be shared among the different people involved in the software development
process. In fact, a NL requirement document can be used in different ways, and in different
development phases of the final product. For example, it may be used as a working document to be
provided as input for architecture designers, testers and user manual editors ot it may be also used as
an agreement document between customers and suppliers or as at information source for the project
manager [15].

Tt is well known that the presence of inaccuracies in requirement documents and specifications
introduces serious risks to afl the consequent phases of software development. In particular, it is
important to provide methods and tools for the analysis of the NL requirement documents hecause
they represent the starting point of a software project {8], [10], [L1].

Several studies dealing with the evaluation and the achievement of quality in natural language
requirement specifications can be found in the literature. We will briefly discuss some of the those
that we consider to be of particular interest.

Hooks [5] discusses a set of quality characteristics necessary to produce well-defined natural fanguage
requirements, This paper presents some comMmon problems which arise when requirements are
produced and looks at how to avoid them. It provides an in depth survey of the principal sources of
defects in natural language requirements and the related risks.

Wilson and others [18] examine the quality evaluation of natural language software requirements.
Their approach defines a quality model composed of quality attributes and quality indicators, and
develops an automatic tool to perform the analysis against the quality model. Nevertheless, their work
does not address some important issues such as the adaptability of the tool for different domains.
Moreover, even though their quality model takes into account both syntactic and structural aspects of
the requirement document, they don’t consider any semantic aspects of the quality of requirements in
their analysis.

Other works investigate how to handle ambiguity in requirements. In particular, Kamsties and Paech
[7] focus especially on the ambiguity evaluation of natural language requirements. They start from the

consideration that ambiguity in requirements is not just a linguistic-speciﬁc problem and put forward
the idea of a checklist addressing not only linguistic ambiguity but also the ambiguity related to the
particular domain. They identify the principal deficiencies of the solutions which are usually adopted
to avoid ambiguity in natural language requirements:
« Lack of acceptance by intended users and unfeasibility: extensive lists of rules are usually ignored
because they are hard to use in practice .
+ Lack of specificity: current inspection techniques rely on checklist-based reading that are
composed of unspecific rules . Usually checklists are also ambiguous.
« Uni-dimensionality: only linguistic ambiguities are addressed while ambiguity with respect to
other requirements, the application system domains are not addressed.
Mich and Garigliano [13] put forward a set of measures for semantic and syntactic ambiguity in
requirements. Their approach is based on the use of information on the possible meanings and roles of
the words within a sentence and on the possible interpretation of a sentence. This is done using the
functionalities of a tool called LOLITA. . Natt och Dag et alt. [14] recently presented an approach
based on statistical techniques for the similarity analysis of NI requirements aimed at identifying
duplicate requirement pairs. This technique may be successfully used for revealing interdependencies
and then may be used as a support for the consistency analysis of NL requirements. In fact, to
automatically determine clusters of requirements dealing with the same arguments may enable human
analysis aimed at detecting inconsistencies and discrepancies by focusing on smaller sets of
requirements.

Our objective is to present an automatic tool for the analysis of NL requirement documents in order to
make detection casier and so that defects can be removed which could cause errors in subsequent
development phases.

The first step of our approach was 10 define a Quality Model against which requirements could be
checked in order to remove detectable ambiguities and inconsistencies and incompletenesses from a
Jinguistic point of view. The Quality Model is composed of quality properties to be evaluated by
means of quality indicators.

Then an automatic analysis tool, called QuARS (Quality Analyzer for Requirement Specifications),
was devised taking into account the Quality Model and was used to evaluate real requirement
documents used by industry.

This paper i8 organized as follows: in Section 2. our Quality Model and methodelogy for NL software
requirements evaluation is described. In Section 3 the functionalities and the principal characteristics
of the QuARS tool are described. In Section 4. we discuss the real use of QuARS in the requirement
ptocess and we present the results of some case studies. Finally, in section 3, we present the
conclusions.

