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ABSTRACT

We discuss recent advances in the modelling of optical frequency comb generation in quadratic and cubic mi-
croresonators. Different time domain models are presented and compared, and their solutions are analysed by
numerical methods.

Keywords: Optical Frequency Combs, Microresonators, Nonlinear Optics, Second Harmonic Generation, Op-
tical Parametric Oscillation

1. INTRODUCTION

One of the most promising applications of nonlinear integrated optics is that of nonlinear microresonator based
optical frequency comb light sources. Optical comb sources are characterized by a spectrum comprising many
equally spaced frequency components, and have a wide range of technological applications. Although commercial
comb generators are based on mode-locked lasers and fiber supercontinuum generation, nonlinear integrated
optics provides a low-cost and chip-scale alternative, which is based on using a relatively low-power CW pump
laser coupled into a high-Q microresonator.1 So far, microresonator frequency combs have mostly exploited
materials with third-order Kerr nonlinearity, which permits to generate successive comb lines with a spacing
equal to the resonator free-spectral range or its multiples, by the mechanism of cascade four-wave mixing.2–4

Modelling of the temporal dynamics of microresonator frequency combs can be greatly simplified by means of
a single partial differential equation approach, in analogy with the case of other coherently driven Kerr spatially
diffractive or temporally dispersive nonlinear cavities. In order to lower the threshold pump power, and to
extend the spectral range of frequency comb generation, for example into the visible or mid-infrared, while
still using near-infrared CW laser pumps, the use of quadratic nonlinear cavities has been recently proposed.5,6

Remarkably, efficient quadratic microresonator frequency comb sources are found to operate close to the phase-
matching condition for the underlying quadratic processes.

A single time-domain partial differential equation with an effective delayed third-order nonlinearity was re-
cently derived for describing, with good accuracy, the dynamics of quadratic frequency comb generation by means
of intra-cavity second-harmonic generation. Analogous equations are obtained under different phase-matching
conditions corresponding to, e.g., optical parametric oscillation. In more general situations where multiple phase-
matched wave mixing processes are present, and the frequency combs generated around the interacting waves
over multiple octaves overlap, numerical modeling may usefully exploit a single envelope equation approach.
This formalism permits to naturally include the simultaneous presence of both quadratic and cubic nonlineari-
ties in the modeling of the comb dynamics. In the case of semiconductor based microresonators, such as silicon
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microrings, the single envelope equation for the optical field should additionally be coupled with the equation
describing the dynamics of carrier population.

2. CUBIC FREQUENCY COMBS

The evolution of the slowly-varying electric field envelope A(t, τ) (in units of [
√
W ]) inside a cubic nonlinear

microresonator may be modeled by means of a map in the time domain. In a reference frame that travels with
the group velocity of the pump, nonlinear and dispersive propagation in the m-th roundtrip (in a ring of length
L) is described by the lossy nonlinear Schrödinger equation (NLSE)

∂Am
∂z

=

[
− αi + iD

(
i
∂

∂τ

)]
Am + iγ|Am|2Am. (1)

where z is the distance along the ring circumference, τ is a fast time variable that permits to describe the intra-
cavity field profile, αi is the distributed linear loss coefficient, and γ is the Kerr nonlinearity coefficient. Dispersion
is included in the model, to all orders, through the operator D(x) =

∑
l≥2(k(l)/l!)xl, where k(l) = dlk/dωl|ω0 are

dispersion coefficients obtained by a Taylor series expansion of the propagation constant. The map is completed
by requiring that the recirculating field should satisfy the cavity boundary condition

Am+1(0, τ) =
√

1− θAm(L, τ)e−iδ +
√
θAin, (2)

where θ is the power transmission coefficient of the coupler used to inject the CW driving field Ain, and δ =
2πl − φ0 is the phase detuning of the driving field with respect to the closest linear resonance (with order l).
Whenever the variation of the pulse envelope between successive round trips remains small (which is the case
for a high-finesse cavity such as that of an optical microresonator), one may average the so-called Ikeda map of
Eq. (1) and Eq. (2) over the roundtrip length L, to obtain the driven-damped NLSE:7,8

tR
∂A(t, τ)

∂t
=

[
− α− iδ + iLD

(
i
∂

∂τ

)]
A+ iγL|A|2A+

√
θ Ain. (3)

Here, tR is the cavity roundtrip time, and α = (αiL + θ)/2 describes the total cavity losses. The continuous
variable t is a slow time that measures the evolution of the field envelope over several roundtrips. The cavity
boundary conditions impose the field to be τ−periodic with period tR, i.e., A(t, τ) = A(t, τ + tR). When
neglecting higher-order dispersion terms (k(l) = 0 for l > 2), Eq. (3) is formally identical with the so-called
Lugiato-Lefever equation (LLE) that was introduced to describe pattern formation in spatially diffractive Kerr
cavities.9 Essentially the same equation also describes coherently-driven passive optical fiber cavities in the limit
of a dense mode spectrum.7,10

