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Separating heat from charge in a material is an extremely challenging task since they are trans-
ported by the very same carriers, i.e. electrons or holes. In this Letter we show that such separation
can reach 100% efficiency in a hybrid superconducting quantum Hall setup, provided that the
quantum Hall system is tuned to integer filling factor. We present microscopic calculations for a
three-terminal setup to illustrate our idea.

Introduction.—Hybrid systems combining the quan-
tum Hall (QH) effect and superconductivity have been
the subject of investigation since the turn of the new
century [1–7]. In the absence of a magnetic field, the
microscopic mechanism responsible for charge transport
at a normal/superconductor interface is the Andreev re-
flection, which accounts for the transfer of a Cooper pair
into the superconductor (S) [8]. Early experimental [2, 3]
and theoretical [4–7] research on hybrid QH/S interfaces
therefore focused on understanding the peculiarities of
charge transport across this interface, possibly stemming
from the chiral edge states [9] flowing at the boundaries
of a QH fluid.

More recently, the experimental realization of QH/S
hybrid systems has been reported by several groups [10–
33]. The vast majority of experimental realizations is
based on graphene QH systems [10–27]. Indeed, graphene
encapsulated in hexagonal boron nitride allows the fabri-
cation of high-quality contacts [34] with high-critical-field
superconductors such as MoRe, NbN, MoGe, NbSe2.

Our aim in this Letter is to achieve separation of charge
and heat flows in an experimentally relevant solid-state
platform. This is very well known to be a truly challeng-
ing task since heat-charge separation [35, 36] requires the
violation of the Wiedemann-Franz law [37]. Such viola-
tions are rare in nature, and typically require e.g. strong
electron-electron interactions (see e.g. Refs. [38–41] and
references therein). We achieve this challenging goal by
using three key ingredients: 1) The first key idea is to by-
pass the Wiedemann-Franz law by using a QH/S setup
where the QH system is at filling factor ν = 1. The
fact that superconductors are poor heat conductors will
play a crucial role below. These hybrid QH/S setups are
currently at the center of a great deal of attention be-
cause in certain regimes are expected to support novel
non-Abelian excitations [42, 43], relevant for topologi-
cal quantum computation [44, 45]. Being able to manage
heat [46–49] in such devices, where quantum computation
relies on fragile quasiparticles, is of critical importance.
2) The second key element that is required to separate
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FIG. 1. (Color online) A three-terminal device where a 2DES
in the quantum Hall regime (at filling factor ν = 1) is proxim-
itized by an s-wave superconductor. A bias voltage V is ap-
plied between leads 1 and 2, with chemical potentials µ1 = eV
and µ2 = 0, while the superconducting (S) lead is grounded
(µ = 0). All leads are assumed to be at the same equilibrium
temperature T . A quantizing magnetic field B ̸= 0 is present
in the white and grey regions (with filling factor ν = 1, spin
polarized), while in the superconducting lead (colored in yel-
low) the field is set to zero. Charge (I1,2,S) and heat (IH1,2,S)
currents are calculated as entering the central region. Charge
currents will be denoted by blue symbols throughout this Let-
ter: empty squares for lead 1, filled circles for lead 2, and filled
triangles for the superconducting lead. Heat currents will in-
stead be denoted by red symbols (as in the case of charge
currents, empty squares for lead 1, filled circles for lead 2,
and filled triangles for the superconducting lead).

heat from charge is to have a device with three terminals,
as is the case in the one we propose, which is sketched in
Fig. 1. 3) The third key element we use is spin mixing.
Indeed, the co-existence of QH physics and superconduc-
tivity requires high-critical-field superconductors, which
tend to be endowed with strong spin-orbit coupling and
disorder. These two elements are crucial as they induce
spin-mixing at the QH/S interface, which would be other-
wise negligible. Without spin-mixing, indeed, the super-
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conducting terminal of our ν = 1 QH/S three-terminal
device would be totally inert, in the sense that charge and
heat currents would be perfectly coupled, flowing entirely
between the other two (normal) leads. Here we demon-
strate that spin-mixing in the superconducting terminal
leads to a perfect balance between normal and Andreev
transmission in a finite range of energies.
The actual setup we consider (Fig. 1) is an inverse-T

shaped two-dimensional electron system (2DES) subject
to a quantizing uniform and perpendicular magnetic field
B. The horizontal section of the device has a width W ,
while the vertical section has a width WS. Two elec-
trodes (labelled 1 and 2, in grey) are attached to the sides
and a superconductor (in yellow) is deposited on the top
section of the 2DES, so that the latter acquires “super-
conducting properties”, i.e. a finite order parameter ∆
through the proximity effect. In addition to W and WS,
our device is characterized by a third length scale asso-
ciated with ∆, i.e. the superconducting coherence length
ξ = ℏvF/(π∆), where vF is the 2D, bulk Fermi veloc-
ity. We assume that the magnetic field is completely
expelled from the proximitized region due to the Meiss-
ner effect [50]. A bias voltage V is applied between leads
1 and 2, with chemical potentials µ1 = eV and µ2 = 0,
while the superconducting lead is grounded (the super-
conducting condensate chemical potential µ = 0).
Theory of heat-charge separation in a hybrid QH/S

system.— The system is characterized by five energy
scales: the cyclotron gap ℏωc, the thermal energy kBT ,
the Zeeman splitting gµBB, the superconducting gap ∆,
and the bias voltage eV . Here, g is the Landé factor, µB

the Bohr magneton, and B the intensity of the applied
perpendicular magnetic field. Given a certain electron
density in the 2DES, we set a value of the magnetic field
B in order for transport to be mediated by a single, spin-
polarized, edge state. This occurs when the 2DES is
tuned at filling factor ν = 1, i.e. when the chemical po-
tential of the 2DES sits between the first and the second
Landau level. Moreover, we choose the following working
conditions:

i) the chemical potential of the leads are µ1 = eV <
∆ and µ2 = µ = 0, while temperature is such that
kBT ≪ ∆, i.e. we are in the sub-gap transport
regime;

ii) eV < gµBB, i.e the chemical potential difference
between leads 1 and 2 is smaller than the Zeeman
splitting energy;

iii) kBT ≪ gµBB, i.e. the thermal energy is smaller
the Zeeman splitting energy.

Notice that conditions i) to iii) ensure that a single spin-
polarized edge channel is available for transport. Be-
cause of that, no Andreev processes can occur since a
Cooper pair in an s-wave superconductor is made of elec-
trons of both spin species. Andreev-mediated transport

at ν = 1, however, has been observed in recent experi-
ments [15, 26], where NbN was employed as a supercon-
ductor, and attributed to spin-flipping scattering mech-
anisms. Indeed, in Ref. 51 it was shown that such pro-
cesses can take place in NbN because of the presence of
strong spin-orbit coupling.
Many authors have addressed theoretically transport

in hybrid QH/S systems [1, 52–62, 64–75]. Here, we as-
sume coherent transport and calculate charge and heat
currents flowing in the electrodes within the Landauer-
Büttiker scattering approach [76]. Because of the chiral
nature of edge states, they can be expressed only through
two sets of transmission coefficients: a) the normal trans-
mission coefficients Tα,α(E) and T ′

α,α(E) with Tα,α(E)
[T ′

α,α(E)] being the probability for an α-type particle
(α = + for electrons and α = − for holes) at energy E to
be transferred from lead 1 to 2 [from lead 2 to 1]; b) the
Andreev transmission coefficients Tα,β(E) and T ′

α,β(E),
with α ̸= β, where Tα,β(E) [T ′

α,β(E)] representing the
probability for a particle of type β at energy E which
starts from lead 1 [2] to be converted into a particle of
type α ̸= β when reaching lead 2 [1]. We recall that
Andreev scattering processes are the ones responsible for
the charge transfer at a normal/S interface [8, 77].
The charge currents in the normal leads, assuming sub-

gap transport regime, can be written as

I1 =
e

h

∫ ∞

0

dE
{∑

α,β

(α)T ′
α,β(E)

[
fα
1 (E)− fβ

2 (E)
]}

, (1)

and

I2 =
e

h

∫ ∞

0

dE
{∑

α,β

(α)Tα,β(E)
[
fα
2 (E)− fβ

1 (E)
]}

. (2)

Here,

f±
i (E) =

1

exp
{[
E ∓ (µi − µ)

]
/kBT

}
+ 1

(3)

is the Fermi-Dirac distribution function for elec-
trons/holes at energy E in lead i = 1, 2, evaluated at
the equilibrium temperature T . Notice that in writing
Eqs. (1)-(2) we have used the fact that the reflection
probabilities at the two leads vanish, because of the chiral
character of quantum Hall edge states. Under the same
assumption, the heat currents can be calculated from the
relation [46]:

IHi = IEi − µi

e
Ii , (4)

where IEi is the energy current in the i-th lead:

IE1 =
1

h

∫ ∞

0

dE E
{∑

α,β

T ′
α,β(E)

[
fα
1 (E)− fβ

2 (E)
]}

, (5)

and

IE2 =
1

h

∫ ∞

0

dE E
{∑

α,β

Tα,β(E)
[
fα
2 (E)− fβ

1 (E)
]}

. (6)
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Two comments are now in order: a) The second term in
Eq. (4), which is proportional to the chemical potential
µi in the i-th lead, stems from the fact that an electron
with energy E leaving the i-th reservoir carries away an
amount of heat ∆Qi = E − µi. b) It should be noted
here that one needs WS ≳ ξ in order for the Andreev
transmission coefficients to be finite. In fact, the super-
conducting coherence length ξ represents the minimum
length necessary for superconducting correlations to de-
velop.

In order to maximally simplify the next formulas, we
define the Andreev transmission coefficients TA(E) ≡
T−,+(E) and T ′

A(E) ≡ T ′
−,+(E) and the normal trans-

mission coefficients TN(E) ≡ T+,+(E) and T ′
N(E) ≡

T ′
+,+(E). Due to the chiral nature of edge states, in

the energy range where f±
i (E) are finite one expects

T ′
N(E) = 1 and T ′

A(E) = 0, because electrons that start
from lead 2 can only propagate (as electrons) on the
lower edge, where there is no superconducting proxim-
ity effect, with no possibility of Andreev scattering—see
Fig. 1. Therefore, in the zero-temperature limit, and un-
der the above operating conditions, the expressions for
the charge and heat currents greatly simplify, reducing
to:

I1 =
e2

h
V , (7)

I2 =
e

h

∫ eV

0

dE
[
TA(E)− TN(E)

]
, (8)

IH1 = − (eV )2

2h
, (9)

and

IH2 = − 1

h

∫ eV

0

dE E
[
TN(E) + TA(E)

]
. (10)

Heat and charge currents flowing in the superconducting
lead can be determined from the conservation of particle
and energy currents, namely

I1 + I2 + IS = 0 , (11)

and

IE1 + IE2 + IES = 0 . (12)

(Notice that currents entering in the central region, i.e. in
the white area in Fig. 1, are defined to be positive.) Using
Eqs. (4) and (12) we get

IHS = −IH1 − IH2 − V I1 . (13)

We now hypothesize that a region of parameter space
exists where normal and Andreev transmissions balance,

in the relevant range of energies, i.e. that a region of
parameters exists such that TA(E) = TN(E) = 1/2 in
the energy range E ∈ [0, eV ]. Replacing this equality in
Eq. (8) one finds I2 = 0. In the same limit, combining
Eq. (10) with Eqs. (7), (9), and (13), we get IHS = 0.
This means that in lead 2 the only non-zero current
is the heat current, while in the superconducting lead
the only non-zero current is the charge current. This
realizes the separation of heat and charge. Indeed, the
charge and heat currents flowing in lead 1 (both finite)
are spatially separated in the sense that heat current is
diverted into lead 2 while charge current is diverted into
the S lead. This is the most important prediction of this
Letter and it applies to hybrid QH/S devices, indepen-
dently of the microscopic band structure of the 2DES.
The only requirements are that the 2DES is in the QH
regime at ν = 1 and that the operating conditions i)-
iii) above are satisfied. For completeness, one also finds
IH2 = IH1 = −(eV )2/(2h), while IS ≃ −e2V/h. We notice
that the relation IHS = 0 is not surprising since super-
conductors are poor heat conductors for temperatures
below the gap. In superconducting junctions, heat flow
is intrinsically suppressed for low enough voltages and
temperatures.

One may argue that achieving perfect balance between
normal and Andreev transmission in the whole range of
energies E ∈ [0, eV ] is implausible as it would require
tremendous fine tuning. According to Ref. 53, however,
TA(E) = TN(E) = 1/2 actually occurs in the case of two
counter-propagating ν = 1 QH edge states, provided that
they are coupled through a narrow “dirty” superconduct-
ing electrode in which spin flipping is allowed. More pre-
cisely, in this configuration, the amplitudes of crossed An-
dreev reflection and elastic cotunelling processes through
the narrow superconductor are random and are statisti-
cally balanced. In what follows, we prove with a numer-
ical calculation that the relation TA(E) = TN(E) = 1/2
for E ∈ [0, eV ] also holds for our setup.

Numerical example.—In order to calculate numerically
the transmission probabilities TA and TN as functions
of energy, we model the hybrid system in Fig. 1 with
a discretized Bogoliubov-De Gennes Hamiltonian [78],
which is explicitly described in Ref. [79]. The transmis-
sion probabilities are calculated numerically, using the
KWANT [80] toolkit, carrying out averages over a large
number of disorder realizations.

Fig. 2 shows the ensemble-averaged Andreev transmis-
sion probability ⟨TA⟩ as a function of the energy E in
units of the superconducting gap ∆, for three different
values of the disorder strength w (the horizontal dashed
line indicates the value 1/2). We have used values of the
parameters which satisfy the conditions i) to iii) listed
earlier [81]. In agreement with Ref. [53], ⟨TA(E)⟩ is prac-
tically pinned at the value ⟨TA(E)⟩ = 1/2 in the whole
energy range of the plot as long as disorder is strong
enough, i.e. for w ≳ 0.7t (squares). In the case of a
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FIG. 2. The ensemble-averaged Andreev transmission ⟨TA⟩
between lead 1 and 2, for the conversion of electrons into holes,
is plotted as a function of energy E (measured in units of
∆). A dashed horizontal line indicates the value ⟨TA⟩ = 1/2.
Uniformly distributed spin-mixing disorder is present only in
the superconducting region. Data in this figure correspond
to three values of the disorder strength, w = 0.01t (circles),
w = 0.2t (diamonds), and w = 0.7t (squares), and have
been obtained by averaging over 2000 disorder configurations.
Other parameters used in the calculations are: ∆ = 1.5 meV,
ν = 1, B = 5 T, W = 247 nm, WS = 330 nm, t = 0.1 eV,
ε = 0.392 eV, m = 0.035 me (where me is the bare electron
mass in vacuum), and Landé factor g = 20. With these pa-
rameters, we obtain ℏωc ≃ 16 meV, gµBB ≃ 6 meV, and
superconducting coherence length ξ ≃ 40 nm. All the param-
eters and corresponding symbols in this caption have been
defined in Ref. [79].

weaker disorder, i.e. for w = 0.2t (diamonds), the value
of ⟨TA(E)⟩ is just slightly below 1/2, while for very weak
disorder, i.e. for w = 0.01t (circles), we get, as expected,
⟨TA(E)⟩ ≃ 0 [82].

The resulting charge and heat currents, for the case
w = 0.2t, are plotted in Figs. 3 and 4, respectively, as
functions of the voltage V and for a very low tempera-
ture, i.e. T = 1.0× 10−2∆/kB [83]. In perfect agreement
with our theoretical analysis above, Fig. 3 shows that
the charge current in lead 2 (circles) vanishes in the whole
range of explored voltages. The charge current flowing in
lead 1 (squares) is entirely collected by the superconduct-
ing lead (triangles). It is worth noticing that the currents
⟨I1⟩ and ⟨IS⟩ linearly depend on V . As far as the heat
current is concerned, Fig. 4 shows that this is zero in
the superconducting lead (triangles) while it is finite and
negative in both leads 1 (squares) and 2 (circles). The
negative sign implies that both heat currents flow away
from the central region of the device, thus representing
Joule heating. Moreover, according to Eqs. (9) and (10),
the two heat currents, ⟨IH1 ⟩ and ⟨IH2 ⟩, are approximately
equal because ⟨TN(E)⟩ ≃ ⟨TA(E)⟩ ≃ 1/2.

FIG. 3. (Color online) Ensemble-averaged charge currents
(in units of e∆/h) flowing in lead 1 (squares), lead 2 (circles),
and in the superconducting lead (triangles) are plotted as
functions of voltage V (in units of ∆/e). Results in this plot
refer to a temperature T = 0.01 ∆/kB and w = 0.2t. Other
parameters are identical to those reported in Fig. 2. Note
that the charge current ⟨I2⟩ in lead 2 is vanishingly small:
the current is taken away by the superconductor.

FIG. 4. (Color online) Ensemble-averaged heat currents flow-
ing in lead 1 (squares), lead 2 (circles), and in the supercon-
ducting lead (triangles) are plotted as functions of voltage V
(in units of ∆/e). The parameters used for obtaining these
results coincide with those reported in the captions of Figs. 2
and 3. Heat currents are finite in leads 1 and 2, but vanish in
the superconducting lead.

Discussion.—Results in Figs. 3 and 4 demonstrate that
our setup is indeed a three-terminal heat-charge separa-
tor. This functionality is a consequence of three crucial
ingredients: a) the chiral and spin-polarized nature of
ν = 1 QH edge states, b) the specific working conditions
we have chosen, i.e. the hierarchy i)-iii) between the var-
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ious relevant energy scales of the problem, and c) spin
mixing in the superconducting region. The latter is ex-
pected to be a rather general feature of all superconduct-
ing materials with strong spin-orbit coupling [15, 26, 51].
Careful readers will have noted that our numerical cal-
culations have been carried out for a 2DES with a sin-
gle parabolic band. They can of course be extended to
the case of a graphene QH/S hybrid device as e.g. in
Ref. [1]. The point, however, is that in this case, because
of the spin and valley degeneracies in zero magnetic field,
a ν = 1 QH state is realized thanks to many-body ef-
fects [84] (i.e. exchange effects stemming from long-range
electron-electron interactions). These can be taken into
account in our Bogoliubov-de Gennes Landauer-Büttiker
approach by treating electron-electron interactions at the
level of the Hartree-Fock approximation [85]. While this
is certainly interesting, it is well beyond the scope of
the present work. The theoretical analysis discussed in
the first part of this Letter shows indeed that the phe-
nomenon of heat-charge separation in hybrid QH/S sys-
tems is universal, provided that the three above men-
tioned crucial ingredients are taken into account.
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In this Supplemental Material we present all the necessary technical details on the Hamiltonian we have used in our
numerical calculations.

The Hamiltonian Ĥ0 describing the 2DES is discretized on a square lattice, with lattice constant a, and given by

Ĥ0 =
∑
i,σ

(ε+ σgµBBi) ĉ
†
iσ ĉiσ +

∑
⟨i,j⟩,σ

t eiϕij ĉ†iσ ĉjσ +H.c , (S1)

where ĉ†iσ is the creation operator for an electron of spin σ on site i, ε is the on-site energy, and t is the tight-binding
hopping energy. This implies that, at low energies, the 2DES has a single parabolic band with an effective mass given
by m = ℏ2/(2ta2). Moreover, the Zeeman energy is expressed in terms of the Landé g-factor, the Bohr magneton µB,
and the intensity of the applied uniform perpendicular magnetic field Bi = B, non-zero in the white- and grey-colored
regions of Fig. 1. The orbital effect of the latter is accounted for by the Peierls substitution through the complex

phase ϕij = 2πϕ−1
0

∫ j

i
A · dl, where A = (−By, 0, 0) is the vector potential in the Landau gauge and ϕ0 = h/e is the

flux quantum (see, for example, Ref. [S1]). The sum over ⟨i, j⟩ runs over neighboring sites.
Superconducting pairing is introduced through the term

ĤS =
∑
i

∆iĉ
†
i↑ĉi↓ +H.c, (S2)

where ∆i (the site-dependent superconducting order parameter) is non-zero (and equal to ∆ for all sites) only in the
superconducting region, colored in yellow in Fig. 1. Moreover, in the superconducting region we assume that Bi is
equal to zero, i.e. completely expelled by the Meissner effect.

To account for a uniformly distributed spin-mixing disorder in the superconducting region we add to the Hamiltonian
the term

ĤSM = w
∑
i

Fiĉ
†
i↑ĉi↓ +H.c, (S3)

where w is the disorder strength and Fi are random numbers, uniformly distributed in the range [−1, 1]. We set
Fi = 0 on all sites i which do not belong to the superconducting region.

The overall Hamiltonian is therefore Ĥ = Ĥ0 + ĤS + ĤSM, which can be written in the Bogoliubov-De Gennes
block matrix form following Ref. [S2].
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