
Received 24 July 2023, accepted 5 August 2023, date of publication 9 August 2023, date of current version 16 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3303810

A Survey on Networked Data Streaming
With Apache Kafka
THEOFANIS P. RAPTIS AND ANDREA PASSARELLA
Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy

Corresponding author: Theofanis P. Raptis (theofanis.raptis@iit.cnr.it)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program MARVEL under Grant 957337.

ABSTRACT Apache Kafka has become a popular solution for managing networked data streaming in a
variety of applications, from industrial to general purpose. This paper systematically surveys the research
literature in this field by carefully classifying it into key macro areas, namely algorithms, networks, data,
cyber-physical systems, and security. Through this meticulous classification, the paper aims to identify and
analyze the optimization aspects relevant to each area, drawing upon practical applications as the basis
for analysis. In this respect, the paper synthesizes and consolidates existing knowledge, saving researchers
valuable time and effort in searching for relevant information across multiple sources. The tangible benefits
of this survey paper include providing a consolidated knowledge base about research-intensive Apache
Kafka topics, highlighting practical insights and novel approaches, pointing up cross-domain applications,
identifying related research challenges, and serving as a trusted reference for the Apache Kafka community.

INDEX TERMS Algorithms, cyber-physical, data, Internet of Things, networks, pub-sub, security, stream
processing.

I. INTRODUCTION
Networked data streaming is an essential methodological
paradigm that has become increasingly important in today’s
fast-paced digital landscape. As shown in Fig. 1, its workflow
involves several steps to transmit and process real-time
data: Real-time data are generated by various networked
sources such as sensors, devices, or software applications,
and transmitted over a computer network such as the Internet
or a private network. The real-time data is then published to
a message broker, which acts as a central hub that receives
and distributes data to multiple subscribers in real-time. This
process is known as publish/subscribe (pub/sub) and enables
the data to be shared efficiently across multiple applications
or processing systems. The data is then processed in real-time
using stream processing technology. Stream processing
involves applying algorithms or rules to the data stream as it
flows through the system, allowing for immediate analysis,
aggregation, filtering, or transformation of the data. The
processed data is then outputted as a stream of information

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

in a structured format, often in real-time. This output stream
can be consumed for further analysis or decision-making
by multiple applications, dashboards, or visualization tools
that use the processed data for different purposes, such as
generating alerts, updating databases, or triggering automated
actions.

With the massive amounts of data generated every day,
it has become crucial for organisations to process and
analyse this data in real-time. Networked data streaming
allows organisations to provide an efficient way to rapidly
transmit data from various sources to a central location for
processing and analysis. The applications of networked data
streaming are varied and extensive. For example, it can be
used for real-time monitoring of smart city network traffic
and financial transactions [1], as well as analysing sensor
data in manufacturing to predict equipment failure [2] and
sensing and actuating on large smart agricultural fields [3].
By providing real-time insights into business operations,
networked data streaming enables organisations to make
informed decisions faster, improving overall efficiency and
competitiveness. One of the most significant benefits of
networked data streaming is its ability to identify potential

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 85333

https://orcid.org/0000-0002-2906-584X
https://orcid.org/0000-0002-1694-612X
https://orcid.org/0000-0002-6921-7369


T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

FIGURE 1. Networked data streaming.

issues before they escalate, reducing downtime and improv-
ing productivity.

Designing a networked data streaming system using pub-
lish/subscribe (pub/sub) technologies is a popular approach
to handling and analysing large volumes of data in real-
time (figure 1). Pub/sub is a messaging paradigm that
allows publishers to send messages to subscribers who
have expressed interest in specific topics. Using pub/sub
technologies in networked data streaming offers several
benefits [4]. First, it provides a flexible and scalable solution
that can accommodate changing data volumes and sources.
Second, it enables efficient data processing by distributing
it across multiple nodes in the network. Finally, it allows
for seamless integration with other systems and services,
making it easier to leverage the data for various use cases.
When designing a pub/sub-based networked data streaming
system, it is essential to consider factors such as scalability,
fault tolerance, and data security. It is also important to
select appropriate pub/sub technologies and configure them
correctly to ensure optimal performance and reliability.

Apache Kafka [5] is a popular open-source distributed
streaming platform that is widely used for building networked
data streaming applications, such as LinkedIn [6]. It provides
a pub/sub messaging system that allows data to be processed
in real-time and distributed across multiple nodes in the
network. Using Apache Kafka as the pub/sub system for
networked data streaming provides a highly scalable and
fault-tolerant solution that has the potential to handle massive
amounts of data with ease. However, when using Apache
Kafka as the pub/sub system for networked data streaming,
it is important to consider optimisation factors such as data
serialisation, message size, and partitioning and therefore
to configure Apache Kafka correctly to ensure the desired
performance and reliability. As a result, there has been
a significant amount of research conducted on various
aspects of Apache Kafka to better understand its capabilities,
limitations, and potential applications. As an open-source
platform, it is constantly evolving, with new features
and improvements being added regularly. This presents
researchers with opportunities to explore and experiment with
the platform and develop new use cases and applications.
The vibrant research on Apache Kafka reflects its growing
importance as a data streaming platform and its ability

to constantly revolutionise how organisations handle and
analyse data in real-time.

In this paper, we survey the research literature of Apache
Kafka for networked data streaming so as to provide a
comprehensive overview of the current state of knowledge on
the platform. There has been a significant amount of research
conducted on various aspects of Apache Kafka, including its
architecture, performance, scalability, and security. However,
as far as we know, no study literature has addressed the
knowledge organisation on the topic in a synthetic manner.
To fill this gap, we synthesise and summarise the existing
literature on Apache Kafka, in order to provide insights into
the current state of the art and identify gaps and opportunities
for future research. The paper can serve as a valuable resource
for practitioners who are looking to leverage Apache Kafka
for their data streaming needs, providing a comprehensive
overview of the platform’s capabilities, limitations, and
potential use cases. Overall, our paper provides the following
contributions:

1) A research literature classification in represen-
tative macro areas (algorithms, networks, data,
cyber-physical, and security) and identification of the
corresponding optimisation aspects, based on practical
applications

2) Exploration of the algorithmic foundations of Apache
Kafka, including its combinatorial and reliability
aspects

3) Coverage of the area of networked infrastructure
optimisation, examining how Kafka can improve the
performance and scalability of distributed systems

4) Discussion on data handling and processing, highlight-
ing how Apache Kafka can be used for real-time data
streaming, message queuing, andML-based computing

5) Investigation of the emerging trend of cyber-physical
convergence and the role of Apache Kafka in inte-
grating physical systems with data-driven applications,
in the contexts of Internet of Things, vehicles, mobility
and environmental use cases

6) Coverage of security considerations related to Apache
Kafka and of how the platform can be used securely in
enterprise environments

7) Identification of selected open research challenges for
networked streamingwith ApacheKafka are identified.

After evaluating the state of the art in section II, and,
as displayed in Fig. 2, presenting the Apache Kafka basics
in section III, we present and in-depth survey on Apache
Kafka, analysing the latest research and developments in
several critical areas related to Kafka. The paper is structured
into several sections, each focusing on specific Apache
Kafka-related topics. Section IV delves into the algorithmic
foundations of Apache Kafka, exploring its architecture and
design principles. Section V covers networked infrastruc-
ture optimisation and examines how Kafka can improve
the performance and scalability of distributed systems.
Section VI explores data handling and processing, discusses
how Apache Kafka can be used for real-time data streaming,
message queuing, and ML-based computing. Section VII

85334 VOLUME 11, 2023



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

FIGURE 2. Roadmap of the paper.

discusses the emerging trend of cyber-physical convergence,
highlighting the role of Apache Kafka in the integration of
physical systems with data-driven applications. Section VIII
focuses on security considerations related to Apache Kafka,
exploring how the platform can be used securely in enterprise
environments. Finally, in Section IX, we identify some open
research challenges.

II. METHODOLOGY AND LITERATURE OVERVIEW
This survey paper follows a systematic literature review
methodology to provide a comprehensive analysis of the
existing research on Apache Kafka-related topics. The
systematic review process involved several key steps:

1) Research question formulation: We defined clear
research questions to guide our literature search and
analysis. These questions address the key aspects of
Apache Kafka, including its architecture, performance,
scalability, reliability, security, and integration with
other systems.

2) Search strategy: We developed a comprehensive search
strategy to identify relevant studies. The search was
conducted in various academic databases, including
IEEE Xplore, ACM Digital Library, and Google
Scholar. We also searched conference proceedings,
industry reports, and technical documentation to ensure
a broad coverage of the literature. We combined and
utilized a series of keywords in order to achieve
the maximum coverage of the area, such as Kafka,
streaming, data, service, network.

3) Study selection: We applied predefined inclusion and
exclusion criteria to select studies that met our research
objectives. The criteria considered the relevance of the
study to Apache Kafka, the publication date, and the
quality of the research.The main search criteria for
related publications is the presence of notable use or
advancement of Apache Kafka and its applicability in
the context of networked streaming. The number of
found papers was more than 90. However, based on
our own judgement and using as exclusion criterion the
lack of a solid Apache Kafka contribution in the core
of a given work, the final number of papers considered
was in the end up to 70.

4) Data extraction and analysis:We extracted relevant data
from the selected studies, including information on the
study’s objectives, methodology, findings, and contri-
butions. We analyzed the extracted data to identify
common themes, emerging trends, and research gaps
in the field of Apache Kafka.

5) Quality assessment: We assessed the quality of
the selected studies using established criteria such
as the relevance of the research question, the rigor of
the methodology, and the validity of the findings.

6) Synthesis and reporting: We synthesized the findings
from the selected studies and organized them themat-
ically. The results are presented in a structured and
coherent manner in the survey paper, providing insights
into the current state of research on Apache Kafka-
related topics.

Although Apache Kafka is already a commercially popular
platform, to the best of our knowledge there is a very limited
set of past papers which partially report some systematic
research advancements on the field in a comprehensive
manner. For this reason, our browsing was extended to papers
which explore the pros and cons of Apache Kafka at large.
We list those papers in Table 1 and we compare them to
our contribution. It is noteworthy that none of the identified
papers is a pure survey paper; they are rather technical
contributions which, however, offer some detailed outline of
their research field of reference. Specifically, we conducted
the comparison according to the fundamental thematic
parts of the current paper: (i) algorithmic foundations,
(ii) networked infrastructure, (iii) data handling, (iv) cyber-
physical systems, and, (v) security. As we can see in Table 1,
there is no paper that covers all the thematic parts. Also, due to
the fact that the past papers were published between 2015 and
2021, the current paper naturally covers a more up-to-date
perspective on the topic. Last but not least, to the best of our
knowledge, the current paper systematically outlines for the
first time in the state of the art the cyber-physical and the
security aspects of the literature.

III. APACHE KAFKA
Apache Kafka is a distributed streaming platform that
is designed to handle massive amounts of data in real-
time. At its core, an Apache Kafka cluster provides a

VOLUME 11, 2023 85335



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

TABLE 1. Comparison with past papers surveying Apache Kafka elements (2015-2023).

publish-subscribe messaging service (Fig. 3), and a pub/sub
messaging system that allows producers to publish data to
Kafka topics and consumers to subscribe to those topics and
receive data as it arrives. Producers in Kafka are responsible
for publishing data to Kafka topics. They can publish data in
any format, including text, binary, or JSON.When a producer
publishes data to a Kafka topic, it sends a message that
includes a key and a value. The key is used to identify the
message and can be used for partitioning and indexing. The
value contains the actual data payload.