The advantage of using the cavity averaged Eq. (3) for describing optical frequency comb generation in a
microresonator is twofold. On the one hand, the use of Eq. (3) generally permits a faster numerical solution than
the Ikeda map of Eq. (1) and Eq. (2), because in some instances the integration step can be even larger than
the cavity length L. More importantly, Eq. (3) permits a much simplified analytical study of the modulation
instability (MI) of the CW cavity solutions,7,12 and it leads to approximate analytical solutions, such as the
cavity solitons, by means of standard perturbation methods of the NLSE.13

It should be noted, however, that in situations where the intracavity power reaches high values, the solution
of the more general map of Eq. (1) and Eq. (2) leads to interesting phenomena which cannot be described by the
LLE (3) approach.11,14 The left panel of Fig. 1 compares the dependence on pump intensity of the CW solution
of the intra-cavity field for the map (orange solid) and the averaged NLSE (blue dashed). As can be seen, the
map predicts that very high values of the intra-cavity intensity can be reached even for relatively moderate levels
of the pump intensity. A more striking difference is observed in the MI gain of the CW solutions, as illustrated
by the right panel of Fig. 1: here in addition to MI bands the gain profile also describes the onset of period-2
(P2) instabilities.11,14
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Figure 1. Left: Comparison of pump dependence on the intracavity power for multi-valued stationary continuous wave
solutions of the LLE (blue dashed) and the Ikeda map (orange solid). Parameters α = θ = 0.1 and γ = L = Pin = δ = 1.
Right: Parametric instability tongues of the Ikeda map for anomalous dispersion. The red contour shows the predicted
range of MI for the LLE. Below a cross section corresponding to the dashed line is shown with alternating CW-MI/P2-MI
gain bands. Parameters: γ = 25 W−1km−1, L = 2π × 40 µm, F = 106, β2 = −40 ps2km−1 and δ0 = 0.11

The existence of multistable CW solution branches for the map as seen in the left panel of Fig. 1 also leads to
the appearance of multistable cavity solitons. Figure 2 shows two examples of cavity solitons that are obtained
for exactly the same values of the pump driving and cavity parameters. Although the cavity soliton shown in
the left panel of Fig. 2 can be well approximated by the corresponding solution of the LLE (3), the cavity soliton
shown in the right panel of Fig. 2 has no counterpart in the cavity averaged model, and it is characterized by a
much higher peak power: hence it has been named a super cavity soliton.11

Figure 2. Left: LLE type cavity soliton. Simulation of Ikeda map Eqs.(11-12), with parameters α = θ = 0.01,
γ = 100 W−1m−1, L = 0.1 mm, Pin = 1 W, FSR = 100 GHz, β2 = −500 ps2/km and δ0 = 0.6; Right: Stationary super
cavity soliton, using the exact same parameters as in the left panel, except for different initial conditions.11

3. QUADRATIC FREQUENCY COMBS

Similar to the case of a cubic nonlinear microresonator described in Sec. 2, the generation of optical frequency
combs from a quadratic microresonator can also be modeled by means of a map in the time domain. This map
involves propagation equations for the fundamental field (FF) and the second harmonic (SH) field, coupled with
appropriate boundary conditions, which describe coherent pump injection, and link the fields between successive
roundtrips. Let us define with Am(z, τ) and Bm(z, τ) the slowly-varying envelopes of the electric field of the FF
(ω0) and the SH (2ω0) field, respectively. In a reference frame that travels with the group velocity of the FF,
nonlinear and dispersive propagation in the m-th roundtrip (in a ring of length L) is described by the following
equations,15–18
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∂Am
∂z

=

[
−αc1

2
+ iD1

(
i
∂

∂τ

)]
Am + iκBmA

∗
me
−i∆kz, (4)

∂Bm
∂z

=

[
−αc2

2
−∆k′

∂

∂τ
+ iD2

(
i
∂

∂τ

)]
Bm + iκA2

me
i∆kz. (5)

Dispersion is described now by the two different operators D1,2(x) =
∑
l≥2(k

(l)
1,2/l!)x

l, with k
(l)
1,2 = dlk/dωl|ω0,2ω0

.
In Eqs. (4-5) we have defined ∆k = 2k1 − k2 as the wave-vector mismatch for the SHG process, while ∆k′ =

k
(1)
2 − k(1)

1 is the group-velocity mismatch between the fundamental and second harmonic fields. The nonlinear

coefficient is given by κ =
√

8ω0χ
(2)
eff /
√
c3n2

1n2ε0, where χ
(2)
eff is the effective second-order susceptibility, c the

speed of light, n1,2 are the refractive indices evaluated at the FF and SH field frequencies, respectively, and ε0 is
the vacuum permittivity. Additionally, the absorption coefficients for each of the two fields are αc1,2, respectively.

