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A B S T R A C T

Modelling objects at a large resolution or scale brings challenges in the storage and processing of data and
requires efficient structures. In the context of modelling urban environments, we face both issues: 3D data
from acquisition extends at geographic scale, and digitization of buildings of historical value can be particularly
dense. Therefore, it is crucial to exploit the point cloud derived from acquisition as much as possible, before (or
alongside) deriving other representations (e.g., surface or volume meshes) for further needs (e.g., visualization,
simulation). In this paper, we present our work in processing 3D data of urban areas towards the generation
of a semantic model for a city digital twin. Specifically, we focus on the recognition of shape primitives (e.g.,
planes, cylinders, spheres) in point clouds representing urban scenes, with the main application being the
semantic segmentation into walls, roofs, streets, domes, vaults, arches, and so on.

Here, we extend the conference contribution in Romanengo et al. (2023a), where we presented our
preliminary results on single buildings. In this extended version, we generalize the approach to manage whole
cities by preliminarily splitting the point cloud building-wise and streamlining the pipeline. We added a
thorough experimentation with a benchmark dataset from the city of Tallinn (47,000 buildings), a portion
of Vaihingen (170 building) and our case studies in Catania and Matera, Italy (4 high-resolution buildings).
Results show that our approach successfully deals with point clouds of considerable size, either surveyed at
high resolution or covering wide areas. In both cases, it proves robust to input noise and outliers but sensitive
to uneven sampling density.
1. Introduction

Urbanization is rapidly increasing and our cities are facing chal-
lenges like increasing load of traffic, air pollution, energy consumption,
limited green spaces beside climate change.

Interdisciplinary research and development efforts are seeking the
Digital Twins of cities [1–5] to represent, monitor, simulate and predict
the complex processes that take place in urban environments.

This work positions itself within several initiatives on urban digital
twins [6,7], specifically on the geometric modelling of the urban space,
its characterization and annotation. The analysis of the morphology
of the built environment is crucial to understand urban processes: for
example, the built structures determine how air flows in the city, what
surfaces receive sunlight or are shaded by nearby buildings, and where
architectural barriers hinder accessibility. Through the mechanism of
annotation, contextual knowledge from different sources can be linked
to the geometry, and heterogeneous information related to the same
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region or urban element can be directly accessed: as an example, the
volume of a specific building, its energy demand and the number of
residents. The salient urban features, in the above example buildings,
need to be identified within the whole geometric representation, and
annotated with diverse knowledge, e.g., from GIS layers, from georef-
erenced sensors, by manual user annotation of the 3D model through
a Graphical User Interface, etc. Automatic or at least semi-automatic
recognition of salient urban features would be a great help in the
creation of the semantic 3D city model. An ‘‘as-automatic-as-possible’’
annotation would need to solve two main problems: (i) locate the
portion of geometry that represents an urban feature, and (ii) extract
geometric attributes that provide additional knowledge automatically.

Many methods address the extraction of features in indoor scenes
[8]. In outdoor environments, most urban segmentation methods have
focused on detecting large-scale elements such as buildings, vegetation,
and roads. Methods that operate at a smaller, sub-building scale, such
https://doi.org/10.1016/j.gmod.2024.101234
Received 6 April 2024; Received in revised form 9 August 2024; Accepted 1 Octob
vailable online 10 October 2024 
524-0703/© 2024 The Authors. Published by Elsevier Inc. This is an open access art
c-nd/4.0/ ). 
er 2024

icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/gmod
https://www.elsevier.com/locate/gmod
mailto:chiara.romanengo@cnr.it
mailto:daniela.cabiddu@cnr.it
mailto:simone.pittaluga@cnr.it
mailto:michela.mortara@cnr.it
https://doi.org/10.1016/j.gmod.2024.101234
https://doi.org/10.1016/j.gmod.2024.101234
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2024.101234&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Romanengo et al.

p
a
p
l
d
i
l
a
i

n
i
a
t
p
o
e
c
d
a
p

p
t
T

v

c
s
b
a
o
a
M
l
c
d

d
w

w
m
s
a
o
o

o
r
t
t
a

d
a
w
(
o
g
a
m
d
a
w

R

d

c

f

a
t

Graphical Models 136 (2024) 101234 
as roof extraction, primarily aim at reconstruction and concentrate
on identifying the planes that constitute the roof itself [9,10]. In this
aper, we focus on the constituent parts of buildings: walls, roofs,
nd pavement. We propose a recognition method based on fitting
rimitives to identify these features and extract geometric attributes
ike orientation and size as additional information. Our method can
istinguish individual façades and roof faces and is not limited to
dentifying planar features, unlike the majority of approaches in the
iterature. In addition, we are able to manage point clouds representing
 single building, differently from the methods in the literature, whose
nput point cloud typically represents an entire or a part of a city.

Our approach works on point clouds acquired either by laser scan-
ing technologies, aerial and/or terrestrial, or photogrammetry; the
nput point clouds may present diverse characteristics (e.g., resolution,
ccuracy, coverage) and additional attributes (e.g., colour, classifica-
ion) depending on the acquisition mode, technology and survey cam-
aign. Each acquisition methodology has drawbacks (e.g., occlusions,
utliers and noise) and the survey often happens in an uncontrolled
nvironment, with occluding elements such as parked or passing vehi-
les and pedestrians. Therefore, the method must be robust to missing
ata, noise and outliers. Modelling and performing geometric analysis
t geographic scale is also challenging in terms of data storage and
rocessing efficiency.

Like other approaches, we exploit the Hough transform, which
prevents over-segmentation and is robust to input noise and outliers,
but it is not efficient; therefore, we employ a two-stage preliminary
space partitioning approach, first dividing the input cloud by build-
ings and then further partitioning each building into sub-parts to
enhance computational efficiency. By combining RANSAC with the
Hough Transform (HT), we improve HT computation time through
initial segmentation and mitigate the oversegmentation issue typically
associated with RANSAC alone. Our approach can segment large point
clouds and is inherently suitable for parallel processing.

Our semantic segmentation recognizes instances of planes, cylin-
ders, and spheres, providing the parametric form of each feature, and
artitions the input point cloud into separate files of points belonging
o roofs, walls, floor, domes, arches, vaults of each specific building.
he cloud is not required to have additional information but the 3D

coordinates of each point. For each feature, additional attributes that
characterize the shape are automatically computed: orientation and
pitch of roofs, height and width of walls, radius of domes, arches and
aults (and length for the latter two). The characterization of urban

features at sub-building scale represents a huge support to the heavy
work of annotating a whole 3D city, and more features will be managed
in future developments. The semantic city model is anticipated to
enhance urban management; for example, attributes such as the area,
orientation, and inclination of roof faces can offer informed estimates
of photovoltaic energy potential.