2. Natural Language Software Requirement Specifications (NLSRS})
Quality Evaluation

Not afl aspects related to the automatic support of the analysis/evaluation of the quality of
requirements can be addressed in the same way, Of with the same thoroughness and ease. In fact,
correctness evaluation of NL requirements, i.¢. the verification that the system being constructed is
correctly described, needs to be supported by more rigorous methods [12] as for example formal
methods [19].
Fortunately, some issues related to the linguistic aspects of NL requirements ¢an also be addressed
without increasing the formalism level.
These issues may be grouped into two principal families:

s Expressiveness

» Consistency
The Expressiveness family includes those quality characteristics which deal with theunderstanding of
the meaning of the requirements by humans. The following topics should be considered as part of the
Expressiveness family:
« Ambiguity mitigation: detection and correction of linguistic ambiguities in the sentences,

« Understandability improvement: evaluation of the understandability level of a requirement
document and an indication of the areas which need to be improved;

s Specification completion: detection and correction of those sentences containing parts which need
to be better specified or need a more precise formulation.

The Consistency family includes those quality characteristics which deal with the presence of

semantic contradictions and structural incongruities in the NL requirement document. The following

topics should be considered when looking at the Consistency family:

« Mutual referencing checking: detection of missing or wrong references in the requirement
document

¢ (Clustering for discrepancy detection: grouping requirements o1l the basis of similar arguments in
order to facilitate the manual analysis of discrepancies, conflicts and duplications.

These families include quality issues that can be successfully addressed and supported with automatic

tools which manage the requirements as they are, i.. requirements expressed in NL.

2.1 A Quality Model for Natural Language Requirements Specifications

As with any other evaluation process, the quality evaluation of NLSRS has to be conducted against a

model. The Quality Model we defined for the NLSRS is aimed at providing a way to perform a

quantitative (i.e. that allows collections of metrics), corrective {i.e. that could be helpful in the

detection and correction of defects) and repeatable (i.c. that provides the same output against the same

input in every domain) evaluation.

The Quality Model was defined starting with the identification of a set of representative and

meaningful high level properties which needed evaluating. Then a set of quality indicators which were

directly detectable and measurable in the requirement document was defined.

The high level properties of the Quality Model are:

e Testability: the capability of each requirement to be assessed in a pass/fail or quantitative manner.

s Specificity: the capability of each requirement to provide a precise and specific description of its
arguments

« Understandability: both the capability of each requirement to be fully understood when used for
developing software and of the requirement specification document to be fully understood when
read by the user.

. Consistency: the capability of the requirements to avoid potential or actual discrepancies.

The above properties don’t cover all the possible quality aspects of software requirements which are

manageable by a linguistic approach, but they are sufficiently specific to be applied (with the support

of an automatic tool) to compare and verify NLSRS documents. Furthermore, on the basis of the

existing literature and our experience in the Requirements Engineering and Sofiware Process

Assessment, we consider this set of properties as sufficient to include most of the syntax-related issues

of a requirement document along with a number of interesting structural issues which affect the

semartics of the sentences.

The above properties can be automatically evaluated by means of quality indicators. Indicators are

syntactic or structural aspects of the reguirement specification documents related to particular

properties of the requirements themselves.

The Indicators can be detected during the parsing of the requirement document. The detection of an

Indicator in the requirement document points to a potential defect addressing the correspondent

Property so that corrective actions may be easily done.

In order to do this both the single sentences of the requirement document and the whole requirement

document structure are analysed. In fact, some quality Indicators investigate the quality of the

requirement document, while others investigate the quality of the single component of the document

itself (i.. the requirement sentences).

The following tables describe the Quality Model, in particular:

Table 1 describes the Indicators related o the quality Properties along with examples of the keywords

used to detect potential defects in the NLSRS.

Woperty

TESTABILITY

Indicator

Optionality-revealing wordings:
possibly, eventually, if case, if
possible, if needed, ..

Optionality Indicator: it reveals a requirement
sentence containing an optional part (i.e. a part
that can or cannot be consideted)

Subjectivity—revealing wordings:
similar, better, similarly, worse,
bearing in mind, take inlo account,
as [adjective] as possible

Vagueness-revealing wordings.
clear, easy, strong, good, bad,
efficient, useful, adequate, fast, ...

