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Abstract9

The ability of the Relaxed Eddy Accumulation (REA) method to estimate the10

kinematic fluxes of temperature, water vapor and carbon dioxide was assessed11

for the dry season (3 months) at the ATTO (Amazon Tall Tower Observatory)12

site from turbulence measurements. The measurements were performed at 5013

m above ground within the roughness sublayer. Non-conformity with inertial14

sublayer conditions was confirmed one more time by analyzing dimensionless15

scalar standard deviations. Recently found results that the REA method out-16

performs Monin-Obukhov-based approaches are confirmed. Over the scale of17

the whole dry season, REA and EC (eddy covariance) estimates are essen-18

tially equal. However, we also verify that such results fail to reveal significant19

variability and scatter of the REA estimates when the fluxes are of small mag-20

nitude. On the basis of previous studies, we conjecture that this is caused by a21

likely imbalance between scalar gradient production and molecular dissipation.22
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Confirmation of our results to trace gases, therefore, requires further study.23

24

Keywords Roughness sublayer, ATTO project, REA method25

1 Introduction26

The Relaxed Eddy Accumulation (REA) method, proposed by Businger and27

Oncley (1990), is a simplification of the Eddy Accumulation Method conceived28

by R. L. Desjardins (1972; 1977). The most important feature of the REA29

method from the experimental point of view is that it does not require a fast-30

response instrument to measure the scalar concentration s whose turbulent flux31

is wanted. Instead, the sign of the vertical velocity w is used in real time to32

switch a valve drawing air at a constant flow rate into two different reservoirs.33

At the end of a block of measurement, the mean concentration of the scalar34

can be measured by a slow-response sensor in each of the reservoirs. In this35

work, note that the REA method is actually simulated using fast-response36

sensors.37

The REA method has gained wide use to measure surface fluxes of sub-38

stances for which fast-response gas analyzers are either non-existent or im-39

practical. In that capacity, it has been reported to measure isoprene (Bowling40

et al. 1998), ammonia (Zhu et al. 2000), terpenoid (Mochizuki et al. 2014) and41

ethene, propene, buthene and isoprene (Rhew et al. 2017) fluxes, to cite but42

a few.43

The REA predicts the scalar turbulent flux from44

w′s′ = βsσw(s+ − s−), (1)

where s+ = [s|w > 0] and s− = [s|w < 0] are the conditional means of s on45

the sign of the vertical velocity w (under the assumption that w = 0, so that46

w = w′), and the overbars and primes are standard notation for Reynolds’47

decomposition into a mean and the fluctuation around it. In the present work48

all means are taken over 30-minute blocks. For conciseness, we denote s+ −s−
49

by ∆s.50

From its inception, it has been recognized that under validity of Monin-51

Obukhov Similarity Theory (MOST), βs should be a function of Obukhov’s52

stability variable ζ (Businger and Oncley 1990); several studies have found53

βs ≈ 0.6 with a modest variation of ≈ 10% over a wide range of stabilities54

when the measurements are made in the inertial sublayer of the atmospheric55

surface layer (see, for example, Businger and Oncley 1990; Baker et al. 1992;56

Katul et al. 2018).57

Over forests, an important issue is to estimate the fluxes from the canopy to58

the atmosphere of Volatile Organic Compounds (VOCs) such as isoprene; this59

is particularly critical in the Amazon, where secondary organic aerosols have a60

significant role in the formation of cloud condensation nuclei (CCNs) (Fuentes61

et al. 2016). Here, due to the aforementioned difficulty of measuring VOC62
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concentrations with fast-response instruments, the REA method can have a63

significant impact on closing the knowledge gap on VOC emission rates from64

the forest. It is also noteworthy that new, better and cheaper technologies for65

in-situ analysis of ∆s are emerging that leverage the applicability of the REA66

method (Sarkar et al. 2020).67

Invariably, REA measurements require a sonic anemometer measuring w68

at high frequency to control in real time the valve switching the flow of air into69

two reservoirs for the measurement of s+ and s− at the end of a measurement70

block. This means that simultaneous measurements of sonic temperature θ are71

available, allowing standard eddy covariance (EC) measurements of w′θ′. This72

in turn means that, for each block, βθ can be calculated from (1) with s = θ.73

Therefore, if the scalar s of interest is perfectly correlated to temperature, βs74

may be allowed to vary from block to block by setting βs = βθ for each block.75

This strategy, which we call “REA-T”(where “T” stands for auxiliary sonic76

temperature measurements) appears to have originated with Bowling et al.77

(1998), and is in wide use (Ren et al. 2011; Mochizuki et al. 2014; Rhew et al.78