This work extends the conference contribution in [11], where we
presented our preliminary results on single high-resolution buildings.
In this extended version, we generalize the approach to manage whole
ities, by preliminary splitting the point cloud building-wise, and
treamlining the pipeline. We run a thorough experimentation with a
enchmark dataset from the city of Tallinn (about 47 K buildings) [12]
nd two case studies in Italy, namely the city of Catania (3 buildings
f interest at high resolution acquired by terrestrial laser scanning
nd the city centre area acquired by aerial photogrammetry) and
atera (1 building at high resolution acquired partially by terrestrial

aser scanning and partially by aerial LIDAR technology). Finally, we
ompare our results with related works using a portion of the Vaihingen
ataset.

2. Related works

Representing an object through a set of geometric components with
a semantic meaning is a long-standing problem in different domains,
2 
such as Computer Vision, Computer Graphics, Computer-Assisted De-
sign (CAD). Recently, the semantic segmentation of high-resolution
point clouds representing urban contexts has gained much attention
[13].

Generally, the objective of 3D point cloud segmentation is to sub-
ivide points into separate homogeneous regions, ensuring that points
ithin the same region exhibit similar characteristics or meaning. Chal-

lenges in point cloud segmentation include the quality of input data,
hich frequently includes high redundancy, uneven sampling density,
issing data, noise, and outliers, as well as the absence of a clear

tructure within the data. In the urban setting, point clouds of large
reas typically come from aerial laser scanning and may suffer of low
r uneven density or missing data due to the orientation and inclination
f external surfaces with respect to the acquisition trajectory.

The majority of methods for 3D semantic segmentation are based on
ne of these approaches: global energy optimization, feature clustering,
egion growing or model fitting. Methods within the first category
ransform the spatial segmentation problem into an energy optimiza-
ion problem (e.g., [14] and references therein). These methods can
chieve global optimization, but most of them require an initial seg-

mentation, and the minimization of complex functions is challenging on
iscrete and unordered input data. Feature clustering classifies points
ccording to some characterization (e.g., normals) and aggregate points
ith similar attributes with k-means or similar clustering approaches

e.g., [15]). These methods are sensitive to noisy data and depend
n the definition of a proper neighbourhood size for points. Region
rowing approaches iteratively expand an initial point or region to
djacent areas until some growing criteria are satisfied, e.g., [9]. These
ethods are sensitive to the selection of the seeds and performance
epends on the selection of the growth criteria. Model fitting-based
pproaches can estimate robust primitive parameters from the points
ith high noise and outliers [16–19].

Among these approaches, we find stochastic methods based on the
ANSAC (RANdom SAmple Consensus) method [20] and its various

optimizations, and parameter space techniques that rely on Hough-like
voting and parameter space clustering [21]. Li et al. [22] aims at
reconstructing scenes from point clouds assuming a regularity of the
istribution of buildings, that is the Manhattan world assumption [23].

The reconstruction of buildings model is proposed also in [24] ex-
ploiting the RANSAC algorithm to segment the planar patches that
onstitute rooftops.

The Hough transform is exploited by [25], where a recognition
method able to segment the input point cloud into geometric primitives
of different types (e.g., planes, cylinders, spheres, cones and tori) is
proposed. However, this approach is focused on CAD objects. Finally,
the study provided in [26] aims to extract building roof planes from air-
borne LIDAR data applying an extended Randomized Hough Transform,
without incorporating semantic information.

HT is time-consuming, sensitive to the parameter values, and may
ind spurious planes [27]. RANSAC is relatively less time-consuming,

but cannot handle the problem of spurious planes [28].
We propose a strategy focused on a combination of the RANSAC

approach and a recognition method based on the Hough transform
(HT). The RANSAC is able to provide an initial segmentation of the
input point cloud in a quite efficient way, associating to each segment
the type of primitive it corresponds to. The subsequent use of the HT
for the recognition of surfaces allows us recognizing different types of
primitives, not just planes, associating the parameters that uniquely
identify each segment as geometric descriptors, as shown in [29], with
n approach that has proven robust to noise in the input data. Through
he analysis of the geometric descriptors, it is possible to group different

segments that belong to the same primitive thus avoiding the over-
segmentation typical of the RANSAC. Combining the two approaches,
we are able to manage large scale point clouds and to extract salient

information on the urban features.



C. Romanengo et al. Graphical Models 136 (2024) 101234 
Concerning the type of segmentation outcome, we can identify a
large group of methods tackling the identification of urban features
at a higher scale: such approaches classify points as building, vegeta-
tion, road and other general types, similar to the LiDAR classification,
e.g., [30,31]. Other tackle a mixed selection of features, e.g., facades,
ground, cars, motorcycles, traffic signs, pedestrians, vegetation in [32].
Therefore, it is not straightforward to compare our segmentation re-
sults with previous work; the same problem arises when looking for
datasets with ground truth to test our results (e.g., [33,34]). Some
methods tackle the identification of detail features, such as roofs, but
their aim is the reconstruction of buildings rather than an accurate
segmentation [35,36]. Li et al. [9],Wang and Ji [14] also tackle the
identification of roof planes and optimization of roof edges for further
reconstruction, but achieve an intermediate point cloud segmentation
into roof faces as we do. We provide a qualitative comparison with
these work on the Vaihingen dataset (see Fig. 13). However, their meth-
ods seek only planar features. Some methods, particularly supervised
learning approaches (e.g., [37,38]), rely on additional information that
may be embedded within the point cloud, such as intensity or RGB
colour. However, the availability of this data largely depends on the
acquisition technology and may not always be present.

We experimented our method on the Tallin dataset from a recent
benchmark called Building3D [12]; it provides the largest urban-scale
dataset meant for aerial LiDAR point cloud modelling of building
roofs. We also compared our results quantitatively and qualitatively
with [9,14] on the Vaihingen dataset achieving very good outcomes.

To summarize, our approach focuses on the segmentation of build-
ings into their constituting salient parts, i.e., roof, façades and pave-
ment, and it is able to manage also high-resolution point clouds repre-
senting a single building, differently from most of urban segmentation
methods that identify features at larger scale. In addition, it is not
limited to planar patches but recognizes curved roof surfaces as well
(e.g., domes and vaults). Our methods use geometry alone and does
not rely on additional information that may depend from the ac-
quisition device (e.g., colour). We apply a combination of RANSAC
and HT to improve efficiency, achieve robustness to noise and avoid
over-segmentation.