Apache Kafka topics are logical categories or streams
of data. They are created by administrators and can have
multiple producers and consumers. Topics can be partitioned,
which allows for parallel processing of messages and
increased scalability. When a message is published to a topic,
it is appended to the end of the topic’s log. Partitions in
Kafka are the basic unit of parallelism. Each partition is
a sequence of messages that is stored on a single broker
node. When a message is published to a partition, it is
assigned a sequential offset that represents its position
within the partition. Consumers can read messages from a
partition in parallel, which allows for high throughput and
scalability. Replicas in Kafka are copies of partitions that
are stored on multiple broker nodes. Replication provides
fault tolerance and ensures that data is not lost in the event
of a broker failure. Kafka supports configurable replication
factors, which specify the number of replicas that should be
created for each partition.

Consumers in Apache Kafka are responsible for subscrib-
ing to Kafka topics and reading messages from them. They
can read messages from one or more partitions and can
process messages in parallel to achieve high throughput.
Consumers can also group together to form consumer groups,
which allows for load balancing and failover. Kafka supports
both push and pull-based consumption models. In the push
model, Kafka sends messages to consumers as soon as they
are available. In the pull model, consumers request messages
from Kafka and receive them in batches. Kafka also provides
support for stream processing. Stream processing involves
processing data in real-time as it arrives in Kafka, rather
than storing it in a database for batch processing later. Kafka
Streams is a Java library that provides a high-level application
programming interface (API) for building stream processing
applications on top of Kafka.

In Fig. 3, an illustrative example of an Apache Kafka
cluster with four brokers, b1, b2, b3, and b4, and two
topics, τ1 and τ2, each with multiple partitions is displayed.
Additionally, there are two data producers, p1 and p2, and
four data consumers, c1, c2, c3, and c4, which can subscribe

FIGURE 3. An example of an Apache Kafka cluster of four brokers b1, b2,
b3, b4 for two given topics τ1, τ2, two data producers p1, p2, four data
consumers c1, c2, c3, c4, and replication factor r = 3. Leader partitions in
blue, replicas in gray. Partitions are typically allocated to brokers via a
topic partitioning allocation algorithm.

to and consume data from the topics. Partitions are used to
break down a topic into smaller, more manageable chunks
of data that can be distributed across multiple brokers. Each
partition is replicated multiple times, with a replication
factor of three in this case, to ensure fault tolerance and
data redundancy. The blue-colored partition is the leader
partition, which is responsible for handling all read and write
operations for a given partition. The gray-colored replicas
are backups of the leader partition, which take over if the
leader fails. When a data producer, such as p1 or p2, sends
a message to a Kafka topic, the message is first received by
the Kafka broker that is the leader partition for the partition
to which the message is being sent. The leader partition
then writes the message to its local disk and sends copies of
the message to the other replicas of that partition. Once the
replicas have acknowledged receipt of themessage, the leader
partition sends an acknowledgment back to the producer.
Data consumers, such as c1, c2, c3, and c4, can subscribe
to one or more Kafka topics and consume messages from
the partitions assigned to them. When a consumer joins
a topic, it is assigned one or more partitions to consume
from, and each consumer group is guaranteed to receive all
messages from each partition assigned to them. In summary,
Apache Kafka works by breaking down topics into partitions
and replicating them across multiple brokers, allowing for
fault tolerance and data redundancy. Data producers send
messages to the leader partition of a partition, which then
distributes the messages to the replicas. Data consumers can
subscribe to one or more Kafka topics and consumemessages

85336 VOLUME 11, 2023



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

FIGURE 4. An example of an Apache Kafka write/read process of one
given topics τ3, one data producer p3, and three data
consumers c5, c6, c7.

from the partitions assigned to them. This architecture allows
for efficient and scalable real-time data transfer across
multiple applications and services.

An illustrative example of what happens when a producer
generates a message is displayed in Fig. 4. In the image,
we have one Kafka topic τ3, one data producer p1, and three
data consumers c5, c6, c7. The topic is divided into three
partitions P4,P5,P6 for scalability and performance reasons.
First, let us look at the write process. The data producer sends
a message to the Apache Kafka broker by specifying the
name of the topic and the partition. Except for its value, the
message contains a numbered key, and the broker appends
the message to the end of the partition’s log. Each message is
assigned a unique offset within the partition that represents
its position within the partition. This offset is used by the
consumers to track their progress and ensure they do not miss
any messages.

Now let us look at the read process. Each data consumer
subscribes to the topic and one of the partitions they are
interested in. When a consumer first subscribes, it specifies
the offset from which it wants to start reading messages.
The consumer can choose to start reading from the earliest
available offset, which means it will read all messages from
the beginning of the partition, or from a specific offset, which
means it will start reading from that position in the partition’s
log. As messages are written to the partitions, they become
available for consumption. In the example, the consumers use
a pull-based model to read messages from the partitions. The
consumer sends a request to the broker asking for a batch
of messages starting from its current offset position. The
broker responds with a batch of messages, and the consumer
processes them one by one. Once a message is processed, the
consumer updates its offset position to the next message in
the partition.

In our example, we have three consumers reading from
the same topic, each reading from a different partition.
Each consumer maintains its own offset position and reads
messages independently. This means that messages can be
processed in parallel, which provides high throughput and
scalability. It is important to note that Apache Kafka also
supports consumer groups, which allow multiple consumers
to work together to read from a partition. In a consumer
group, each consumer is assigned a subset of the partition’s
offsets to read from. This ensures that each message is
only processed once, even if there are multiple consumers

in the group. In this example, we also assumed that there
are no replicas of the partition. However, in a production
environment, it is common to have multiple replicas of each
partition for fault tolerance and high availability, as displayed
in Fig. 3. Replicas are simply copies of the partition’s log that
are stored on different broker nodes. When a broker fails, one
of the replicas can take over and continue serving requests.

IV. ALGORITHMIC FOUNDATIONS
The algorithmic foundations of Apache Kafka (Table 2)
are crucial to achieving combinatorial optimisation of the
topic partitioning process and ensuring reliability engineering
in large-scale data processing and streaming applications.
These foundations are based on core principles that underlie
the design and functionality of the Kafka platform. In this
subsection, we will delve into the key components of
the Kafka architecture, including its distributed messaging
system, its partitioning and topic organisation of data, and
its replication and fault-tolerance mechanisms. We will also
explore the core design principles that have guided the
development of Kafka, such as its focus on simplicity,
scalability, and performance. Understanding of the algorith-
mic foundations of Kafka, researchers and practitioners can
optimise the use of its capabilities to meet the complex data
management needs of modern applications while ensuring
reliability engineering.

A. COMBINATORIAL ASPECTS AND BEYOND
The combinatorial aspects of Apache Kafka form a signifi-
cant part of its algorithmic foundations, providing powerful
approaches for optimising large-scale data processing and
streaming. Combinatorial optimisation is concerned with
finding the best solutions from a finite set of possibilities.
In the context of Kafka, this involves maximising the
throughput of data streams, reducing latency, and minimising
resource usage. The literature offers a considerable amount
of combinatorial optimisation techniques used in Apache
Kafka, such as batch processing, compression, and batching.
By understanding the combinatorial aspects and beyond of
Apache Kafka, researchers and practitioners can explore new
ways of optimising data processing and streaming to meet the
ever-increasing demands of modern applications.

A first category of optimisations focuses on data transfer
modelling and design. Despite the large and growing user
community, there remains a significant gap in formal model-
ing approaches that can be used to reason about the behavior
of producers and consumers in Kafka-based systems. One
key challenge in formalizing Kafka’s data transfer model
is that it involves multiple layers of abstraction, from
low-level network protocols to high-level message processing
semantics. Additionally, there are many different ways that
producers and consumers can interact with Kafka, depending
on factors such as partitioning strategies, replication settings,
and client library configurations. All of these factors make it
difficult to develop general models that accurately capture the
behavior of real-world Kafka systems.

VOLUME 11, 2023 85337



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

TABLE 2. Algorithmic foundations in Apache Kafka.

Following this reasoning, in [12], the communication in
Apache Kafka between producers and consumers is modelled
using formal methods. Selected system characteristics are
verified using the model testing tools. The verification
findings demonstrate that the Apache Kafka data transfer
model adheres to its specifications, which leads to the
conclusion that the system is trustworthy. In [13], in order
to forecast performance measures of Apache Kafka cloud
services, the authors analyse the structural characteristics of
Apache Kafka and suggest a data transfer model inspired
by queuing methods. The number of brokers in the Apache
Kafka cluster, the number of partitions in a topic, and the size
of the data batch are the initial configuration inputs for this
approach. The effect of specific setup factors on performance
measures, such as producer output, relative payload and
overhead, and changes in disk storage utilisation over time,
can be determined by users using this model. In order to
assess the end-to-end delay of messages, queuing theory is
used.

A second important category of works is on how to solve
issues related to topic partitioning or to partition-consumer
assignments. Although Apache Kafka includes some out-
of-the-box optimisations, the authors of [14] point out that
it does not explicitly specify how every topic should be
partitioned in order to be distributed effectively. In this
regard, they first simulate how Apache Kafka partitions
topics for a specific subject. They then pose the optimisation
problem of determining the required number of partitions
and demonstrate that it is computationally hard (it can be
formulated as an integer program). The authors suggest two
straightforward but effective methods to fix the issue: the
first aims to maximise the number of brokers used in the
cluster, while the second minimises it. The authors of [15]
use bin packing problem variation to abstract the challenge of
finding the necessary number of consumers and the partition-
consumer assignments. They suggest indicative metrics
that take the rebalancing expenses into consideration, and
introduce and evaluate a variety of methods in comparison to
known strategies for the bin packing problem in this context.

The remaining works on combinatorial aspects with
Apache Kafka focus on a variety of different problems.
We group them in this paragraph and we provide a brief
description; they mainly are on (i) Kafka-based consensus
algorithms, (ii) data starvation modelling, and, (iii) mobil-
ity simulation modelling. In [16], the authors look into
an adaptive tuning method to calibrate the parameters
related to an Apache Kafka-based consensus algorithm for
blockchain-specific use case applications. Specifically, their
method is based on feedback control theory, and targets to
adjust the parameters connected to its consensus algorithm
in order to address the sudden abundant inflow of data and
quickly adapt to the current system workloads. According
to the authors of [17], data starvation may occur if Kafka’s
data production rate outpaces its consumption rate. A load
shedding method is introduced to restrict the incoming data
and keep system efficiency when the system is under stress
in order to address the starvation issue. In [18], a simulation
platform that allows assessments of potential future mobility
use cases is described by the authors. To support all of these
needs and the coupling of various simulation tools into a
co-simulation, Apache Kafka’s is used as a communication
building block.

B. RELIABILITY ENGINEERING
The reliable and efficient transmission of data streams is a
critical aspect of networked data streaming. As data streams
grow in size and complexity, the need for sophisticated
algorithms and systems that can handle them increases.
The algorithmic foundations of Apache Kafka provide a
set of tools and techniques that are specifically designed to
address these challenges. Algorithmic design can be used
to optimise the reliability and availability of data streams,
particularly in the face of potential failures or disruptions.
We present the various approaches that have been designed to
achieve these goals, including techniques for fault tolerance,
partitioning, replication, and load balancing. Partitioning and
replication are key techniques used to optimize the reliability
and availability of data streams in Kafka. Partitioning allows
Kafka to break down a topic into smaller, more manageable
chunks of data that can be distributed across multiple brokers.
This helps to ensure that each partition can be processed
independently, which improves the overall performance and
scalability of the system. Additionally, replication is used
to provide fault tolerance and data redundancy by ensuring
that each partition is replicated multiple times, with replicas
distributed across multiple brokers.