Subjectivity Indicator: it is pointed out if
sentence refers to personal opinions or feeling

Vagueness I[ndicator: it is pointed out if the
sentence includes words which are inherently
vague, le. words having a non uniquely
quantifiable meaning

Weakness Indicator: it is pointed out when 2
sentence contains a weak main verb

Weak verbs: can, could, may.

SPECIFICITY

Underspecification Indicator: it is pointed out
when the subject of the sentence identifies a class
of objects and doesn’t contain a modifier
specifying an instance of that class.

CONSISTENCY

Undereference Indicator: it is pointed out in a | -
NLSRS document when a gentence contains
explicit references to:
e pot numbered sentences within the
NLSRS document itself
« documents not referenced within the
NLSRS document itself
o entities not defined nor described within
the NLSRS document itself

UNDERSTANDABILITY

Subject expressed by
demonstrative adjectives (this,
these, that, those) OF Pronouns (i,
they, ..). Subject specified by:
adjectives (previous, next,
following, last,..) or prepositions
(above, below, D
Multiplicity-revealing words: and,
or, and/or, ...

Implicity Indicator: it is pointed out in a sentence
when the subject is generic rather than specific.

Multiplicity Indicator: it is pointed out in a
sentence if the sentence has more than ope main
verb or more than one direct or indirect object
that specifies its subject

Under explanation [ndicator: it is pointed out n
a NLSRS document when a sentence contains
acronyms not explicitly and completely explained
within the NLSRS document itself

Tabte 1: Quality Properties and their Indicators

The Indicator keywords used for detecting Indicators in the requirement document Were defined after
the analysis of a number of requirement documents taken from industrial projects and on the basis of
our experience in Requirement Engineering {1}, 121, 131, [9] and software process assessment
according to the SPICE modet (1SO 15504) {6].

2.2 The Evaluation Methodology

Our approach to the problem of the evaluation and improvement of the quality of requirements is to
use the defined quality model (and in particular its Indicators) to underline potential defects without
forcing any corrective action. It is then left to the requirement engineer to decide if those sentences
that, according the quality model, are considered defective need to be corrected and how. This
approach takes into account the information regarding the specific application domain or other
environment peculiarities that are part of the expertise of the requirement engineer and are difficuls to
know a-priori.

The quality Indicators of the Quality Model differ in terms of their scope (see Table 2.); some of them
need to analyze single sentences in order to be calculated, others need to analyze the whole
requirement document.

Requirement Whole
Quality Indicator Document Requiremen!
Sentences Document
Implicity B
Multiplicity .
Optionality .
Subjectivity .
Under- specification .
Under-reference .
Under-explanation .
Vagueness .
Weakness o

Table 2. Scope of the quality Indicators

Due to the different scope of the Indicators belonging to our quality model, the evaluation
methodology we propose is based on a twofold analysis: both the requirement document considered as
a whole and the single sentences composing it are evaluated (see Figure L.). The final quality
evaluation and the consequent possible corrective actions concern the defects related to the document
structure and those related to single sentences.

NLSRS |
Doc NLSRS DOC.
' STRUCTURE ANALYSIS

O——pCrpam <—A—rP>cO
A E lo
: pasodwo)

NLSRS DOC. SENTENCES
SYNTAX ANALYSIS

Figure 1. The quality evaluation of a requirement document

-

3. QuARS: Quality Analyzer for Software Requirement Specifications

In order to make the analysis of natural language software requirements automatic, a tool has been
jimplemented at CNR-IEL The tool, named QUARS (Quality Analyzer for Software Requirement
Specifications) was devised to parse requirement sentences written in English and to point out a
number of potential errors in the requirements themselves.

QuARS was developed in the framework of a project' that aims to transfer technology 1o small and
medium sizedcompanies in order to improve their software development.

In the tool we developed a linguistic analysis engine which defines a basic English grammar
(currently about 40 production rules,) and a small dictionary.