3.1 Intracavity SHG

For the case of intra-cavity SHG, the map is completed by the two cavity boundary conditions,

Am+1(0, τ) =
√

1− θ1Am(L, τ)e−iδ1 +
√
θ1Ain, (6)

Bm+1(0, τ) =
√

1− θ2Bm(L, τ)e−iδ2 . (7)

where θ1,2 are power coupling coefficients, δ1,2 is the phase detuning for each of the two fields, and the resonator
is driven at the FF by the external cw field Ain.

The map Eqs. (4-7) can be used to model the evolution of the FF and SH field, but once again - as in Sec. 2,
considerable simplification results by using the mean-field theory. We suppose first the SH field to be slaved to
the FF, and that the FF evolves slowly during each roundtrip. By assuming the coupling coefficient θ1 � 1
and the detuning δ1 � 1, and by averaging Eqs. (4-5) over the resonator length L,7 one obtains the following
mean-field equation

tR
∂A(t, τ)

∂t
=

[
−α1 − iδ1 + iLD1

(
i
∂

∂τ

)]
A− ρA∗[A2(t, τ)⊗ I(τ)] +

√
θ1Ain, (8)

where α1 = (αc1L + θ1)/2 is the FF round-trip loss, ⊗ denotes convolution and I(τ) = F−1[Î(Ω)] (where
F [·] =

∫∞
−∞ · eiΩτ dτ denotes Fourier transformation) is a nonlinear response function. As can be seen, the mean-

field Eq. (8) for a quadratic cavity exhibits an effective third-order non-instantaneous nonlinearity, in analogy
with the case of a delayed Raman response19 and other non-instantaneous nonlinear Schrödinger models.20

However, contrary to those models, this is a coherent nonlinear process, since the square of the FF, rather than
its intensity, is involved. The nonlinear response function I(τ) and the nonlinear coefficient ρ take different forms,
depending on whether the SH field is also resonant in the cavity or not, as we shall see in the next subsections.

3.2 Singly resonant SHG

Figure 3 provides a schematic illustration of optical frequency comb generation around the FF and SH field in
a singly resonant quadratic microresonator.16,18 As can be seen, the FF driving field Ain is coupled into the
microring and recirculates in the cavity, whereas the SH field that is generated during propagation through the
ring is fully out-coupled at each round-trip. This means that θ2 = 1, hence Bm+1(0, τ) = 0 in Eq. (7). In this
case, the nonlinear response function of Eq. (8) reads as16,18

Î(Ω) =
1

L2

∫ L

0

∫ z

0

e(k̂−i∆k)(z−z′) dz′dz =
1− e−ix − ix

x2
, (9)
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Figure 3. Schematic of singly resonant SHG in microring.

Figure 4. MI gain for a singly resonant SHG system as a function of frequency and walk-off.16

with x(Ω) = [∆k + ik̂(Ω)]L, and k̂(Ω) = −αc2/2 + i[∆k′Ω + D̂2(Ω)] (the hat denotes here a function defined in
the Fourier domain). Moreover, ρ = (κL)2.

The use of a single cavity averaged Eq. (8) strongly facilitates the study of the CW solutions for the intracavity
fundamental field intensity, and its MI gain profile. Figure 4 shows an example of the MI gain spectrum as a
function of the walk-off parameter ∆k′. From this figure, it is clear that there is no MI for ∆k′ = 0. On the
other hand, Fig. 4 shows that MI does occur for sufficiently large values of the walk-off. This can be explained
by noting that a large ∆k′ causes sum-frequency processes to be heavily phase-mismatched, thereby reducing
the level of nonlinear losses seen sub-harmonic field around the FF at ω0.16,18

Figure 5. Spectral evolution of the fundamental field (upper right panel). Top left plot shows temporal profile, below it is
shown the final spectrum and the initial MI growth rate, while the bottom right plot shows evolution of the dimensionless
intracavity energy.18
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The cavity MI gain shown in Fig. 4 leads to the initial growth of primary sidebands around the FF. The
successive temporal dynamics of the comb generation process is illustrated in Fig. 5. Here we numerically solved
Eq. (8) with a fixed value of the cavity detuning, and show the evolution of the intra-cavity spectrum over 10
000 roundtrips (∼ 20 µs). The top left panel of Fig. 5 shows the final temporal pattern, and below we show the
corresponding comb spectrum, alongside with the MI gain profile.18 The comb evolution shown in the top right
panel of Fig. 5 shows that the MI of the CW pump initially leads to a broad spectrum involving many cavity
modes with the fundamental spacing of a single free-spectral-range (FSR). After roughly 2 000 roundtrips, a few
modes spaced by 39 FSRs become phase-locked and start to dominate the spectra. Later on additional harmonics
further away also lock, until a stationary frequency comb is reached. This comb represents a maximum for the
intracavity energy (bottom right panel of Fig. 5).