3. Our approach

As anticipated, the pipeline for urban feature recognition and docu-
mentation works directly with the point cloud to limit memory alloca-
tion. By taking into account that for large-scale objects such as cities,
data size can be critical and that the recognition process is quite time-
consuming, we aim to split the input in order to manage storage and
processing efficiently.

Therefore, we partition the whole initial cloud at two levels: firstly,
at the semantic level, we segment the urban area building-wise. Sec-
ondly, at the geometric level, we apply binary space partitioning to
each building to obtain small chunks that can be efficiently processed.
Then, a combination of the well-known RANSAC algorithm and a
recognition method based on the Hough transform is applied chunk by
chunk to obtain a semantic segmentation of buildings into their main
features such as façades, walls, and roofs. Finally, the recognition is
performed on the remaining cloud(s) representing the open spaces.

The combination of the RANSAC algorithm and the HT-based recog-
nition method is advantageous, since the first one provides the classi-
fication of points primitives, while the HT associates to each primitive
the geometric descriptors that uniquely identify it. Specifically, these
descriptors are necessary for segmenting the point cloud in a semantic
way, since they provide important information regarding the location
and orientation of the primitives. On the other hand, the traditional HT
requires in input a point cloud representing a single primitive and, if
possible, the type of primitive associated to it, in order to reduce the
computational cost, so the use of the RANSAC algorithm is a good way
to achieve this end.

Our method documents each feature with its salient quantitative
attributes as metadata, such as inclination and orientation for roofs.
3 
Fig. 1. Point-in-Polygon. The input includes both the point cloud  and a polygonal
representation  of the footprint of the building of interest. Each point 𝑝 in  is
projected on the plane of  and the Jordan Curve Theorem is applied to assess if the
projected point 𝑝̂ lies within the footprint.

3.1. Building-wise partitioning

We assume prior knowledge about the (2D) footprints of the city
buildings is available, with no loss of generality, in the form of standard
ESRI Shapefiles [39]. Many municipalities do already offer this kind of
information as OpenData, but if this is not the case, online repositories
may also be used (e.g., OpenStreetMap [40]).

The partitioning is based on the point-in-polygon test, a basic ge-
ometry operation widely adopted in GIS applications. For a detailed
discussion on the point-in-polygon problem and different approaches,
see [41].

Our implementation extends the point-in-polygon method intro-
duced by W. Randolph Franklin [42] to handle also polygons with
multiple boundaries, including holes; this is crucial for urban environ-
ments, as many buildings exhibit inner courtyards. The algorithm relies
on the Jordan Curve Theorem [43], which asserts that a point 𝑝̂ resides
inside a polygon if the number of crossings of a half-line starting at 𝑝̂
in any arbitrary direction is odd (see Fig. 1). If the shapefile contains
multiple disjoint polygons (e.g., for a subset of buildings), we apply the
same approach (possibly in parallel) to the entire set of polygons in
the shapefile. Similarly, we can restrict the domain to blocks, areas, or
city districts whose boundary shapefile is known and run the semantic
segmentation in parallel, thus improving efficiency.

To prevent numerical precision issues and account for situations
where parts of the building may extend beyond the footprint (e.g., bal-
conies or sloping roofs), our implementation allows for the option to
perform the point-in-polygon check by offsetting the polygon by a
specified distance.

3.2. Binary space partitioning

After dividing the input cloud into buildings, we process each unit
separately.

However, even point clouds containing a single building might
be huge (see Table 1). If this is the case, we partition the point set
again, this time using a space-based approach, namely the out-of-core
partitioning approach described in [44]. The algorithm segments the
input cloud into chunks with a maximum cardinality, an input user-
defined parameter. The cardinality should be tuned according to the
performance of the machine doing the processing: lower cardinality
means more chunks, that is faster processing of a single chunk but
slower combination of results when a feature spans multiple chunks.

Fig. 2 shows how the partitioning algorithm works. After computing
the cloud bounding box, denoted as (), (Fig. 2b), points are down-
sampled to a representative set () by randomly selecting one vertex
every 1000 in  . Starting from (), the in-core binary space partition
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Fig. 2. Binary Space Partitioning. (a) Input point cloud. (b) Bounding Box and
downsampling of the input cloud. (c) BSP computed on the downsampled set. (d) Final
BSP.

(BSP) is constructed by iteratively subdividing the bounding box cell
containing the largest number of points of (). Each cell is split along
its longest side. The root of the binary space partition corresponds
to the entire downsampled cloud (). During each subdivision, the
points in the parent cell are assigned to one of the two offspring cells
based on their position. If a vertex lands precisely on the dividing plane,
it is assigned to the cell with the lowest lexicographical barycentre.
The process continues until the number of points within each BSP cell
is below to a predefined threshold (Fig. 2c). Once the BSP structure
is established as described above, the remaining points in  must be
assigned to their respective BSP cells, based on their spatial positioning
(Fig. 2d); since the cardinality of the input cloud is much higher, this
segmentation is done out-of-core.

The process saves the output chunks into 𝑁 separate files, namely
cell_i.xyz, where 𝑖 = 0,… , 𝑁 − 1.

3.3. Point classification

After the (optional) partitioning phases (building-wise and/or BSP),
the recognition of geometric primitives is performed using a fitting
approach. We point out that both the previous partitioning enable a
parallel execution of the fitting procedure over the partitions. However,
the algorithm can proceed sequentially analysing a chunk at a time,
benefiting of the cardinality reduction nonetheless. In the following,
we describe the sequential approach on each sub-cloud 𝑖 returned by
the binary space partitioning.

Firstly, we apply a RANSAC classification [20], that is an automatic
algorithm to detect basic shapes in unorganized point clouds. This
method requires in input the minimum number of points constituting
a segment and the type of primitive to look for. In our implemen-
tation, we set the first parameter as a percentage of the input point
cloud (i.e. 0.5% of the cardinality of each cell) and we select three
types of primitives that are more likely to be found in an urban
environment: planes, cylinders and spheres. The result is a collection of
subsets of points belonging to the same primitive, saved as a .txt file,
whose name identifies the type of primitive and a sequential identifier
(e.g., sphere_1.txt). An example of this result is shown in Fig. 5b, where
the RANSAC algorithm is applied to each sub-cloud.
4 
Fig. 3. The HT is based on the point-line duality : points 𝐴 and 𝐵 lie on a straight line.
These lines correspond to lines in the parameter space that intersect in a single point
𝑅. This point uniquely identifies the coefficients in the equation of the original straight
line.

Note that, the combination of the BSP partitioning and the tendency
of the RANSAC algorithm to oversegment the point clouds (see, for
example, [18]) is likely to generate different segments of points that
actually belong to the same primitive; for this reason, we complement
the RANSAC partitioning with a recognition step, based on an extension
of the Hough Transform (HT).