The dictionary contains a set of grammatical words (such as determiners, particles, quantifiers,
auxiliary verbs, etc.) manually developed by 2 computational linguist and a set of “semantic” words
(nouns, adjectives, adverbs, verbs) automatically generated by means of the morphological analyzer
ENGLEX (http://www.sil.org) yunning on our fest corpus. The dictionary also contains the list of
words defined by the ARCMA-Boeing Simplified English Project
(htt{);//www.aecma.m‘g’Publications/SEnglish/senglish.htm).

For each word, the part of speech and morphological information are stored; grammatical words can
also have the grammatical functions defined.

The grammar covers the basic structures of main sentences, direct questions, infinitive clauses, noun
phrases and verb groups.

To summarize, the QUARS tool is composed of the following main logic modules (see also Figure 3

¢ Lexical Analyzer (ENGLEX — http://www.sil.org)
° Syntax Analyzer

° Quality Evaluator

. Special purpose grammar

. Dictionaries

The phases of the NLSRS quality evaluation carried out by the QUARS taol are described below:

« The files containing the NLSRS document are analyzed by the {exical Analyzer in order to verify if
an appropriate English dictionary has been used. The output of the Lexical Analyzer (Le. the lexical
category associated with each word of the sentence) is the input of the Syntactical Analyzer. , It
builds the derivation trees of cach sentence, using a special purpose grammar. During the syntactic
analysis process, each syntactic node is associated with a feature structure which specifies morpho-
syntactic data of the node and application-specific information, such as eTrors with respect to our
quality model.

In figure 2 the derivation tree and the feature structures of the root node for the sentence “the system
is running and the application exits” are shown (“error 077, in the feature structure, corresponds to
the criterion that multiple sentences should be avoided)

The set of derived trees is the nput of the Quality Evaluator module of the QUARS tool. The Quality
Evaluator module also receives the special dictionaries as input. These dictionaries contain the
constructions and the syntactical clements that allow the detection of defects in the NLSRS (see for
example the Notes column in Table 1). The Quality Evaluator module, according to the rules of the
Quality Model and by reading the dictionaries, performs the evaluation of the sentences. Finally, it
provides the user with Warning Messages, that are able to point out which sentences of the NLSRS
Document have potential defects.

! The LINK project (MURST L.488/92), with the partial support of SSSUP S.Anna, Pisa, Tialy.

530

—
)}3)\ COlNJ(lﬁ) /8(29\
/N'P(4)\)’({ and NP(zZ1) \«']'-’127)
The systein is Tuining the application exists
‘— sentence-type: {DECH —1
B , Subject. [noun: {system}]
.
predicate; [verb: {zunning} }
s-struet: coni: fand}
m} subject: [noun: {application} |
predicate: {verb: {exists]]
L error: {07} |

Figure 2: An example of a derivation tree and the agsociated feature structures

QuARS was designed with the aim of mainly matching the following characteristics:

« Ease of use: the tool has to user friendly both in terms of the people training needed and time
consuimed.

 Generality: the tool needs to run independently of the format of the NLSRS document.

« Flexibility/tailorability: the 500l has to be modifiable in order to make it more effective for
particular application domains

NL Req.s
document T
—
Lexical Syntactical Quality
N analyzer analyzer Evaluator
‘W :
arning
message f ?

x| x |

i Grammar i Dictionary t

Figure 3 Scheme of the QuARS tool operation

In the following we describe the choices adopted to match these main target characteristics (easy to
use, generality and flexibility).

Easy to use: despite QuARS having its own text interface, a TCL/TK [17] graphical interface was
released to simplify the use of the tool (see figure 4).

The QuARS GUI {Graphic User Interface) allows the user:

« to carry out an easy and fast navigation in the file system in order to select the file to be analyzed,

« 1o edit and save the specification file to be analyzed,

+ tocdit and save all the QUARS dictionaries using the simple but complete built-in editor,

« to easily choose which work session to perform,

« to save the results in a file which can be clearly seen in the wide central window for future use,

+ o see the statistics regarding the current work session,

+ to provide on line help regarding the purpose of the analysis and the functionality of the tool.