3.3 Doubly resonant SHG

The process of optical frequency comb generation in a doubly resonant microresonator is illustrated in Fig. 6.
As can be seen, in this case both the FF and the SH field recirculate inside the cavity. This means that θ2 � 1,
hence Bm+1(0, τ) 6= 0 in Eq. (7). In such a situation, the nonlinear response function of Eq. (8) can be written
as17

Î(Ω) =
1

α2 + iδ2 − i∆k′LΩ− ik′′2 L2 Ω2
. (10)

Moreover, ρ = (κL)2sinc2(ξ), where ξ = ∆kL/2. By assuming phase-matched intra-cavity SH generation (i.e.,
∆k = ξ = 0, and δ2 = 2δ1), one may calculate from Eq. (8) the cavity MI gain as a function of frequency Ω and

dimensionless walk-off d = ∆k′ [2L/(α1|k′′1 |)]1/2 as shown in Fig. 7.

Frequencyω0

Ain

χ(2)

θ1 Frequencyω0 2ω0

A

B

Aout Bout

Figure 6. Schematic of doubly resonant SHG in microring.

In contrast with the case of singly resonant SH generation of Sec. 3.2,16 in the doubly resonant case MI may
also arise with zero walk-off, i.e., d = 0. As d increases, however, the MI gain quickly reduces and eventually
disappears altogether. For sufficiently large walk-off values (|d| � 1) there is a new branch of MI, which is
responsible for frequency comb generation.17

Similar to the case discussed for a singly resonant cavity in Sec. 3.2, the long-term evolution of an MI unstable
pump field can result in frequency comb generation. In Fig. 8 we show an example of numerically computed
temporal and spectral profiles associated with stable and fully coherent frequency combs that are generated
around the FF and SH frequencies, respectively. As can be seen, in the time-domain the intra-cavity fields are
composed of three, periodically-spaced temporal structures, corresponding to a frequency comb with 3 × FSR
spacing.17

4. CUBIC AND QUADRATIC COMBS

For describing ultra-broadband fields with multiple harmonics, or whenever the fundamental and second harmonic
fields are partially overlapping, it is necessary to develop a more general model than what is described in Sec. 3.21

Proc. of SPIE Vol. 10242  102420G-6

Downloaded From: http://proceedings.spiedigitallibrary.org/pdfaccess.ashx?url=/data/conferences/spiep/92893/ on 05/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



(a)
50 Walk -off d

100 150

0.6

0.2

o

C7

Figure 7. MI gain for a doubly resonant SHG system as a function of frequency and walk-off.17

−400 −200 0 200 400
0

20

40

60

80

−400 −200 0 200 400
0

2

4

6

−1 −0.5 0 0.5 1

−60

−40

−20

0

−1 −0.5 0 0.5 1

−60

−40

−20

0

(a) (b)

(c) (d)

Fast time τFast time τ

Frequency ΩFrequency Ω

|v 1
|2

|v 2
|2

S
p
e
c
tr

u
m

(d
B

)

S
p
e
c
tr

u
m

(d
B

)
Figure 8. Temporal patterns in a doubly resonant SHG system with large walk-off. (a, b) Temporal profiles at (a) FF
and (b) SH wavelengths. Corresponding spectra are shown in (c) and (d), respectively.17

In these situation, it is possible to numerically study the dynamics of optical frequency comb generation by means
of a map22 involving the so-called single-envelope equation (SEE)23–27 for the envelope Am of the real electric
field E. We consider here a waveguide with both quadratic and cubic nonlinearity, i.e., the total nonlinear

polarization is PNL = P
(2)
NL + P

(3)
NL = ε0(χ(2)E2 + χ(3)E3), where χ(2) and χ(3) are the quadratic and cubic

nonlinear susceptibilities, respectively. The map is constructed by combining the SEE with the appropriate
boundary conditions,7,8 viz.

F
[
Am+1(τ, 0)

]
=

√
θ̂(Ω)F [Ain] +

√
1− θ̂(Ω)eiφ0F [Am(τ, L)] , (11)[

∂z − iD
(
i
∂

∂τ

)
+
αd
2

]
Am(τ, z) = iρ0

(
1 + iτsh

∂

∂τ

)
pNL(τ, z, Am), (12)

where pNL is the broadband envelope of the nonlinear polarization PNL. Eq. (11) is written in the Fourier

domain, to take into account the frequency-dependent transmission coefficient θ̂(Ω). Here Ω = ω − ω0, and ω0

is a reference frequency (which is set to coincide with the driving pump frequency). Eq. (11) is the boundary
condition that determines the intra-cavity field Am+1(τ, z = 0) at the beginning of roundtrip m+ 1 in terms of
the field from the end of the previous roundtrip Am(τ, z = L) and the pump field Ain. The SEE (12) is, as before,
written in a reference frame moving at the group velocity at ω0. Moreover, ρ0 = ω0/(2n0cε0), where n0 = n(ω0)
is the linear refractive index at ω0, τsh = 1/ω0 is the shock coefficient that describes the frequency dependence
of the nonlinearity,23 and αd is the distributed linear loss coefficient. In Eq. (12) the nonlinear polarization pNL
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is given by the sum of the quadratic and cubic contributions24–27

p
(2)
NL =

ε0χ
(2)