3.4. Primitive recognition and characterization

The original definition of the Hough transform (HT) is based on the
point-line duality as follows: points on a straight line, defined by the
equation 𝑦 = 𝑚𝑥 + 𝑛, correspond to lines in the parameter space that
intersect in a single point. This point uniquely identifies the coefficients
in the equation of the original straight line (see Fig. 3). This concept
can be naturally extended to a generic family  = {𝐚} of curves or
surfaces that depend on a set of parameters 𝐚 = (𝑎1,… , 𝑎𝑛) [45]. More
in details, given a family  = {𝐚} depending on a set of parameters
𝐚 = (𝑎1,… , 𝑎𝑛) ∈ 𝑈 ′ ⊂ R𝑛, where 𝑈 ′ is an open set of R𝑛, a general
point 𝑃 in the space corresponds to a locus, 𝛤𝑃 ( ), in the parameter
space 𝑈 ′. As 𝑃 varies on a given curve 𝐚 from  , a set of curves
𝛤𝑃 is generated. If the set of curves 𝛤𝑃 meets in one and only one
point 𝐚̄ ∈ 𝑈 ′, the family of curves  verifies the so-called regularity
condition and the intersection point defines the parameters of the best
fitting curve 𝐚̄. The duality concept is fundamental for the HT based
recognition algorithm, since it translates the recognition problem into
detecting which value of the parameters that determine the family 
corresponds to the curve or the surface best fitting a given set of points
(such a value may be non unique). The common strategy to identify the
solution (or a solution) is based on the so-called accumulator function;
it consists in a voting system whereby each point in a point cloud 
votes a 𝑛-uple 𝐚 = (𝑎1,… , 𝑎𝑛); the most voted 𝑛-uple corresponds to the
most representative curve or surface for the profile.

We apply a generalization of the HT to families of surfaces (planes,
spheres, cylinders, cones and tori) devised for the CAD context [29]; in
urban scenes, the main structural elements can be identified by planes,
cylinders and spheres, so we restrict the recognition to these primitives
(see Fig. 4).

To optimize the recognition of instances of these primitives, we
use the approach in [29], which exploits primitive canonical forms to
reduce the dimensionality of the parameter space. Intuitively, a sphere
centred in the origin can be uniquely determined by the value of its
radius; similarly, a cylinder with its rotational axis aligned to 𝑧-axis;
a plane passing through the origin is defined by its normal versor.
The preliminary classification of (chunks of) point clouds (given by
RANSAC in our case) allows to choose the family of primitives to use
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Fig. 4. Plane, sphere and cylinder primitives respectively, along with their attributes
(geometric descriptors).

by the HT-recognition algorithm. Indeed, the expected primitive type
is provided as the name of the .txt file containing each segment. Once
the family is select, it is possible to move segments to their canonical
forms, find their parameters using the HT, move back the points to the
original position and finally determine the complete set of geometric
attributes that specify the instance:

• Planes. The geometric descriptor of a plane is represented by the
vector [𝐧, 𝐩], where 𝐧 is the normal to the plane and 𝐩 is a point
lying on it.

• Spheres. The geometric descriptor of a sphere is identified by the
vector [𝐜, 𝑟], where 𝐜 contains the coordinates of its centre and 𝑟
is the length of the radius.

• Cylinders. The geometric descriptor of a cylinder is represented by
the vector [𝐧, 𝐩, 𝑟], where 𝐧 is the rotational axis 𝐧, 𝐩 is a point
lying on it and 𝑟 is the length of its radius.

However, in some cases, especially in presence of significant noise,
the RANSAC algorithm fails in associating the correct primitive type.
Following the strategy described in [29], we enrich the recognition
procedure with the computation of an approximation error to evaluate
the RANSAC classification. If the approximation error is higher than
a fixed threshold, we iteratively test the other types of primitives
and select the one with lowest approximation error, correcting the
classification and exploiting the robustness to noise typical of the HT.

3.5. Primitive aggregation

The geometric attributes described in Section 3.4 are used to aggre-
gate segments belonging to the same primitive, as shown in Fig. 5c. In
this step, we exploit the complete linkage, that is a hierarchical cluster-
ing approach useful to compare clusters and build a dendrogram [29].

First, the aggregation assigns every single segment to a cluster and
then it iteratively merges clusters that are closest with respect to the
following map

𝐷(𝐶ℎ, 𝐶𝑗 ) ∶= max
𝜶𝑘∈𝐶ℎ ,𝜶𝑙∈𝐶𝑗

𝑑(𝜶𝑘,𝜶𝑙),

where (𝐶ℎ, 𝐶𝑗 ) is a given pair of clusters and 𝑑 is a measure of distance
or dissimilarity. Following the notation introduced in Section 3.4, the
distances considered in this work differ with respect to the type of
primitive:

• in case of planes, 𝑑(𝛼1, 𝛼2) = ‖𝐧1 × 𝐧2‖2 + |𝐧1 ⋅ (𝐩1 − 𝐩2)|;
• for spheres, 𝑑(𝛼1, 𝛼2) = |𝑟1 − 𝑟2| + |𝐜1 − 𝐜2∥2;
• in case of cylinders, 𝑑(𝛼1, 𝛼2) = |𝑟1 − 𝑟2| + ∥𝐧1 × 𝐧2∥2 + ‖𝐧1 × (𝐩1 −
𝐩2)‖2.

Note that, if 𝑑(𝛼1, 𝛼2) = 0 (or less than a threshold in our imple-
mentation), then the primitives 𝛼1 and 𝛼2 are equal with respect to the
selected criterion.
5 
3.6. Semantic segmentation

So far, we have performed geometric analyses and derived a seg-
mentation into instances of primitive types, avoiding
over-segmentation. Finally, the contextual knowledge provides rules
to recognize features of the urban environment and their components.
Typically, as shown in Figs. 19, 20 and 21, spherical parts identify
domes, cylinders arches, and planes represent parts of buildings, such
as roofs, walls and pavements. The geometric attributes described in
Section 3.4 can be used to refine the classification. So far, we did not
elaborate further on spheres and cylinders, because our experimental
datasets provide too few examples; however, the radius, height and
principal axis orientation will likely discriminate arches, vaults and
columns. We are investigating this point in current developments.
Instead, we focus on planes at first, whose normals and relative position
effectively distinguish them into façades, walls, roofs, and pavement, as
shown in Fig. 5d.

The components of the normal 𝐧 of each plane determine whether
it is vertical, horizontal or oblique. According to this:

• vertical planes are annotated as façades;
• oblique planes are labelled as roofs;
• horizontal planes are classified as pavement or roofs based on

their elevation.
For each semantic feature, further attributes will be needed ac-

cording to the application scenario. Currently, we are interested in
describing buildings from the energetic point of view (energy demand
and consumption). In particular, the orientation and pitch are crucial
parameters to determine the photovoltaic potential of roofs, and they
are trivially determined from the roof normal. For the Digital Twin of
Catania [46] for instance, we are going to couple these findings with
the overall sunlight received by each roof during a year [47] and the
roof surface to determine the amount of solar panels, their photovoltaic
potential and the expected saving [48].

4. Experiments and results

To test and evaluate our method, we set up a few experiments.
The first exploits the publicly available dataset representing the city
of Tallinn, included in the Building3D framework [12]. The second
experiment focuses on the Vaihingen dataset, which is part of the Urban
Modelling and Semantic Labelling Benchmark by the International
Society for Photogrammetry and Remote Sensing (ISPRS). This dataset
has been provided as a reference for a challenge on urban classification,
3D reconstruction, and 3D labelling. Specifically, we refer to the 3D
labelling, which includes the‘‘roof’’ class. The last experiments come
from datasets acquired in the framework of two Italian projects: the
UISH project [46], and the CTEM project [49], aiming at developing
Digital Twins of Catania and Matera in Italy. The three experiments are
described in the subsections below. Section 4.4 provides a theoretical
analysis of the computational complexity of the pipeline, step by step.

Experiments were conducted on a Windows 11 desktop workstation
equipped with an i9 18-core CPU and 128 GB of RAM.

4.1. Building3D benchmark dataset

Building3D [12] offers an extensive urban-scale dataset designed for
building roof modelling using aerial LiDAR point clouds. This dataset
encompasses over 160 thousand buildings across 16 Estonian cities,
spanning approximately 998 square kilometers. It comprises building
point clouds, roof point clouds, mesh models, and wireframe models.

Tallinn, the largest city within this dataset, contains around 47,000
building point clouds, each stored in XYZ format with detailed informa-
tion including coordinates, RGB colour, near-infrared data, intensity,
and reflectance. Most importantly, the dataset comprehends the results
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Fig. 5. Segmentation and primitive fitting. (a) The set of chunks 𝑖, with 𝑖 = 0,… , 5 returned by the BSP. (b) Result of the RANSAC segmentation applied to each 𝑖. (c) Result
of the aggregation of segments belonging to the same planes after the recognition step. (d) The semantic segmentation including roofs, walls and pavements.
Fig. 6. Histogram of the ratio between the point count of each resulting 𝑅𝑜 and its
corresponding 𝑅𝑏 in the benchmark with respect to the number of buildings. In the
top image, 𝑅0 considers only points on planes classified as roofs, while in the bottom
picture, the value of 𝑅𝑜 represent the sum of points classified as roofs, cylinders and
spheres. Green bins highlight the buildings for which the same number of points of
the benchmark is almost reached, that is the ratio between the point count of each
resulting 𝑅𝑜 and its corresponding 𝑅𝑏 is approximately equal to 1.
6 
Fig. 7. The ratio between the point count of each resulting 𝑅𝑜 and its corresponding
𝑅𝑏 in the benchmark. In the top image 𝑅0 considers only the points classified as roofs,
while in the bottom, the value of 𝑅𝑜 represent the sum of points classified as roofs,
cylinders and spheres.

of roof partitioning, which were generated using a commercial soft-
ware, Terrasolid,2 with manual editing, to create building mesh models
from aerial LiDAR point clouds and building footprints. Subsequently,
mesh faces parallel to the XY plane, assumed to represent facades, were
removed. A point is designated as part of a roof if its distance to the roof
mesh model falls within a specified threshold. Every roof is represented
as a sub-point cloud of its building of origin.

Therefore, in our experiment, we focus on roof identification to
compare our results with the Building3D dataset. We point out that
this dataset cannot be used as a proper ground truth, as it has not been
apparently validated. Indeed, not all the buildings in the dataset do
have a recognized roof. It is however the largest freely available dataset
and better resource for comparison.

As each point cloud in the benchmark represents a single building
and is manageable in size (the largest consisting of approximately 1

2 https://terrasolid.com/

https://terrasolid.com/
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Fig. 8. Example of results on Building3D datasets. For each couple, blue points are classified as roof in the Building3D dataset, while red points show our roof classification.
million points), there was no need for preprocessing the input dataset
to partition it building-wise or to conduct binary space partitioning;
therefore, the process can start directly with point classification. On
each building, the RANSAC technique was applied with the minimum
requisite number of points necessary to identify a geometric feature,
set at 0.2% of the number of the input points. This specific value was
chosen through empirical means and demonstrated effective within
this particular case study. Various segments were produced for each
building, encompassing planes, cylinders, and spheres. Finally, the
Hough transform was employed to aggregate these segments, leading
to the semantic segmentation.

To assess the performance of our approach, we randomly sampled
30,000 buildings from the Building3D dataset, 17,567 of which have a
reference roof available for comparison.

To measure the accuracy of our results, we compare each roof given
by our approach (𝑅𝑜) with the corresponding roof in the benchmark
(𝑅𝑏), and analyse:

• the ratio between the number of points of 𝑅𝑜 and 𝑅𝑏;
• the Hausdorff distance 𝑑𝐻 (𝑅𝑜, 𝑅𝑏) between 𝑅𝑜 and 𝑅𝑏, i.e.

𝑑𝐻 (𝑅𝑜, 𝑅𝑏) = 𝑚𝑎𝑥{max
𝑖∈𝑅𝑜

min
𝑗∈𝑅𝑏

𝑑(𝑖, 𝑗),max
𝑗∈𝑅𝑏

min
𝑖∈𝑅𝑜

𝑑(𝑗 , 𝑖)}

where 𝑑 is the Euclidean distance. Since coordinates of this
dataset are metric, the distance value is expressed in meters.

The ratio between the number of points of each 𝑅𝑜 and its cor-
responding 𝑅𝑏 with respect to the number of building is shown in
Fig. 6 through histograms. The upper image considers as 𝑅𝑜 the number
of points classified as roofs, that is, belonging to planes not strictly
vertical. As you can see, in the first case, we were able to mark as
roof nearly the same number of points of the Building3D benchmark
for about 8200 buildings of the tested cases.

Fig. 8 displays some results of roofs with the most similar number
of points, which are also visually close in terms of shape.

We investigated the extreme cases, where our method labels much
more or much less points. Where 𝑅𝑜 is much greater than 𝑅𝑏, our
method generally performs better, as it is able to identify whole roofs
while the benchmark misses a considerable number of points (see
Fig. 9). Conversely, where 𝑅𝑜 is much lower than 𝑅𝑏, we miss-classified
roofs, even if we correctly segmented them. For very small relative
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inclination of adjacent roof pieces, RANSAC classifies the whole set as
a huge cylinder rather than two planes of similar inclination, or simply
mis-classifies planes into other primitives. In our method, we assumed
that roofs might only be planar, but this is actually not the case: indeed,
other failure examples exhibit cylindrical roofs. Therefore, we tested
the results including also cylinders and spheres as roofs (see Fig. 10).
The bottom histogram in Fig. 6 shows the distribution considering as
𝑅𝑜 the number of points classified as roofs, cylinders and spheres. The
performance apparently improves, since the same number of points of
the benchmark is approximately reached for about 11400 buildings.

This result is confirmed by the graph in Fig. 7 in which the trend of
the ratio between the number of points of each 𝑅𝑜 and its corresponding
𝑅𝑏 tends to be linear. Specifically, by comparing the two graphs, it is
evident that including cylindrical and spherical primitives improves th
result.

Finally, Fig. 10 show same samples of the dataset in which part
of roofs are classified as cylinders and spheres by our method. In
conclusion of this analysis, the classification of roofs composed of
only planar segments can be improved by considering also segments
classified as cylinders or spheres. This assumption holds for this dataset,
because it is derived from aerial LIDAR acquisition and so, roof points
are well represented while façades are nearly absent. In any case,
we plan to automatically classify cylinders and spheres as roofs (and
discriminate them from other features, like columns) by studying the
rotational axis (cylinders) and the position of the centre (centre).
Note that some parts of roofs in Fig. 10 are misclassified by RANSAC
despite the fact that they are planar segments and the recognition
method approximated them with degenerate cylinders and spheres with
a satisfactory approximation error.

Fig. 11 provides histograms of the Hausdorff distance with respect
to the number of buildings. This analysis shows that the distance to
their counterparts in the benchmark is lower than 1 meter for nearly
6,000 buildings out of the 17,567 tested. This number increases in the
second case, in which 𝑅𝑜 represent the sum of points classified as roofs,
cylinders and spheres: more than 8,000 buildings have distance less
than one meter, and more than 14,000 are below five meter distance.

Unsuccessful cases are due to noisy points wrongly classified as
roofs, as shown in Fig. 12. In particular, the ten cases with highest
Hausdorff distance comprehend trees next to the buildings, which our
method misclassifies as roof in some cases.
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Fig. 9. Results on the Building3D datasets where our method performs better in the roof identification. For each couple, blue points are classified as roof in the Building3D dataset,
while red points show our roof classification. The examples in this figure have the highest number of points ratio between 𝑅𝑜 and its corresponding 𝑅𝑏 in the Building3D dataset.
Fig. 10. Results on the Building3D datasets. In the first column, blue points are classified as roof in the Building3D dataset. In the second column, red points represent a planar area
and are classified as roof by our method. In the third column, the combination of planar segments and cylindrical (in green) and spherical (in purple) segments. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4.2. Vaihingen dataset

The Vaihingen dataset is a subset of the data used for the test
of digital aerial cameras carried out by the German Association of
Photogrammetry and Remote Sensing (DGPF) [50]. In particular, it
consists of areas of the city characterized by different kind of built
structures. This dataset has been used by several works, especially
based on supervised learning, because has been the subject of some
challenges and as such provides a ground truth (e.g., [36]). The chal-
lenge presented in [51] was focused on urban object detection and
3D building reconstruction and involved high-scale features (building,
road, tree, low vegetation/grass, and artificial ground). The challenge
8 
was extended to 3D semantic labelling,3 providing a training set and
a test set. Each point in the dataset is labelled according to 9 classes,
including façades and roofs [52].

To evaluate our approach, we focused on the test set shown in
Fig. 13 and we computed the precision and F1 score to compare it
with the other challenge participants, besides the accuracy measures
proposed in Section 4.1. Regarding roofs, we reach a precision of

3 https://www.isprs.org/education/benchmarks/UrbanSemLab/3d-
semantic-labeling.aspx

https://www.isprs.org/education/benchmarks/UrbanSemLab/3d-semantic-labeling.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/3d-semantic-labeling.aspx
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Fig. 11. The histogram of the Hausdorff distance with respect to the number of
buildings. In the upper image 𝑅0 considers only the points classified as roofs, while in
the lower 𝑅𝑜 includes points classified as cylinders and spheres.

Fig. 12. Example of failure result, where part of the vegetation is classified as roof.
This example corresponds to the highest Hausdorff distance value.

0.94, while for façades we gain a precision of 0.62. The value ob-
tained for façades is lower because in the building-wise partitioning
step (Section 3.1) some points of façades are often missed and the
RANSAC suffers from the different resolution between façades and roofs
typical of aerial LiDAR acquisition. At the same time, the use of the
footprint allows us to extract even roof folds that are not labelled in
the reference. We provide Fig. 14 for a qualitative evaluation of the
result.
9 
Fig. 13. Labelled points extracted from the Vaihingen dataset (test set).

Fig. 14. Visual comparison. (Top) The original Vaihingen dataset with points classified
as roof highlighted in yellow and building footprints shown in the background. (Bottom)
Our results with points classified as roof highlighted in red, projected onto the original
dataset. We zoomed in on specific details to demonstrate that the quality of the result
depends on the footprints used for the building-wise partitioning. The building-wise
partition was achieved by offsetting the footprints by 1 meter.
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Fig. 15. Visual comparison with [14]. From left to right: reference image; results
by Wang and Ji [14]; results without fold distinction, and in green two areas of false
negatives; our result. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 16. Visual comparison with [9]. From left to right: reference image; results by Li
et al. [9], and in the white boxes two dubious areas; our result; the building footprint
as an additional reference. Given the footprint, it seems points in the upper box are
correctly identified as roof by both methods, while those in the lower box seems to be
false positives.

Considering the evaluation of the results of about 25 methods
provided by the authors of the challenge,4 we note that our approach
achieves the highest precision with respect to the other methods anal-
ysed, except for few of them. Those methods actually use not only
geometric information as we do, but consider additional data, i.e., in-
tensity and RGB attributes for the approach in [38] and the intensity
in [37]. Concerning the F1 score, we reach a value of about 0.91,
which is among the highest for methods based on geometry alone. We
also note that our method suffers of a few false negatives due to the
building-wise segmentation based on footprints: extruding sections of
roofs and part of façades are not analysed at all. For this reason, we
have introduced a small buffer area around the footprints, but we have
to improve this aspect in future developments.

We end the analysis of the results quantitatively considering the
accuracy measures introduced in Section 4.1. The method obtained a
value of ratio of 0.89 for roofs and 0.72 for façades, that confirm the
presence of few false positive mentioned before. Finally, the values
of Hausdorff distance 13.3 and 17.8 for roofs and façades, respec-
tively. These values represent the distance between the buildings in the
groundtruth that are not identified by our method (see Fig. 14, bottom,
zoom on the right side).

From a qualitative point of view, we visually compare our results
with [9,14] on two buildings of Vaihingen. With reference to Fig. 15,
our approach recognizes the two lateral triangular folds, but [14]
provides more pleasant roof borders thanks to an optimization step. In
Fig. 16 our method misses the central ridge points but avoids the false
positives at the bottom. Overall, we note that comparison with other
methods is hindered by too scarce and not validated ground truth.

4.3. Matera and Catania digital twin case studies

The digital representation of the morphology of the urban envi-
ronment is a core component of the system and the work reported
in this paper represents a building block for the reconstruction of a
semantic 3D model for two Italian cities, Matera [49] and Catania [46],
where two digital twins are being developed on part of their urban
area. In both cases, various datasets were acquired, using different
acquisition techniques. In particular, an extended area of the city centre
of Catania (approximatively 2.5 squared km) has been digitized by

4 https://www.isprs.org/education/benchmarks/UrbanSemLab/results/
vaihingen-3d-semantic-labeling.aspx
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Table 1
Size of the input datasets of Catania (millions
of points).
Input # Points

Elephants’ Palace ≈ 541
St.Agatha’s Cathedral ≈ 850
Palazzo dei Chierici ≈ 757

aerial photogrammetry, giving a point cloud of nearly 100G points
(average ground sampling distance 3–5 cm per pixel); terrestrial long
and mid range laser scanning systems, reaching a resolution smaller
than 12 mm has been used to capture at high resolution buildings
of high artistic and historical value. These are important buildings in
the main square of Catania (Piazza del Duomo), namely Palazzo degli
Elefanti (Elephants’ Palace), the St. Agatha’s Cathedral (also called
‘‘Duomo’’) and Palazzo dei Chierici (Table 1). Acquiring stations have
been placed in 110 locations overall, at ground and higher floors, in
the nearby alleys and on opposite buildings; the setting did not allow
a perfectly even covering and density.

Concerning the acquisition of the city centre of Matera, LIDAR aerial
acquisition technologies has been adopted for surveying a large area of
the municipality, while a portable, lightweight laser scanner has been
used for terrestrial acquisition of limited sites of interest, as shown
in [53].

Referring to the three historical buildings of Catania, the input point
clouds have been divided into sub-clouds, each containing a maximum
of 10 million points. In contrast, this partitioning step was not required
for processing the Matera dataset, as the size of each building was
small enough for direct processing. However, in the case of Matera,
the building-wise partitioning approach was necessary to isolate single
buildings.

Fig. 17 shows the result of the pipeline run on the ‘‘Palazzo degli
Elefanti’’ dataset. The binary space partitioning returned 103 sub-
clouds, that are then processed by the RANSAC obtaining 306 segments
(see Fig. 17a). The last step, that is the aggregation of segments
belonging to the same primitives (see Fig. 17b). Finally, Fig. 17c shows
the resulting semantic segmentation of the palace, distinguishing the
planes among façades (in light blue), roofs (in red) and pavement (in
green). As you can see in Fig. 21, this dataset also presents cylinders
and spheres within the building, on the arcades of the cloister.

Fig. 18 presents the result of our method on the ‘‘Palazzo dei
Chierici’’ dataset, a more complex structure than the previous one.
The result of the binary space partitioning step is a set of 162 sub-
clouds. This point clouds are processed by the RANSAC producing
435 segments (see Fig. 18a) that are then aggregated (see Fig. 18b).
Finally, in Fig. 18c the resulting semantic segmentation of the building
is shown, highlighting in light blue the planes belonging to façades, in
red the planes belonging to roofs and in green the planes belonging to
the pavement.

Fig. 19 provides the result of our algorithm on the ‘‘St. Agatha
Cathedral’’ dataset. As you can see, this dataset has heterogeneous
density: the upper parts including the roof and the decorations in the
high portion of the cathedral exhibit a lower resolution. This is due to
the constraints in the acquisition phase, as the terrestrial laser stations
could only be placed on accessible terraces of adjacent buildings and
necessarily could not cover at best the highest parts. Unfortunately,
the segmentation given by RANSAC suffers from this double resolution
and consequently loses some elements of the original point cloud. The
binary space partitioning step produces in this case a set of 189 sub-
clouds. This point clouds are processed by the RANSAC producing 3698
segments (see Fig. 19a) that are then aggregated into 172 primitives
(see Fig. 19b). Fig. 19c shows the resulting semantic segmentation of
the building, highlighting in light blue the planes belonging to façades,
in red the planes belonging to roofs, in green the planes belonging
to the pavement and in pink the parts corresponding to cylinders and
spheres.

https://www.isprs.org/education/benchmarks/UrbanSemLab/results/vaihingen-3d-semantic-labeling.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/results/vaihingen-3d-semantic-labeling.aspx
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Fig. 17. Palazzo degli Elefanti: in (a) the resulting preliminary segmentation, where different colours correspond to different segments; in (b) the segments that belong to the
same plane are grouped; in (c) the planes classified as façade, roof and floor are grouped. Courtesy of Romanengo et al. [11].
Fig. 18. Palazzo dei Chierici: in (a) the resulting preliminary segmentation, where different colours correspond to different segments; in (b) the segments that belong to the same
plane are grouped; in (c) the planes classified as façade, roof and floor are grouped. Courtesy of Romanengo et al. [11].
Fig. 19. St. Agatha’s Cathedral: in (a) the resulting preliminary segmentation, where different colours correspond to different segments; in (b) the segments that belong to the
same plane are grouped; in (c) the planes classified as façade, roof and floor are grouped.
Fig. 20. Semantic segmentation of the Church of Saint Dominic in Matera (5.8 millions
of points).
11 
Fig. 21. Focus on an arcade in the cloister of Palazzo degli Elefanti dataset, in which
parts of cylinders and spheres are detected. In (a) four segments classified as cylinders
(in purple and light blue) and spheres (in yellow and magenta); in (b) the aggregation
of segments belonging to the same cylinder (in light blue) and sphere (in yellow).
Courtesy of Romanengo et al. [11]. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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In the experimental configuration described in this section, we set a
onstant value for the input parameter in the RANSAC method, which

corresponds to 0.5% of the size of every sub-cloud produced through
inary space partitioning. It is important to note that the proper param-
ter value is linked to the density of the point cloud: for point clouds
ith heterogeneous density this can provoke an undersegmentation, as

n the case of St. Agatha Cathedral where only a partial detection of the
oof occurs. Indeed, roof and facades were acquired using photogram-
etry and terrestrial laser scanning respectively, resulting in sensibly
ifferent resolutions.

As for the Matera case study, we used the footprints downloaded
rom OpenStreetMap [40] to segment individual point clouds. In Fig. 20

we show a result over the fusion of the aforementioned segmented
cloud from the aerial survey, plus points acquired with a mobile
scanner from the ground level. There is a significant different in data
density, with the ground acquisition providing much higher resolution.
Despite this, roofs, walls, dome and also the pavement are nicely
captured.

4.4. Computational complexity

In this section, we discuss and analyse the computational cost of our
roposed pipeline, which is a smart combination of various techniques.
e provide a detailed breakdown of the computational complexity

or each component of the pipeline, demonstrating how our approach
chieves a balance between computational efficiency and segmentation
uality.

The building-wise partitioning explained in Section 3.1 uses the ray
intersection method. For each polygon’s edges, an intersection analysis
is conducted. The time complexity for each intersection analysis is 𝑂(1).
Since the number of edges is equal to the number of nodes, the time
complexity of point-in-polygon determination is linear with respect to
the number of input points [54].

The binary space partitioning in Section 3.2 follows the methodol-
ogy outlined in [44], simplified to consider an input point cloud with-
out topology. According to the original approach, the time complexity
is 𝑂(𝑁), linear with respect to the number of input points.

The classification step is based on the implementation provided
y Schnabel et al. [20].

The recognition step based on the HT is based on a voting pro-
cedure, the complexity is dominated by the size of the accumulator
function, discretized as a matrix: denoting 𝑀 the number of entries of
this matrix, the computational cost of the HT recognition on a segment
is 𝑂(𝑀 𝑆), where 𝑆 represents the number of points of the segment.
Note that, the number of parameters involved in the HT computation
directly influences the size of 𝑀 . Following the strategy described
in [29], the number of parameters is 3 for planes and 1 for spheres
nd cylinders.

The aggregation of segments that belong to the same primitive
described in Section 3.5 consists of a complete-linkage clustering, one
can consider more efficient implementations, such as the one proposed
in [55], which costs 𝑂(𝑁2

seg) where 𝑁seg denotes the number of seg-
ments in the output segmentation. Although the dissimilarity-matrix
assembly costs 𝑂(𝑁2

seg), one may note that each entry is computed
independently; note that the task is embarrassingly parallel.

5. Discussion and conclusions

In this paper we have proposed a new method for segmenting
arge scale point clouds representing urban 3D scenarios into geometric
rimitives to detect some urban features, such as building façades,
oofs and arcades. Our approach is able to segment huge point clouds
hanks to the application of an out-of-core partitioning, it avoids over-
egmentation and is robust to input noise and outliers. We showed
esults on the semantic segmentation of buildings of high artistic and

istorical value, acquired at very high resolution, and our method was

12 
able to handle such large data sets. The method is not limited to point
clouds representing a single building: the approach is general, and we
xtended it to handle whole districts or cities, by partitioning the cloud
uilding-wise first.
Limitations. As expected, the HT makes the overall approach robust

to noise, outliers and missing data; however, the approach can fail in
case of misclassification of the RANSAC segmentation that the HT is
unable to correct. We have already identified the search for cylindrical
and spherical parts of roofs as one of the priorities to improve results.

In addition, our method is not insensible to uneven sampling den-
sity. Indeed, the RANSAC algorithm tends to loose some elements of the
original point cloud in case it present parts with different resolutions
(see Fig. 19).

A major issue for the approach is still the computation time. Cur-
ently, the BSP and RANSAC run in parallel; however, the HT compu-
ation is still too slow for a single process. Indeed it depends both on
he number of points processed and on the dimension of the parameter
pace as explained in Raffo et al. [29]. To give a general idea of the

computational cost, the time required for the experiments in Section 4.1
is in the order of days, for the results shown in Section 4.2 is in
the order of minutes, while for the high-resolution point cloud in
Section 4.3 is in the order of hours. For this reason, it definitely requires
a parallel implementation as well, which should be straightforward to
btain given the nature of the approach. This will be tackled in the very
ext steps.

The pipeline, while fully automatic, depends on the selection of
a few parameters used as thresholds that need to be adjusted on the
pecific dataset.
Future Works. Further improvements are needed to reach the goal of

a semantic 3D city model. One concerns the building-wise partitioning,
now based on the building footprints. Since parts of the building may
extend beyond the footprint, such as sloping roofs, in our implemen-
tation we added the option to set a buffer to the polygon. In our
xperiments, we set the same buffer for all buildings, but a special care
ust be paid to points belonging to the street floors and platforms,

which would be split in different clouds. Besides, the distinction be-
tween horizontal roofs and ground is done by elevation comparison,
building-wise. This works flawlessly for flat cities, but we expect it to
fail in case of very steep morphology, or with complex housing units
that can be adjacent and partially overlapping. An extreme case can be
seen in the historical centre of the city of Matera, where it is common
to ground a building partially on top of another. For these reasons, we
have to work on the choice of the buffer, according to the features of
he urban environment.

Aerial acquisition is typically characterized by missing data on the
açades aligned with the flight direction: buildings cast ‘‘shadows’’ to
he structures that remain behind and are hidden to the sensor. To
vercome this intrinsic issue, we are developing a refinement procedure
n which we combine information form the building footprint and
he aerial point cloud to refine the covered façades by sampling the
arametric representations of the corresponding planes.

Future efforts will regard the recognition of further urban elements.
mall, short or thin objects require a high sampling resolution for
eing represented in the point cloud with a proper density to allow
utomatic recognition: this is the case of platforms, ramps, stairs, street
amps, traffic lights, and more. At a certain extent, ‘‘semantic’’ rules
an help the identification even if the coverage in the input data is
oor: e.g., we look for platform alongside the street floor. For urban
urniture, sometimes the punctual location of items is available from on
ite surveys, and this could be a strong a-priori to drive the recognition
f nearby points belonging to the element.

On the long term, our research will define a hierarchy of urban
elements and arrange the city model accordingly, the ultimate goal
being the definition of a semantic Level-of-Detail (LOD) for city repre-
sentation, where urban elements can be represented at full resolution,
or with a simplified geometric mock-up, or simply by a placeholder, or
not being represented at all according to the user query to the semantic
3D model.
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