2017; Sarkar et al. 2020, etc.). Alternatively, of course, one can still adopt a79

single value of βs (which we call “REA-S”, where “S” stands for “single value”)80

based on measurements of s with eddy covariance (using instrumentation with81

adequate response time) or again an assumption of similar behavior with more82

easily measured quantities.83

Either way, the REA invokes (i) an assumption of similarity between scalars,84

or (ii) the validity of MOST for the scalar of interest or (iii) at least the con-85

stancy of βs even if MOST does not apply. Strictly speaking, it is known that86

if MOST is valid for any pair of scalars, their similarity functions must be87

the same, and their correlation must be perfect (Hill 1989; Dias and Brutsaert88

1996; Dias 2013). Most of the time, therefore, either (i) or (ii) seems to be89

warranted for measurements made in the inertial sublayer of the atmospheric90

boundary layer, where MOST is assumed to hold over homogeneous surfaces91

with sufficient fetch.92

However, even under these conditions, recently evidence has emerged that93

MOST may not be universally valid for all scalars, but rather that it appears94

to depend on the equilibrium between gradient production and dissipation of95

scalar semivariance: the presence of relatively large values of other terms in96

the scalar semivariance budget, such as the storage or the transport terms,97

can seriously disrupt MOST conformity for the scalar in question (Zahn et al.98

2023). Interestingly, in the same study Zahn et al. (2023) have found that99

the REA method is much superior to the variance method (a classical MOST100

indirect method to estimate scalar fluxes) even when equilibrium between101

gradient production and molecular dissipation does not hold for the scalar,102

which suggests that in this case (iii) may be valid at least on average.103

In the roughness sublayer (RSL) over a forest there is strong evidence104

of large departures of scalar behavior from MOST (Dias et al. 2009; Zahn105

et al. 2016b; Chor et al. 2017). Zahn et al. (2016b) found large departures for106

all 3 scalars (temperature, H2O and CO2) measured at the ATTO (Amazon107

Tall Tower Observatory) site in Central Amazonia (see description below),108



4 Nelson Luís Dias et al.

but noted that scalar similarity improved significantly for small zenith angles.109

They also found considerable scatter in the βs values, which again was reduced110

for small zenith angles, which happen in the middle of the day, when the scalar111

fluxes tend to be largest in absolute value. In order to be concise, in this work112

we call fluxes which are large in absolute value “large-magnitude” fluxes.113

Chor et al. (2017) equally found strong dissimilar behavior for the same114

scalars, as well as wide scatter in their Monin-Obukhov integral similarity115

functions. This casts doubt on the applicability of the REA method in any of116

the two forms (βs constant or βs = βθ for each block) mentioned above, while117

at the same time is at odds with the recent findings of Zahn et al. (2023) of118

good REA performance, although the latter were obtained for a lake, not a119

forest.120

Using a large dataset recently measured at the ATTO site, this work there-121

fore has the objective to clarify some of the issues mentioned above, and in122

particular to answer the following questions:123

1. How close to constant is βs (i.e. what its typical scatter is), and to what ex-124

tent do the REA-related stability functions follow MOST in the roughness125

sublayer?126

2. How good are block-by-block REA flux estimates in the Amazonian rough-127

ness sublayer?128

3. How good is the REA for “long-term” (of the order of many days to a129

whole season), “mean” flux estimates?130

The relevant relationships among the quantities of interest in this work are131

reviewed in Section 2; the ATTO site and details of data processing are given132

in Section 3; results for similarity functions are analyzed in Section 4, and for133

the actual prediction of fluxes in Section 5. Discussion and conclusions are134

given in Section 6.135

2 Methods136

Since the “variance method” has shown to be a good indicator of the break-137

down of MOST in the RSL (Dias et al. 2009; Zahn et al. 2016b; Chor et al.138

2017; Dias-Júnior et al. 2019), and even in a classical inertial sublayer (Zahn139

et al. 2023), we test its standard form140

σs

s∗
= ϕσs

(ζ), (2)

with141

u2
∗ = −u′w′, (3)

ζ = −
κg(z − d0)θ∗

θu2
∗

, (4)

u∗s∗ = w′s′, (5)

σs =
√

s′s′, (6)
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where u is the longitudinal velocity, z is the measurement height, and d0 is142

the zero-plane displacement height.143

In the case of the REA method, it can be readily seen by rearranging (1)144

that (see Zahn et al. 2023, Eq. (17))145

1

βs
=

σw∆s

w′s′
=

σw

u∗

∆s

s∗
= ϕσw

(ζ)ϕ∆s(ζ). (7)

where σw/u∗ = ϕσw
(ζ) and ∆s/s∗ = ϕ∆s(ζ), and that βs is an MOST function146

under ideal conditions.147

Regarding (1), (2) and (7), two points are concerned:148

1. Experimentally, “to be or not to be” a funcion of ζ is largely a matter or149

assessing the goodness-of-fit of data to a proposed model. Although this is150

seldom —if at all— done in practice for MOST functions (to the best of151

our knowledge), it is possible to quantify such goodness-of-fit by standard152

statistical indices. Therefore, in this study we compare quantitavely ϕσw
,153

ϕσs
and ϕ∆s as described in the sequence.154

2. As we will see in Section 4, the quality of the ϕ(ζ)s or even the variability of155

βs do not translate directly to the quality of the estimated fluxes w′s′ over156

different time scales (block-by-block or longer term). Therefore, a second157

quantitative assessment must be made of the quality of the estimated fluxes158

themselves.159

Besides graphical comparisons, we compare predicted (y) to observed (x)160

values using standard statistics: coefficient of correlation r, coefficient of de-161

termination Cd, BIAS, mean absolute error MAE, root mean square error162

RMSE, their normalized versions NBIAS, NMAE, NRMSE, and Willmott’s163

refined index of model performance dr (Willmott et al. 2012). An important164

issue here is that small magnitudes of predicted and observed fluxes tend to165

be masked both graphically in traditional “x × y” plots and statistically when166

directly quantified, say, by RMSE or MAE. For this reason, the normalized167

versions are better to discern “relative” errors. For the sake of completeness,168

these quantities are169

r =
Cov(x, y)