@ sentence: . : . : o i : .
{“164-Level 0) TISUE shall display the dynanioc call geaph. vith a clear .
evidence of the imexecuted arcs S : T Do
e.g. fotted lines against puntimsras)
ould he vague beqause it contains the word:

"¢lear”

The sentence:

| (#954-Level 1) The 15DE shall provide a fast and Large back-up facility
that inables the systen) o . o
adninisteator to. perforn back-ups in batch

{e.g. overnight withent -changing the back-up nedia)"

zonld be vague because it gontaing the werd:

“fagt". - RIS R

The sentence: R o :
cons display shall be campliant with the following constraints:
& it shall make a consistent use of the picture {for faciliting the user wdors
4 it shall bave a significant 1abel (e.q. the nane of the toel}l” - .
ould he vaqe hecause it coptains the word: C ’

significant’

Figure 4. QUARS: the user interface

Generality: the expected format of the requirement document to be evaluated is the text format. This
format allows you to achieve high generality because it is always possible to save every format as text
format. The risk associated with this strategy is the possibility of leaving out some information related
to the particular layout or formatting of the NLSRS document. For example, if multilevel indented
bullet lists are used, after the transformation in text format, the hierarchy represented by means of the
different levels of indentation will be lost. On the other hand, it can be asswmed that in each
requitement document the hierarchy of the requirements isn’t established by means of the formatting
of the text, but has to be defined by means of the appropriate numeration of the sentences. Then the
possible tack of :nformation doesn’t compromise the validity of the textual requirement document.
Flexibility/Tailorability: the flexibility/tailorability targes characteristic is very important for the use
of QuUARS in industrial domains. In fact, it is important to adapt QUARS to different projects and
different application domains. The way QUARS does it is by allowing the user o evolve and modify
the dictionaries, Dictionaries are directly used for the detection of several Indicators, and in some
cases the content of the dictionaries is strictly dependent on the application domain of the requirement
document under evaluation. Some Indicators are more dictionary-sensitive than others (e.g. Vagueness
and Under-specification}

Table 3 shows some examples of requirement sentences containing defects detectable using QUARS.

Indicators Negative Examples

Implicity the above requirements shall be verified by test

Optionality the system shall be such that the mission can be pursued, possibly without
performance degradation

Subjectivity in the largest extent as possible, the system shall be constituted by
commercially available software products

Vagueness the C code shall be clearly cormmented

Weakness the results of the initialization checks may be reported in a special file

Underspecification | the system. <hall be able to run also in case of atfack

Mulsiplicity The mean time needed to remove a faulty board and restore service shall be less
than 30 min.

Undereference the software shall be designed according to the rutes of the Object Oriented
Design

Underexplaination | the handling of any received valid TC packet shall be started in less than 1
CUT

Table 3: Examples of requirement sentences containing defects

4. QuARS in the Requirements Process: some case studies

n this section we discuss how the QuARS tool could be integrated within the software requirement
process and in particufar the software requirement evaluation process. The NL requirement evaluation
procedure using QUARS is composed of the following steps:

¢ Input a requirement document in text format;

+ Select an Indicator;

¢ Run QuARS;

+ Use the output of QUARS {indication of those sentences in the requirements document
containing potential defects according to the underlying quality model) in order to decide if
the document needs modifying

The above procedure can be described more formally as follows:

Let ‘D be the requirement document under evaluation.

Let Q be the defined Quality Model.

LetIbe {iglk=1,.. n} where i¢ is the k-th indicaior of Q,

Let Plo(D} => RPDYg the function that, given a requirements document D, returns the set of
sentences of D having potential defects according to any indicator it

et myz the number of sentences in D containing potential defects according to iz

Hence, RPD = { ds515= 1, .., M y where 4s%;is the j-th sentence of T containing potential defects
according to the indicator i

We carried out an anafysis of real requirement documents taken from industrial software prajects
using QuARS, in order to better understand if it provides a real support to the improvement of the
quality of NL requirements in an industrial environiment.

