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Abstract. Given a large square matrix A and a sufficiently regular function f so that f(A) is
well defined, we are interested in the approximation of the leading singular values and corresponding
singular vectors of f(A), and in particular of ‖f(A)‖, where ‖ · ‖ is the matrix norm induced by the
Euclidean vector norm. Since neither f(A) nor f(A)v can be computed exactly, we introduce a new
inexact Golub-Kahan-Lanczos bidiagonalization procedure, where the inexactness is related to the
inaccuracy of the operations f(A)v, f(A)∗v. Particular outer and inner stopping criteria are devised
so as to cope with the lack of a true residual. Numerical experiments with the new algorithm on
typical application problems are reported.

1. Introduction. Given a large n×n complex matrix A and a sufficiently regular
function f so that f(A) is well defined, we are interested in approximating the largest
singular values and corresponding singular vectors of the matrix function f(A). This
computation will also give an approximation to its 2-norm, namely, ‖f(A)‖, where
‖ · ‖ is the matrix norm induced by the Euclidean vector norm, and it is defined as

‖f(A)‖ = max
0 6=x∈Cn

‖f(A)x‖
‖x‖ . (1.1)

In our presentation we will chiefly discuss this norm approximation because of its
interest in applications. However, we shall keep in mind that the considered procedure
allows us to also determine both associated left and right singular vectors, and that
a group of singular triplets can be determined simultaneously.

The problem of approximating the norm of a matrix function arises in the so-
lution of stiff linear initial value problems [13],[30], in the evaluation of derivatives
and perturbations of matrix functions, which arise for instance in electronic structure
theory [14],[29],[24], and in monitoring the magnitude of the inverse of distance ma-
trices [1]. In numerical linear algebra the norm of matrix polynomials may be used in
the analysis of iterative procedures, and the norm of rational matrix functions, and
in particular of the transfer function may give information on the sensitivity of the
matrix itself to perturbations; see, e.g., [34],[5] and their references.

If A were normal, then the approximation could be stated in terms of an eigen-
value problem in A. Indeed, if A = QΛQ∗ is the eigendecomposition of A with Q
unitary and Λ diagonal, then f(A) = Qf(Λ)Q∗ [22], so that the leading singular val-
ues of f(A) could be determined by a procedure that approximates the eigenvalues of
A.

The problem is significantly more challenging if A is large and non-normal, since
there is no relation between eigenvalues and singular values that can be readily ex-
ploited during the computation. Moreover, although A may be sparse, in general f(A)
will be dense, and it cannot be computed explicitly. We are thus left with procedures
that use f and A by means of the action of f(A) to a vector v. The Lanczos bidi-
agonalization is among the most used strategies for approximating selected singular
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triplets of a given matrix. Given a matrix F , this procedure generates a sequence of
orthonormal vectors {v1,v2, . . .} and {u1,u2, . . .} by alternating products of Fv and
F ∗u. In our case, F = f(A) with A of large dimensions, therefore these matrix vector
products cannot be computed exactly and the standard Lanczos process fails.

We introduce a novel inexact implementation of the Lanczos bidiagonalization
process, where at each iteration the action of f(A)v and f(A)∗u is approximated with
some loose tolerance by means of a projection method. The problem of approximating
f(A)v has seen a great interest growth in the past fifteen years, due to the emerging
occurrence of this computation in many scientific and engineering applications; see,
e.g., [2],[9],[12],[17],[19],[21],[20], and their references. For our purposes we shall use
Krylov subspace methods for approximating f(A)∗u and f(A)v at each iteration,
equipped with a cheap stopping criterion that may also be adapted to the outer current
accuracy. We shall show that the inexactness in the Lanczos bidiagonalization causes
the loss of the known symmetry structure of the process. Nonetheless, as is the case
in finite precision analysis [26], orthogonality of the basis can be preserved, so that
the recurrence maintains its effectiveness.

If a rough approximation to ‖f(A)‖ is the only quantity of interest, instead of
a group of singular triplets, then other approaches could be considered. For instance,
f could be approximated by some other more convenient functions, and then the
resulting matrix function norm could be more easily estimated. As an alternative,
equivalent definitions of f(A) could be used, from which the norm could also be
estimated; or, the relation of ‖f(A)‖ with other norms or with some other spectral
tool could be used; some of these approaches are briefly recalled in section 2. Methods
in the mentioned classes, however, usually at most provide the order of magnitude of
the actual norm and are thus inappropriate if more correct digits are needed.

This paper is organized as follows. Section 2 reviews some methods available for
the approximation of ‖f(A)‖. In section 3 the standard Lanczos bidiagonalization is
recalled and the general notation used in this paper is introduced. Section 4 presents
the inexact Lanczos bidiagonalization procedure, including the details on the stopping
criteria in section 4.1. Section 5 discusses the approximation of the matrix function
multiplication, and a stopping criterion for its accuracy, while in section 6 a stopping
criterion in the case of an inner flexible strategy is analyzed. In section 6.1 we show
how specific spectral properties allow us to make a variable accuracy for the inner
iteration feasible, which is finalized in section 6.2. Section 7 focuses on the practical
implementation and the numerical results are presented in section 8. We will conclude
with some discussion in section 9.

The following notation will be used throughout. The vector ei indicates the ith
column of the identity matrix of a given dimension. The conjugate transpose of a
matrix A will be denoted by A∗. We will use the Matlab-like notation [x;y] to denote
the column vector

[
x

y

]
, x ∈ C

nx ,y ∈ C
ny .

The Euclidean vector norm for vectors will be used, namely ‖x‖ = (
∑n

i=1 |xi|2)
1
2 ,

for x ∈ C
n. Unless explicitly stated, the induced matrix norm (1.1) will be used for

matrices. For A ∈ C
n×n, spec(A) denotes the set of its eigenvalues, and W (A) = {z ∈

C : z = (x∗Ax)/(x∗x),x ∈ C
n\{0}} is its field of values.

2. Available techniques for estimating the norm. While the Lanczos bidi-
agonalization is widely recognized as the method of choice for approximating selected
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singular triplets of a large matrix, if one is only interested in estimates of ‖f(A)‖2
with A non-Hermitian, then rather different procedures could also be used. A simple
approach consists of roughly estimating ‖ · ‖2 by using some other matrix norm. For
instance,

‖f(A)‖2 ≤
√
n‖f(A)‖p, p = 1,∞, or ‖f(A)‖2 ≤

√
‖f(A)‖1 ‖f(A)‖∞,

where ‖f(A)‖p is once again an induced norm [23, p. 365]. This bound is usually
pessimistic, and it is clearly unsatisfactory for n large. The fact that for A large the
entries of f(A) are not all readily available provides an additional challenge.

In the following we describe a few approaches available in the literature that are
tailored to the matrix function case. Some of them first determine an explicit upper
bound for the norm, which only depends on scalar quantities. The core computation
will then be to determine a good approximation to the obtained upper bound. The
quality of the final estimate of ‖f(A)‖2 will thus depend both on the sharpness of
the initial upper bound and on the accuracy of the computation. For general non-
normal matrices the initial bound is often not very sharp, limiting the quality of the
overall estimation. Finally, a computation-oriented estimation is the power method,
which directly approximates ‖f(A)‖2 as the square root of the largest eigenvalue of
f(A)∗f(A). A more detailed list follows.

1. Let r(A) be the numerical radius of A, that is r(A) = max{|z| : z ∈ W (A)},
where W (A) is the field of values of A. Since (see, e.g., [16, Theorem 1.3-1])

r(A) ≤ ‖A‖2 ≤ 2 r(A),

by applying the bounds to f(A) instead of A, it is possible to estimate ‖f(A)‖2
by means of r(f(A)); see, e.g., [36],[28] for numerical methods to compute
the numerical radius of a given matrix. A related special case is given by the
exponential function, for which the bound

‖ exp(A)‖ ≤ exp(α) (2.1)

holds, where α is the largest eigenvalue of the Hermitian part of A, that is of
1
2 (A+A∗) [19, section 10.1].