2

[
2|A|2 exp(iψ(t, z)) +A2 exp(−iψ(τ, z))

]
, (13)

p
(3)
NL =

ε0χ
(3)

4

[
3|A|2A+A3 exp(−2iψ(τ, z))

]
. (14)

Here the round-trip index m is omitted for simplicity of notation; moreover, |A|2 only contains non-negative
frequency ω0 ≥ 0 components,24,25 and ψ(τ, z) = ω0τ − (β0 − β1ω0)z. The quadratic nonlinear coefficient
d [m/

√
W] = χ(2)/2, and the nonlinear refractive index n2 = 3χ(3)/(8n0). In Eq. (18) we did not include

Raman scattering: the role of Raman scattering on optical frequency comb generation will be briefly dis-
cussed in the next section, dealing with silicon microresonators. The real electric field is obtained as E(τ, z) =
(A(τ, z) exp {i [β0 − β1ω0] z − iω0τ}+ c.c.) /2, and the total nonlinear polarization reads as

PNL(τ, z) = (pNL(τ, z) exp {i [β0 − β1ω0] z − iω0τ}+ c.c.) /2. (15)
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Figure 9. Broadband intra-cavity spectrum with CW pump at 1850 nm and power Pin = 100 mW at 1600 round-trips.21

In Fig. 9 we show an example of a numerical simulation using the map of Eqs. (11)-(12) for describing optical
frequency combs resulting from a non-degenerate OPO process in a radially poled lithium niobate microresonator,
with the CW pump power Pin = 100 mW.21 The resulting broadband intra-cavity power spectral density shown
in Fig. 9 shows that, in addition to FF, SH and third-harmonic (TH) combs, two additional combs are generated
around signal and idler frequencies. Fig. 9 also shows the presence of several secondary combs between the
FF and the SH, and between the SH and the TH, respectively. These combs are generated by sum-frequency
generation (SFG) and difference frequency generation (DFG) processes. Overall, Fig. 9 shows that a quadratic
microresonator may be used to generate a multi-comb array extending from the mid-infrared (MIR) into the
ultraviolet with a spacing of a single FSR. For example, consider SFG between the FF (SH) and the idler: this
process leads to secondary comb SC1 (SC3) centered at fSC1 = fFF +fI ' 218THz (fSC3 = fSH +fI ' 380THz).
On the other hand, DFG between the SH (TH) and the idler leads to a secondary comb SC2 (SC4) which is
centered at fSC2 = fSH − fI ' 268 THz (fSC4 = fTH − fI ' 430 THz).

5. SEMICONDUCTOR MICRORESONATOR COMBS

The large Kerr nonlinearity and the potential for fully integrated photonics circuits makes silicon microresonators
important candidates for implementing optical frequency comb sources. On the other hand, the presence of
nonlinear losses owing to multiphoton absorption processes should be properly taken into account in the modelling
of these devices. Quite importantly, the loss resulting from free carriers can be mitigated by suitably controlling
the free carrier lifetime (FCT). The nonlinear dynamics of frequency comb generation in silicon microresonators
may be described in terms of a cavity averaged SEE for the field envelope A, which includes linear loss and
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dispersion, the Kerr effect, Raman scattering, two-photon absorption (TPA), three-photon absorption (3PA),
free carrier absorption (FCA), and free carrier dispersion (FCD)28–32[

1

vg
∂t − iD + α+ iδ +

σ

2
(1 + iµ) 〈Nc(t)〉

]
A(t, τ) =

f0 + ik0

(
1 + iτsh

∂

∂τ

)
p

(3)
NL(t, τ) (16)

coupled with the evolution equation for the averaged carrier density 〈Nc(t)〉

∂t 〈Nc(t)〉 =
βTPA(ω)

2~ω0

〈
|A|4

〉
+
γ3PA

3~ω0

〈
|A|6

〉
− 〈Nc(t)〉

τeff
(17)

where vg = c/ng and ng are the group velocity and index at the pump carrier frequency ω0, k0 = ω0/c, and τsh =

1/ω0. In Eq.(17), brackets denote average over the cavity circulation time tR: 〈X(t)〉 = (1/tR)
∫ τr/2
−τr/2X(τ, t)dτ ,

so that Eq.(17) describes the buildup of carriers within the cavity over many round trips, supposing that the
FCT τeff � tR.