Fault tolerance for improving reliability is a major design
goal in a set of papers in the literature. The authors of [19],
suggest that, in parallel to replication, message recovery
checkpointing can serve an an alternative fault tolerance
approach. By defining ideal checkpoint interval values that
have an effect on the data resilience of the Apache Kafka
workflow, they encourage the enhancement of fault tolerance
in the design. The authors estimate the overall total overhead
cost after defining the optimal checkpoint interval, and they
fine-tune it with respect to maximizing the lost message

85338 VOLUME 11, 2023



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

recovery rate. It has been demonstrated that the use of
the ideal checkpoint interval time, significantly reduces the
amount of lost data. According to the comparative study,
the changed system enhances Apache Kafka’s ability to
recover data. In [20], the authors investigate the challenges
of disaster recovery fault tolerance for Apache Kafka and
introduce an approach of spatially-cooperative and redundant
Kafka clusters to boost resiliency. In [21], the authors tackle
the problem of Apache Kafka’s message delivery delay in
settings where network faults can happen, and they conclude
that the batch size has a direct impact on the data loss rate,
especially when the network connection is not stable. Last
but not least, in [22], the authors investigate the impact on the
reliability performance of different configuration parameters
of Apache Kafka, including partition replication for fault
tolerance.

Architectural benchmarking can also help measure various
properties of an Apache Kafka cluster. According to [23],
projections of the performance effect of various Apache
Kafka configurations are not always accurate. The authors
emphasise on unexpected behaviours that were found in
Kafka data operations. Specifically, (i) two independently
executed data producers do not double the data input rate
compared to a single producer, as expected, and (ii) the
observed memory usage was never close to its limits
for non of the presented scenaria. However, the research
demonstrates that not all observed instances support the
hypothesis. In [24], the authors demonstrate that the alteration
of the configurations under normal circumstances (such as
the utilization of network bandwidth and the mean service
rate of Kafka producers) is able to impact the data delivery
properties. They employ reliability prediction of Kafka given
various configurations and network conditions, and define
two reliability metrics to be predicted, the probability of
data loss and the probability of data duplication. Artificial
neural networks are applied in the prediction model and some
key parameters are selected, as well as network metrics as
the features. Finally, in [25], the authors present the design
of a test framework for assessing the reliability aspects of
Apache Kafka in order to investigate diverse data delivery
approaches under sub-optimal network quality. Two metrics,
data loss rate and duplicate rate, are used in the experiments
in order to evaluate the reliability of data delivery in Kafka.
The experimental results show that under high network delay
the size of data matters.

V. NETWORKED INFRASTRUCTURE OPTIMIZATION
As more and more applications move to the cloud and edge
computing environments, the need for efficient and scal-
able network infrastructures becomes increasingly critical.
Apache Kafka offers a robust platform for networked data
streaming, enabling seamless data exchange and processing
across distributed systems. This section focuses on the
networked infrastructure optimisation capabilities of Apache
Kafka, with an emphasis on its network design and Edge-
to-Fog-to-Cloud (E2F2C) architecture. First, we explore
how Apache Kafka can be used to optimise network

performance and scalability and we examine the various
network design considerations thatmust be taken into account
when implementing with Apache Kafka, such as pipelining,
downstream/upstream alteration, as well as smart queuing
and filtering. Then, we focus on how Kafka can be used
to optimise data streaming and processing across distributed
systems in the E2F2C continuum.We discuss how the various
architectural options can be used to improve data processing
efficiency and reduce latency, by pushing data processing
to the edge and leveraging fog and cloud resources.
Additionally, we examine the various technologies and
techniques used to implement the E2F2C architecture, such
as third-party resource consumption, over-the-air resource
allocation, as well as load shredding.

A. NETWORK DESIGN
Network design is a crucial task for ensuring the efficient
operation of networked systems. In the context of networked
data streaming with Apache Kafka, network design refers
to the process of designing the network topology and
protocols to ensure reliable data transmission and low latency.
It involves decisions such as the number and location of
brokers, the configuration ofKafka producers and consumers,
and the choice of communication protocols. Efficient network
design is critical for achieving high throughput and low
latency in streaming applications. In this section, we will
review the key works on network design for Apache Kafka
and discuss the different approaches and techniques proposed
in the literature.

In [26], the authors separate the streaming process
in two different parts and evaluate the delays for two
diverse deployments to determine if a typical streaming
application is network intensive enough to benefit from
a faster interconnect. Moreover, they explore whether the
volume of input data stream has any effect on the latency
characteristics of the streaming pipeline, and if so how does
it compare for different stages in the streaming pipeline
and different network interconnects. In [27], the authors
discover that, rather than being pushed to and replicated in
downstream locations, filtering on big datasets is best done
in a shared upstream location. They evolve Apache Kafka
to conduct restricted data operations, taking overs some
operational processes form the downstream applications,
to illustrate the benefits of such a strategy. In comparison
to standard Kafka, their method scores higher than four
popular analytics pipeline designs with minimal overhead.
In [28], the authors present a streamingmechanism for optical
networks based on the Kafka architecture and protocols,
to efficiently distribute state and network updates following
the upcoming Open Networking Foundation Transport API
streaming implementation agreement. The proposed mech-
anism is validated and experimentally evaluated. In [29],
the authors design a distributed message system of Apache
Kafka to support large-scale distributed messages between
SDN controllers. The proposed systemmeasured themessage
processing time ofKafka and the existingMessageQueue and
evaluated its performance. In order to accomplish effective

VOLUME 11, 2023 85339



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

FIGURE 5. Example [31] Apache Kafka implementation in the E2F2C
continuum.

rate correction, the authors of [30] design a consumer model
that improves Apache Kafka with reliable, scalable, and
intelligent filtering and queuing methods. Even in cases
of extreme congestion, the introduced consumer model is
able to ensure no lost data while limiting the number
of retransmissions. The experimental findings show that,
in terms of reliability, consumption rate, and output, the given
approach outperforms the traditional Kafka consumer.

B. E2F2C CONTINUUM
The E2F2C continuum is a distributed computing architecture
that integrates different layers of processing and analysis of
data generated by edge devices. The architecture consists
of three layers: Edge, Fog, and Cloud. The Edge layer
represents devices that are physically located near the data
source, while the Fog layer is a distributed layer that provides
intermediate processing capabilities between the Edge and
Cloud layers. The Cloud layer is the final layer that is
responsible for storing and processing the collected data at
scale. This architecture provides a framework for distributed
processing, which is becoming increasingly important as
organizations collect more data and require faster and more
efficient processing. By leveraging the benefits of each
layer, the architecture can enable real-time data processing,
analysis, and decision-making. In this section, we will survey
the works related to the Edge-to-Fog-to-Cloud Continuum in
the context of Apache Kafka. An indicative Apache Kafka
implementation within the E2F2C continuum is provided
in [31] and its respective architecture is displayed in Fig. 5.

In [32], the authors present a methodology for augmenting
the current Kafka-based reference architecture of an E2F2C
use case by generalising it and permitting to extend the
resources of a given Apache Kafka cluster with additional
resources situated on third-party industrial cloud owners,
leveraging on the functionalities of off-the-shelf products

beyond the edge deployments. A framework dubbed Kafka
On Hadoop (KOHA), created and implemented by the
authors of [33], offers users a quick, easy, and effective
approach to create a large-scale distributed Kafka-based
application that runs on top of a Hadoop cluster. The archi-
tecture allots resources to launch producers and consumers
and automatically builds and runs Kafka brokers on demand.
Users do not need to comprehend the YARN programming
model or make any attempts to set up a Kafka cluster in
order to use the framework to embrace Apache Kafka. The
ability of ApacheKafka to tolerate network faults is examined
in [34]. The authors note that Apache Kafka exhibits some
fault tolerance for network problems across various setups,
and they also note some of its drawbacks. Additionally,
they establish a benchmark for network failure tolerance
that can be used to compare other distributed streaming
systems. In [35], the authors evaluate various Apache Kafka
configurations and performance measures to help users avoid
bottlenecks and ultimately take advantage of best practices
for effective stream processing. In [36], the authors introduce
an Apache Kafka-based load shedding engine that works
when the delay exceeds the benchmark and quickly manages
overflow by discarding data in the Apache Kafka producer.
Load sharing proved effective for both single and numerous
sources in tests using Apache Storm.

VI. DATA HANDLING AND PROCESSING
With the proliferation of data in modern-day systems, the
need for efficient and scalable big data management systems
has become increasingly important. Kafka, with its ability
to handle large volumes of data in real-time, provides a
potential solution to this problem, as it provides a scalable
and fault-tolerant solution for real-time data processing.
In this section, we explore the various ways in which Kafka
can be used for data handling and processing. We begin
by examining how Kafka can be integrated with machine
learning (ML) frameworks to enable efficient and scalable
ML-based computations. Specifically, we delve into Kafka-
ML, which is an open-source library that allows for easy
integration of Kafka with popular ML frameworks such as
TensorFlow, Keras, and Scikit-learn. We also discuss the
benefits of using Kafka-ML for large-scale data processing
and present some real-world use cases. In the second
subsection of this section, we focus on big data management
using Apache Kafka. We explore the various features of
Kafka that make it suitable for big data management,
including its distributed architecture, fault-tolerance, and
scalability. We also discuss some of the challenges associated
with using Kafka for big data management, such as data
serialization and integration with other big data technologies.

A. ML AND KAFKA-ML
In recent years, ML has emerged as a powerful tool for
analyzing and processing large amounts of data. However, the
traditional approach of batch processing is not always suitable
for real-time applications that require immediate responses to
incoming data. To address this, a new paradigm of real-time

85340 VOLUME 11, 2023



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

ML has emerged, which involves processing data streams
using ML algorithms. Apache Kafka has become a popular
choice for handling real-time data streams and integrating
with ML frameworks. Kafka-ML is a powerful open-source
library that enables the integration of ML algorithms into
Kafka streams. This integration enables the development of
real-time ML applications, which can provide immediate
responses to incoming data.

In [37], Kafka-ML is introduced as a cutting-edge, open-
source framework that enables the management of ML
pipelines through data streams. Users may quickly construct
ML models, train, test, and deploy them for inferences using
Kafka-ML’s accessible and user-friendly Web user interface.
Through the use of containerization technologies, Kafka-ML
and the components it uses are fully managed, guaranteeing
their portability, ease of distribution, and other features like
fault tolerance and high availability. The last step is the
introduction of a unique method for managing and reusing
data streams, which may do away with the necessity for file
systems or data storage.

In [38], the authors expand the Kafka-ML framework to
support the administration and implementation of distributed
deep neural networks throughout the E2F2C Continuum as
they claim that Kafka-ML does not take the distribution
of deep neural network models into account. In order to
provide quick forecasts, they have also thought about the
potential of including early exits in the E2F2C layers.
By modifying and deploying their model in three distinct
scenarios, they assess its potential. In comparison to a cloud-
only implementation, experiments show that Kafka-ML can
greatly increase reaction time and throughput by distributing
DNN models across the Cloud-to-Things Continuum.

The authors of [39] provide a technological framework that
combines the benefits of BranchyNet (a neural network archi-
tecture where side branches are added to the main branch, the
original baseline neural network, to allow certain test samples
to exit early) with the Edge-Cloud architectural idea to allow
fault-tolerant and low-latency AI predictions. Implementing
and evaluating this methodology enables evaluating the
advantages of using Distributed DNN (DDNN) along the
continuum from Cloud to Things. The statistics collected
demonstrate a response time improvement of 45.34% as
compared to a Cloud-only deployment. Additionally, this
proposal offers a Kafka-ML extension that lessens rigidity
while managing and deploying DDNN across the Cloud-to-
Things continuum.

In [40], the authors propose a method for automated analy-
sis of heterogeneous news through complex event processing
and ML algorithms. Initially, news content streamed using
Apache Kafka, stored in Apache Druid, and further processed
by a blend of natural language processing and unsupervised
ML techniques.