2. If it is possible to find K > 0 and Ω ⊂ C such that

‖f(A)‖2 ≤ K‖f‖Ω,

then it is sufficient to estimate ‖f‖Ω; here ‖f‖Ω is the L∞-norm of f on
Ω. This can be done for instance when f is a polynomial, [6], for which
K is known to be less than 11.08 and conjectured to be equal to 2, and
Ω coincides with the field of values of A. We refer to the Ph.D. thesis of
D. Choi [5], for a discussion on the use if this bound when A is normal, or
when A is a contraction; see also [34] for a detailed analysis of this bound
when using pseudospectral information. The computationally intensive task
is given by the determination of Ω. If Ω coincides with W (A), then the cost
of accurately approximating Ω may be higher than that of approximating the
single quantity ‖f(A)‖2.

3. This approach is in the same spirit as the one above. For ε > 0, let σε(A) =
{z ∈ spec(A + E) : ‖E‖ < ε} and assume that f is analytic in σε(A). If Lε

denotes the length of the boundary ∂σε(A) = {z ∈ C : ‖(zI −A)−1‖ = ε−1},
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then by using the Cauchy integral expression for f(A) we obtain (see, e.g.,
[34])

‖f(A)‖ ≤ Lε

2πε
‖f‖∂σε

.

Although the involved quantities may be easier to compute than in the pre-
vious case, the dependence on ε > 0 remains not fully controllable.

4. Using the relation ‖f(A)‖22 = λmax(f(A)
∗f(A)) a run of a few iterations of

the power method can give an estimate to λmax(f(A)
∗f(A)); see, e.g., [19,

Algorithm 3.19] for an algorithm specifically designed for the largest singular
triplet.

The power method is probably the most appealing approach among the ones
listed above. If a rough approximation is required, typically to determine the order of
magnitude, then the power method provides a satisfactory answer in few iterations.
However, if more than one digit of accuracy is required, then the process may need
many iterations to converge. As for with A, the stability in the computation may be
highly influenced by the squaring; we refer to section 8 for an example of this well
known phenomenon.

3. Lanczos bidiagonalization. We start by recalling the Golub-Kahan bidiag-
onalization process in our context, in terms of the matrix function f(A); then we will
discuss how to actually obtain f(A) times a vector. Let u0 = 0 and β1 = 0, and given
the vector v1 of unit norm, then for j = 1, . . . ,m the following recurrence relations
define the Lanczos algorithm

β2juj = f(A)vj − β2j−1uj−1

β2j+1vj+1 = f(A)∗uj − β2jvj .
(3.1)

The coefficients β2j and β2j+1 are computed so that the corresponding vectors uj and
vj+1 have unit norm. By collecting the two sets of vectors as Um = [u1, . . . ,um],
Vm = [v1, . . . ,vm], we observe that U∗

mUm = I, V ∗
mVm = I, V ∗

mvm+1 = 0. Moreover,
the two recurrences can be compactly written as

f(A)Vm = UmBm

f(A)∗Um = VmB∗
m + β2m+1vm+1e

∗
m, (3.2)

where Bm is the following bidiagonal matrix

Bm =



β2 β3

β4 β5

. . .
. . .


 ∈ R

m×m.

It can be shown that the columns of Vm span the Krylov subspace Km(f(A)∗f(A),v1)
and the columns of Um span the Krylov subspace Km(f(A)f(A)∗, f(A)v1). Define

B2m =

[
0 Bm

B∗
m 0

]
, and W2m =

[
Um 0
0 Vm

]
,

and

F =

[
0 f(A)

f(A)∗ 0

]
.
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Then the recursion (3.2) can be rewritten in the more compact matrix notation ([7,
p. 178–186], [15, p. 448–449, p. 495])

FW2m = W2mB2m + β2m+1

[
0

vm+1

]
e∗m, em ∈ R

2m. (3.3)

For both even and odd j, the eigenvalues of Bj occur in ± pairs, with the exception of
an extraneous zero eigenvalue in the odd case. Within this setting, is it thus possible
to approximate the singular values of f(A) by the positive eigenvalues of B2m, or,
equivalently, by the singular values of Bm. In particular, for the largest singular value
it holds that (see [22, Corollary 3.1.3, Lemma 3.3.1.]):

σ1(Bj−1) ≤ σ1(Bj) ≤ σ1(f(A)), 2 ≤ j ≤ m.

There are several advantages of the Golub-Kahan bidiagonalization over the simpler
power method applied to f(A)∗f(A), which are mainly related to the fact that the
eigenvalue squaring in this latter problem may lead to severe loss of information
in the case very small or very large singular values arise. In the inexact case the
bidiagonal formulation also allows us to better trace the inexactness during the whole
approximation process; this is discussed in the next section.

4. Inexact Lanczos bidiagonalization. When neither the explicit computa-
tion of the matrix f(A) nor the accurate operation f(A)v (or f(A)∗v) are feasible,
then approximate computations must be performed, resulting in an inexact Lanczos
bidiagonalization procedure. As a consequence, the recurrence (3.2) needs to be sig-
nificantly revised so as to acknowledge for the quantities that are actually computed.

For a given v, the exact matrix-vector multiplication f(A)v has to be replaced
by an inner procedure that approximates the resulting vector up to a certain accuracy.
The same holds for the operation f(A)∗u for a given vector u. For the sake of the
analysis, at each iteration j we shall formalize this difference by writing, for some
matrices Cj and Dj ,

β2juj = (f(A)vj + Cjvj)− β2j−1uj−1

β2j+1vj+1 = (f(A)∗uj +Djuj)− β2jvj ,

where Cj , Dj implicitly represent the perturbation induced by the approximate com-
putations. Since in general f(A)∗ + Dj is no longer the conjugate transpose of
f(A) + Cj , orthogonality of a new vector vm+1 has to be enforced by explicit or-
thogonalization against all previous vectors vj , 1 ≤ j ≤ m. The same holds for the
vectors uj , j = 1, . . . ,m. Therefore, instead of one bidiagonal matrix Bm in the exact
relation, we now obtain an upper triangular matrix Mm and an upper Hessenberg
matrix Tm. This leads to the following relations for the inexact (perturbed) Lanczos
bidiagonalization:

(f(A) + Cm)Vm = UmMm

(f(A)∗ +Dm)Um = VmTm + tm+1,mvm+1e
∗
m,

where Cm =
∑m

j=1 Cjvjv
∗
j and Dm =

∑m
j=1 Djuju

∗
j . The matrices Vm and Um

are different from the matrices in the exact relation, but they still have orthonormal
columns.
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The inexact Lanczos bidiagonalization can also be described using the notation
of (3.3). Define

B̃2m =

[
0 Mm

Tm 0

]
, W2m =

[
Um 0
0 Vm

]
,

and the perturbation matrix

G2m =

[
0 Cm

Dm 0

]
W2m =: EmW2m.

The perturbed relation thus becomes

FW2m + G2m = W2mB̃2m + tm+1,m

[
0

vm+1

]
e∗m, em ∈ R

2m, (4.1)

where

FW2m + G2m = (F + Em)W2m =

[
0 f(A) + Cm

f(A)∗ +Dm 0

]
W2m =: F̃2mW2m.

In contrast to the exact case, the space spanned by the columns ofW2m is not a Krylov
subspace. However, when tm+1,m is small, this new space is close to an invariant

subspace of the perturbed matrix F̃2m, because then F̃2mW2m ≈ W2mB̃2m. Notice the
similarity of (4.1) with equation (3.1) in [31], which shows that with this formulation,
the inexact projection problem amounts to solving a structured eigenvalue problem,
where the original Hermitian matrix F has been perturbed by a structured non-
Hermitian perturbation Em. The theory in [31] can then be used to analyze and
monitor the inexact computations, although the general results in [31] should be
carefully adapted to the new problem structure.

If Em is small in norm, the eigenvalues of the non-Hermitian matrix F̃2m are
small perturbations of the eigenvalues of the Hermitian matrix F . Indeed, the eigen-
values of the perturbed matrix F̃2m lie in discs with radius ‖Em‖ and center the
(real) eigenvalues of F (see, e.g., [33, section IV, Theorem 5.1]). Therefore, for small
perturbations in the computations, the eigenvalues of the symmetric matrix F will
be perturbed accordingly. On the other hand, in the following we shall consider the
case when ‖Em‖ is larger than usually allowed by a perturbation analysis argument,
therefore different strategies need to be devised to ensure good approximations to the
wanted eigenvalues of F .

