
Technical Report 2005

1

An XML Web Services
mobile interaction solution

for X-10 Powerline Networking

Tarrini L., Miori V.

Abstract. In this article, we will outline the implementation of X10Services, an

infrastructure for presenting services to mobile computing devices such as PDA or

Smartphones. The infrastructure uses the X-10 powerline networking as

communication protocol and the Web Services paradigm as the core technology

for exposing household appliance across the network. Therefore X10Services is a

software layer that is able to translate the requests of diverse mobile clients versus

the X10 devices. In this application, we illustrate the main features about the X10

protocol communication focusing on Microsoft Framework .NET 2.0 for the

interaction among the PC and serial IO port.

Keywords: Powerline Networking, X-10, C#, .NET, Home Automation, XML Web

Services.

1. Introduction

With the inevitable arrival of broadband access, the demand for sending digital voice, video and

Internet data within the home will increase continuously. In the context of networking

environment, “no new wires” is the term applied to phoneline and powerline technologies that

use existing wiring systems to distribute high-speed data and video throughout the house. The

advantage of using existing infrastructure as data transmission medium is that every building or

house are already equipped with several outlets and phone wires.

For many years, the powerline have been used for home automation. In fact the most important

types of home automation applications include controlling lights, ventilators, security systems

and temperature levels within the home. The main protocols for home automation and control

are mainly based on one of these major powerline technologies namely, CEBus [1], LonWorks

[2], Konnex [3], and X10 [4].

The X10 protocol is able to satisfy these entire scenario in a simple way enabling X10-

compatible devices, which are electrical directly plugged into a wall outlets, to communicate

each other, even though the lack of many services, as plug and play or ACK of prompt,

represents a strong limitation. As a result, reliability remains as a major issue in X10 powerline

networking.

In this article, we propose a new approach for domotics platform based on open XML Web

Services standards. Our system is called X10Services and the goal is to design an

infrastructure for providing services in standard way to diverse mobile clients, such as cell

phones like Smart Phone 2003 and Personal Digital Assistants (PDAs), into home environment.

Technical Report 2005

2

Then our system uses the Web Services as software layer to control X10 household appliance

and the X10 protocol as powerline communications. In particular we have chosen to focus on

one specific X10 product, the CM11A System [5]. It is an extremely inexpensive and easy to

use product but it can give the most basic understanding of home automation potential.

The CM11A is connected to computer via serial cable on a COM port, allowing the computer to

send X10 commands. The Microsoft Framework .NET 2.0 (beta version) provides

System.IO.Ports namespace with the ability to access the serial ports on a computer, and to

communicate with serial I/O devices. The final product will be a reusable class library wrapped

into an ASP.NET Web Services for controlling devices within the house.

This paper is organized as follows. In the section 2 we are going to look at entire system

architecture of the X10 communication describing the mechanisms of interaction among

transmitter and receiver. Section 3 explains a typical scenario in which we develop a Home

Automation System based on Web Services, called X10Services and how mobile phone can

interact with the system. Section 4 talks about potential future work that can be done.

2. X-10 Protocol

2.1 Introduction

This section deal with the popular X-10 (also referred to as X10) communication protocol.

Building control technology as provided by X10 is specialised and simple way of automated

process control, dedicated to the needs of home applications. The X10 technology was first

introduced in 1978 by X-10 Inc., for the Sears Home Control System and the Radio Shack.

X10 communications protocol allows to control lights, household appliances, thermostats and

other devices in the house that are connected to X10 modules that receive signals over home’s

AC power lines. A device is assigned an “id” by input from the user, for example, setting a

switch to a certain housecode and numbercode. Each unit has an address composed by a letter

from A to P called the House Code, and a number from 1 to 16 called the Device Code. Using

the combination of those two codes, it becomes possible to address (to plug) up to 256 devices

on one power-supply network.

Figure 1 Typical X10 Module

But these devices are susceptible to damage by voltage spikes. The signal attenuation and line

noises generated by external sources can transiently interfere with the typical X10

communications. As a result, reliability remains a major issue in X10 powerline networking [6].

Technical Report 2005

3

Complex faults are unavoidable in X10 networking, and the faults manifest themselves as

anomalous behaviour on the powerline in terms of illegal sequences of X10 commands.

A typical system consists of multiple X10 modules attached to the powerline communication

medium. A CM11A PC interface attached to the PC via serial port can be used to generate and

receive X10 commands on the powerline. Other modules act as receivers and they control the

household appliance attached to them. A two-way receiver can also respond to commands. An

RF transceiver module converts RF signals from remote controllers into X10 commands. A

sample powerline network is provided below in figure 2.

Figure 2. Typical Powerline Network

X10 originally started out as unidirectional only; however capability for bi-directional

communication has also been added to it. Anyway the vast majority of X10 communication

remains unidirectional only. There are two general classifications of devices: controller and

receiver modules. The controller sends signals over existing AC wiring to receiver modules. The

modules are adapters connected to outlets and controlling simple devices. X10 transmission

rate is limited to only 60 bps, which makes it unsuitable for carrying Internet traffic around the

house.

The next section illustrate in details the method of transmission and reception.

1.2 The technology

The most problematic part of this technology is the method in which the binary data are

transmitted from one device (the transmitter) to another device (the receiver). Every device has

an integral "zero crossing" detector that serve to synchronization.

Technical Report 2005

4

Figure 3. Point of synchronization
So the transmitter know when to send data and the receivers know when to look for data.

Receivers “sense” the 0° point and then look for signal in a small window time, only 0.6 milli-

seconds in duration. Since these devices don’t have any direct wiring between them, it is

necessary to devise a way of sending data over the existing electrical wiring. Then these signals

involve short RF bursts which represent digital information. The goal should be to transmit as

close as possible to the zero crossing point, and I have to do it within 200 micro-seconds of the

zero crossing point.

The actual binary data is transmitted by sending 1ms bursts of 120kHz just past the zero

crossing of the 60Hz power. It is also obvious that complementary bit pairs are necessary.

Therefore, a binary "1" is defined as the presence of a pulse, immediately followed by the

absence of a pulse. A binary "0" is defined as the absence of a pulse, immediately followed by

the presence of a pulse.

Figure 4. Binary data transmission
While the transmitted pulses are to be a full 1ms in duration, the receivers are designed to open

a receive window of only 0.6ms. In order to provide a predictable start point, every data frame

would always begin with at least 6 leading clear zero crossings, then a start code of "pulse",

"pulse", "pulse", "absence of a pulse" (or 1110). The start code uses a different format. It’s

always the same two cycles sequence.

Figure 5. Start Code

Once the Start Code has been transmitted, the first nibble (half a byte), is immediately followed

by a "letter" code designations. It is also decided to randomly rearrange the patterns so that the

"A", "B", "C" codes, etc., did not fall in the predicable binary pattern. It is easy to see that in

reality, the "M" code is the first in the binary progression.

Technical Report 2005

5

Figure 6. Letter Code

In one contiguous bit stream, the second nibble provides the second half of the address. The

last bit appears to be a part of the "number" code but in reality it is a function bit. Whenever this

function bit is setted to a "0", it designates that the preceding nibble as a number code and

therefore it is a part of the address.

Figure 7. Number Code

A complete code transmission encompasses eleven cycles of the power line. The first two

cycles represent the Start Code, the next four cycles represent the House Code and the last five

cycles represent the Number Code. For purposes of redundancy, reliability and to

accommodate line repeaters, the X-10 protocol calls for every frame of data to be transmitted

twice.

Technical Report 2005

6

Figure 8. Standard X10 transmission

Whenever the data changes from one address to another address, from an address to a

command, or from one command to another command, the data frames must be separated by

at least 6 clear zero crossings (or "000000"). Actually, of course, the sequence of six "zero’s"

resets the shift registers.

Figure 9. Silente in the wire

Once a receiver has processed its address data, it is ready to receive a command. As before,

all data frames must begin with a start code. The next nibbles gives the letter code and the next

again is the command. Since the last bit is the function bit (bf = 0 = address number, bf = 1 =

command) all the commands end with a binary 1.

Technical Report 2005

7

Figure 10. Letter Code

This diagram shows the six most often used commands only. As before, all X10 protocol

transmitters send their data frames twice.

Figure 11. Command Code

For example if the CM11A sends this information, A-On, would take 47 cycles of the 60Hz sine

wave. That would equate to 0.7833 seconds, or in practical terms, just under 1 second.

Figure 12. Complete transmission

Technical Report 2005

8

Of course, some commands take less time. When sending an "All-Lights-On" command, for

example, no address needs to be sent. Therefore the entire two-frame sequence takes only one

third of a second (actually, 0.3666 seconds, but who’s quibbling). If your receivers react on the

first frame, it could take mere two tenths of a second (0.1833 seconds).

Up to this time, all the diagrams have shown only one pulse but that is not entirely correct. In

fact, our electrical power is a 3 phases system and so all X-10 compatible transmitters "should"

send out 3 pulses.

Figure 13. Three phases in the powerline

The transmitter releases a burst at its own zero crossing, then sends it again 60° later; the

second burst coincides with the zero crossing of the third phase. Then another burst is sent

120° from the first, which corresponds with the zero crossing of the second phase.

Figure 14. X10 transmission in powerline

2. System Architecture

 2.1 The scenario

The goal is to develop a home automation system, called X10Services, based on Web

Services paradigm that will allow users to control in standard way electric household

appliances, e.g. turning on-off lights, into home environment. Then the idea is opening the home

middleware versus Web Services Architecture in the sense that any devices, sensor, appliance

communicate by this stack. Any computational element taking part into home environment must

thus be able to expose its services as Web Services and the user interacts by using the mobile

computing devices, such as smartphones or PDA.

Technical Report 2005

9

First of all, turning phone into a SOAP client might have some performance costs related to

slow data speeds and processing both HTTP commands and XML. However development

environments such as J2ME or .NET Compact Framework represent robust platforms for

developing advanced mobile clients. In this application we experiment the Compact as client for

X10Services.

All the application are tested with Whidbey environment, last version of Visual Studio. Examples

of possible scenarios are energy management, heating control, and lighting control.

Figure 15. X10 Scenario

The typical X10 consists of transmitter module and several receiver modules. The transmitter

module used in this project is the CM11A. This device is connected to serial cable on a COM

port and allows the computer to send and receive commands.

Figure 16. CM11A Transmitter

The two standard types of receiver modules are:

ß Appliance Module, AM12, which allows on-off control for an appliance.

ß Lamp Module, LM12, which allows dimming of a lamp as well as on-off control.

Figure 17. Lamp Module

Technical Report 2005

10

Figure 18 illustrates the proposed architecture model.

Figure 18. Architecture Model

In the next section we describe the single block of the architecture.

2.2 X10 Communication

The lower level of the architecture is the X10 transmitter, the CM11A module, which is

connected to the computer via a COM port. It manages the communication in powerline with the

sensor devices plugged into wall outlets. There are many implementations for controlling a

CM11A and surely, the most important is the open source Java library unit written by Jesse

Peterson [7]. This library is written in Java programming language and it provides a high level

interface to the CM11A module.

Instead our solution is based on Microsoft Framework Class Library (FCL) .NET 2.0, beta

version, developing a new library, based on C# language that it is available and downloadable

[8].

Nowadays, Microsoft .NET 1.0 provides reasonably comprehensive coverage of the

functionality of the underlying Win32 API. However, RS232 serial communications is an area

that is conspicuously absent from this library. The only way of coding serial communications

applications in .NET is to import the outdated and somewhat limited MSComm ActiceX control.

Then the solution is to utilize Platform Invocation Services (P/Invoke) to interact with the Win32

API directly and enables managed code in the Common Language Runtime to make calls into

unmanaged DLLs.

Instead the version 2.0 of .NET provides features for the serial communication by the

System.IO.Ports namespace and in particular the SerialPort class. This class provides a

framework for synchronous and event-driven I/O, access to pin and break states, and access to

serial driver properties. It can be used to wrap Stream objects, allowing the serial port to be

accessed by classes that use streams. That is, SerialPort class represents a serial port

resource.

The methods of the SerialPort class that we use in this application are:

ß Open(): opens a new serial port connection.

ß Write(byte[], int, int): writes an array of bytes to the communications resource file.

ß ReadByte(): reads one byte from the port connection.

Technical Report 2005

11

ß ReadTimeouts: get or sets the number of milliseconds before a timeout occurs when a

read operation does not finish.

ß Closes(): closes the port connection.

The figure shows the serial parameters for the communications between the interface and PC.

Figure 19. Constructor for the CM11A Class

Then the CM11A class must manage all the communication among the PC and CM11A device.

Figure 20. CM11A write on the serial port

The X10 library used in this project is a file called CM11A.dll.

2.2 X10 Web Services

XML Web Services are a set of protocols to enable communication between independent

software modules that offer their functionality in the form of services. The services are self-

contained, modular applications, that can be described, published, located, and invoked over a

network [9].

Figure 21. Publish, Find, and Bind

Then we propose to expose the services offered by the X10 network following the Web Services

paradigm in the sense that any device, sensor or appliance implements the standard web

service stack. In this away the mechanisms for the communication, service description, and

discovery will be based on standardized protocols. In this article, we consider only the baseline

of Web service specification: XML, SOAP, WSDL, and UDDI, figure 22.

This application is a part of a larger research program [10] of CNR-ISTI Domotics Lab, aimed at

realizing a framework, service oriented, for the integration and interoperability among domotics

middleware.

Technical Report 2005

12

Figure 22. Web Services Stack

To avoid getting bogged down in the logic associated with CM11A control, we have provided an

implementation in the CM11A dynamic link library, which encapsulates all the logic necessary to

support the Web Services application. In fact the separation of the control logic from the XML

Web Service implementation allow us to remain focused on the XML Web Service aspects of

development. This approach is also representative of many real business scenario in which the

logic is developed separately. In general, we think that separating the underlying logic from Web

Services interface that is exposed to the outside world is good practice.

The ASP.NET WebMethod framework make it possible to built Web Services that communicate

over HTTP. The calls for Web Services are always directed to URLs with .asmx extension. The

IIS server intercepts these calls and passes all the related packets on the registered ASP.NET

ISAPI filter (aspnet_isapi.dll). The figure shows the ASP.NET architecture to process Web

Services.

Figure 23. ASP.NET architecture

CM11AServices, as the name implies, is used to provide X10 services. The Control method

has public accessibility and is annotated with WebMethod attribute, making it accessible to Web

Services client. When invoked, the method instantiates a CM11AController object,

implemented in the CM11A.dll library, and call the methods to control the household appliances.

The client do not need to know the details of the platform or language used to implement the

service. The only requirement is that the client be able to formulate requests and process

responses using the correct protocol and message structure.

2.3 Smartphones and Personal Digital Assistant Simulators

Microsoft .NET Compact Framework is a subset of .NET Framework that is designed to run on

resource-constrained, providing support for managed code and XML Web Services. The

Technical Report 2005

13

Compact is available for devices running Windows CE operative system and it is fully integrated

into Visual Studio .NET. Then the X10 client, X10Mobile has been developed by this tools.

Although the structure and the syntax of SOAP are fundamentally simple, trying to manually

encode complex data as SOAP messages, can result difficult. The use of proxies takes the

complexity of SOAP processing out of our application. Proxy classes remove the need for the

programmer to manipulate SOAP message directly. Then to invoke the Web Service’s

functionality, a client application simply calls the proxy class method.

Figure 24. Proxy class in Web Services

To consume our Web Service, it needs to add a Web Reference to CM11AService and Visual

Studio generates automatically a proxy class with methods that serve as proxies for each

exposed method of the Web Service. In figure we show the .

Figure 25. Web Reference in Visual Studio

In this way the X10Mobile receives a WSDL document that describes the service’s operations in

terms of messages and how they are bound to various protocols and endpoints. Thus the

X10Mobile has enough information to interact with the X10 Web Services. In this application,

the mobile devices knows where the WSDL lives and a discovery mechanism isn’t needed.

3. Conclusions and Future Work

We have described the architecture of the X10Services, which could be used to control

appliances within the home environment. This work also demonstrated how it is possible to

expose the services provided by the X10 protocol and the interaction with mobile computing

devices that support the Compact .NET Framework.

A good amount of work remains to be done on the interface of the application. The future idea is

to extrapolate in XML the description of devices and automatically generate the proper

interface. This is a difficult problem that can be addressed in the future. In addition to those

problem, the appliance’s remote controls have only unidirectional communication to the

appliances wherein it can only change the current state of the appliance to another state, but

Technical Report 2005

14

there is no feedback from the appliance back to its control. Then it needs to resolve this

problem providing a two-way communication with the appliance.

References

[1] CEBus. http://www.cebus.org/

[2] LonWorks. http://www.echelon.com

[3] Konnex. http://www.konnex.org/

[4] X10. http://www.x10.org

[5] CM11A. ftp://ftp.x10.com/pub/manuals/

[6] Anish, A., Rajesh, J., Yi-King, W. “Model-based Fault Detection in Powerline Networking”.

Proceedings of International Parallel and Distributed Processing Symposium (IPDPS’02), IEEE, 2002.

[7] Jesse, P. http://www.jpeterson.com/

[8] C#_CM11A. http://hats.isti.cnr.it/download

[9] Web Services Overview. http://www-106.ibm.com/developerworks/webservices/library/w-ovr/

[10] HATS Project. http://hats.isti.cnr.it