In Eq.(16) the linear loss coefficient α = α′/L with α′ = αiL+ θ/2. Moreover σ is the FCA coefficient, µ is
the FCD coefficient, βTPA is the TPA coefficient, f0 = (

√
θ/L)Ain and Ain is the injected CW pump amplitude.

The nonlinear polarization reads as

p
(3)
NL = n2[(1− γR) (η ⊗ (|A|2A) + ir3|A|4A

+A3 exp(−2iω0τ)/3) + γR

∫ τ

−∞
hR(τ − τ ′)|A(τ ′)|2dτ ′]. (18)

Here ⊗ denotes convolution product, n2 is the nonlinear index and γR is the Raman fraction coefficient associated
with the response function

hR(τ) = H(t)
τ2
1 + τ2

2

τ1τ2
2

exp(−τ/τ2) sin(τ/τ1), (19)

where H(τ) is the Heaviside function, τ1 = 10.2 fs and τ2 = 3.03 ps. For the transverse electric (TE) mode,
the scalar Raman gain coefficient is γR = gRΓR/(n2k0ΩR) = 0.018, where we used n2 = 9 × 10−18m2/W, and
the peak parallel Raman gain value gR = 2 × 10−10m/W at the wavelength λ0 = 1.55 µm, the gain bandwidth
ΓR/π = 105 GHz and the peak gain frequency shift ΩR/2π = 15.6 THz. Whereas for the transverse magnetic
(TM) mode the parallel Raman gain vanishes in silicon,30 hence γR = 0.

After a first step involving the design of the spatial mode properties of the silicon microrings, we numerically
simulate the temporal dynamics of MIR frequency comb generation by solving Eqs.(16)-(19) in the frequency
domain as a set of coupled ordinary differential equations for the resonator modes, with computationally efficient
evaluation of the four-wave mixing terms in the time domain via the fast Fourier transform routine.33 With this
approach, we are also able to include in our modelling the frequency dependence of the nonlinear loss terms,
such as TPA, as well as of the effective mode area. We used a quantum noise input (one photon per mode), and
considered a microresonator with quality factor Q = πng/α

′λ0 = 3.5 × 105 in the critical-coupling regime, i.e.,
we set α′ = θ = 2αdL, so that θ = 0.004 at λ0 = 2.6 µm. We pumped the microring with Pin = 1 W of input
CW power, and used σ = 3.7× 10−21m2, µ = 4.7 and γ3PA = 0.025 cm3/GW2.34,35

Consider first the case of pumping the TM mode of a microring with FSR=261 GHz at λ0 = 2.6µm2, and no
cavity detuning, i.e., δ = 0. Fig.10(a) shows the temporal evolution of the intracavity intensity, corresponding
to the generation of a stable cavity soliton pattern.32 The spectral intensity in Fig.10(b) shows that a transient
primary frequency comb is followed, after about 1 ns, by the generation of the soliton comb. It is important

Proc. of SPIE Vol. 10242  102420G-9

Downloaded From: http://proceedings.spiedigitallibrary.org/pdfaccess.ashx?url=/data/conferences/spiep/92893/ on 05/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Figure 10. Soliton frequency comb generation from the TM mode of a silicon microring: (a) temporal evolution; (b)
spectral evolution of intracavity intensity; Here τeff = 320 ps and λ0 = 2.6 µm32

.

to note that, in order to arrive to a stable soliton comb, it is necessary to properly adjust the FCT (here
τeff = 320 ps). This can be achieved, e.g., by tuning the reverse bias voltage applied to a PIN structure
embedding the microring.36,37 Here the mechanism for soliton comb generation in a silicon microring as shown
in Fig.10(b) is, first, the noise-induced MI of the CW cavity solution, followed by the development of a self-induced
nonlinear cavity detuning introduced by FCD.32
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Figure 11. Left: Raman frequency comb from TE mode of silicon microring. Here τeff = 100 ps and λ0 = 2.2 µm; (a)
power and (b) spectral profile.32

On the other hand, when pumping the TE mode of a silicon microring, one mainly observes the generation of
Raman frequency combs.32 Fig.11 shows that a Raman frequency comb is generated, including three cascaded
Raman Stokes lines of nearly equal intensity as the pump wave, as well as three anti-Stokes comb lines and a
weaker fourth Stokes line at about 70 THz, for an octave-spanning Raman comb bandwidth in excess of 100 THz.
Fig.11 also shows that the Raman comb is associated with a periodic train of pulses of about 15 fs duration.