Following the standard procedure of the exact case, we should consider the ma-
trix B̃2m to approximate the largest eigenpairs of F̃2m, and according to the discussion
above, of F . Due to the non-Hermitian structure of B̃2m, however, there are different
matrices that can provide the sought after singular value information, namely the
matrix B̃2m itself, and the two distinct matrices Tm or Mm. The last two matrices
yield approximations to the corresponding triplets of f(A)+Cm and f(A)∗+Dm. The

following bound between the largest eigenvalue of B̃2m and the largest singular values
of Tm and Mm shows that all these quantities can be easily related. Let q = [x;y]
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and let θ be an eigenvalue of B̃2m. Using ‖x‖‖y‖ ≤ 1
2

(
‖x‖2 + ‖y‖2

)
we obtain1

|θ| ≤ max
q 6=0

∣∣∣∣∣
q∗B̃2mq

q∗q

∣∣∣∣∣ = max
[x;y] 6=0

∣∣∣∣
x∗Mmy + y∗Tmx

x∗x+ y∗y

∣∣∣∣

≤ max
[x;y] 6=0

‖x‖‖Mmy‖
‖x‖2 + ‖y‖2 + max

[x;y] 6=0

‖y‖‖Tmx‖
‖x‖2 + ‖y‖2 ≤ 1

2
(σ1(Mm) + σ1(Tm)).

If the inexactness of the bidiagonalization is very large, Mm and T ∗
m are very different

from each other. In this case, the leading singular values of these two matrices - and
thus their mean - may be significantly larger than the biggest (in modulo) eigenvalue

of B̃2m, since they are related to the numerical radius of B̃2m, rather than to its
spectrum. This motivated us to use the eigenvalues of B̃2m in the approximation,
rather than the singular values of its blocks. Moreover, working with B̃2m made the
analysis of the relaxed strategy particularly convenient, since known results on relaxed
eigenvalue computation could be exploited.

4.1. A computable stopping criterion. In this section we analyze a strategy
for monitoring the convergence of the inexact bidiagonal iteration. Some stopping
criterion, for instance based on the problem residual, needs to be introduced to exit
the process. As it is common to other inexact processes, the true problem residual
is inaccessible as soon as inexactness takes place, so one could for example use an
approximation to the true residual. However, it is unclear whether the computed
approximations are still meaningful for the original problem, since they were computed
with significantly modified data.

Let (θ,q) be an eigenpair of B̃2m, where q is a unit vector. As the iterations

proceed, (θ,W2mq) tends to approximate an eigenpair of F̃2m. We would like to
ensure that (θ,W2mq) also tends to an eigenpair of F . To monitor the convergence
of θ and to define a stopping criterion for the outer iteration, the residual is used.
We call FW2mq − θW2mq the true residual, which is not available, since F cannot
be applied exactly. We thus introduce the computed residual, which is the residual of
the actually computed quantities, namely (see (4.1))

r2m := F̃2mW2mq− θW2mq = tm+1,m

[
0

vm+1

]
e∗mq, (em ∈ R

2m).

In the sequel, we shall use the following obvious inequality to estimate the true residual
norm:

‖FW2mq− θW2mq‖ ≤ ‖r2m‖+ ‖(FW2mq− θW2mq)− r2m‖, (4.2)

where ‖(FW2mq − θW2mq) − r2m‖ is the gap between the computed and the true
residuals, in short the “residual gap”. If this gap can be imposed to be small, then the
computed residual will give an estimate for the true residual. In this case, convergence
can be monitored by only using the (available) computed residual, and the following
relative stopping criterion can be used:

if
|tm+1,me∗mq|

|θ| < εout then stop (4.3)

1Another bound can be obtained for the geometric mean, that is |θ| ≤
√

σ1(Mm)σ1(Tm).
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for some outer tolerance εout, where θ is the largest (in modulo) eigenvalue. Finally,
as the computed residual norm goes to zero, the quantity ‖(FW2mq−θW2mq)−r2m‖
will tend to dominate again, playing the role of the final attainable accuracy level.

To see how we can impose the residual gap to be small, and recalling the defini-
tion of G2m, we first consider a more convenient expression for G2mq, with q = [x;y],
that is

G2mq =

[
CmVmy

DmUmx

]
=:

[
G

(1)
m y

G
(2)
m x

]
.

Let G
(ℓ)
m = [g

(ℓ)
1 , . . . ,g

(ℓ)
m ], for ℓ = 1, 2. Then

‖(FW2mq− θW2mq)− r2m‖ = ‖G2mq‖ =

∥∥∥∥∥

[
G

(1)
m y

G
(2)
m x

]∥∥∥∥∥ =

∥∥∥∥∥∥

m∑

j=1

[
g
(1)
j e∗jy

g
(2)
j e∗jx

]∥∥∥∥∥∥

≤
m∑

j=1

∥∥∥∥∥

[
g
(1)
j e∗jy

g
(2)
j e∗jx

]∥∥∥∥∥ =

m∑

j=1

(‖g(1)
j ‖2 |e∗jy|2 + ‖g(2)

j ‖2 |e∗jx|2)
1
2 . (4.4)

The vectors g
(ℓ)
j , ℓ = 1, 2, implicitly carry the error caused by the inexact computation

of f(A)v and f(A)∗u, respectively, in the inner iteration. If every term of this sum is
small, the computed residual will be close to the true residual. The following Lemma
states how the inaccuracy in the matrix-vector products relates to the residual gap; its
proof is based on the corresponding result in [31], however the structure is exploited

so as to have a dependence with respect to m instead of 2m, the size of B̃2m.
Lemma 4.1. Assume that m iterations of the inexact Lanczos bidiagonalization

process have been taken.

If ‖g(1)
j ‖, ‖g(2)

j ‖ < 1
mε for 1 ≤ j ≤ m, then ‖(FW2mq− θW2mq)− r2m‖ < ε.

Proof. From ‖q‖ = 1 with q = [x;y] it follows that ‖[e∗jx; e∗jy]‖ ≤ 1. From
(4.4) we obtain

‖(FW2mq− θW2mq)− r2m‖ ≤
m∑

j=1

(‖g(1)
j ‖2 |e∗jy|2 + ‖g(2)

j ‖2 |e∗jx|2)
1
2

<

m∑

j=1

1

m
ε(|e∗jy|2 + |e∗jx|2)

1
2 ≤ 1

m
ε

m∑

j=1

1 = ε.

This result shows that if ε is sufficiently small, then the residual gap will stay
below the computed residual norm until convergence. In our experiments, m will play
the role of the maximum number of Lanczos bidiagonalization iterations, which is
usually set to a number between 50 and 500.

5. Approximation of f(A)v and f(A)∗u and a computable inner stopping

criterion. The performance of the inexact Lanczos bidiagonalization process depends
on the approximation accuracy of the matrix-vector products f(A)v and f(A)∗u. Due
to the size of A, we consider approximating these quantities by means of a projection-
type iterative method as follows; we limit our discussion to f(A)v, and a corresponding
procedure can be used for f(A)∗u. We also notice that in general, f(A)v and f(A)∗u
require distinct approximations, also for functions satisfying f(A∗) = f(A)∗. Starting
with the unit vector v and the matrix A, we construct a sequence of approximation
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subspaces Ki of Rn, i = 1, 2, . . . , and define the matrix Pi = [p1,p2,p3, . . . ,pi] ∈
C

n×i, whose orthonormal columns span the subspace, and v = p1 = Pie1, in a way
so that the spaces are nested, that is Ki ⊆ Ki+1. Typical such choices are Krylov and
rational Krylov subspaces [19],[17]. The desired approximation is then obtained as

f(A)v ≈ Pif(Hi)e1, Hi = P ∗
i APi.

For small i, the reduced non-Hermitian matrix Hi has small size, so that f(Hi) can be
computed efficiently by various strategies such as decomposition-type methods [19].

Our stopping criterion of this approximation process is based on an estimation of
the error norm, and it uses an approach previously introduced in [25, Proposition 2.2];
see also [35] for an earlier application to the exponential.

Proposition 5.1. [25, Proposition 2.2] Assume that i+d inner iterations have
been executed. Let zi+d = Pi+df(Hi+d)e1 be an approximation to f(A)v and define
ωi+d = ‖zi+d − zi‖/‖zi‖. If ‖f(A)v − zi+d‖ ≪ ‖f(A)v − zi‖ and ‖f(A)v‖ ≈ ‖zi‖,
then

‖f(A)v − zi‖ ≈ ωi+d

1− ωi+d
‖zi‖. (5.1)

The result in (5.1) shows that after i + d iterations it is possible to provide
an estimate of the error norm at iteration i. Therefore, we introduce the following
stopping criterion for the approximation of f(A)v:

if
ωi+d

1− ωi+d
≤ εin then stop

for some inner tolerance εin. In the numerical experiments presented in section 8 we
have used d = 4. The accuracy of the inner iteration will influence the final accuracy
of the inexact Lanczos bidiagonalization. In the notation of the previous section, if
after i inner iterations the stopping criterion is satisfied, we have thus derived the
following estimate for the perturbation occurring at the jth Lanczos step,

‖f(A)vj − zi‖ = ‖Cjvj‖ ≈ εin‖zi‖;

we recall that the matrix Cj is not explictly determined, and it is used to express
the inexactness at iteration j in terms of a matrix-vector product with vj . Note that

here ‖Cjvj‖ = ‖g(1)
j ‖, with the notation in (4.4). An analogous relation holds with

respect to f(A)∗uj and thus ‖g(2)
j ‖. We stress here that, since the approximation

process changes at each iteration, the threshold for the quantity ‖Cjvj‖ may vary as

the Lanczos bidiagonalization proceeds, so that εin = ε
(j)
in . As experienced with other

eigenvalue and linear system problems, ε
(j)
in may even be allowed to grow during the

iteration, without significantly affecting the overall process. This is discussed in the
next section.

6. Relaxing the inner solution accuracy. The bound in (4.4) on the residual
gap suggests that the accuracy on the inner solution approximation can be relaxed as
convergence takes place. Indeed, following similar strategies in [32],[31],[4], we observe

that it is the product ‖g(1)
j ‖ |e∗jy| in (4.4) that needs to be small, and not each factor,

to ensure a small gap; the same for ‖g(2)
j ‖ |e∗jx|. Therefore, if |e∗jy| is sufficiently

small, indicating that the (m + j)th component of the eigenvector q is small, ‖g(1)
j ‖
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is allowed to be larger, and the required accuracy of εout can still be achieved. This
induces a variable (possibly growing) accuracy in the inner iteration, which drives the

size of ‖g(1)
j ‖. In the following we shall first show that the quantities |e∗jy| and |e∗jx|

do tend to decrease as the approximation improves. We then derive a computable
expression for the variable stopping tolerance in the approximation of f(A)v and
f(A)∗u at each iteration of the resulting “relaxed” Lanczos bidiagonalization process.
This strategy may be convenient in case the cost approximating f(A)v and f(A)∗u
is very high, as is the case for instance if an accurate approximation to the leading
singular triplets is requested.

6.1. Spectral properties of the approximate singular triplets. To ensure

that the magnitude of ‖g(ℓ)
j ‖, ℓ = 1, 2, can be relaxed in the bound (4.4), we need to

verify that |e∗jx| and |e∗jy| become small as convergence takes place. This fact has
been verified in the eigenvalue setting in [31], however the peculiar structure of the
Lanczos bidiagonal recurrence requires the ad-hoc modifications of the results in [31].

To this end, we first define the submatrix of B̃2m of size 2k as

B̃2k =

[
0 Mk

Tk 0

]
,

where Mk, Tk are the leading portions of the corresponding m × m matrices. Let
(θ(2k),q(2k)) be an eigenpair of B̃2k, where q

(2k) = [x;y] has unit norm, and x,y ∈ C
k.

Further, let

q̃ =




x

0
y

0


 , (6.1)

where the 0-vectors have length m−k, and define X = [q̃, Y ], where Y is chosen such

that X is unitary. Define B̃2m = Y ∗B̃2mY ∈ C
(2m−1)×(2m−1). The following proposi-

tion shows that under certain hypotheses some of the components of the approximate
eigenvectors do tend to zero as convergence takes place. Its proof is technical and it
is postponed to the appendix.

Proposition 6.1. Let (θ(2k),q(2k)) be an eigenpair of B̃2k, and q̃ be as defined

in (6.1). Let s∗2m = q̃∗B̃2m − θ(2k)q̃∗, δ2m,2k = σmin(B̃2m − θ(2k)I) > 0, and r2k =

tk+1,k

[
0

vk+1

]
e∗kq

(2k). If

‖r2k‖ <
δ22m,2k

4 ‖s2m‖ , (6.2)

then there exists a unit norm eigenvector q = [x1;x2;y1;y2] of B̃2m with x1,y1 ∈ C
k,

x2,y2 ∈ C
m−k, such that

∥∥∥∥
[
x2

y2

]∥∥∥∥ ≤ τ√
1 + τ2

,

with τ ∈ R, 0 ≤ τ < 2 ‖r2k‖
δ2m,2k

. Moreover, if θ is the eigenvalue associated with q, we

have

|θ − θ(2k)| ≤ ‖s2m‖τ. (6.3)
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This proposition states that if after k ≤ m iterations of Lanczos bidiagonaliza-
tion the computed residual ‖r2k‖ is sufficiently small, then there exists an eigenvector

of B̃2m such that some of its components are bounded correspondingly. These are
precisely the components that allow us to relax the accuracy in the inner iteration.
Note that δ2m,2k gives an indication of the distance between the spectrum of B̃2m and
θ(2k). It should be kept in mind that for non-normal matrices, the value of δ2m,2k

may be much smaller [33, Example 2.4, p. 234]. On the other hand, since B̃2m is a
perturbation to a Hermitian matrix, the quantity s2m is an approximate residual for
(θ(2k),q(2k)) as an eigenpair of B̃2m, and thus it will be small as m grows. As a conse-
quence, condition (6.2) in the theorem is likely to be satisfied, and the eigenvalue error
(6.3) may be much smaller than τ . For this reason, in our pratical implementation
we assumed that condition (6.2) is satisfied after the first two iterations.

6.2. Variable accuracy in the inner approximation. In this section we
show that relaxation in the inner accuracy at step k ≤ m is possible if there exists an
eigenpair (θ2(k−1),q2(k−1)) of B̃2(k−1) such that

‖r2(k−1)‖ <
δ22m,2(k−1)

4‖s2m‖ , (6.4)

∀θj ∈ Λ(B̃2m), θj 6= θ, |θj − θ2(k−1)| > 2
‖s2m‖‖r2(k−1)‖

δ2m,2(k−1)
. (6.5)

The first condition (6.4) ensures that there exists an eigenvector q of B̃2m whose
specified components are small, according to Proposition 6.1. Let θ be the eigenvalue
associated with this q. The second condition, (6.5), guarantees that the eigenvalue

θ2(k−1) of B̃2(k−1) is a perturbation of the eigenvalue θ of B̃2m, which is the final
approximation to the original problem. In particular, the two conditions ensure that
θ2(k−1) is closer to θ than to all other eigenvalues θj of B̃2m. It is also interesting
to observe that if (6.4) holds, then (6.5) can be replaced by the stricter but possibly
more insightful condition |θj − θ2(k−1)| > δ2m,2(k−1)/2.

The following theorem states how the use of a variable accuracy will still guar-
antee a small residual gap, and hence yields a true residual with an accuracy which
is bounded by the accuracy of the gap, in agreement with (4.2).

Theorem 6.2. Assume m inexact Lanczos bidiagonalization iterations are car-
ried out. Let (θ,q) be an eigenpair of B̃2m, where θ is simple and ‖q‖ = 1. Given
0 < εout ∈ R, with the notation of (4.4) assume that for k = 1, . . . ,m

‖g(1)
k ‖, ‖g(2)

k ‖ ≤





δ2m,2(k−1)

2m‖r2(k−1)‖εout
if k > 1, and there exists (q2(k−1), θ2(k−1))

of B̃2(k−1) satisfying (6.4) and (6.5),

1
mεout otherwise.

(6.6)
Then ‖(FW2mq− θW2mq)− r2m‖ ≤ εout.

Proof. Although the strategy used for the proof is similar to that of Theorem 3.1
in [31], the block structure of our problem requires specialized technical details. Sup-
pose that at the (k − 1)th iteration there exists an eigenpair (θ2(k−1),q2(k−1)) of

B̃2(k−1) satisfying the conditions (6.4) and (6.5). This implies that θ2(k−1) is a per-

turbation of the considered eigenvalue θ of B̃2m, since θ is the only eigenvalue of B̃2m
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such that

|θ − θ2(k−1)| ≤ 2
‖s2m‖‖r2(k−1)‖

δ2m,2(k−1)
.

Let K ⊂ {1, . . . ,m} be defined such that for each k ∈ K there exists a eigenpair

(q2(k−1), θ2(k−1)) of B̃2(k−1) satisfying the conditions (6.4) and (6.5). Then, similar
to the reasoning in the proof of Lemma 4.1 and using (4.4),

‖(FW2mq − θW2mq)− r2m‖ = ‖G2mq‖ ≤
m∑

k=1

(‖g(1)
k ‖2 |e∗ky|2 + ‖g(2)

k ‖2 |e∗kx|2)
1
2

≤
∑

k∈K
(‖g(1)

k ‖2 |e∗ky|2 + ‖g(2)
k ‖2|e∗kx|2)

1
2 +

∑

k/∈K,
k≤m

(‖g(1)
k ‖2 |e∗ky|2 + ‖g(2)

k ‖2|e∗kx|2)
1
2

≤
∑

k∈K

δ2m,2(k−1)εout

2m‖r2(k−1)‖
(|e∗ky|2 + |e∗kx|2)

1
2 +

∑

k/∈K,
k≤m

εout
m

(|e∗ky|2 + |e∗kx|2)
1
2

≤
∑

k∈K

δ2m,2(k−1)εout

2m‖r2(k−1)‖
2
‖r2(k−1)‖
δ2m,2(k−1)

+
∑

k/∈K,
k≤m

εout
m

=
|K|
m

εout +
m− |K|

m
εout = εout

Algorithm 1: Inexact Lanczos bidiagonalization

Input: A ∈ Cn×n non-Hermitian, a function f , a maximum number of (outer) iterations m, an

(outer) tolerance εout.

Output: An approximation to the leading singular triplet

1: Choose v1 with ‖v1‖ = 1, and set V = [v1], U = ∅, M = ∅, T = ∅.
2: for j = 1, . . . ,m
3: z ≈ f(A)vj

4: uj ,mj ←− rgs(z, U)
5: Expand basis: U = [U,uj ]
6: Expand matrix: M = [M,mj ] (the old M is first padded with a zero row)
7: z ≈ f(A)∗uj

8: vj+1, tj ←− rgs(z, V )
9: Expand basis: V = [V,vj+1]

10: Expand matrix: T = [T, tj ]
11: K = [zeros(j,j), M ; T , zeros(j,j)]
12: [Q,D]←− eig(K)
13: (θ,q)←− with θ = maxi |Dii| (extract x,y from q = [x;y] with ‖x‖ = 1, ‖y‖ = 1)
14: Convergence check: if |T (j + 1, j)q(j)|/θ < εout then return (θ,x,y) and stop
15: If required: compute variable tolerance to be used in the next iteration
16: end

7. Practical implementation. Algorithm 1 implements the inexact Lanczos
bidiagonalization to approximate ‖f(A)‖2 and the associated singular vectors. The
function rgs(z, Z) double orthogonalizes the vector z with respect to the orthogonal
columns of Z, and returns the orthogonalization coefficients. The same algorithm can
be used to approximate more singular triplets.

At every iteration of the Lanczos bidiagonalization, two inner iterations (line 4
and line 7) approximate the corresponding matrix-vector multiplication f(A)v and
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f(A)∗u, respectively. The inner iteration uses one of the algorithms for approximating
the action of a matrix function to a vector, as discussed in section 5. In theory, any
such algorithm could be used; in our experiments we employed both the standard and
extended Krylov subspace methods.

If the variant with variable inner tolerance is employed, the next inner tolerance
is computed at the end of every Lanczos bidiagonalization iteration. To be conserva-
tive, during the first two iterations the inner tolerance is 1

mεout, so that ‖gk‖ ≤ 1
mεout.

Then, in subsequent iterations we assume that (6.4) and (6.5) are always satisfied,
and thus we require that the inner stopping criterion is such that

max{‖g(1)
k ‖, ‖g(2)

k ‖} ≤ δ2m,2(k−1)

2m‖r2(k−1)‖
εout.

Note that a relative criterion is always used, that is, in practice the quantity to be
checked is divided by the current approximation θ2(k−1). This corresponds to using

ε
(k)
out = θ2(k−1)εout for some fixed value εout. Since δ2m,2(k−1) is not available at
iteration k, we consider the following approximation:

δ2(k−1) := min
θj∈Λ(B̃2(k−1))\{θ2(k−1)}

|θ2(k−1) − θj |.

In fact, δ2m,2(k−1) can be much smaller than the computed δ2(k−1). However, it will

not be overrated much when θ2(k−1) is converging to the corresponding eigenvalue
θ of B̃2m, since it is related to the sensitivity of B̃2m and not of the matrix F . If
the δ2(k−1) is very small, it constrains the inner accuracy to be very small too. This
occurs when the largest eigenvalues of B̃2m are clustered. We refer to section 8.4 for
a numerical illustration. We also remark that the computation of δ2(k−1) does not
significantly increase the computational costs, as all the eigenvalues of B̃2(k−1) are
already required to obtain the current approximation.

8. Numerical experiments. In this section we report on our numerical ex-
periments to evaluate the performance of the inexact Lanczos bidiagonalization for
different combinations of matrices and functions. All experiments were performed
with Matlab Version 7.13.0.564 (R2011b) on a Dell Latitude laptop running Ubuntu
14.04 with 4 CPUs at 2.10GHz. We are mainly interested in the first singular triplet
of f(A), so as to obtain ‖f(A)‖. We considered five different matrices, summarized
in Table 8.1, all of dimension n = 10, 000 except A4. The spectrum of a sample of
these matrices of smaller size, n = 1000, is reported in Figure 8.1. For A4, the matrix
originating from a cavity driven problem was shifted by 10I so that all functions could
be treated with all methods; we refer to the Matrix Market site for more information
on this problem [27]. For A5 a 5-point stencil finite difference approximation was
used, together with homogeneous Dirichlet boundary conditions. We considered the
following functions,

exp(x), exp(−x),
√
x,

1√
x
,

exp(−√
x)− 1

x
.

We note that all these functions allow for an efficient computation when applied to
small scale matrices, by means of specifically designed Matlab functions; see [19].
The performance also critically depends on the choice of the inner method for ap-
proximating f(A)v and f(A)∗u at each iteration. We shall report our experience
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Matrix Structure Description

A1 tridiag(0, λi, 0.3) λi = (1 + ρ
(1)
i ) + i(ρ

(2)
i − 0.5)

A2 tridiag(1.5, 2,−1)
A3 Toeplitz i-th row: [4, 0, 0, 0, 0,−2, 0, 10, 0, 0, 0, 6]
A4 shifted e20r1000 Driven cavity problem (Matrix Market) shifted as:

A := Ae20r1000 + 10I
A5 Sparse Centered Finite Difference discretization of

L(u) = −∇2u− 100ux − 100uy

Table 8.1: Description of the selected matrices, all of size n = 10, 000, except A4, of

size 4241. ρ
(j)
i is a random entry taken from a uniform distribution in (0, 1).
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Fig. 8.1: Spectrum of matrices A1, A2, A3, A5 (from left to right) in Table 8.1, for a
smaller size, n = 1000.

with the standard and extended Krylov methods. The Rational Krylov method could
also be employed for this approximation.

A random vector is used to start the inexact Lanczos process. Convergence is
monitored by checking the computed residual norm with respect to the first singu-
lar triplet, and the inexact Lanczos bidiagonalization terminates as soon as (4.3) is
satisfied; different values for εout will be considered. In case more than one triplet
is desired, then all corresponding residuals should be monitored. In section 8.1 we
explore the fixed inner tolerance method, and the dependence of its performance on
all the other parameters, including the outer accuracy. Indeed, if only a rough ap-
proximation of ‖f(A)‖ is required, the computational efforts should be proportionally
low. In section 8.4 the influence of the variable (relaxed) inner tolerance described
in section 6.2 is analyzed, thus a more stringent final accuracy is considered so as to
exercise the variable inner threshold.

8.1. Assessing the effectiveness of the inexact bidiagonalization. We
analyze the performance of the inexact method when approximating ‖f(Ai)‖ together
with the associated singular vectors. To this end, we need to monitor the number of
iterations of both the outer and the two inner iterations, together with the execution
time required to reach the required tolerance. In particular, we show both the total
and average number of inner iterations. We also display the distance between the
final first approximate singular value, σ̃1 and the second approximate singular value,
σ̃2: a small relative distance implies that the method will take more iterations to
converge. Moreover, this distance cannot be easily predicted from the matrix A,
although it significantly influences the computation. For instance, the largest (in
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matr function σ̃1
σ̃1−σ̃2

σ̃1
tot # tot # average exec

f outer inner # inner time
A1 exp(−x) 0.463506 3.34e-02 14 308 11.0 0.39√

x 1.50143 1.29e-02 15 351 11.7 0.44
exp(−

√
x)−1

x
0.727351 2.11e-02 14 414 14.8 0.70

exp(x) 9.19137 1.76e-02 16 352 11.0 0.59
1/
√
x 1.10350 2.33e-02 13 364 14.0 0.73

A2 exp(−x) 0.222621 1.78e-02 11 308 14.0 0.24√
x 1.7921 2.05e-02 8 252 15.8 0.28

exp(−
√
x)−1

x
0.469829 1.81e-02 10 429 21.4 0.68

exp(x) 12.1783 9.01e-02 5 139 13.9 0.14
1/
√
x 0.814356 2.26e-02 8 324 20.2 0.44

A3 exp(−x) 0.508086 1.48e-02 13 709 27.3 0.61√
x 4.56086 1.85e-02 12 1036 43.2 3.11

exp(−
√
x)−1

x
0.615673 1.84e-02 12 1953 81.4 18.29

exp(x) 6.75709·108 1.45e-02 13 694 26.7 0.83
1/
√
x 0.959018 1.70e-02 12 1852 77.2 14.56

A4 exp(−x) 0.000172183 2.42e-01 6 456 38.0 0.58√
x 6.09177 2.78e-02 14 454 16.2 0.81

exp(−
√
x)−1

x
0.118301 3.07e-02 10 486 24.3 1.15

exp(x) 3.15141·1010 1.35e-01 5 397 39.7 0.49
1/
√
x 0.354039 5.55e-02 9 394 21.9 0.81

A5 exp(−x) 0.99709 3.39e-02 7 223 15.9 0.34√
x 2.81987 1.16e-02 16 5145 160.8 193.35

exp(−
√
x)−1

x
6.93384 2.44e-01 4 1570 196.2 111.67

exp(x) 2959.17 1.84e-02 14 450 16.1 0.65
1/
√
x 7.36692 2.31e-01 4 1564 195.5 112.22

Table 8.2: Inexact Lanczos bidiagonalization for approximating the leading singular
triplet of f(A); outer tolerance ε = 10−2 .

modulo) eigenvalues of F associated with the matrix function A
1
2
2 are:

-1.7965100, 1.7965100, 1.7964169, -1.7964169, 1.7962429, -1.7962424 .

Although this fact does not constitute a difficulty if just the order of magnitude of

‖A
1
2
2 ‖ is sought, it indicates that requiring a more accurate approximation will lead

to significantly more expensive computations. This problem can be readily observed
by comparing the outer number of iterations in Table 8.2 and Table 8.3, where we
report the results of our experiments for εout = 10−2 and εout = 10−4, respectively.
In both cases, the inner tolerance was set to εin = εout/(mmax), where mmax = 1000,
so that εin = 10−7 for the more stringent outer tolerance. For all examples, the first
six significant digits of σ̃1 are reported.

Comparing the two tables also shows that the singular values are as accurate
as the outer tolerance can predict: for smaller εout already the third singular value
digit changes, that is it still has to reach its final (exact) value. This is obviously
also related to the relative distance from the second singular value, which is better
captured for a smaller εout.

We also observe that the choice of f strongly influences the overall performance:
the bidiagonalization process may take the same number of (outer) iterations for two
different selections of f , and yet the total computational cost may be significantly dif-
ferent (see A1 and A3 in Table 8.2). As a consequence, the number of outer iterations
is not a realistic measure of the algorithm complexity.
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matr function σ̃1
σ̃1−σ̃2

σ̃1
tot # tot # average exec

f outer inner # inner time
A1 exp(−x) 0.463735 2.04e-02 24 624 13.0 0.87√

x 1.50496 8.76e-04 53 1775 16.7 3.27
exp(−

√
x)−1

x
0.728200 7.62e-03 29 1160 20.0 2.47

exp(x) 9.19576 9.22e-03 32 832 13.0 1.21
1√
x

1.10504 5.52e-03 29 1156 19.9 2.21

A2 exp(−x) 0.223129 4.88e-05 209 7104 17.0 26.72√
x 1.79651 5.18e-05 162 8069 24.9 18.92

exp(−
√
x)−1

x
0.470776 3.85e-05 193 12320 31.9 42.03

exp(x) 12.1825 8.39e-04 47 1596 17.0 1.41
1√
x

0.816492 5.90e-05 150 9210 30.7 29.43

A3 exp(−x) 0.509010 4.43e-05 224 14544 32.5 31.55√
x 4.57175 3.35e-05 250 41844 83.7 533.17

exp(−
√
x)−1

x
0.616989 1.20e-04 155 39968 128.9 1078.46

exp(x) 6.77296·108 1.17e-04 183 11660 31.9 19.91
1√
x

0.960790 2.12e-05 312 77958 124.9 1827.25

A4 exp(−x) 0.000172195 2.32e-01 9 783 43.5 1.26√
x 6.09289 2.38e-02 22 1103 25.1 2.25

exp(−
√
x)−1

x
0.118347 2.44e-02 16 1109 34.7 3.16

exp(x) 3.15148·1010 1.34e-01 7 626 44.7 0.87
1√
x

0.354473 1.18e-02 19 1227 32.3 3.91

A5 exp(−x) 0.998062 7.74e-03 24 911 19.0 1.37√
x 2.82811 1.67-04 185 70926 191.7 4059.40

exp(−
√
x)−1

x
6.93435 2.32-01 7 2814 201.0 186.39

exp(x) 2975.18 2.91e-03 55 2091 19.0 3.20
1√
x

7.36768 2.17-01 7 2814 201.0 197.62

Table 8.3: Inexact Lanczos bidiagonalization for approximating the leading singular
triplet of f(A); outer tolerance ε = 10−4 .

On a negative side, we observe that in both tables the method performs poorly
on A5 for f(x) =

√
x. For this particular matrix, the inner method takes very many

iterations during the whole Lanczos process, with a number of inner iterations that
is close to the average throughout. We anticipate that this is not the case for the
power method, where as the outer iterations proceed, drastically fewer iterations are
required in the inner approximation. This phenomenon seems to be peculiar to this
combination of function and matrix, since in all other cases the performance of the
Lanczos and power methods is more similar, and it will be further investigated in a
future study.

Finally, for the exponential functions exp(x), exp(−x) we computed the upper
bound in (2.1) by using the Matlab function eigs applied to 1

2 (A+A∗). In all cases
except matrix A4 the estimate is pretty sharp. On the other hand, for exp(A4) the
upper bound was 2 · 1013, which is three orders of magnitude larger than the actual
norm; for2 exp(−A4) the upper bound was 0.004737, which is more than one order of
magnitude larger than the actual value, 0.000172. This example illustrates that, as
discussed in section 2, the accuracy of this type of estimate cannot be easily monitored,
especially in the case of non-normal matrices.

2This bound is obtained for exp(Â) with Â = −A4.
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matr function tot # tot # σ̃1 residual exec
outer inner norm time

A1 exp(−x) 51 1071 0.46327 9.8648e-03 1.5√
x 93 2010 1.5028 9.8607e-03 2.8

exp(−
√
x)−1

x
61 1782 0.71879 9.8904e-03 3.5

exp(x) 65 1409 9.1666 9.9964e-03 2.0
1/
√
x 69 1942 1.0938 9.8670e-03 3.3

A2 exp(−x) 36 899 0.22238 9.8636e-03 0.8√
x 37 979 1.7903 9.7995e-03 1.1

exp(−
√
x)−1

x
36 1216 0.46921 9.7553e-03 2.1

exp(x) 9 232 12.176 9.4623e-03 0.2
1/
√
x 36 1215 0.81375 9.8715e-03 1.8

A3 exp(−x) 38 1605 0.50724 9.9024e-03 1.5√
x 41 1000 4.5564 9.8934e-03 1.3

exp(−
√
x)−1

x
34 4448 0.61486 9.9901e-03 39.1

exp(x) 38 1699 6.7455·108 9.7718e-03 1.7
1/
√
x 36 4684 0.95774 9.7264e-03 36.3

A4 exp(−x) 11 825 0.00017219 5.8988e-03 1.0√
x 56 1710 6.0870 9.9037e-03 3.0

exp(−
√
x)−1

x
28 1309 0.11823 9.5839e-03 3.3

exp(x) 10 775 3.1510·1010 8.8031e-03 1.1
1/
√
x 33 1361 0.35405 9.9455e-03 2.8

A5 exp(−x) 15 376 0.99643 9.9168e-03 0.52√
x 52 1479 2.81329 9.9649e-03 18.47

exp(−
√
x)−1

x
7 2745 6.93355 9.6566e-03 189.19

exp(x) 55 1363 2956.34 9.8499e-03 1.79
1/
√
x 8 3137 7.36721 6.9885e-03 202.71

Table 8.4: Power method for approximating the leading singular triplet of f(A); outer
tolerance ε = 10−2

8.2. Comparisons with the power method. We wish to compare the per-
formance of the new method with that of the power method, as described in section
2. Since in most cases, the leading singular values are not well isolated, we expect
that the power method will be slow if an accurate approximation is required. There-
fore, we only report results for ε = 10−2. Moreover, our experience is that since the
computation is inexact, the product f(A)∗(f(A)v) may give complex values, since
the computed actions of f(A) and f(A)∗ are not the conjugate of each other. As a
result, the approximate eigenvalue may be complex, though with a small imaginary
part, and the quantity that is actually computed is given by

λ(k) =

∣∣∣∣
(v(k))∗f(A)∗f(A)v(k)

(v(k))∗v(k)

∣∣∣∣ ,

where v(k) is the power method direction after k iterations. Consequently, at conver-
gence we obtain σ̃1 ≈

√
λ(k). The stopping criterion is based on the relative eigenvalue

residual norm, that is

‖y(k) − λ(k)v(k)‖/λ(k) ≤ εout,

where y(k) is the result of the approximation of f(A)∗(f(A)v(k)). Note that we kept
the same tolerance as for the Lanczos bidiagonalization, although a more stringent
tolerance may be required in practice. Table 8.4 collects the results for all test cases.
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As expected, the power method is more expensive than the Lanczos procedure,
on average four to five times more expensive, in all those cases when the first singular
value is not well separated from the second one. Only for the cases of good separation,
for instance with A5 and the functions (exp(

√
x) − 1)/x and 1/

√
x, convergence is

reached in very few iterations, and the power method is competitive.
We also implemented the power method as described in [19, Algorithm 3.19],

using the relative singular value residual as stopping criterion. The performance, both
in terms of inner and outer number of iterations, is comparable to that of Table 8.4.
Finally, we stress that in both implementations the stopping criterion involves inexact
matrix-vector products, therefore the monitored quantity is not the true residual of
the corresponding problem.

8.3. Numerical tests with the extended Krylov subspace. If high accu-
racy is required for the final approximation, so that a more stringent outer tolerance is
used, then the inner iteration also requires more computational effort, as its stopping
tolerance is also decreased. In this case, it may be appropriate to use more effective
methods. One such possibility is the extended Krylov subspace method [8],[25], which
may be convenient in case the considered function requires good approximation of the
eigenvalues of A closest to the origin. In Table 8.5 we report the runs for εout = 10−4

when EKSM is used; these numbers should be compared with those in Table 8.3. We
notice that EKSM requires the solution of a system with A (or A∗) at each iteration;
to limit computational costs, a sparse LU factorization of A was performed and stored
once for all at the beginning of the Lanczos bidiagonalization, and used repeatedly in
the inner iteration. This represents a tremendous saving with respect to more general
rational approximations, where solves with (A − τjI) have to be performed at each
inner iteration, with τj varying with the inner step.

In Table 8.5 all cases where EKSM provides faster convergence, that is lower
execution time, are marked in boldface. It is clear that EKSM is beneficial when good
approximations to both ends of the spectrum are required, as is the case for xα. The
lack of improvement in the case of the exponential is not unexpected, as it is known,
at least in the Hermitian case, that only one extreme of the spectrum needs to be
captured for a fast approximation of exp(A)v.

We also remark that EKSM could also be employed as inner method in the case
of the power iteration used in section 8.2.

8.4. Numerical tests with variable accuracy. In the previous sections, for
εout = 10−4 the inner tolerance was set to the fixed value εin = 10−7. Here we explore
the performance of the inexact computation when the inner tolerance is relaxed.

A relaxed inner accuracy is most convenient when each inner iteration is expen-
sive, so as to profit from a lower number of inner iterations. Therefore, we report on
our experience with the extended Krylov subspace as inner method, as the method re-
quires one system solve with the coefficient matrix at each iteration. A more stringent
outer tolerance was used, that is εout = 10−7, than in previous experiments, so as to
clearly see the relaxation in the inner tolerance; we also used mmax = 50 as maximum
number of iterations, so as to balance the much smaller εout for determining the initial
inner tolerance.

Figure 8.2 shows the performance of the relaxation strategy for A5 and f(x) =
1/
√
x. The plot shows the outer convergence history as the bidiagonalization proceeds,

and the corresponding variable inner tolerance. The digits next to each iteration
report the actual numbers of inner iterations by means of EKSM to reach the required
inner accuracy for approximating f(A)vj ; similar numbers were observed for f(A)∗uj .



Approximating leading singular triplets of a matrix function 19

matr function σ̃1
σ̃1−σ̃2

σ̃1
tot # tot # average exec

outer inner # inner time
A1 exp(−x) 0.463735 2.04e-02 24 480 10.0 3.49√

x 1.50496 8.76e-04 53 954 9.0 8.24
exp(−

√
x)−1

x
0.728200 7.62e-03 29 522 9.0 4.29

exp(x) 9.19576 9.22e-03 32 704 11.0 5.82
1√
x

1.10504 5.52e-03 29 522 9.0 4.59

A2 exp(−x) 0.223129 4.88e-05 209 5434 13.0 36.71√
x 1.79651 5.18e-05 162 3564 11.0 20.03

exp(−
√
x)−1

x
0.470776 3.85e-05 193 4246 11.0 29.99

exp(x) 12.1825 8.39e-04 47 1408 15.0 5.07
1√
x

0.816492 5.90e-05 150 3300 11.0 18.70

A3 exp(−x) 0.509010 4.43e-05 224 11827 26.4 106.31√
x 4.57175 3.35e-05 250 9402 18.8 84.26

exp(−
√
x)−1

x
0.616989 1.20e-04 155 5578 18.0 40.02

exp(x) 6.77296·108 1.17e-04 183 11169 33 112.76
1√
x

0.960790 2.12e-05 312 11449 18.3 125.20

A4 exp(−x) 0.000172195 2.32e-01 9 376 20.9 4.20√
x 6.09289 2.38e-02 22 483 11.0 5.99

exp(−
√
x)−1

x
0.118347 2.44e-02 16 318 9.9 4.32

exp(x) 3.15148·1010 1.34e-01 7 527 37.6 4.66
1√
x

0.354473 1.18e-02 19 416 10.9 4.88

A5 exp(−x) 0.998062 7.74e-03 24 887 18.5 11.95√
x 2.82811 1.67e-04 185 8165 22.1 121.99

exp(−
√
x)−1

x
6.93435 2.32e-01 7 294 21.0 5.01

exp(x) 2975.18 2.91e-03 55 2090 19.0 25.19
1√
x

7.36768 2.17e-01 7 294 21.0 4.32

Table 8.5: Inexact Lanczos bidiagonalization, outer tolerance ε = 10−4, inner approx-
imation: extended Krylov subspace method.