σxσy
, Cd = 1 −

MSE

σ2
x

, (8)

BIAS =
1

n

n∑

i=1

(yi − xi) , NBIAS =
BIAS

|x|
, (9)

MAE =
1

n

n∑

i=1

|yi − xi| , NMAE =
MAE

|x|
, (10)

RMSE =


1

n

n∑

i=1

(yi − xi)
2

]1/2

, NRMSE =
RMSE

|x|
. (11)

where Cov(x, y) is the covariance between predicted and observed values, σx170

and σy are their standard deviations, x is the mean of the observed values,171
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Fig. 1 Overall location of the ATTO site.

and MSE = RMSE2 is the mean square error. Note that if all predicted val-172

ues are equal, r makes no sense because σy = 0. Willmott’s refined index of173

performance is174

dr =





1 −

∑
n

i=1
♣yi−xi♣

2
∑

n

i=1
♣xi−x♣

,
∑n

i=1
|yi − xi| ≤ 2

∑n
i=1

|xi − x| ,

2
∑

n

i=1
♣xi−x♣∑

n

i=1
♣yi−xi♣

− 1,
∑n

i=1
|yi − xi| > 2

∑n
i=1

|xi − x| .
(12)

3 Experimental site and data175

In this work we used data collected at a micrometeorological tower built up176

at the experimental ATTO (Amazon Tall Tower Observatory) site, in Central177

Amazon, in a terra firme forest, approximately 150 km northeast from the city178

of Manaus — AM, Brazil. At the site, there are two towers that are situated179

on an extensive plateau area (130 m above sea level) immersed in a large180

primary forest (see Figure 1). The vegetation is typical of undisturbed terra181

firme forest. The average height of the vegetation is approximately 30 to 40182

m and the leaf area index is around 5 to 6 m2 m−2. The predominant wind is183

from the northeast (Andreae et al. 2015; Santana et al. 2018).184

There are two towers at the ATTO site, known as the (main) ATTO tower185

(02◦ 08' 45" S, 59◦ 00' 20" W) with a height of 325 m and the “Instant” tower186
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INSTANT tower

81m

ATTO tower

325m

5m
*

15m

25m
*

35m

50m
†

75m
*

43.5m

82.5m
*

100.5m

127.5m

151.5m

172.5m

193.5m
‡

196.5m
*

223.5m

247.5m

274.5m

298.5m

316.5m
*

1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer1IRGA: Infra-red Gas Analyzer

Canopy height ~ 37m

INSTRUMENTS

3-D sonic anemometer & IRGA1

* CSAT3B & LICOR 7200RS
† CSAT3B & LICOR 7500A
‡ CSAT & LICOR 7200RS

3-D sonic anemometer

THIES 3D

.

Fig. 2 Instrument setup of the ATTO site. In this work, only the 50-m data from the
Instant Tower were used.

(02◦ 08' 39" S, 59◦ 00' 00" W) with a height of 81 m (Dias-Júnior et al. 2019).187

The experimental setup is shown in Figure 2. The experimental data used188

in this work were collected during the months of August, September, and189

October 2021. These months correspond to the dry season in the Amazon190

region. The data were measured at 10 Hz by a sonic anemometer (model191

CSAT3B, Campbell Scientific, Inc) and an open-path gas analyzer (model192

LICOR 7500A LI-COR Inc), both installed 50 m above the ground at the193

Instant tower.194

The dataset was divided in 3959 30-minute data blocks. A quality control195

analysis similar to the one described in Zahn et al. (2016a) was applied to196

u, v, w (velocity components of the sonic anemometer), θ (sonic temperature),197

ωq (H2O molar density) and ωc (CO2 molar density) for each block. The198

procedure divides a block with n data points (n = 18000 in our case) into ns =199

n/m sub-blocks with m points each. One-minute sub-blocks, m = 600, were200
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used. Before quality control, missing or erroneous data were flagged as NANs;201

then, for each sub-block, the median x̃k and the mean absolute deviation202

(MADk) around it,203

MADk =
1

m

m−1∑

i=0

|xkm+i − x̃k| (13)

were evaluated. The sub-block index, k, runs from 0 to ns − 1. For each sub-204

block:205

– A spike is identified each time |xkm+i − x̃k| > 5 MADk;206

– a locking condition (i.e. xi varies too little over a sub-block) is identified if207

maxk(MADk) < 0.01 (K for θ, m s−1 for u, v and w and mmol m−3 for ωq208

and ωc);209

– a non-stationary condition is identified if the difference between the max-210

imum and minimum sub-block medians is larger than Qx, where Qu,v=211

5 m s−1, Qw= 3m s−1, Qθ= 5 K, Qωq
= 300 mmol m−3 and Qωc

= 10212

mmol m−3.213

When all the above conditions were met, the following criteria were applied214

sequentially:215

1. If the number of values equal to NAN in the block was more than 1% of the216

block size, all xi were set to NAN and the block was effectively discarded;217

2. All spikes were flagged as NAN. After that, if the number of values equal218

to NAN in the block was more than 1% of the block size, all xi were set to219

NAN and the block was effectively discarded;220

3. If a locking condition and/or a non-stationary condition were identified, all221

the half-hour block was set to NAN and again discarded from the analysis;222

4. If the block was not discarded, all runs of NANs in x were linearly inter-223

polated from the valid extremities.224

After conducting the quality control analysis, we obtained 1146 blocks of225

30 minutes each for ωc, 1163 blocks for ωq, 1307 blocks for θ, u, v, and w. In226

addition, we computed the half-hourly mean values of turbulence statistics by227

applying two coordinate rotations (McMillen 1988) to ensure that the average228

lateral and vertical velocities were zero. For all subsequent analyses the H2O229

and CO2 molar densities ωq and ωc were converted to instantaneous mass con-230

centrations using the pressure sensor from the LI7500 (see for instance Edson231

et al. 2011). In this work they are reported as q in g kg−1 and c in mg kg−1 re-232

spectively. Note that covariances calculated with mass concentrations dispense233

with the WPL density corrections (Webb et al. 1980).234
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4 Results for similarity functions235

4.1 Similarity functions for the classical standard deviation statistics236

Standard inertial sublayer (ISL) predictions for ϕσw
and ϕσs

are (Chor et al.237

2017)238

ϕσw
(ζ) =

{
1.25(1 − 3ζ)1/3, ζ < 0,

1.25, ζ ≥ 0,
(14)

ϕσs
(ζ) =

{
2(1 − 9.5ζ)−1/3, ζ < 0,

2, ζ ≥ 0.
(15)

When calculating the statistics σs/s∗, we further filtered the data with239

sign restrictions for each scalar and stability condition. Thus, in the case of θ,240

we only use ∆θ < 0 for stable conditions (θ∗ < 0) and ∆θ > 0 for unstable241

conditions (θ∗ > 0); for q, we only use postive values of w′q′ and only positive242

values of both ∆q and q∗ for both stable and unstable conditions; and in243

the case of c we only use ∆c > 0 for stable conditions, with c∗ > 0, and244

∆c < 0 for unstable conditions, with c∗ < 0. The further restrictions on the245

signs of ∆s were imposed so that exactly the same data sets were used for246

both similarity functions ϕσs
and ϕ∆s, and therefore corresponding statistics247

and figures can be compared. After the flux comparisons of Section 5 were248

computed, 3 more blocks (08/08/2021 2045UTC, 18/08/2021 2015UTC and249

19/09/2021 2245UTC) produced very pronounced outliers when plotted that250

biased all statistics considerably. Therefore, these blocks were not included in251

any of the statistics or figures shown in this work.252

Figure 3 shows the statistics σw/u∗, and σs/s∗ for s = θ, s = q and s = c253

for stable and unstable conditions, respectively. The findings of Zahn et al.254

(2016b) and Chor et al. (2017) for the ATTO site (but generally valid for the255

roughness sublayer over forests) are confirmed: overall, there is an excess of256

scalar variance in comparison to flux (actually s∗), giving strong indication257

that gradient production of s′s′/2 often is far less than scalar molecular dissi-258

pation (see Zahn et al. 2023); however, a detailed analysis of the semivariance259

scalar budgets falls outside of our scope. The σw/u∗ statistics are somewhat260

less “well-behaved” than those obtained by Zahn et al. (2016b) and Chor et al.261

(2017) for the same site: under unstable conditions, there is a clear tendency262

for many blocks to display less variance in comparison to flux (actually u∗),263

suggesting that now a part of the gradient and buoyant production of TKE264

(turbulence kinetic energy) is being “exported” rather than dissipated locally.265

This is indicative of a negative transport of TKE in the RSL above the canopy266

(see Fig. 1b of Chamecki et al. 2020 and Mortarini et al. 2023).267

Besides the standard ISL versions of ϕσ(ζ) shown in blue, we also obtained268

least-squares (using the Levenberg-Marquardt algorithm) estimates depicted269
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(g,h), for stable (a,c,e,g) and unstable (b,d,f,h) conditions. The blue line is the standard
inertial sublayer (ISL) prediction and the vermillion line is a least-squares (LSQ) fit.
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Table 1 Least-squares estimates of coefficients for ϕσw (ζ) and ϕσs (ζ) for s = θ, q, c.

Variable a b c

w 1.10166 1.16819 1.35627
θ 198.159 11677.3 6.61057
q 11.1756 76.3461 9.31149
c 5.81312 0.281669 20.9179

Table 2 Performance statistics for the LSQ functions ϕσw (ζ) and ϕσs (ζ) for s = θ, q, c.
For stable conditions, the ϕσs are constant and r cannot be calculated.

Variable r Cd BIAS MAE RMSE dr

Stable conditions

w — −0.0005 −0.0136 0.3257 0.5965 0.5025
θ — −0.0017 −4.7637 9.2032 116.1735 0.6308
q — 0.0000 0.0196 7.4759 25.5693 0.4993
c — 0.0000 0.0458 28.7931 185.0199 0.4993

Unstable conditions

w 0.6266 0.3918 0.0035 0.2721 0.4146 0.5922
θ 0.3802 0.0905 4.1461 12.7000 37.3868 0.4089
q 0.1075 0.0108 −0.1343 3.6464 12.2686 0.5075
c 0.0480 0.0023 0.0039 4.9986 10.0795 0.4982

in vermillion in Figure 3 with the general forms270

ϕσw
(ζ) = aw(1 − bwζ)1/3, ζ < 0, (16)

ϕσw
(ζ) = cw, ζ ≥ 0, (17)

ϕσs
(ζ) = as(1 − bsζ)−1/3, ζ < 0, (18)

ϕσs
(ζ) = cs, ζ ≥ 0. (19)

The values of the fitted coefficients are given in Table 1. As it can be seen both271

visually and from the coefficients in the table, the fitted (LSQ) versions differ272

significantly from their ISL counterparts, but by definition they still provide273

the “best fits”. Note that the large excursions of a relatively small percentage274

of points can have a significant impact on the estimates of a, b and c.275

Table 2 shows the performance statistics obtained for the LSQ versions276

(not the ILS versions) of the similarity functions ϕσw
and ϕσs

. Note that these277

funcions are all dimensionless, so there is no need to calculate normalized278

performance statistics. The statistics confirm the visual impression that, par-279

ticularly for the scalars, the dimensionless standard deviations perform rather280

poorly, with generally small correlations between data points and predicted281

ϕσs
s, and large values of MAE and RSME (for dimensionless functions, a282

good outcome would be MAE, RMSE ∼ 0.1).283
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Table 3 Least-squares estimates of coefficients for ϕ∆s(ζ) for s = θ, q, c.

Variable a b c

θ 11.0134 696.671 1.41662
q 1.77719 1.86711 1.46055
c 1.68725 0.198108 1.59865

Table 4 Performance statistics for the LSQ functions ϕ∆s(ζ) for s = θ, q, c. For stable
conditions, the ϕσs s are constant and r cannot be calculated.

Variable r Cd BIAS MAE RMSE dr

Stable conditions

θ — −0.0017 −0.2611 0.8132 6.3909 0.5677
q — 0.0000 0.0025 0.5882 0.9941 0.4993
c — 0.0000 0.0019 0.7763 2.4383 0.4994

Unstable conditions

θ 0.3237 0.1011 −0.0653 1.0226 2.3101 0.4938
q 0.3007 0.0894 −0.0038 0.3517 0.7250 0.5640
c 0.1235 0.0148 0.0022 0.5990 1.0200 0.4994

4.2 Similarity functions for the REA statistics284

Figure 4 shows the statistics of ∆s/s∗ and the similarity functions ϕ∆s(ζ)285

fitted by least squares. The same general form of (18)–(19) was used:286

ϕ∆s(ζ) = a∆s(1 − b∆sζ)−1/3, ζ < 0, (20)

ϕ∆s(ζ) = c∆s, ζ ≥ 0. (21)

The corresponding values are shown in Table 3.287

Because these functions have only been explicitly proposed very recently288

by Zahn et al. (2023), these may be the first results obtained in a roughness289

sublayer over a forest. Visually, the ϕ∆s values are signficantly less scattered290

than their ϕσs
counterparts, indicating that REA dimensionless statistics may291

be potentially more useful than standard deviation ones. This is confirmed292

quantitatively in Table 4, where MAE and RMSE for the ϕ∆ss are at least293

an order of magnitude less than the corresponding values in Table 2. Clearly,294

the REA dimensionless statistics behave better (as a “function” of ζ) in the295

roughness sublayer than their dimensionless standard deviation counterparts:296

a physical explanation for this is not at hand and will require further research.297

However, the scatter is still relatively large and this is probably a consequence298

of measurements made within the RSL.299
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Fig. 4 Dimensionless values of ∆s/s∗ for s = θ (a,b), s = q (c,d) and s = c (e,f) for stable
(a,c,e) and unstable (b,d,f) conditions. The vermillion line is a least-squares (LSQ) fit.

5 Results for predicted fluxes300

5.1 Flux estimates from dimensionless standard deviations (variance method)301

When MOST does not apply for a particular scalar s, it makes little sense to302

estimate its turbulent fluxes from the standard deviation similarity function303

ϕσs
(ζ), given the unacceptable scatter seen in Figure 3 and the corresponding304

performance statistics in Table 2. Here, we re-do this exercise not because it is305

applicable in practice for our site, but because (a) it highlights the role of large306

magnitude fluxes on visual and numerical evaluation of the results; and (b) it307

provides a baseline to assess the gains in applying the REA method, as done308

by Zahn et al. (2023). We estimate the fluxes w′s′ using the observed values309

of u∗; an iterative procedure is performed for s = θ by starting at ζ = 0 and310
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Table 5 Performance statistics for the kinematic fluxes w′θ′ (m s−1K), w′q′ (m s−1 g kg−1),

w′c′ (m s−1 mg kg−1), estimated by the variance method. BIAS, MAE and RMSE are given
in the same corresponding units.

Variable r Cd BIAS NBIAS MAE NMAE RMSE NRMSE dr

Stable conditions

w′θ′ 0.8625 0.6151 0.0037 0.3641 0.0051 0.5000 0.0093 0.9103 0.6624

w′q′ 0.8171 0.4899 −0.0040 −0.4894 0.0048 0.5803 0.0132 1.6138 0.6900

w′c′ 0.6660 −0.0662 −0.1218 −0.7701 0.1259 0.7957 0.2035 1.2865 0.4862

Unstable conditions

w′θ′ 0.3913 −0.7875 −0.0558 −0.9257 0.0564 0.9351 0.0816 1.3532 0.4526

w′q′ 0.7911 −0.7318 −0.0610 −0.7600 0.0625 0.7786 0.0799 0.9961 0.3797

w′c′ 0.5136 −0.3213 0.2791 0.5975 0.3217 0.6888 0.4237 0.9072 0.4676

calculating θ∗ (from Eq. (2)) and ζ (from Eq. (4)) until convergence in θ∗; and311

then q∗ and c∗ are obtained again from Eqs. (2) and (4). All kinematic fluxes312

are then obtained from Eq. (5). Note that we are using the whole dataset both313

for estimating the coefficients a, b and c in (18)–(19) and for evaluating the314

performance of the estimated fluxes, since our intention here is only to assess315

the relative merits of the variance and REA methods.316

Figure 5 shows the kinematic fluxes predicted by the variance method. For θ317

under unstable conditions, the predicted fluxes are much smaller in magnitude318

than the observed ones. This means that ζ ≈ 0 always for the prediction of319

the other two fluxes. In spite of that, we see that there is always a linear trend320

(and often a large linear correlation) between observed and predicted values.321

The corresponding performance statistics are given in Table 5. The very large322

magnitude of the errors is clearly discernible by the (large) values of NBIAS,323

NMAE and NRMSE.324

The spread of the small fluxes is difficult to discern in Figure 5. To empha-325

size the relative error made in flux estimation, we re-plot the same results in326

Figure 6. Now we plot the ratios of predicted to observed fluxes in the vertical327

axes, against the observed fluxes in the horizontal axes. The blue lines are the328

medians of the ratios. The figure shows how the large magnitude fluxes tend329

to have a small spread around the median, but that the spread of the small330

magnitude fluxes is exceptionally large: we are truncating the vertical axes at331

a maximum value of 10, but larger ratios do occur in the dataset. Clearly, if we332

restrict the conditions so that only larger flux values are probed, the variance333

method will tend to perform better in the RSL: this is very likely what hap-334

pened for small zenith angles in Zahn et al. (2016b). The physical mechanism335

explaining this is probably that, for large-magnitude fluxes, gradient produc-336

tion of scalar semivariance will be strong enough to balance, approximately,337

molecular dissipation of scalar variance.338
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Fig. 5 Observed × predicted kinematic fluxes w′s′ by the variance method, s = θ (a,b),
s = q (c,d) and s = c (e,f) for stable (a,c,e) and unstable (b,d,f) conditions. The vermillion
line is a least-squares fit through the origin, and the black line is y = x.
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Fig. 6 Observed ratios of predicted to observed kinematic fluxes w′s′ by the variance
method, s = θ (a,b), s = q (c,d) and s = c (e,f) versus the observed fluxes, for stable (a,c,e)
and unstable (b,d,f) conditions. The blue line is the median.

5.2 Flux estimates from REA-S339

We applied REA-S for all 3 scalars using the median βs for each scalar and for340

each stability range (stable, unstable) to estimate the fluxes. βs estimation and341

flux performance used the same dataset, since as mentioned earlier the intent342

is only to assess the relative potential of the method. The median values of the343

obtained βss are listed in Table 6. The values of βs are remarkably close under344

each stability regime. They are also clearly different in stable (mean of 0.6049)345

and unstable (mean of 0.5564) conditions. While analyzing the REA method346

at the same site with a different dataset, Zahn et al. (2016b) obtained similar347

values for βs under unstable conditions, namely a mean of 0.5287 between the348

medians of βθ, βq and βc at 39.4 m and 0.5847 at 81.6 m. Thus, it appears349
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Table 6 Median βs, for s = θ, q, c, under stable and unstable conditions.

Scalar Stable Unstable

θ 0.6090 0.5478
q 0.6036 0.5632
c 0.6021 0.5582

mean 0.6049 0.5564

that βs increases slightly with height in the RSL over the canopy in unstable350

conditions.351

Figure 7 shows the predicted versus observed fluxes thus obtained: for each352

scalar, we predicted the flux with the corresponding median βs in Table 6 .353

The performance is very good, showing an excellent agreement. Note that the354

small variability of βs among all scalars for the same stability conditions gives355

confidence on the applicability of the method, without calibration, at least for356

the ATTO site — but bear in mind the βs dependency on height. The relative357

errors of REA-S can be better discerned in Figure 8. The scatter of the small358

magnitude fluxes is now much smaller than in Figure 6 for the variance method,359

but it is still present, and also likely due, at least in part, to the inherently360

more difficult RSL conditions. The scatter is larger for stable than for unstable361

conditions. Together, Figures 7 and 8 reconcile the previous results of Zahn362

et al. (2016b) and Zahn et al. (2023): plotted on an x×y graph, the REA shows363

excellent performance, but this kind of plot hides the still large variability of364

the computed βss when plotted (for example) against ζ. Therefore, while the365

REA method is probably good enough for mean flux estimates over (say) many366

days, one must be cautious when the small-magnitude fluxes are of importance367

(say, for specific biophysical processes, etc.).368

The errors of REA-S are quantified in Table 7. They are much smaller369

than those from the variance method (see Table 5), confirming in general the370

findings of Zahn et al. (2023), but now for an Amazonian RSL. Note that by es-371

timating βs as the median value, BIAS is virtually eliminated; NMAE remains372

below 10% for unstable conditions, and below ∼ 15% for stable conditions.373

5.3 Flux estimates from REA-T374

We applied REA-T for q and c with simultaneous measurement of βθ, assuming375

βq,c = βθ, and then estimating w′q′ and w′c′, for each stability regime (stable,376

unstable). This mimics the simultaneous measurement of sonic temperature,377

and dispenses with any a priori estimate of βs, but has a built-in assumption of378

θ–s scalar similarity. Figure 9 shows the predicted versus observed fluxes thus379

obtained. The performance again is very good. The relative errors of REA-T380

can be discerned in Figure 10. Figures 9 and 10 look very similar to Figures381

7 and 8, showing that both REA-S and REA-T produce reasonably good382

results. The same observations about the large scatter of the predicted fluxes383

when their magnitude is small apply. The performance statistics in Table 8384
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Fig. 7 Observed × predicted kinematic fluxes w′s′ by means of the REA-S method, s = θ
(a,b), s = q (c,d) and s = c (e,f) for stable (a,c,e) and unstable (b,d,f) conditions. The
vermillion line is a least-squares fit through the origin, and the black line is y = x.
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Fig. 8 Observed ratios of predicted to observed kinematic fluxes w′s′ by means of the
REA-S method, s = θ (a,b), s = q (c,d) and s = c (e,f) versus the observed fluxes, for stable
(a,c,e) and unstable (b,d,f) conditions. The blue line is the median.

Table 7 Performance statistics for the kinematic fluxes w′θ′ (m s−1K), w′q′ (m s−1 g kg−1),

w′c′ (m s−1 mg kg−1), estimated by REA-S. BIAS, MAE and RMSE are given in the same
corresponding units.

Variable r Cd BIAS NBIAS MAE NMAE RMSE NRMSE dr

Stable conditions

w′θ′ 0.9615 0.8922 −0.0002 −0.0220 0.0016 0.1599 0.0049 0.4817 0.8920

w′q′ 0.9820 0.9637 0.0001 0.0109 0.0013 0.1567 0.0035 0.4302 0.9163

w′c′ 0.9673 0.8736 0.0055 0.0346 0.0247 0.1561 0.0701 0.4429 0.8992

Unstable conditions

w′θ′ 0.9926 0.9853 −0.0002 −0.0035 0.0045 0.0742 0.0074 0.1228 0.9565

w′q′ 0.9933 0.9849 0.0006 0.0080 0.0050 0.0628 0.0075 0.0931 0.9500

w′c′ 0.9769 0.9530 −0.0037 −0.0079 0.0422 0.0903 0.0799 0.1710 0.9302
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Fig. 9 Observed × predicted kinematic fluxes w′s′ by means of the REA-T method, s = q
(a,b) and s = c (c,d) for stable (a,c) and unstable (b,d) conditions. The vermillion line is a
least-squares fit through the origin, and the black line is y = x.

are somewhat worse than their counterparts in Table 7, but by a small margin385

only. Therefore, we deem REA-T as capable as REA-S with the additional386

advantage that no a priori estimate of βs is necessary.387

5.4 Long-term hourly predictive ability of REA388

Figure 11 shows the hourly means for the whole dataset, for both s = q and s =389

c, for REA-S (a,c) and REA-T (b,d) against eddy covariance measurements.390

The performance of REA-S for s = θ is very similar to that exhibited for q391

and c and is not shown while REA-T for temperature, obviously, makes no392

sense. As it can be seen, the REA method’s (both versions) ability to capture393

the daily cycle and its dispersion around the hourly means is very similar to394

the eddy covariance measurements themselves. For the purpose of quantifying395
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Fig. 10 Observed ratios of predicted to observed kinematic fluxes w′s′ by means of the
REA-T method, s = q (a,b) and s = c (c,d) versus the observed fluxes, for stable (a,c) and
unstable (b,d) conditions. The blue line is the median.

Table 8 Performance statistics for the kinematic fluxes w′q′ (m s−1 g kg−1), w′c′

(m s−1 mg kg−1), estimated by REA-T. BIAS, MAE and RMSE are given in the same
corresponding units.

Variable r Cd BIAS NBIAS MAE NMAE RMSE NRMSE dr

Stable conditions

w′q′ 0.8948 0.7982 0.0000 0.0045 0.0018 0.2209 0.0084 1.0122 0.8823

w′c′ 0.8949 0.7961 0.0044 0.0276 0.0186 0.1171 0.0893 0.5612 0.9243

Unstable conditions

w′q′ 0.9789 0.9547 0.0002 0.0022 0.0069 0.0840 0.0128 0.1555 0.9304

w′c′ 0.9617 0.9208 0.0047 0.0098 0.0458 0.0962 0.1036 0.2176 0.9239

mass exchanges between the canopy and the atmosphere at the ATTO site396

(and very likely many other similar forested regions), therefore, our results397

validate the use of REA as a valuable alternative when fast-response scalar398

sensors are not available. The one caveat is whether these results also apply399

for trace gases such as CH4 or isoprene since, if their fluxes are all very small,400

they might fall in the high scatter region of Figures 8 and 10. In all fairness,401

the good performance of the REA method over forests is not reported here for402

the first time; it can be found in Bowling et al. (1999) for water vapor and CO2403

fluxes (c.f. their Figs 5a, b, c, d). At the same they also show that the scatter404
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Fig. 11 Hourly means of EC, REA-S and REA-T fluxes at the ATTO site. The bars indicate
1 standard deviation around the means: (a) EC × REA-S, s = q; (b) EC × REA-T, s = q;
(c) EC × REA-S, s = c; (d) EC × REA-T, s = c.

of the REA method in comparison to eddy covariance is considerably larger for405

isoprene flux (c.f. their Figs 5e,f) — although this may also be a consequence of406

the precision of their isoprene measurements. Clearly, the subject of the ability407

of the REA method to produce consistently good results for trace gases will408

require further study.409

6 Discussion and Conclusions410

The relatively large scatter found for βs by Zahn et al. (2016b) at the same411

site (ATTO) as the present study’s might suggest that the REA method is412

not applicable in the RSL of ATTO. However, the recent finding of Zahn413

et al. (2023) that the REA can yield rather good results in comparison to EC414

measurements even when the scalar in question (in their case, mostly CO2)415

does not conform to MOST, has prompted us to re-visit the issue with ATTO416

data. The present work actually reconciles both findings. The βs scatter is417

large in the RSL, as can be seen (indirectly) in Figures 8 and 10. On the other418

hand, this affects mostly the small-magnitude fluxes. Zahn et al. (2023) showed419

very clearly that when any scalar “fails” MOST this is basically caused by420

relatively large (in their case) transport and storage terms: at the ATTO site,421

other causes such as horizontal and vertical advection might also be playing a422

role, on account of the underlying topography (see Chamecki et al. 2020). In423
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all likelihood, the failure is associated with the small-magnitude fluxes because424

then the corresponding gradient production term in the scalar semivariance425

budget is also relatively small and the other terms are causing the breakdown of426

MOST. The term “relatively” is key here, since (again, very likely) the gradient427

production ultimately is small with respect to the scalar dissipation term. This428

however, falls outside our present scope and will need to be addressed in future429

research studies.430

Large-magnitude fluxes that occur in the middle of the day, on the other431

hand, are (again in all likelihood, pending a detailed analysis of the scalar432

semivariance budgets) associated with a large gradient production term. In433

this case the βss approach the approximately constant values around 0.6 found434

elsewhere in the literature when measurements were made in the ISL. This is435

exactly what Zahn et al. (2016b) found for small zenith angles, which naturally436

occur in the middle of the day, although an explanation based on the scalar437

semivariance budget was not offered then. These large-magnitude fluxes weigh438

more heavily in most performance statistics or visual analyses, which tend to439

hide the large scatter of the small-magnitude fluxes. Moreover, when hourly440

averages of all data were taken, in Figure 11, the REA method showed consid-441

erable ability in reproducing the daily cycle of the EC measurements for the442

dry season. This lends confidence in the ability of the REA method, despite443

the shortcomings of RSL-measurements related to the small-magnitude fluxes,444

of producing reliable estimates of the canopy-atmosphere mass exchanges over445

timescales larger than (say) several days. In particular, REA-T seems to be446

a better choice than REA-S since, in spite of slightly larger overall errors, it447

dispenses with a priori assumptions on the value of βs.448

However, to really settle the matter, further research needs to be done:449

1. A better understanding of the interplay between the scalar semivariance450

budget and REA needs to be obtained. For this purpose, a budget as451

detailed as possible is needed in conjunction with the behavior of βs under452

various situations, viz. when the gradient production term is large, and453

when the transport term is large or more generally when a large imbalance454

between gradient production and dissipation is present.455

2. Unfortunately, a criterion for identifying such imbalance that dispenses456

with EC measurements is lacking; such a criterion would be highly useful457

for practical quality control of REA measurements. The scalar flux number458

proposed by Cancelli et al. (2012) might be a useful starting point for this459

purpose.460

3. Scalar variance budgets involving trace gases measured by EC and simulta-461

neous assessment of the REA for these gases are also needed. The present462

study considered scalars associated with intuitively large fluxes of heat,463

H2O and CO2. A possibility remains that for trace gases the gradient pro-464

duction term is never able to balance dissipation alone. If this happens,465

then, the REA method is bound to become much more uncertain.466
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