6. CONCLUSIONS

We have presented an overview of various time domain models for describing optical frequency comb generation
in both cubic and quadratic nonlinear cavities. These models involve either a map or a cavity-averaged equation
for the recirculating optical field. Cavity averaged models permit to numerically reproduce the properties of
experimentally generated optical frequency combs in many practical situations. However we have pointed out
that the more general map exhibits multi-valued stationary states, additional bands of MI and novel types of
super cavity soliton solutions at high intracavity powers..

In singly or doubly resonant intracavity SH generation, modelling can be simplified by arriving to a single
mean-field equation, exhibiting a non-instantaneous cubic nonlinear response function. In all cases, the walk-
off between the FF and SH field plays a key role in the nonlinear comb generation dynamics, and only for a
sufficiently large walk-off is there sufficient gain to sustain a stable frequency comb at the FF.
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In the most general situation when multiple phase matched processes are involved, it proves convenient
to instead employ a single envelope equation approach to numerically simulate the process of optical frequency
comb generation in the presence of simultaneous nonlinearities. When considering semiconductor microresonator
frequency comb sources, multiphoton absorption processes also play a key role, and their control is found to
be critical for generating stable soliton frequency combs. Finally, we have shown an example of how Raman
scattering may also be exploited for multi-octave spanning optical frequency comb sources based on silicon
microring resonators.

ACKNOWLEDGMENTS

This work was funded by the Italian Ministry of University and Research (MIUR) (PRIN 2015KEZNYM (NEMO)
and Progetto Premiale QUANTOM - Quantum Opto-Mechanics), the Rutherford Discovery Fellowships of the
Royal Society of New Zealand and the Marsden Fund of the Royal Society of New Zealand.

REFERENCES

[1] Del’Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., and Kippenberg, T. J., “Optical
frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

[2] Kippenberg, T. J., Holzwarth, R., and Diddams, S. A., “Microresonator-based optical frequency combs,”
Science 332, 555–559 (2011).

[3] Okawachi, Y., Saha, K., Levy, J. S., Wen, Y. H., Lipson, M., and Gaeta, A. L., “Octave-spanning frequency
comb generation in a silicon nitride chip,” Optics Letters 36, 3398–3400 (2011).

[4] Herr, T., Hartinger, K., and Riemensberger, J., “Universal formation dynamics and noise of Kerr-frequency
combs in microresonators,” Nature Photonics 6, 480–487 (2012).

[5] Ricciardi, I., Mosca, S., Parisi, M., Maddaloni, P., Santamaria, L., De Natale, P., and De Rosa, M.,
“Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (June 2015).

[6] Mosca, S., Ricciardi, I., Parisi, M., Maddaloni, P., Santamaria, L., De Natale, P., and De Rosa, M., “Direct
generation of optical frequency combs in (2) nonlinear cavities,” Nanophotonics 5(2), 316 (2016).

[7] Haelterman, M., Trillo, S., and Wabnitz, S., “Dissipative modulation instability in a nonlinear dispersive
ring cavity,” Optics Communications 91(5-6), 401–407 (1992).

[8] Coen, S., Randle, H. G., Sylvestre, T., and Erkintalo, M., “Modeling of octave-spanning Kerr frequency
combs using a generalized mean-field Lugiato–Lefever model,” Optics Letters 38(1), 37–39 (2013).

[9] Lugiato, L. A. and Lefever, R., “Spatial dissipative structures in passive optical systems,” Physical Review
Letters 58, 2209–2211 (May 1987).

[10] Leo, F., Coen, S., Kockaert, P., Gorza, S.-P., Emplit, P., and Haelterman, M., “Temporal cavity solitons in
one-dimensional Kerr media as bits in an all-optical buffer,” Nature Photonics 4, 471–476 (May 2010).

[11] Hansson, T. and Wabnitz, S., “Frequency comb generation beyond the Lugiato–Lefever equation: multi-
stability and super cavity solitons,” Journal of the Optical Society of America B 32, 1259–1266 (July 2015).

[12] Hansson, T., Modotto, D., and Wabnitz, S., “Dynamics of the modulational instability in microresonator
frequency combs,” Phys. Rev. A 88, 023819 (Aug. 2013).

[13] Wabnitz, S., “Suppression of interactions in a phase-locked soliton optical memory,” Optics Letters 18(8),
601–603 (1993).

[14] Coen, S. and Haelterman, M., “Modulational instability induced by cavity boundary conditions in a normally
dispersive optical fiber,” Physical Review Letters 79(21), 4139–4142 (1997).

[15] Buryak, A. V., Trapani, P. D., Skryabin, D. V., and Trillo, S., “Optical solitons due to quadratic nonlin-
earities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).

[16] Leo, F., Hansson, T., Ricciardi, I., De Rosa, M., Coen, S., Wabnitz, S., and Erkintalo, M., “Walk-Off-
Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-
Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 116, 033901 (Jan. 2016).

[17] Leo, F., Hansson, T., Ricciardi, I., De Rosa, M., Coen, S., Wabnitz, S., and Erkintalo, M., “Frequency-comb
formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).