Table 8.6 reports the values of δ2m,2(k−1) and δ2(k−1) during the iterations dis-
played in Figure 8.2; see the discussion on these parameters at the end of section 7.
For this specific example, the values of δ2(k−1) are a good estimate for the actual
δ2m,2(k−1) even at an early stage of the iteration (we recall here that no relaxed
strategy is used in the first two iterations).

We also experimented with the approximation of more than one triplet. We
report on our findings for A1 and again f(x) = 1/

√
x (similar accuracies were obtained

for other functions for the same matrix); to explore the variable inner accuracy we
used εout = 10−9 and mmax = 100. Table 8.7 shows the largest ten singular values
obtained with a fixed inner tolerance of 10−11 (σ̃j , second column), and with a relaxed

inner tolerance (σ̃
(fl)
j , third column), which a-posteriori we observed to go from 10−11

up to 10−5. The last column reports the relative error |σ̃j − σ̃
(fl)
j |/σ̃j . In both cases,

the inexact Lanczos iteration was stopped as soon as the outer stopping criterion
was satisfied for the largest singular value. While in the fixed inner tolerance case
the number of iterations varied between 28 and 30, in the flexible case a number
of iterations as low as 15 was needed to satisfy the inner criterion at the last stage
of the convergence process. After exiting the flexible procedure, however, the first
ten approximate singular values are very close to those obtained with the fixed inner
tolerance, much closer than warranted by the final inner accuracy of 10−5. This
shows in particular that the flexible inner tolerance is conservative, and more accurate
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Fig. 8.2: Relaxed inner iteration for variable stopping tolerance, to approximate

‖A−1/2
5 ‖, with εout = 10−7.

k − 1 δ2(k−1) δ2m,2(k−1)

1 - 2.3147e-01
2 - 7.7043e-01
3 2.1738e+00 9.5073e-01
4 1.7049e+00 9.6671e-01
5 1.6151e+00 9.6744e-01
6 1.6030e+00 9.6746e-01
7 1.6017e+00 9.6746e-01
8 1.3696e+00 9.6746e-01
9 9.7931e-01 9.6746e-01
10 9.6834e-01 9.6746e-01
11 9.6757e-01 9.6746e-01

Table 8.6: Values of δ2(k−1) and δ2m,2(k−1) as the relaxed iteration proceeds, with
data as in Figure 8.2.

approximations are usually expected. We refer the reader to [31] for a more detailed
analysis of the approximation of more than one eigenpair (and thus more than one
triplet in our context).

9. Final considerations. We have explored the use of an inexact Lanczos bidi-
agonalization method for approximating the leading singular triplet of a large ma-
trix function, and in particular its 2-norm. Although several strategies are known
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j σ̃j σ̃
(fl)
j |σ̃j − σ̃

(fl)
j |/σ̃j

1 1.117020718026223 1.117020718026212 9.939144428645173e-15
2 1.107884805324699 1.107884805324724 2.264769787972212e-14
3 1.098394607515649 1.098394607513931 1.564063676705998e-12
4 1.095557563655289 1.095557550135225 1.234080654983002e-08
5 1.087939266226247 1.087939266157844 6.287397018996839e-11
6 1.081739455193175 1.081739454786304 3.761265981356762e-10
7 1.077326677541678 1.077326677826174 2.640758724893079e-10
8 1.070641401649297 1.070641400153385 1.397211109700097e-09
9 1.064637797334345 1.064637795718615 1.517633507177347e-09
10 1.055679471834666 1.055679470916211 8.700132135409333e-10

Table 8.7: First ten approximate singular values of A
−1/2
1 with fixed tolerance (εout =

10−9), and relaxed inner tolerance.

to provide rough estimates of a matrix function 2-norm, more accurate approxima-
tions require a careful implementation of available approaches, since neither f(A) nor
products of the type f(A)v are available exactly. In particular, we showed that the
Lanczos bidiagonalization yields a non-Hermitian perturbation of the original Her-
mitian matrix, and the recurrence needs to be revisited. Our numerical experiments
showed that the computational complexity may vary significantly depending on the
requested final accuracy, since the two inner iterations for the approximation of f(A)v
and f(A)∗u may be very time and memory consuming. We showed that the relaxed
strategy alleviates this problem whenever accurate approximations are required. How-
ever, for particular selections of matrices and functions, the approximation of f(A)v
can still be very expensive, and some other strategies could be exploited, such as
restarting; see, e.g., [10],[11],[17] and references therein. Finally, our approach could
be used to estimate the norm of other matrix objects, such as the geometric mean
[3], or the derivatives of matrix functions, such as the Fréchet derivative of the matrix
exponential or of other functions [18].
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Appendix A. Proof of Proposition 6.1. Define the submatrix of B̃2m of
size 2k as

B̃2k =

[
0 Mk

Tk 0

]
, i.e. B̃2m =




0 0 Mk M⋆

0 0 0 ⋆
Tk T⋆ 0 0

tk+1,ke1e
∗
k ⋆ 0 0


 .
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Define the vector q̃ = 1√
2
[x; 0;y; 0], where the 0-vectors have length m − k. Let

X = [q̃, Y ] be such that X is unitary, where Y = [Y1;Y2;Y3;Y4]. This implies that
1√
2
(Y ∗

1 x+ Y ∗
3 y) = 0, Y4Y

∗
4 = I = Y2Y

∗
2 and Y2Y

∗
4 = Y4Y

∗
2 = 0. Now, write

X ∗B̃2mX =

[
q̃∗B̃2mq̃ q̃∗B̃2mY

Y ∗B̃2mq̃ Y ∗B̃2mY

]
=

[
θ(2k) g∗

1

g2 B̃2m

]
.

Here

‖g2‖ = ‖Y ∗B̃2mq̃‖ = ‖ 1√
2
Y ∗




Mky

0
Tkx

tk+1,ke1e
∗
kx


 ‖ = ‖ 1√

2
Y ∗
4 tk+1,ke1e

∗
kx‖ = ‖r2k‖.

Further, since s∗2mY = q̃∗B̃2mY − θ(2k)q̃∗Y = q̃∗B̃2mY , we have

‖g1‖ = ‖q̃∗B̃2mY ‖ = ‖s∗2mY ‖ ≤ ‖s2m‖.

Now, by [33, Theorem 2.1, p.230],

if
‖r2k‖ ‖s2m‖

δ22m,2k

<
1

4
, i.e., ‖r2k‖ <

δ22m,2k

4‖s2m‖ ,

then there exists a vector p ∈ C2m−1 satisfying τ = ‖p‖ < 2 ‖r2k‖
δ2m,2k

, such that the unit
norm vector

q =




x1

x2

y1

y2


 =

1√
1 + ‖p‖2




1√
2




x

0
y

0


+




Y1

Y2

Y3

Y4


p




is an eigenvector of B̃2m. Moreover,

∥∥∥∥
[
x2

y2

]∥∥∥∥ =

∥∥∥∥
1√

1 + τ2

[
Y2

Y4

]
p

∥∥∥∥ ≤ τ√
1 + τ2

.

Further, this same theorem states that |θ − θ(2k)| = ‖g∗
1p‖ ≤ ‖g1‖‖p‖ ≤ ‖s2m‖τ .