In [41], the authors suggest creating KafkaFed, an
information-centric networking-based scalable communica-
tion architecture, to enable the Federated Learning (FL)
method. The Information Centric Networking (ICN)-based
infrastructure enables for rapid data retrieval for mobile

nodes while overcoming the drawbacks of conventional
client-server designs for FL, which use content-based or
name-based routing. To ensure effective and dependable data
delivery, data are stored at intermediate nodes in the ICN
network. In a simulated setting, a proof of concept for the
KafkaFed communication architecture is created and tested.
With just 32 clients, the suggested framework outperformed
the client server-based FL architecture, or FLOWER, in terms
of performance. It also had various additional benefits in
terms of scalability, stability, and security.

As social media platforms continue to grapple with the
challenge of fake accounts and automated activity, there is
a growing interest in leveraging ML techniques to identify
and track social bots in real-time. Recently, the authors
of [42] have explored the use of Apache Kafka as a
powerful streaming platform for processing social media data
and applying ML algorithms to identify suspicious activity.
To provide real-time identification of social bots on Twitter
using ML, they use Apache Kafka to stream data from the
Twitter API. They employ details from profiles as features.
To forecast the kind of inbound data, an ML method is used.

B. BIG DATA MANAGEMENT
The increasing growth of data has led to the development of
various techniques and tools for managing data efficiently.
Apache Kafka, as a distributed streaming platform, provides
a robust solution for managing large volumes of real-time
data in a fault-tolerant and scalable manner. Kafka enables
high-throughput, low-latency data ingestion, processing, and
delivery, which is crucial for managing big data. Additionally,
Kafka integrates with various big data processing frameworks
such as Apache Spark, Apache Storm, and Apache Flink to
support large-scale data processing and analytics.

In [43], the authors expand Apache Kafka by delivering a
distributed complex event recognition system designed on top
of Apache Kafka streams. The system’smain goal is to reason
about the semantics of Kafka stream operators. In order to do
so, the authors design it with the abstraction operations of
event construction, transformation and and composition.

The authors of [44] introduce KSQL, a streaming SQL
engine for Apache Kafka. For stream processing on Apache
Kafka, KSQL offers a straightforward and fully interactive
SQL interface, eliminating the need to write code in a
computer language like Java or Python. Open-source, dis-
tributed, scalable, trustworthy, and real-time, KSQL is also.
Aggregations, joins, windowing, sessionization, and a broad
range of other advanced stream processing functions are
supported. Using User Defined Functions (UDFs) and User
Defined Aggregate Functions (UDAFs), it is expandable.
Since KSQL is built using the Kafka Streams API, it offers
the exact-once delivery guarantee, linear scalability, fault
tolerance, and the ability to operate as a library without a
separate cluster.

Reference [45] focuses on object-knowledge-model gram-
mar and how it can be used to analyse and recognize
the metadata in streams based on Kafka. The suggested
grammar is more flexible and proves to be better when

VOLUME 11, 2023 85341



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

combined with other known NLP techniques. The authors
assert that the suggested model is a better match for
NLP comprehension and projecting the benefits of using
them in knowledge management models because grammar
tests the veracity of framing sentences (in different lan-
guages) and because each language has its own origins and
connotations.

In [46], the architecture of an RSP engine that is based
on cutting-edge Big Data frameworks, especially Apache
Kafka and Apache Spark, is described by the authors.
Together, they enable the development of a production-ready
RSP engine that ensures high availability, scalability, fault
tolerance, low latency, and high throughput. They also stress
how much easier it is to develop complicated applications
needing libraries for machine learning, graph processing,
query processing, and stream processing thanks to the Spark
framework.

In [47], the authors compare Apache Kafka and RabbitMQ
using the fundamental properties of pub/sub systems, and
they also engage in a qualitative and empirical evaluation
of the qualities that are shared by the two systems. They
also emphasize the unique characteristics that each of
these systems possesses. They strive to lead the reader
through a determination table to select the appropriate
architecture for his or her specific set of needs after listing
a selection of use cases that are best suited for RabbitMQ or
Kafka.

The threemost network-intensive datapaths (record output,
record duplication, and record consumption) are accelerated
using remote direct memory access by the Apache Kafka
extension KafkaDirect, which the authors of [48] present.
They investigate design options, such as which remote
direct memory access procedures to employ to fully utilise
offloaded communication. They use one-sided remote direct
memory access requests in their suggested architecture
to achieve real zero-copy communication without using
intermediary buffers in Kafka servers, resulting in low delay
and high throughput communication.

In order to decrease the latency of content-based data
dissemination, the authors of [49], suggest a brand-new form
of topic in Kafka dubbed the fat topic. The basic idea behind
improving forwarding performance with fat topics is that
after matching an event with a set of subscriptions, the
event can be stored together with the match list in a topic,
instead of forwarding the event from one topic to many
topics. Additionally, they alter the Kafka code to introduce
consumer and producer APIs for fat topic access. To assess
the effectiveness of fat topics, they ran comprehensive tests.
The experiment’s findings indicate that when compared
to the initial Kafka topic, the fat topic can reduce the
latency of content-based event dissemination by about
3.7 times.

The authors of [50] suggest using stream computing to
streamline the genome resequencing workflow, enhancing
its efficiency and fault-tolerance. In order to provide simple
composability and inclusion into the pre-existing YARN-
based pipelines, they divide the first stages of the genomic

TABLE 3. Cyber-physical convergence.

processing into two discrete and specialized modules
(preprocessing and alignment). We then loosely compose
these modules via communication over Kafka streams. The
suggested solution is then empirically verified using actual
data, and it is demonstrated that it scales approximately
linearly.

VII. CYBER-PHYSICAL CONVERGENCE
The convergence of physical systems with data-driven
applications (Table 3) is an emerging trend that is rapidly
gaining traction in diverse fields such as healthcare, energy,
transportation, and environmental monitoring. This section
of the paper delves into the role of Apache Kafka in the
integration of physical systems with data-driven applications,
with a particular emphasis on cyber-physical convergence.
We examine how Kafka can be used to enable real-time
communication and coordination between physical systems
and data-driven applications, facilitating the development
of intelligent systems that can learn from and respond to
real-world events in a timely and efficient manner. The
section is divided into three subsections, each of which
focuses on a specific application domain. The first subsection
explores how Kafka can be used to manage and process
data generated by sensors and other IoT devices, such
as robots or image/video/VR-enabled devices. The second
subsection, examines how Kafka can be used to enable
real-time communication and coordination between vehicles
and other elements of the transportation infrastructure. The
third subsection explores how Kafka can be used to manage
and process data generated and collected for environmental
applications, in which Apache Kafka has been a mainstream
option for data transfer, and examines how Kafka can be used
to enable real-time monitoring and analysis of environmental
data, facilitating the development of intelligent systems for
environmental monitoring and management. Overall, this
section highlights the important role that Apache Kafka can
play in enabling cyber-physical convergence across a range
of application domains.

85342 VOLUME 11, 2023



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

A. INTERNET OF THINGS
As Internet of Things (IoT) applications become increasingly
popular, there are emerging challenges related to data
ingestion, processing, storage, and analysis. Traditional
data management approaches are not well-suited to han-
dle the scale, velocity, and variety of IoT data, as well as
the introduced mobility constraints which emerge from the
employment of networked robotic elements. In addition, there
are security and privacy concerns associatedwith IoT devices,
as they often collect sensitive image and video data from
individuals and organizations. Apache Kafka has emerged
as a powerful tool for managing IoT data, enabling reliable
and scalable data processing pipelines. However, there are
still many challenges related to data transfer performance and
interoperability that need to be addressed.

The authors of [51] contend that it is crucial to take into
account how robotic platforms, such the Robot Operating
System, deal with integrating with streaming systems that
control the orders that are sent to smart warehouses. Stream-
ing platform Kafka, which is widely used in e-commerce
systems, is presented in this study as a straightforward
method of integrating Robot Operating System. To connect
these two systems, they create a bridge code, which they
verify using three realistic simulation situations. As they
demonstrate, a greater degree of dependability may be
attained by utilizing the QoS profiles offered by the Robot
Operating System data distribution service.

In [52], the authors, motivated by the development of
near real-time image processing pipelines for roboticised
microscopy, evaluate the suitability of Apache Spark for
streams more typical of scientific computing applications,
those with large message sizes, and heavy per-message CPU
load, under typical stream integrations. For comparison,
they benchmark a P2P stream processing framework, Har-
monicIO, developed in-house. The data are preloaded into
Kafka and they investigate ingress bottlenecks by writing
and reading data through Kafka during the benchmarking,
to get a full measurement of sustained throughput. The
study reveals a complex interplay of performance trade-
offs, revealing the boundaries of good performance for each
framework and integration over a wide domain of application
loads.

In [53], the authors analyse and calculate the medical data
of an intelligent telemedicine Internet cloud computing ‘‘The
Smart Hospital with the Best Doctors’’ platform in China,
by using Spring integration technology, and the monitoring
of diseases and deaths is realised on Amazon Managed
Streaming with Apache Kafka.

According to the data broadcast characteristics from
sensors, the authors of [54] suggest a building plan for a
highly effective distributed stream processing infrastructure
that enables scalable processing of moving image recognition
jobs. They use Ray and Apache Kafka to create a prototype
of the proposed distributed stream processing infrastructure
and assess its performance. The outcomes of the experiments
show how extremely scalable the suggested distributed
stream processing infrastructure is.

FIGURE 6. Cooperative intelligent transportation systems conceptual
architecture based on [57] Apache Kafka implementation in the E2F2C
continuum.

The authors of [55] provide a system for video analysis
that gathers movies from various cameras and analyzes them
with Apache Kafka and Apache Spark Streaming. They start
by looking at Apache Kafka’s data transmission performance
and efficient cluster design and parameter settings. The
throughput of the data analysis is then measured after
applying this configuration to the suggested framework.

In [56], the authors, to organise a flexible cloud computing
support for the digital twin execution, propose a concept
of micro-workflows that combines the power of scientific
workflows, the flexibility of containers technology, and
robustness of the distributed streaming approach.

B. VEHICLES AND MOBILITY
The topic of vehicles and mobility has gained increasing
attention in recent years as the transportation industry is
undergoing a rapid transformation with the emergence of new
technologies.With the growth of connected cars, data is being
generated at an unprecedented rate, presenting an opportunity
to utilize this data for various applications, such as vehicle
tracking, real-time traffic management, and personalized
services. Apache Kafka has become a key technology in
this domain, enabling the collection and processing of data
from multiple sources in real-time. As the industry continues
to evolve, it is essential to develop robust and scalable
solutions that can manage the vast amounts of data generated
by connected vehicles and provide value-added services to
customers while ensuring data security and privacy.

The authors of In [57] describe a feasibility study on
the methods for receiving, processing, and distributing
signals from cooperative intelligent transportation systems.
Their strategy involves connecting several message types to
Apache Kafka via Message Queuing Telemetry Transport
(MQTT), with fault tolerance, horizontal scalability, and
minimal latency. By utilizing the Kafka Connector API, they
have created both a Kafka-MQTT sink connector and a
MQTT-Kafka source connector, as displayed in Fig. 6. These
make it simple and configurable to map topics from mobile
devices and roadside equipment to a central application as
well as the other way around. By successfully sourcing and
sinking CAM messages with little latency, the trials with this
bridging technique, carried out on a basic desktop computer

VOLUME 11, 2023 85343



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

with a single instance Kafka configuration, demonstrate
its viability. In [58], the authors propose an approach to
track a specific vehicle over the video streams published by
the collaborating traffic surveillance cameras. They report
how the number of partitions, replications, and brokers
has an effect on producer-send packet throughput (mb/sec):
producer throughput varies depending on the number of
brokers, partitions of topics, and replications. In [59], the
authors explore the existing and emerging platforms for
mobile edge computing and human-centric applications, and
propose a suitable Kafka-based architecture that can be used
in the context of autonomous vehicle systems. The proposed
architecture will support scalable communication among
sensing devices and edge/cloud computing platforms, as well
as orchestrate services for computing, storage, and learning.
In [60], the authors design a simulation platform enabling
evaluations of future mobility scenarios, based on an Apache
Kafka architecture.

C. ENVIRONMENTAL USE CASES
Apache Kafka is also finding increasing use in environmental
monitoring and management applications. Real-time data
acquisition from sensors and systems installed in natural
resources or environmental systems can be efficiently col-
lected and analyzed through Kafka, allowing stakeholders
to gain valuable insights into the health and functioning
of environmental systems. For instance, in the context of
water resource management, sensors can be used to monitor
water quality and levels, and the data can be streamed
in real-time to Kafka for analysis and decision-making.
Similarly, in the context of weather and climate monitoring,
environmental data from remote sensors and stations can
be streamed through Kafka to enable real-time analysis and
forecasting of weather patterns and climate trends. The use
of Kafka in environmental applications can greatly improve
our understanding and management of natural resources,
leading to more effective and sustainable use of our planet’s
resources.

The authors of [61] propose an event-stream processing
engine for the environmental monitoring domain (ESTemd)
as a distributed framework for the use of stream processing
on heterogeneous environmental data. Their work in this
field exemplifies the value of big data approaches in early
warning, forecasting, and environmental decision support
systems. The suggested framework uses a publish/subscribe
mechanism via a single data pipeline with the deploy-
ment of Apache Kafka for real-time analytics to handle
the difficulties of data heterogeneity from disparate sys-
tems and real-time processing of enormous environmental
datasets.

The authors of the [61] propose a distributed framework for
the use of stream processing on heterogeneous environmental
data that addresses the problems of data heterogeneity from
heterogeneous systems and provides real-time processing
of large environmental datasets through a publish/subscribe
method via a unified data pipeline with the use of Apache
Kafka for real-time analytics.

The aquaculture industry needs to monitor the water
quality as well as other water and weather parameters for
large and diverse farm types. An aquaculture monitoring
system targets at continuously online monitoring of water
quality sensors. The authors of [62] propose and develop an
aquaculture monitoring system using Flink, MongoDB, and
Kafka. Among these, Flink offers a platform for processing
sensor data with high throughput and low latency. The
effectiveness of a few typical operations between HBase
and their solution is examined and contrasted using a real
aquaculture dataset. The testing findings demonstrate that
their solution’s efficiency is significantly higher than that of
HBase, which offered a workable option for the storing and
processing of aquaculture sensor data.

In [63], the authors developed awireless sensor networking
system for CO2 monitoring using Kafka and Impala to
distribute a huge amount of data. Sensor nodes gather data
and accumulated in temporary storage then streamed via
Kafka platform to be stored into Impala database. System
tested with data gathered from the custom made sensor nodes
and give a good performance.

Weather models are simulations of the future state of
the atmosphere out through time. Millions of observations
are used as initial conditions in trillions of calculations,
producing a three dimensional picture of what the atmosphere
might look like at some time in the future. In [64], the authors
create a weather forecast model that automatically picks up
new information from the daily input of weather data from
a third-party API source. The weather feed is streamed into
the forecast model using Kafka components and is sourced
from openweathermap, an internet service that offers weather
data. The forecast model’s LSTM neural network is built to
continually learn from forecasts and conduct real analysis.
The model may be built so that it can be used in very
large applications that can process huge amounts of stored
or streaming data.

A TimescaleDB and Kafka-based data storage system for
meteorological sensor data is suggested in [65]. This system
used Kafka to collect and send meteorological sensor data,
which was then forwarded to TimescaleDB for archiving and
analysis. It compared the solution against existing NoSQL
stores including Redis, MongoDB, Cassandra, HBase, and
Riak TS using a dataset of simulated weather sensor data. The
experimental findings demonstrate that the suggested storage
technique is preferable for both storing and processing large
amounts of data from meteorological sensors.

In [66], the authors design a distributed cluster processing
model based on Apache Kafka data queues, to optimise the
inbound efficiency of seismic waveform data.

VIII. SECURITY
In recent years, data breaches and cyber attacks have
become increasingly common, highlighting the need for
robust security measures to protect sensitive data. With the
rise of networked data streaming and the widespread use of
Apache Kafka, it is crucial to ensure that these systems are
secure and able to withstand potential threats. This has led

85344 VOLUME 11, 2023



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

TABLE 4. Security services for Apache Kafka.

to an increased focus on security for Apache Kafka, with
numerous studies and works exploring the various challenges
and potential solutions for securing Kafka-based systems
(Table 4). In this section, we survey the literature on security
for Apache Kafka, including studies on data transmission,
encryption, and other security-related topics. We discuss the
various security issues associated with Apache Kafka and
review the different services that have been proposed to
address the corresponding challenges.

In [67], the authors introduce a distributed method based
on Apache Kafka which targets at classifying distributed
denial of service (DDoS) attacks. To begin with, they
gather data from Hadoop and create distributed classification
models on the Hadoop network using highly scalable ML
methods. Second, they use the Kafka Stream cluster to
classify inbound network data into nine categories in real
time. Furthermore, using a fresh collection of instances, this
distributed classification method saves highly discriminative
features with expected results in Hadoop.

In [68], the authors introduce a hardware and software
solution that is configurable, extensible, and expressive
and that generates and analyses per-packet telemetry data
with nanosecond-accurate timing. They emphasise their
design, which they believe to be the key performance
factor that enables secure handling of telemetry packets
at the scale of millions per second, more than enough to
manage high loads of traffic. Additionally, they demonstrate
real-time stream processing apps for the system that feature
sophisticated filtration, aggregation, and windowing features.
Their use-cases demonstrate the versatility in supporting a
range of complex performance tracking, troubleshooting, and
security duties. Specifically, they focus on TCP-based SYN
flood attacks, which are hard to be filtered by routers when
the source IP address is spoofed.

According to the authors of [69], Kafka must adhere to the
same security and compliance standards as traditional data
storage systems like relational databases for cloud providers
and businesses. One crucial criterion that Kafka does not
presently provide is encryption-at-rest. They initially analyze
several Kafka encryption implementation strategies before
outlining the first full solution for implementing encryption-
at-rest at scale at the level of a Kafka topic. They use
a functioning implementation to illustrate the difficulties
in implementing encryption policy, key distribution, key
rotation, and data re-encryption in Kafka.

In [70], the authors point out that, in contrast to typical
cloud-based access control designs, Kafka service providers

frequently must construct their systems on high-performance
cloud platforms owned by other businesses. Since the
cloud platform is owned by a third party, it is not always
dependable. They demonstrate the paradoxical fact that
Kafka’s data is kept in the cloud in unencrypted form, and
as a result, they showed a significant risk of user privacy
being compromised. To prevent the data from being exposed
in Kafka, they suggest a secure fine-grained data transmission
method which, in addition to being more secure than Kafka’s
built-in security system, can successfully thwart the theft of
unencrypted data by third-party clouds.

The authors of [71] outline their initial effort to solve some
of the practical issues of employing Kafka as a single data
storage within a business. They specifically discuss basic
methods for ensuring consistency and coherence of data
delivered via Kafka from various database tables as well as
how tomanage compliance by encrypting and decrypting data
at the Kafka producers and consumers.

The authors of [72] suggest a Hadoop ecosystem to
support a number of features in the industrial sector. Public-
key cryptography, which uses both public and private keys,
is used as a security technique. Furthermore, the private
key is kept in the Kafka consumer, while the public key
is located in the Kafka producer. The performance and
accuracy of data storage, processing, and security in the
industrial environment will improve with the integration of
the aforementioned technologies.

IX. OPEN CHALLENGES
As Apache Kafka continues to gain popularity as a reliable
and scalable data streaming platform, it faces new challenges
that should be addressed to continue to meet the needs of
modern data-driven applications. In this section, we present
some of the open challenges that we identified in the context
of our investigation for this paper, related to scaling Kafka
for massive data streams, real-time analytics and processing,
integrating Kafka with cyber-physical systems, and ensuring
security in Kafka deployments (Fig. 7).

A. SCALING APACHE KAFKA FOR MASSIVE DATA
STREAMS
Following the discussion of section V on networked infras-
tructures and section VI on data handling and processing,
we can conclude that one of the main challenges in Apache
Kafka is scaling it to handle massive data streams. As the
volume of data generated in many modern applications
continues to grow exponentially, there is a need for scalable
and reliable messaging systems that can handle these
data streams. Although Apache Kafka was designed with
scalability inmind, scaling it to handle very large data streams
can still be a challenge. One approach to addressing this
challenge is to distribute the Kafka brokers across multiple
nodes in a cluster, thus enabling horizontal scaling. However,
this approach can also introduce new challenges related
to load balancing, data partitioning, and fault tolerance.
To address such challenges, research can be conducted
on optimising the performance and scalability of Apache

VOLUME 11, 2023 85345



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

FIGURE 7. Identified Apache Kafka challenges and respective envisioned
approaches.

Kafka in distributed environments; for example, with new
load-balancing algorithms that can distribute the data traffic
across Kafka brokers more evenly, thus reducing the risk of
bottlenecks and improving overall system performance [68],
or with optimising the partitioning of data across Kafka topics
to dynamically adjust the partitioning strategy based on the
workload and data characteristics [31].

New research suggestions:
1) Adaptive Load Balancing Mechanisms: Investigate

and design novel adaptive load-balancing algorithms
for Apache Kafka that can intelligently distribute
data traffic across brokers in a dynamic manner.
These mechanisms should be capable of detecting
variations in data stream volumes and adaptively
allocate resources to brokers to prevent bottlenecks and
ensure efficient utilization of cluster resources.

2) Enhanced Data Partitioning Strategies: Explore
advanced data partitioning strategies that optimize data
distribution across Kafka topics based on workload
characteristics. Research could focus on developing
partitioning algorithms that can dynamically adjust
partition assignments to better align with data flow
patterns, ensuring balanced distribution and reducing
latency in high-throughput scenarios.

3) Fault-Tolerant Horizontal Scaling: Investigate fault-
tolerant approaches for horizontal scaling of Apache
Kafka clusters. This research could explore mecha-
nisms to handle node failures gracefully, redistribute
partitions, and maintain data consistency across nodes.
The goal is to enhance the system’s ability to recover
from failures seamlessly, ensuring high availability and
reliability.

4) Stream Compression Techniques: Explore the use of
innovative stream compression techniques to optimize
the storage and transfer of data streams within
Apache Kafka. Research could focus on developing

efficient compression algorithms that minimize storage
overhead and reduce network bandwidth utilization,
especially for large-scale data streams.

5) Scaling for Multi-Tenancy: Examine how Apache
Kafka can efficiently handle multi-tenancy scenarios,
where multiple applications or tenants share the
same Kafka cluster. Investigate resource isolation,
performance isolation, and security mechanisms to
ensure smooth coexistence of diverse workloads within
a shared infrastructure.

B. REAL-TIME ANALYTICS AND PROCESSING WITH
APACHE KAFKA
Another challenge in Apache Kafka is leveraging it for
real-time analytics and processing of streaming data. In many
applications, the ability to process data in real-time can
provide significant advantages, such as enabling proactive
decision-making, reducing response times, and improv-
ing overall system efficiency. Apache Kafka provides a
powerful platform for real-time data processing, but it
also introduces new challenges related to the complexity
of stream processing, the need for high throughput and
low latency, and the requirements for managing stateful
processing. To address such challenges, research could focus
on developing new approaches and techniques for stream
processing with Apache Kafka; for example, with new data
processing architectures that use Apache Kafka as a central
component for data ingestion and distribution, while also
integrating other technologies such as Apache Spark or Flink
for stream processing and analytics [73], or with optimising
the performance of Kafka streams by reducing processing
overhead, improving fault tolerance, and enabling stateful
processing in a distributed environment [74].

New research suggestions:

6) Integrated Stream Processing Architectures: Investi-
gate and propose innovative integrated stream pro-
cessing architectures that leverage Apache Kafka as a
central component for data ingestion and distribution.
This research could explore the seamless integration
of other stream processing technologies, such as
Apache Spark or Apache Flink, to enhance real-
time analytics capabilities. The goal is to design
architectures that optimize data flow, enable efficient
data processing, and provide seamless interoperability
between different processing components.

7) Performance Optimization for Kafka Streams: Focus
on optimizing the performance of Kafka streams in
distributed environments. This research could explore
methods to reduce processing overhead, improve fault
tolerance mechanisms, and enhance the scalability of
Kafka streams for handling large-scale data process-
ing tasks. Investigate techniques that enable stateful
processing while efficiently managing the associated
complexities in a distributed setting.

8) Efficient State Management for Stream Process-
ing: Develop novel approaches for efficient stateful

85346 VOLUME 11, 2023



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

processing in Apache Kafka-based stream processing.
This research could explore advanced state man-
agement techniques that optimize memory usage,
reduce latency, and ensure fault tolerance in managing
stateful processing applications. Investigate methods to
efficiently distribute and synchronize state across par-
titions and nodes, while maintaining data consistency
and minimizing overhead.

C. INTEGRATING APACHE KAFKA WITH CYBER-PHYSICAL
SYSTEMS
Apache Kafka has the potential to be used as a core data
streaming platform for cyber-physical systems, allowing for
real-time communication between physical devices and data-
driven applications. However, there are several challenges
associated with tightly integrating Apache Kafka with cyber-
physical systems. One challenge is ensuring the reliability
and availability of the system. In a cyber-physical envi-
ronment, system failures can have serious consequences,
such as equipment damage, production delays, and even
safety hazards. Therefore, it is essential to design the
system architecture in such a way that it is fault-tolerant
and can recover quickly from failures [75]. This leads
to the challenge of ensuring the scalability of the cyber-
physical architecture. As the number of physical devices
and data-driven applications in a cyber-physical environment
grows, the cyber-physical architecture must be able to scale
to accommodate the increased traffic and data volume [76].
Finally, there is a challenge related to the interoperability of
different system devices and applications. Different devices
and applications may use different protocols or formats for
data transmission, which can lead to compatibility issues
when integrating them with Apache Kafka. This challenge
can be addressed by using standard protocols and formats
for data transmission in cyber-physical environments [77].
Overall, the integration of Apache Kafka with cyber-physical
systems has the potential to enable new applications and use
cases in a wide range of industries. However, addressing these
challenges is critical to ensure the reliability, interoperability,
and scalability of cyber-physical architectures that rely on
Apache Kafka.
New research suggestions:

9) Fault-Tolerant Architecture Design: Investigate novel
fault-tolerant architecture designs that ensure the
reliability and availability of cyber-physical systems
built on Apache Kafka. This research could focus
on developing redundancy mechanisms, intelligent
failover strategies, and effective error handling to
minimize downtime and prevent system failures. The
goal is to enhance the system’s ability to recover swiftly
and maintain uninterrupted operations, even in the face
of critical failures.

10) Scalability Solutions for High-Traffic Environments:
Explore innovative scalability solutions tailored
for high-traffic cyber-physical environments. This
research could include optimizingKafka’s performance

for handling large data volumes, implementing
efficient data partitioning schemes, and devising load
balancing algorithms to distribute the increased traffic
evenly across brokers. The aim is to ensure that
the system can effectively handle the growing data
demands as the number of devices and applications
increases.

11) Standardized Data Transmission Protocols: Address
the challenge of interoperability by proposing standard-
ized data transmission protocols and formats for cyber-
physical environments. Investigate the adaptation of
widely accepted industry standards to enable seamless
communication between different devices and applica-
tions. The research should focus on developing proto-
cols that efficiently handle data conversion and enable
secure, reliable data exchange, ensuring compatibility
and reducing integration complexities.

D. SECURITY CONSIDERATIONS IN APACHE KAFKA
DEPLOYMENTS
As with any distributed system, security is a critical concern
when deploying Apache Kafka in enterprise environments.
As discussed in section VIII, Apache Kafka introduces new
security challenges related to data privacy, access control,
authentication, and authorisation. Ensuring the security of
Apache Kafka requires careful attention to these issues,
as well as the configuration of the underlying infrastructure
and network. To address these challenges, research will need
to focus on developing new security models and protocols for
Apache Kafka deployments; for example, with new encryp-
tion techniques for securing data transmission in Kafka
clusters, such as using TLS or AES algorithms [78], or with
developing new access control models for Kafka topics, such
as using role-based access control or attribute-based access
control to manage user privileges [79], to help ensure the
security of Apache Kafka deployments and protect against
potential security threats.
New research suggestions:

12) Enhanced Data Transmission Security: Investigate and
develop advanced encryption techniques to bolster the
security of data transmission within Apache Kafka
clusters. Research could focus on leveraging robust
encryption algorithms, such as TLS or AES, to safe-
guard data privacy and confidentiality during data
transfer. By implementing robust encryption methods,
researchers and practicioners can fortify the security
posture of Apache Kafka deployments, protecting sen-
sitive information from potential unauthorized access.

13) Advanced Access Control Models: Explore novel
access control models tailored for Apache Kafka topics
to strengthen access management and ensure data
integrity. Research could focus on designing role-based
access control (RBAC) or attribute-based access con-
trol (ABAC) mechanisms to grant user privileges based
on specific attributes or roles. By implementing fine-
grained access controls, application owners can enforce

VOLUME 11, 2023 85347



T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

strict data access policies, mitigating the risks of
unauthorized data access and manipulation.

14) Security Auditing and Threat Detection: Develop effec-
tive security auditing and threat detection mechanisms
for Apache Kafka deployments. This research could
explore methods to monitor and log security-related
events within Kafka clusters, enabling real-time detec-
tion of potential security breaches or suspicious
activities. By incorporating robust threat detection
mechanisms, we can proactively respond to security
incidents and bolster the overall resilience of Apache
Kafka environments.

In conclusion, addressing the challenges of scaling Apache
Kafka for massive data streams, enabling real-time analytics
and processing, integrating with cyber-physical systems, and
ensuring robust security in deployments, presents a rich
landscape of new research opportunities. By exploring and
advancing these research suggestions, the potential of Apache
Kafka as a core data streaming platform can be fully realized,
offering transformative benefits across diverse industries and
enhancing its position as a leading solution for managing
networked data streaming applications.

X. CONCLUSION
The growing popularity of Apache Kafka as a solution
for managing networked data streaming in various domains
has prompted extensive research in the field. In this paper,
we have conducted a comprehensive survey of the research
literature on networked data streaming with Apache Kafka
and identified several key findings and open research
challenges that pave the way for future advancements.
To provide a structured analysis, we classified the research
literature into representative macro areas, namely algorithms,
networks, data, cyber-physical systems, and security. Within
these areas, we explored different aspects and optimization
techniques related to Apache Kafka. In the realm of
algorithmic foundations, we delved into the combinatorial
aspects and reliability engineering of Apache Kafka. This
analysis shed light on the underlying principles and design
considerations that enable Kafka to handle high-volume
event data efficiently. Furthermore, we examined the net-
worked infrastructure optimization aspects, emphasizing how
Apache Kafka enhances the performance and scalability of
distributed systems. We discussed the various techniques and
architectural designs that leverage Kafka to optimize net-
worked infrastructure. Data handling and processing emerged
as another crucial area, with Apache Kafka proving its
effectiveness in real-time data streaming, message queuing,
and machine learning-based computing. We explored the
different applications and use cases where Kafka enables
seamless and efficient data handling and processing. The
emerging trend of cyber-physical convergence was also
explored, highlighting the role of ApacheKafka in integrating
physical systems with data-driven applications. We examined
specific use cases in the Internet of Things, vehicles, mobility,
and environmental domains, illustrating howKafka facilitates
the convergence of physical and digital worlds. Security

considerations were not overlooked, as we delved into
the measures and best practices for ensuring the secure
deployment of Apache Kafka in enterprise environments.
Lastly, we identified several open research challenges that
require further exploration in the field of networked data
streaming with Apache Kafka. These challenges include
scaling Kafka for massive data streams, advancing real-time
analytics and processing capabilities, integrating Kafka with
cyber-physical systems more seamlessly, and enhancing
security mechanisms for Kafka deployments.

REFERENCES
[1] D. Bajovic et al., ‘‘MARVEL: Multimodal extreme scale data analytics

for smart cities environments,’’ in Proc. Int. Balkan Conf. Commun. Netw.
(BalkanCom), Sep. 2021, pp. 143–147.

[2] T. P. Raptis, A. Passarella, and M. Conti, ‘‘Distributed data access in
industrial edge networks,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 915–927, May 2020.

[3] C. M. Angelopoulos, G. Filios, S. Nikoletseas, and T. P. Raptis, ‘‘Keeping
data at the edge of smart irrigation networks: A case study in strawberry
greenhouses,’’ Comput. Netw., vol. 167, Feb. 2020, Art. no. 107039.

[4] T. Raptis, A. Passarella, and M. Conti, ‘‘Performance analysis of latency-
aware data management in industrial IoT networks,’’ Sensors, vol. 18,
no. 8, p. 2611, Aug. 2018.

[5] M. J. Sax, Apache Kafka. Cham, Switzerland: Springer, 2018, pp. 1–8, doi:
10.1007/978-3-319-63962-8_196-1.

[6] G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M. Zadeh,
N. Narkhede, J. Rao, J. Kreps, and J. Stein, ‘‘Building a replicated logging
system with Apache Kafka,’’ Proc. VLDB Endowment, vol. 8, no. 12,
pp. 1654–1655, Aug. 2015.

[7] S. Vyas, R. K. Tyagi, C. Jain, and S. Sahu, ‘‘Literature review: A
comparative study of real time streaming technologies andApacheKafka,’’
in Proc. 4th Int. Conf. Comput. Intell. Commun. Technol. (CCICT),
Jul. 2021, pp. 146–153.

[8] S. Kul and A. Sayar, ‘‘A survey of publish/subscribe middleware
systems for microservice communication,’’ in Proc. 5th Int. Symp.
Multidisciplinary Stud. Innov. Technol. (ISMSIT), Oct. 2021, pp. 781–785.

[9] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan,
‘‘A survey of distributed data stream processing frameworks,’’ IEEE
Access, vol. 7, pp. 154300–154316, 2019.

[10] A. H. Ali and M. Z. Abdullah, ‘‘Recent trends in distributed online stream
processing platform for big data: Survey,’’ in Proc. 1st Annu. Int. Conf. Inf.
Sci. (AiCIS), Nov. 2018, pp. 140–145.

[11] G. Hesse and M. Lorenz, ‘‘Conceptual survey on data stream processing
systems,’’ in Proc. IEEE 21st Int. Conf. Parallel Distrib. Syst. (ICPADS),
Dec. 2015, pp. 797–802.

[12] J. Xu, J. Yin, H. Zhu, and L. Xiao, ‘‘Modeling and verifying producer-
consumer communication in Kafka using CSP,’’ in Proc. 7th Conf. Eng.
Comput. Based Syst. (ECBS). New York, NY, USA: Association for
Computing Machinery, 2021, pp. 1–10.

[13] H. Wu, Z. Shang, and K. Wolter, ‘‘Performance prediction for the Apache
Kafka messaging system,’’ in Proc. IEEE 21st Int. Conf. High Perform.
Comput. Commun., IEEE 17th Int. Conf. Smart City, IEEE 5th Int. Conf.
Data Sci. Syst. (HPCC/SmartCity/DSS), Aug. 2019, pp. 154–161.

[14] T. P. Raptis and A. Passarella, ‘‘On efficiently partitioning a topic in
Apache Kafka,’’ in Proc. Int. Conf. Comput., Inf. Telecommun. Syst.
(CITS), Jul. 2022, pp. 1–8.

[15] D. Landau, X. Andrade, and J. G. Barbosa, ‘‘Kafka consumer group
autoscaler,’’ 2022, arXiv:2206.11170.

[16] L. Xu, X. Ma, and L. Xu, ‘‘A novel adaptive tuning mechanism for Kafka-
based ordering service,’’ in Web Information Systems and Applications,
W. Ni, X. Wang, W. Song, and Y. Li, Eds. Cham, Switzerland: Springer,
2019, pp. 119–125.

[17] J. Bang, S. Son, H. Kim, Y.-S. Moon, and M.-J. Choi, ‘‘Design and
implementation of a load shedding engine for solving starvation problems
in Apache Kafka,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp.
(NOMS), Apr. 2018, pp. 1–4.

[18] M. Gütlein and A. Djanatliev, ‘‘Modeling and simulation as a service using
Apache Kafka,’’ in Proc. 10th Int. Conf. Simulation Modeling Methodol.,
Technol. Appl. (SIMULTECH), 2020, pp. 171–180.

85348 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-319-63962-8_196-1


T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

[19] T. Aung, H. Y. Min, and A. H. Maw, ‘‘Enhancement of fault tolerance in
Kafka pipeline architecture,’’ in Proc. 11th Int. Conf. Adv. Inf. Technol.
(IAIT). NewYork, NY, USA: Association for ComputingMachinery, 2020,
pp. 1–8.

[20] L.-P. Chen, L.-F. Yei, and Y.-R. Chen, ‘‘An efficient disaster recovery
mechanism for multi-region Apache Kafka clusters,’’ in Innovative Mobile
and Internet Services in Ubiquitous Computing, L. Barolli, Ed. Cham,
Switzerland: Springer, 2022, pp. 297–306.

[21] H. Wu, Z. Shang, G. Peng, and K. Wolter, ‘‘A reactive batching strategy of
Apache Kafka for reliable stream processing in real-time,’’ in Proc. IEEE
31st Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2020, pp. 207–217.

[22] H. Wu, ‘‘Research proposal: Reliability evaluation of the Apache Kafka
streaming system,’’ in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops
(ISSREW), Oct. 2019, pp. 112–113.

[23] G. Hesse, C. Matthies, and M. Uflacker, ‘‘How fast can we insert?
An empirical performance evaluation of Apache Kafka,’’ in Proc.
IEEE 26th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2020,
pp. 641–648.

[24] H. Wu, Z. Shang, and K. Wolter, ‘‘Learning to reliably deliver streaming
data with Apache Kafka,’’ in Proc. 50th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2020, pp. 564–571.

[25] H. Wu, Z. Shang, and K. Wolter, ‘‘TRAK: A testing tool for studying the
reliability of data delivery in Apache Kafka,’’ in Proc. IEEE Int. Symp.
Softw. Rel. Eng. Workshops (ISSREW), Oct. 2019, pp. 394–397.

[26] M. H. Javed, X. Lu, and D. K. D. Panda, ‘‘Characterization of big
data stream processing pipeline: A case study using Flink and Kafka,’’
in Proc. 4th IEEE/ACM Int. Conf. Big Data Comput., Appl. Technol.
(BDCAT). New York, NY, USA: Association for Computing Machinery,
2017, pp. 1–10.

[27] E. Falk, V. K. Gurbani, and R. State, ‘‘Query-able Kafka: An agile data
analytics pipeline for mobile wireless networks,’’Proc. VLDBEndowment,
vol. 10, no. 12, pp. 1646–1657, Aug. 2017.

[28] R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, A. González-Muñiz,
J. P. Fernández-Palacios, ‘‘Optical network telemetry with streaming
mechanisms using transport API and Kafka,’’ in Proc. Eur. Conf. Opt.
Commun. (ECOC), 2021, pp. 1–4.

[29] J.-H. Moon and Y.-T. Shine, ‘‘A study of distributed SDN controller based
on Apache Kafka,’’ in Proc. IEEE Int. Conf. Big Data Smart Comput.
(BigComp), Feb. 2020, pp. 44–47.

[30] M. Tsenos, N. Zacheilas, and V. Kalogeraki, ‘‘Dynamic rate control in
the Kafka system,’’ in Proc. 24th Pan-Hellenic Conf. Informat. (PCI),
Nov. 2020, pp. 96–98.

[31] T. P. Raptis, C. Cicconetti, M. Falelakis, G. Kalogiannis, T. Kanellos, and
T. P. Lobo, ‘‘Engineering resource-efficient data management for smart
cities with Apache Kafka,’’ Future Internet, vol. 15, no. 2, p. 43, Jan. 2023,
doi: 10.3390/fi15020043.

[32] Z. Farkas and R. Lovas, ‘‘Reference architecture for IoT platforms towards
cloud continuum based on Apache Kafka and orchestration methods,’’ in
Proc. 7th Int. Conf. Internet Things, Big Data Secur. (IoTBDS), 2022,
pp. 205–214.

[33] C. N. Nguyen, J.-S. Kim, and S. Hwang, ‘‘KOHA: Building a
Kafka-based distributed queue system on the fly in a Hadoop cluster,’’ in
Proc. IEEE 1st Int. Workshops Found. Appl. Self Syst. (FAS∗W), Sep. 2016,
pp. 48–53.

[34] M. Raza, J. Tahir, C. Doblander, R. Mayer, and H.-A. Jacobsen,
‘‘Benchmarking Apache Kafka under network faults,’’ in Proc. 22nd Int.
Middleware Conf., Demos Posters (Middleware). New York, NY, USA:
Association for Computing Machinery, 2021, pp. 5–7.

[35] P. Le Noac’h, A. Costan, and L. Bougé, ‘‘A performance evaluation of
Apache Kafka in support of big data streaming applications,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2017, pp. 4803–4806.

[36] H. Kim, J. Bang, S. Son, N. Joo, M.-J. Choi, and Y.-S. Moon,
‘‘Message latency-based load shedding mechanism in Apache Kafka,’’
in Euro-Par 2019: Parallel Processing Workshops, U. Schwardmann,
C. Boehme, D. B. Heras, V. Cardellini, E. Jeannot, A. Salis, C. Schifanella,
R. R. Manumachu, D. Schwamborn, L. Ricci, O. Sangyoon, T. Gruber,
L. Antonelli, and S. L. Scott, Eds. Cham, Switzerland: Springer, 2020,
pp. 731–736.

[37] C. Martín, P. Langendoerfer, P. S. Zarrin, M. Díaz, and B. Rubio,
‘‘Kafka-ML: Connecting the data streamwithML/AI frameworks,’’Future
Gener. Comput. Syst., vol. 126, pp. 15–33, Jan. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X21002995

[38] A. Carnero, C. Martín, D. R. Torres, D. Garrido, M. Díaz, and B. Rubio,
‘‘Managing and deploying distributed and deep neural models through
Kafka-ML in the cloud-to-things continuum,’’ IEEE Access, vol. 9,
pp. 125478–125495, 2021.

[39] D. R. Torres, C. Martín, B. Rubio, and M. Díaz, ‘‘An open source
framework based on Kafka-ML for distributed DNN inference over
the cloud-to-things continuum,’’ J. Syst. Archit., vol. 118, Sep. 2021,
Art. no. 102214. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S138376212100151X

[40] A. K. Lakkad, R. D. Bhadaniya, V. N. Shah, and K. Lavanya, ‘‘Complex
events processing on live news events using Apache Kafka and clustering
techniques,’’ Int. J. Intell. Inf. Technol., vol. 17, no. 1, pp. 39–52, Jan. 2021,
doi: 10.4018/IJIIT.2021010103.

[41] S. Bano, N. Tonellotto, P. Cassarà, and A. Gotta, ‘‘KafkaFed: Two-tier
federated learning communication architecture for Internet of Vehicles,’’
in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops Other
Affiliated Events (PerCom Workshops), Mar. 2022, pp. 515–520.

[42] E. Alothali, H. Alashwal, M. Salih, and K. Hayawi, ‘‘Real time detection
of social bots on Twitter using machine learning and Apache Kafka,’’ in
Proc. 5th Cyber Secur. Netw. Conf. (CSNet), Oct. 2021, pp. 98–102.

[43] S. Langhi, R. Tommasini, and E. D. Valle, ‘‘Extending Kafka streams for
complex event recognition,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2020, pp. 2190–2197.

[44] H. Jafarpour and R. Desai, ‘‘KSQL: Streaming SQL engine for Apache
Kafka,’’ in Proc. 22nd Int. Conf. Extending Database Technol. (EDBT),
Lisbon, Portugal, M. Herschel et al., Eds., Mar. 2019, pp. 524–533, doi:
10.5441/002/edbt.2019.48.

[45] C. Prabhu, R. V. Gandhi, A. K. Jain, V. S. Lalka, S. G. Thottempudi,
and P. P. Rao, ‘‘A novel approach to extend KM models with object
knowledge model (OKM) and Kafka for big data and semantic web
with greater semantics,’’ in Complex, Intelligent, and Software Intensive
Systems, L. Barolli, F. K. Hussain, and M. Ikeda, Eds. Cham, Switzerland:
Springer, 2020, pp. 544–554.

[46] X. Ren, O. Curé, H. Khrouf, and Z. Kazi-Aoul, ‘‘Apache spark and Apache
Kafka at the rescue of distributed RDF stream processing engines,’’ in
Proc. ISWC Posters Demonstrations Track Co-Located With 15th Int.
Semantic Web Conf. (ISWC), in CEUR Workshop Proceedings, Kobe,
Japan, vol. 1690, T. Kawamura and H. Paulheim, Eds., Oct. 2016, pp. 1–4.
[Online]. Available: http://ceur-ws.org/Vol-1690/paper43.pdf

[47] P. Dobbelaere and K. S. Esmaili, ‘‘Kafka versus rabbitmq: A comparative
study of two industry reference publish/subscribe implementations:
Industry paper,’’ in Proc. 11th ACM Int. Conf. Distrib. Event-Based Syst.,
2017, pp. 227–238.

[48] K. Taranov, S. Byan, V. Marathe, and T. Hoefler, ‘‘KafkaDirect: Zero-copy
data access for Apache Kafka over RDMA networks,’’ in Proc. Int. Conf.
Manage. Data (SIGMOD). New York, NY, USA: Association for Comput-
ing Machinery, 2022, pp. 2191–2204, doi: 10.1145/3514221.3526056.

[49] S. Qian, J. Xu, J. Cao, G. Xue, J. Li, and W. Zhang, ‘‘Fat topic: Improving
latency in content-based publish/subscribe systems on Apache Kafka,’’
in Wireless Algorithms, Systems, and Applications, Z. Liu, F. Wu, and
S. K. Das, Eds. Cham, Switzerland: Springer, 2021, pp. 547–558.

[50] F. Versaci, L. Pireddu, and G. Zanetti, ‘‘Kafka interfaces for composable
streaming genomics pipelines,’’ in Proc. IEEE EMBS Int. Conf. Biomed.
Health Informat. (BHI), Mar. 2018, pp. 259–262.

[51] L. L. Lourenço, G. Oliveira, P. D. M. Plentz, and J. Röning, ‘‘Achieving
reliable communication between Kafka and ROS through bridge codes,’’
in Proc. 20th Int. Conf. Adv. Robot. (ICAR), Dec. 2021, pp. 324–329.

[52] B. Blamey, A. Hellander, and S. Toor, ‘‘Apache spark streaming, Kafka and
HarmonicIO: A performance benchmark and architecture comparison for
enterprise and scientific computing,’’ in Benchmarking, Measuring, and
Optimizing, W. Gao, J. Zhan, G. Fox, X. Lu, and D. Stanzione, Eds. Cham,
Switzerland: Springer, 2020, pp. 335–347.

[53] J. Peng and X. Liu, ‘‘Disease and death monitoring on Amazon managed
streaming for Apache Kafka,’’ in Proc. 2nd Int. Symp. Artif. Intell.
Med. Sci. (ISAIMS). New York, NY, USA: Association for Computing
Machinery, Oct. 2021, pp. 24–27, doi: 10.1145/3500931.3500937.

[54] K. Kato, A. Takefusa, H. Nakada, and M. Oguchi, ‘‘Construction scheme
of a scalable distributed stream processing infrastructure using ray and
Apache Kafka,’’ in Proc. 34th Int. Conf. Comput. Their Appl., in EPiC
Series in Computing, vol. 58, G. Lee and Y. Jin, Eds., 2019, pp. 368–377.
[Online]. Available: https://easychair.org/publications/paper/LFCL

VOLUME 11, 2023 85349

http://dx.doi.org/10.3390/fi15020043
http://dx.doi.org/10.4018/IJIIT.2021010103
http://dx.doi.org/10.5441/002/edbt.2019.48
http://dx.doi.org/10.1145/3514221.3526056
http://dx.doi.org/10.1145/3500931.3500937


T. P. Raptis, A. Passarella: Survey on Networked Data Streaming With Apache Kafka

[55] A. Ichinose, A. Takefusa, H. Nakada, and M. Oguchi, ‘‘A study of a video
analysis framework using Kafka and spark streaming,’’ in Proc. IEEE Int.
Conf. Big Data (Big Data), Dec. 2017, pp. 2396–2401.

[56] G. Radchenko, A. B. A. Alaasam, and A. Tchernykh, ‘‘Micro-workflows:
Kafka and Kepler fusion to support digital twins of industrial processes,’’
in Proc. IEEE/ACM Int. Conf. Utility Cloud Comput. Companion (UCC
Companion), Dec. 2018, pp. 83–88.

[57] Å. Hugo, B. Morin, and K. Svantorp, ‘‘Bridging MQTT and Kafka to
support C-ITS: A feasibility study,’’ in Proc. 21st IEEE Int. Conf. Mobile
Data Manage. (MDM), Jun. 2020, pp. 371–376.

[58] S. Kul, I. Tashiev, A. Sentas, and A. Sayar, ‘‘Event-based microservices
with Apache Kafka streams: A real-time vehicle detection system based on
type, color, and speed attributes,’’ IEEE Access, vol. 9, pp. 83137–83148,
2021.

[59] S. Bano, E. Carlini, P. Cassara, M. Coppola, P. Dazzi, and A. Gotta,
‘‘A novel approach to distributed model aggregation using Apache Kafka,’’
in Proc. 2nd Workshop Flexible Resource Appl. Manag. Edge (FRAME).
New York, NY, USA: Association for Computing Machinery, Jul. 2022,
pp. 33–36, doi: 10.1145/3526059.3533621.

[60] M. Gütlein and A. Djanatliev, ‘‘On-demand simulation of future mobility
based on Apache Kafka,’’ in Simulation and Modeling Methodologies,
Technologies and Applications, M. S. Obaidat, T. Oren, and F. D. Rango,
Eds. Cham, Switzerland: Springer, 2022, pp. 18–41.

[61] A. Akanbi, ‘‘ESTemd: A distributed processing framework for environ-
mental monitoring based on Apache Kafka streaming engine,’’ in Proc.
4th Int. Conf. Big Data Research (ICBDR), Nov. 2020, pp. 18–25, doi:
10.1145%2F3445945.3445949.

[62] Y. Lou, L. Chen, F. Ye, Y. Chen, and Z. Liu, ‘‘Research and implementation
of an aquaculture monitoring system based on Flink, MongoDB and
Kafka,’’ in Computational Science—ICCS 2019, J. M. F. Rodrigues,
P. J. S. Cardoso, J.Monteiro, R. Lam, V. V. Krzhizhanovskaya,M. H. Lees,
J. J. Dongarra, and P.M. A. Sloot, Eds. Cham, Switzerland: Springer, 2019,
pp. 648–657.

[63] R.Wiska, N. Habibie, A.Wibisono, W. S. Nugroho, and P. Mursanto, ‘‘Big
sensor-generated data streaming using Kafka and impala for data storage
in wireless sensor network for CO2 monitoring,’’ in Proc. Int. Workshop
Big Data Inf. Secur. (IWBIS), Oct. 2016, pp. 97–102.

[64] K. Lavanya, S. Venkatanarayanan, and A. A. Bhoraskar, ‘‘Real-time
weather analytics: An end-to-end big data analytics service over
Apach spark with Kafka and long short-term memory networks,’’ Int.
J. Web Services Res., vol. 17, no. 4, pp. 15–31, Oct. 2020, doi:
10.4018/IJWSR.2020100102.

[65] L. Shen, Y. Lou, Y. Chen, M. Lu, and F. Ye, ‘‘Meteorological sensor data
storage mechanism based on TimescaleDB and Kafka,’’ in Data Science,
X. Cheng, W. Jing, X. Song, and Z. Lu, Eds. Singapore: Springer, 2019,
pp. 137–147.

[66] X.-C. Chai, Q.-L. Wang, W.-S. Chen, W.-Q. Wang, D.-N. Wang, and Y. Li,
‘‘Research on a distributed processing model based on Kafka for large-
scale seismic waveform data,’’ IEEE Access, vol. 8, pp. 39971–39981,
2020.

[67] N. V. Patil, C. R. Krishna, andK.Kumar, ‘‘KS-DDoS:Kafka streams-based
classification approach for DDoS attacks,’’ J. Supercomput., vol. 78, no. 6,
pp. 8946–8976, Apr. 2022, doi: 10.1007/s11227-021-04241-1.

[68] Z. Liu, B. Mah, Y. Kumar, C. Guok, and R. Cziva, ‘‘Programmable per-
packet network telemetry: From wire to Kafka at scale,’’ in Proc. Syst.
Netw. Telemetry Anal. (SNTA). New York, NY, USA: Association for
Computing Machinery, 2020, pp. 33–36, doi: 10.1145/3452411.3464443.

[69] C. Giblin, S. Rooney, P. Vetsch, and A. Preston, ‘‘Securing Kafka
with encryption-at-rest,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2021, pp. 5378–5387.

[70] H. Zhang, L. Fang, K. Jiang, W. Zhang, M. Li, and L. Zhou, ‘‘Secure door
on cloud: A secure data transmission scheme to protect Kafka’s data,’’ in
Proc. IEEE 26th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2020,
pp. 406–413.

[71] S. Rooney, P. Urbanetz, C. Giblin, D. Bauer, F. Froese, L. Garcés-
Erice, and S. Tomic, ‘‘Kafka: The database inverted, but not garbled or
compromised,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2019,
pp. 3874–3880.

[72] B. Leang, S. Ean, G.-A. Ryu, and K.-H. Yoo, ‘‘Improvement of Kafka
streaming using partition and multi-threading in big data environ-
ment,’’ Sensors, vol. 19, no. 1, p. 134, Jan. 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/1/134

[73] T. Toliopoulos, A. Gounaris, K. Tsichlas, A. Papadopoulos, and
S. Sampaio, ‘‘Continuous outlier mining of streaming data in flink,’’
Inf. Syst., vol. 93, Nov. 2020, Art. no. 101569. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437920300594

[74] M. Haghifam, M. N. Krishnan, A. Khisti, X. Zhu, W.-T. Tan, and
J. Apostolopoulos, ‘‘On streaming codes with unequal error protection,’’
IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 4, pp. 1165–1179, Dec. 2021.

[75] K. C. Okafor, M. C. Ndinechi, and S. Misra, ‘‘Cyber-physical network
architecture for data stream provisioning in complex ecosystems,’’ Trans.
Emerg. Telecommun. Technol., vol. 33, no. 4, p. e4407, 2022. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4407

[76] P. Thakur and V. K. Sehgal, ‘‘Emerging architecture for hetero-
geneous smart cyber-physical systems for industry 5.0,’’ Comput.
Ind. Eng., vol. 162, Dec. 2021, Art. no. 107750. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360835221006549

[77] G. Weichhart, H. Panetto, and A. Molina, ‘‘Interoperability
in the cyber-physical manufacturing enterprise,’’ Annu. Rev.
Control, vol. 51, pp. 346–356, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1367578821000146

[78] C. A. Torres-Charles, D. E. Carrizales-Espinoza, D. D. Sanchez-Gallegos,
J. L. Gonzalez-Compean, M. Morales-Sandoval, and J. Carretero,
‘‘SecMesh: An efficient information security method for stream processing
in edge-fog-cloud,’’ in Proc. 7th Int. Conf. Cloud Comput. Internet Things
(CCIOT). New York, NY, USA: Association for Computing Machinery,
Sep. 2022, pp. 8–16, doi: 10.1145/3569507.3569509.

[79] D. Wang, J. Ren, Z. Wang, Y. Zhang, and X. Shen, ‘‘PrivStream:
A privacy-preserving inference framework on IoT streaming data at the
edge,’’ Inf. Fusion, vol. 80, pp. 282–294, Apr. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1566253521002384

THEOFANIS P. RAPTIS received the Ph.D.
degree from the University of Patras, Greece.
He was an Associate Researcher with the Com-
puter Technology Institute and Press Diophantus,
Greece. He is currently a Senior Researcher with
the National Research Council, Italy. He has
published in journals, conference proceedings,
and books, more than 80 articles on industrial,
wirelessly powered, and sensor networks. He is
also regularly involved in international IEEE and

ACM sponsored conference and workshop organization committees, in the
areas of networks, computing, and communications. He has been serving
as Editorial Board Member for Ad Hoc Networks (Elsevier) and Associate
Editor for IET Networks (Wiley) and IEEE ACCESS.

ANDREA PASSARELLA received the Ph.D.
degree in computer engineering from the Uni-
versity of Pisa, Italy, in 2005. He is currently
the a Research Director with the Institute of
Informatics and Telematics, National Research
Council (CNR). Previously, he was a Research
Associate with the Computer Laboratory, Univer-
sity of Cambridge, U.K. He has published more
than 180 articles on self-organizing networks,
opportunistic networks, online and mobile social

networks, distributed AI, and the IoT. He has received multiple best paper
awards, including IFIP Networking 2011 and IEEE WoWMoM 2013. He is
the Co-Founder and an Associate Editor-in-Chief of the Online Social
Networks and Media (Elsevier). He has been General Chair of IEEE PerCom
2022 and Program Co-Chair of IEEE WoWMoM 2011, in addition of many
international workshops. He is a PI of the EU CHIST-ERA SAI Project and
a CNR Co-PI of several projects starting since FP7.

Open Access funding provided by ‘Consiglio Nazionale delle Ricerche-CARI-CARE-ITALY’
within the CRUI CARE Agreement

85350 VOLUME 11, 2023

http://dx.doi.org/10.1145/3526059.3533621
http://dx.doi.org/10.1145%2F3445945.3445949
http://dx.doi.org/10.4018/IJWSR.2020100102
http://dx.doi.org/10.1007/s11227-021-04241-1
http://dx.doi.org/10.1145/3452411.3464443
http://dx.doi.org/10.1145/3569507.3569509