The requirement documents came from different application domains:

D7. Business Application: Functional Requirements of a Transaction and Customer Service (TACS)

Check Cashing module;

D2, Space Software Application: Funciional Requirements of a sub-system of a space vehicle,

D3. Telecommunication Application: Requirement Specifications of a project aimed at realizing new
generation STM switches;

D4, Security Application: Functional Security Requirements for an Application Level Firewall
Protection Profile;

We calculated for each izof I the corresponding RPDHg . The outcomes of the application of QuARS

to the above requirement documents are presented in Table 4. which shows, for each evaluated

document, the number of indicator oCCUrrences

D1 69 34 125 265
D2\ 97 | V7 257 | 44
D3 72 95 190 395
D4 22 30 52 119
™ | i iz i3 ‘ iy i) i, | Total Total
defects | requirements
) i Muliiplicity tnd.; I7: Vagueness Ind; i3 Optionality ind,,

1.4, Underspecification Ind.; i, Implicity Ind.; i5. Subjectivity Ind.
Table 4. Outcomes of the use of QUARS

The outcomes of the use of QuARS on these four case studies show that the occurrences of the
potential defects (i.e. those syntactic and structural aspects of a requirement document that according
to our Quality Model are pointed out as defects), are significantly high (around 50% of the total
number of requirement sentences). According to the defined approach, the requirement engineers, On
the basis of their experience and ability, will be free to correct the document, modifying those
sentences that they consider are actually defective. In other words, QuARS doesn’t force the
requirement engineers to follow a particular standard or style but it supports them pointing out
potential weak points which need careful management.

The number of elements of each RPD%q may then be used to estimate the percentage of distribution
of detected defect types. Figure 6. shows that some particular defects are more frequently detected
¢han others by QUARS. In particular, multiphicity vaguenoess and under-specification seem to be the
types of defects affecting a large part of the reguirement seniences of a document.

mmuliiple @vague Doptional
Cunderspec E impiicit msubjective

Figure 5. Percentage distribution of defects types detected

Furthermore, a restricted version of QuARS (limited to vagueness, weakness, subjective and optional
anatysis) was used in a European Space Agency project [4], to analyze the requirements of three real
projects (two projects dealing with satellite on-board software and the other dealing with a ool for
software production). These documents {containing altogether over 5000 lines of text) were final
versions of requirement specifications of ESA projects (then already analyzed, and approved). The
results of this analysis are shown in table 4.

10

Indicators | Defective sentences

Vagueness
Weakness
Subjectivity
Optionality
Table 4. - Results

0%
of the use of QUARS in the SPEC project

Previous results show that QuARS was able to identify a significant number defective sentences that
were not found by the requirement engineers involved in these ESA projecis.

5. Conclusions

In this paper we presented a method for evaluating natural language software requirements according
to a previously defined Quality Model. The evaluation of requirement documents following our
method aims to support a very ¢ritical phase of the software process: the passage from informal
requirements (written in natural language) to semi-formal/formal models. The proposed Quality
Model was defined with the purpose of detecting and pointing out potential syntactic and structural
deficiencies that can cause problems when a atural language requirement document is transformed in
to a more formal document. The definition of the criteria used in the Quality Model was driven by
some research in the field of natural language understanding (in order to detect the syntactical
components introducing for example ambiguity), by our experience in the formalization of sofiware
requirements and also by an in depth study of real requirement documents provided by industrial
partners. After the definition of the Quality Model against which the natural language requirement
documents are evaluated, a too}, named QuUARS (Quality Analyser for Requirement Specifications),
based on the developed model was developed.

In order to establish confidence regarding the effectiveness of our method/tool, several industrial
requirement documents written in natural language were evaluated using QUARS. The Qutcomes Were
encouraging because the tool found a large number of potential defects and the requirement engineers
of the involved industries found the results useful for improving their requirement documents in that
they found in the RPDq a significant set of actual defects occurting in the requirement
specifications., The work carried out so far can be continued in two main directions: to enlarge and
vefine the quality modet in order to make the support provided more complete and o make it also able
(by modifying parts of the lower level of the tooh) to analyze other documents produced in the
software development process such as for example: check fists, questionnaires and user manuals.

Acknowledgements
Special thanks to M. Giancarlo Gennaro (Intecs HRT) for his cotlaboration and valuable suggestions.

6. References

(1] F.Fabbrini, M.Fusani, g.Gnesi, G.Lami Quality Evaluation of gofiware Requirement
Specifications, Proc of Software & Internet Quality Week 2000 Conference., San Francisco, CA
May 31-June 2 2000, Session BAZ.

[2] F.Fabbrini, M.Fusani, V Gervasi, S.Gnesi, g Ruggieri. On linguistic quality of Natural Language
Requirements. In 4 th international Workshop on Requirements Engineering: Foundations of
Software Quality REFSQ’98, Pisa, June 1998.

[31 A, Fantechi, M.Fusani, S .Gnesi, G.Ristori. Expressing properties of software requirements
through syntactical rules. Technical Report. IEI-CNR, 1997.

4] G.Gennaro, D.Lagelle, H.Schabe. Software product Evaluation and Certification, Proc. Of Data
Systems in Aerospace Conference, Nice (France), May 28 - June lst 2001,

[5] 1. Hooks, Writing Good Requirements, Proc. Of the Fourth International Symposium of the
NCOSE , 1994, Vol. 2., pp. 197-203.

[6] ISOJIEC JTCL/SCT/WGI0 TR 15504 Software Process Assessment Parts 1-9.

[7]1 E.Kamsties, B Peach Taming Ambiguity in Natural Language Requirements ICSSEA 2000-5.

11

[8] I. Krogstie, O.1. Lindland, G. Sindre. Towards a Deeper Understanding of Quality in
Requirements Engineering. In 7™ International CAISE Conference, vol. 932 of Lecture Notes in
Computer Science, pages §2-95, 1995.

(91 G. Lami Towards an Automatic Quality Evaluation of Natural Language Software
Specifications, Technical Report. B4-25-11-99. IEI-CNR, 1999,

[10] F.Lehner Quality Control in Software Documentation Based on Measurement of Text
Comprehension and Text Comprehensibility. Information Processing & Management, vol; 29,
No. 5, pp 551-568, 1993,

[11] B.Macias, S.G. Pulman. Natural Language processing for requirement specifications. In Redmill
and Anderson, Safety Critical Systers, pages 57-89. Chapman and Hall, 1993.

[12] B.Meyer. On formalism in specifications. IEEE Software. January 1985, pages 6-26.

[13] L. Mich, R. Garigliano, Ambiguity measures in Requirements Engineering, Proc. International
Conference on Software - Theory and Practice - ICS2000, 16th IFIP World Computer Congress,
Beijing, China, 21-25 August 2000, Feng Y., Notkin D., Gaudel M., Publishing House of
Electronics Industry, Beijing, 2000, pp. 39-48.

[t4] 1. Natt och Dag, B. Regnell, P. Carlshamre, M. Andersson, J. Karlsson Evaluating Automated
Support for Requirements Similarity Analysis in Market-Driven development Seventh
International Workshop on Reguirements Engineering: Foundation for Software Quality,
Interiaken, Switzerland, June 4-5 2001,

[15] N. Power Variety and Quality in Requirements Documentation Seventh International Workshop
on Requirements Engineering: Foundation for Software Quality, Interlaken, Switzerland, June 4-
52001.

f16] B. Regnell, P. Beremark, O. Eklundh A Market-Driven Requirements Engineering Process:
Results From an Industrial Process Improvement Programme, Requirements Engineering, 3(2),
1998, pp. 121-129.

[17] B.Welch Practical Programming in Tcl and Tk second edition Prentice Hall 1997.

[18] W.M.Wilson, L.H. Rosenberg, L.E. Hyatt. Automated quality analysis of Natural Language
Requirement specifications. PNSQC Conference, October 1996,

[19] J.M. Wing, J. Woodcock, J. Davies {(eds.) FM'99 — Formai Methods, vol. I and If LNCS 1708,
1709, Springer.

12