Proc. of SPIE Vol. 10242  102420G-11

Downloaded From: http://proceedings.spiedigitallibrary.org/pdfaccess.ashx?url=/data/conferences/spiep/92893/ on 05/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



[18] Hansson, T., Leo, F., Erkintalo, M., Coen, S., Ricciardi, I., De Rosa, M., and Wabnitz, S., “Singly resonant
second-harmonic-generation frequency-combs,” Phys. Rev. A 95, 013805 (2017).

[19] Stolen, R. H., Tomlinson, W. J., Haus, H. A., and Gordon, J. P., “Raman response function of silica-core
fibers,” J. Opt. Soc. Am. B 6(6), 1159–1166 (1989).

[20] Conti, C., Schmidt, M. A., Russell, P. S. J., and Biancalana, F., “Highly Noninstantaneous Solitons in
Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105, 263902 (Dec. 2010).

[21] Hansson, T., Leo, F., Erkintalo, M., Anthony, J., Coen, S., Ricciardi, I., De Rosa, M., and Wabnitz, S.,
“Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic
nonlinearities,” J. Opt. Soc. Am. B 33, 1207 (June 2016).

[22] Ikeda, K., “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity
system,” Optics Communications 30(2), 257–261 (1979).

[23] Genty, G., Kinsler, P., Kibler, B., and Dudley, J. M., “Nonlinear envelope equation modeling of sub-cycle
dynamics and harmonic generation in nonlinear waveguides,” Optics Express 15, 5382 (2007).

[24] Conforti, M., Baronio, F., and De Angelis, C., “Nonlinear envelope equation for broadband optical pulses
in quadratic media,” Physical Review A 81, 053841 (2010).

[25] Conforti, M., Baronio, F., and De Angelis, C., “Ultrabroadband optical phenomena in quadratic nonlinear
media,” IEEE Photonics Journal 2, 600–610 (2010).

[26] Kozlov, V. and Wabnitz, S., “Harmonic and supercontinuum generation in quadratic and cubic nonlinear
optical media,” Journal of the Optical Society of America B 27, 1707–1711 (2010).

[27] Baronio, F., Conforti, M., De Angelis, C., Modotto, D., Wabnitz, S., Andreana, M., Tonello, A., Leproux,
P., and Couderc, V., “Second and third order susceptibilities mixing for supercontinuum generation and
shaping,” Optical Fiber Technology 18, 283–289 (2012).

[28] Lau, R. K. W., Lamont, M. R. E., Okawachi, Y., and Gaeta, A. L., “Effects of multiphoton absorption on
parametric comb generation in silicon microresonators,” Optics Letters 40, 2778 (June 2015).

[29] Lamont, M., Okawaki, Y., and Gaeta, A., “Route to stabilized ultrabroadband microresonator-based fre-
quency combs,” Opt. Lett. 38, 3478 (2013).

[30] Lin, Q., Painter, O., and Agrawal, G., “Nonlinear optical phenomena in silicon waveguides: modeling and
applications,” Opt. Express 25, 16604–16644 (2007).

[31] Yin, L. and Agrawal, G., “Impact of two-photon absorption on self-phase modulation in silicon waveguides,”
Opt. Lett. 32, 2031 (2007).

[32] Hansson, T., Modotto, D., and Wabnitz, S., “Mid-infrared soliton and Raman frequency comb generation
in silicon microrings,” Optics Letters 39, 6747 (Dec. 2014).

[33] Hansson, T., Modotto, D., and Wabnitz, S., “On the numerical simulation of Kerr frequency combs using
coupled mode equations,” Optics Communications 312, 134–136 (2014).

[34] Lau, R., Lamont, M., Griffith, A., Okawachi, Y., Lipson, M., and Gaeta, A., “Octave-spanning mid-infrared
supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518 (2014).

[35] Wang, T., Venkatram, N., Gosciniak, J., Cui, Y., Qian, G., Li, W., , and Tan, D., “Multi-photon absorption
and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21, 32192 (2013).

[36] Griffith, A. G., Lau, R. K., Cardenas, J., Okawachi, Y., Mohanty, A., Fain, R., Lee, Y. H. D., Yu, M., Phare,
C. T., Poitras, C. B., Gaeta, A. L., and Lipson, M., “Silicon-chip mid-infrared frequency comb generation,”
Nature Communications 6, 6299 (Feb. 2015).

[37] Turner-Foster, A., Foster, M., Levy, J., Poitras, C., Salem, R., Gaeta, A., and Lipson, M., “Ultrashort
free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010).

Proc. of SPIE Vol. 10242  102420G-12

Downloaded From: http://proceedings.spiedigitallibrary.org/pdfaccess.ashx?url=/data/conferences/spiep/92893/ on 05/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx


