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In this chapter we report on the measurements of the overlap distribution of the
replica symmetry breaking solution in complex disordered systems. After a general
introduction to the problem of the experimental validation of the Parisi order pa-
rameter, we focus on the systems where the measurement has been possible for the
first time: random lasers. Starting from first principles of light-matter interaction we
sketch the main steps leading to the construction of the statistical mechanical model
for the dynamics of light modes in a random laser, a spherical multi-p-spin model
with complex spins. A new overlap is introduced, the intensity fluctuation overlap,
whose probability distribution, under specific assumptions, is equivalent to the Parisi
overlap distribution. The experimental protocol for measuring this overlap is based on
the possibility of experimentally realizing real replicas. After a description of the first
experiment on the random laser made of T5COx grains we review and discuss various
experiments measuring the overlap distribution, as well the possible connection with
Levy-like distribution of the intensity of the light modes around the laser threshold,
the connection with turbulence in fiber lasers and the role of spatial etherogeneities
of light modes in random media.

1. Introduction

The theory of replica symmetry breaking (RSB) relies on an order parameter which is

not a number or a vector, rather it is a function of a continous variable.1,2 This is the

main novelty of the theory of Parisi: to conceive and construct an order parameter able

to identify a thermodynamic phase of a system with multi-equilibria, a signature for

complex disordered systems. The function in question is the probability distribution
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Fig. 1. Left: sketch of a full replica symmetry breaking probability distribution of overlaps between

states. The Edwards-Anderson parameter qEA denotes the modal of the distribution, its meaning being
the overlap of a state with itself. The thick grey bar represents a Dirac delta on q = qEA. Right: the

functional order parameter q(x), i.e., the inverse of the cumulative distribution (1), for a full RSB

system. The point xc of discontinuous derivative is Eq. (1) computed at q = q−EA.

P (q) of the overlap q between equilibrium states, or its cumulative

x(q) =

∫ q

dq′ P (q′), (1)

or, equivalently, the inverse of the cumulative q(x), see Fig. 1. Numerous and aston-

ishing are the outcomes of this idea, right in the original replica formalism, as well as

in further reformulations, such as the cavity method.3–5 Though 40 years have passed

since the conception of such quantity in spin-glasses, to experimentally observe the order

parameter in its full functional glory is still a rather difficult and challenging task.

In this paper, after exploring the early attempts to experimentally expose the inner

structure of the organization of states predicted by the RSB theory in complex disor-

dered systems, such as spin-glasses and structural glasses, we will show how, with some

preliminar theoretical work, the distribution of the values of the overlaps between states

can be sampled in random lasers.6–12

A first measurement of a peculiar behavior compatible with the - soon incoming -

Parisi picture was performed by Nagata, Keesom and Harrison in 197813 on a spin glass

alloy, the cuprate-manganese, CuMn. There, the magnetic susceptibility was carefully

measured in static magnetic fields using two procedures. In the first one the system is

cooled down at nearly zero magnetic field and, then, at different temperatures the system

is perturbed by a magnetic field and the response is acquired. In the second protocol

the CuMn is cooled down embedded in a constant uniform magnetic field. Then, at

each temperature the field is perturbed and the field cooled susceptibility measured.

Both the zero-field-cooled (ZFC) and the field-cooled (FC) susceptibility behaviours,

respectively χFC and χZFC, are qualitatively reproduced by the RSB theory. It holds

χZFC = β(1−qEA) and χFC = β(1−〈q〉), where qEA is the Edwards-Anderson parameter,

else called the self-overlap of a state with itself, and 〈q〉 denotes the average over the
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Fig. 2. Reproduced from Ref. 13 with permission of the American Physical Society. Magnetic sus-

ceptibility of the spin-glass CuMn in the static limit. Curves (b) and (d) are related to measurements
taken after zero-field cooling and curves (a) and (c) to measurements after cooling in a field of 5.90G.

The two top curves (a) and (b) are the temperature dependece of the susceptibility of an alloy with

2.02% of Manganese. The two lower curves (c) and (d) are measured on a sample with 1.08% of Mn.

distribution P (q). This early kind of experiments on spin-glasses provided modal and

average values of the distribution.

How to measure the whole distribution? In principle one needs to measure many

configurations of spins {σ} in time, in a well thermalized spin glass. This task is very

hard, because of the difficulty of measuring several atomic spins at once and because

glassy systems hardly reach equilibrium.

Exploiting exactly the slow relaxation dynamics of glassy systems, an alternative

procedure circumventing the direct measure of spins configurations was devised in 1998

by Franz, Mezard, Parisi and Peliti.14 Under the assumption of stochastic stability

they were able to prove that in aging out-of-equilibrium complex disordered systems,

in the long time limit of both the waiting and the observation time the ratio between

the response and the correlation comes out to be equivalent to the cumulative overlap

distribution at equilibrium. In formulas, being the overlap q the asymptotic limit of the

two-time self-correlation function,

q = lim
t→∞

C(t, t′),

the long times limit of the fluctuation-dissipation ratio,

X̃(q) ≡ lim
t,t′→∞

χ(t, t′)

1− C(t, t′)
, (2)

results to be equal to the cumulative (1). Furthermore, under those assumptions the

integrated response function depends on t′ and t exclusively through the correlation

function: χ(t, t′) = χ(C(t, t′)).

To measure such a fluctuation-dissipation ratio in real experiments, though, proved

harder than expected. Three impressive experiments were carried out in the last 20
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Fig. 3. Fluctuation-Dissipation ratio on ageing systems. (A) the CdCr1.7In0.3S4 spin-glass, repro-

duced from Ref. 15 with permission from American Physical Society, (B) Laponite clay, reproduced
from Ref. 17 with permission from American Physical Society, and (C) polivynil-acetate, reproduced

from Ref. 18 with permission from Nature Publishing Group.

years,15–18 yielding the behaviours of response vs correlation behavior χ(C(t, t′)) repro-

duced in figure 3. We briefly report and comment the outcomes.

The first experiment is on samples of micrometric powder grains of an insulating spin-

glass CdCr1.7In0.3S4.15,16 Very careful SQUID measurements of magnetic fluctuations

allowed to provide the χ(C) function of the correlation function C(t, t′) displayed in fig.

3-A. The experiment is very accurate and deals with extremely weak thermodynamic

fluctuations. Strict preacutions must be taken and kept for the whole duration of

the experiment, but very long measurements are required in order to acquire enough

statistics. One day of measuremenys is required to provide data curves with long waiting

times and, furthermore, the outcome does not appear clean enough to demostrate the

equivalence of (1) and (2) in the infinite times limit.

In an experiment on the reorientational dynamics of Laponite disks,17 using the

orientational correlation functions measured by depolarized dynamic light scattering

and the corresponding response function via the electric field induced birefringence,

another kind of χ(C) is obtained. In this case laponite is shown to undergo a glassy

transition in density and not in temperature. At high packing density it provides the

behavior of a (fragile) structural glass. Therefore, it is expected to be one step RSB-like

in the asymptotic limit, as, actually shown in fig. 3-B, where χ(C) displays two slopes.

In this experiment, though, as the waiting time t′ = tw grows the FDR tends to the

equilibrium ratio 1/T and the out-of-equilibrium counterpart of the cumulative overlap
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distribution appears to vanish.

Finally, the nanoscale polarization fluctuations and dielectric responses were mea-

sured in polyvinyl acetate (PVAc),18 also known to be a fragile glass. PVAc displays

aging at T ' 0.98 Tg and at such temperature the system is expected to be one-step

RSB, i. e., χ(C) is expected to tend to a function as the one in Fig. 3-C, whose

derivative is a step function. Instead, according to the analysis with the available data

a continuously bending χ(C) is interpolated, hinting the occurrence of a continuous

RSB, as in the proper spin-glass case, or hinting the occurrence of strong finite time

pre-asymptotic effects.

To sum up, so far, through stochastic stability in off-equilibrium dynamics no P (q)

has been experimentally demonstrated so far. Experimentally, indeed, things turn out

to be different even from the most sophisticated numerical simulations, see [19] for a

recent reference.

This is where photonics comes in: unlike single spins in amorphous magnets, or local

degrees of freedom (e.g., density, orientational, polarization fluctuations) in structural

glasses, single light mode intensities are degrees of freedom accessible to experimental

measurements, at least partially. This partiality can be dealt with introducing a new

overlap, the intensity fluctuation overlap, whose distribution is equivalent to the Parisi

overlap distribution (under given conditions that will be discussed in section 2.3).

Before showing how a P (q) can be acquired in experiments on random lasers and

other photonic systems we very briefly recall how and to what extent a random laser is

a complex disordered system possibly undergoing a transition to a RSB phase.

2. Random Lasers as Complex Disordered Systems

Random lasers are made of an optically active medium and randomly placed scatter-

ers7,9–12,20–27 (sometimes both in one7). The first provides the gain, the latter provide

the high refraction index and the feedback mechanism needed to lead to amplification

by stimulated emission. As opposed to ordered standard multimode lasers, random

lasers do not require complicated construction and rigid optical alignment, have omni-

directional emission and high operational flexibility. They give rise to a number of

promising applications in the field of speckle-free imaging,28,29 granular matter,25,30

remote sensing,12,31,32 medical diagnostics and biomedical imaging,12,33–36 optical am-

plification and optoelectronic devices.12,37,38

Random lasers emission spectra above a pump threshold may show multiple sub-

nanometer spectral peaks, as well as single narrow curves with 5-10 nm width. De-

pending on the material, and its optical and scattering properties, random spectral

fluctuations between different pumping shots (i. e., different realizations of the same

random laser) may or may not vary significantly. A wide variety of spectral features is

reported,26,30,39–41 depending on material compounds and experimental setups. Ran-

dom lasers can be built in very different ways, can be both solid or liquid, can be

2D or 3D, the optically active material can be confined or spread all over the volume.

Moreover, random lasers are, usually, open systems where light can propagate in any

direction rather than being confined between well specific boundaries (mirrors) as in
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standard lasers and the emission acquisition can be on the whole solid angle.

2.1. The leading model Hamiltonian

Since the original proposal that a random laser might be described by means of a spin-

glass-like Hamiltonian,42,43 various derivations have been put forward44–47 of the leading

model

H[a] = −
∑
k1,k2

J
(2)
k1k2

a∗k1 ak2 −
∑

k1,k2,k3k4

J
(4)
k1k2k3k4

ak1a
∗
k2ak3a

∗
k4 + c.c., (3)

where a’s are complex numbers denoting the complex amplitudes of the light modes and

the J ’s denote quenched random mode-couplings. The most fundamental derivation

is the construction starting from the light-matter interaction between the atoms or

molecules of the gain medium, thus displaying an optical gap, and the electromagnetic

(e.m.) field of the light.45 We briefly skecth the basic steps moving from a quantum

description of the operator dynamics to a classical Hamiltonian theory for the stationary

regime of light amplification by stimulated emission in a disordered medium. The

quantum stochastic differential equations describing the interaction of an atom with an

optical gap ωo between two levels |A〉 and |B〉, see figure 4, with the electromagnetic

field of frequency ωλ, represented by the creation and annihilation operators α and α†,

are the Jaynes-Cummings equations48

α̇λ = −ıωλaλ −
∑
µ

γλµαµ +

∫
drg†λ(r) σ−(r) + Fλ (4)

σ̇−(r) = −(γ⊥ + ıωo)σ−(r) + 2
∑
λ

gλ(r) σz(r) αλ + F−(r) (5)

σ̇z(r) = γ‖ (Sρ(r)− σz(r))−
∑
λ

(
g†λ(r) α†λσ−(r) + h.c.

)
+ Fz(r), (6)

where σz(r) ≡ |A〉〈A| − |B〉〈B| is the population inversion operator, σ−(r) ≡ |B〉〈A| is

the lowering operator and σ+(r) ≡ |A〉〈B| the raising operator. The coefficients gλ(r)

are the atom-field coupling constants, γµν is the damping matrix and it is associated

to the fact that the cavity is open in random lasers and radiative modes are there,

as well. The coefficients γ⊥, γ‖, are, respectively, the polarization decay rate and the

population inversion rate (γ‖ ≡ (γA + γB)/2, see figure 4). The atomic density is ρ(r)

and S represents the intensity of the external optical pumping.

Noise terms Fλ, F−(r) and Fz(r) are there, as well, and they pertain to different

stochastic phenomena. The term Fλ is due to the presence of radiative modes in open

cavities and the effetive interation between those and the modes inside the cavity. The

atomic noise terms F− and Fz arise because of the intercation between the e.m. field

and the optically active medium.

Applying perturbation theory the dependence of the atomic operators σ− and σz
on the field operator αλ can be worked out, leading to a single equation for coupled

α’s. Degrading from quantum operators to complex numbers we are, eventually, left

with a single stochastic differential equations for the electromagnetic field modes α in

the cavity. These modes, at frequencies ωλ, are called “cold cavity” or “passive” modes
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Fig. 4. Pictorial representation of the light-matter interaction. The atom here illustrated has five

states denoted by letters |A〉, |B〉, |C〉, |D〉 and |G〉, the ground state. γx, with x = A,B,C,D are

the decay rate of the excited states to a state of lower energy. The energy gap between |A〉 and |B〉 is
~ωo where ωo lies in the optical frequency spectrum and contributes to the laser in the regime of high

external pumping, when many atoms coherently emit at once.

because they are intrinsic of the system and not activated by any external pumping.

In presence of external excitation and above the lasing threshold the evolution in the

lasing regime is better expressed in the basis {Ek(r)} of the so-called slow amplitude

modes. A slow amplitude mode ak is a mode that, for long enough time, displays a

harmonic oscilating behavior at some given angular frequency ωk, so that the overall

electromagnetic field can be written as

E(r, t) =

N∑
k=1

ak(t) Ek(r) eıωkt + c.c. (7)

for a system with N modes. The relationship between passive and slow amplitude modes

is not unique and can always be expressed in the form

αλ(t) =
∑
k

Mλk ak(t) eıωkt. (8)

For a simple case where the relationship between passive and lasing modes can be

worked out exactly at the quantum level one can see, e.g., Refs. [49,50]. It is called

slow amplitude approximation because the dynamics of ak(t) is much slower than the

one of the mode oscillation eıωkt, so that the Fourier transform of ak(t) eıωkt tends to a

Dirac delta δ(ω − ωk).

Carrying out this transformation eventually leads to a stochastic differential equation

of the potential kind for the slow amplitudes:

ȧk(t) = −∂H[a]

∂a∗k
+ Fk(t) (9)

where the noise Fk(t) can be taken as white noise and the Hamiltonian H[a] turns out

to be

H[a] = −
∑

k | FMC(k)

J
(2)
k1k2

a∗k1 ak2 −
∑

k | FMC(k)

J
(4)
k1k2k3k4

ak1a
∗
k2ak3a

∗
k4 + c.c.. (10)
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In the above Hamiltonian definition a constraint is imposed on the frequencies induced

by the slow amplitude condition, that we call the Frequency Matching Condition (FMC).

For two and four modes it reads, respectively,

|ωk1 − ωk2 | . γ (11)

|ωk1 − ωk2 + ωk3 − ωk4 | . γ, (12)

where γ is the finite linewidth of the modes. This can only be derived in a quantum

theoretical approach,49 whereas, for what concerns the classical approach, we can in-

clude γ as a parameter coherent with experimental observations. In equation (10) two

effective coupling terms appear: a two- and a four-mode coupling, whose expressions

are derived as the Hamiltonian is built. In the slow amplitude mode basis they depend

on the spatial intersection of the eigenfunctions Ek(r) of the modes modulated by the

spatial profile of, respectively, the linear χ(1) and the nonlinear χ(3) susceptibility of the

random medium:

Jk1k2 ∝
∫
dr Ek1(r) Ek2(r) χ(1)(r|ωk1 , ωk2) (13)

Jk1k2k3k4 ∝
∫
dr Ek1(r) Ek2(r) Ek3(r) Ek4(r) χ(3)(r|ωk1 , ωk2 , ωk3 , ωk4) (14)

One last fundamental ingredient of modes dynamics in a lasing material to be com-

bined in the formulation of the Hamiltonian dynamics is gain saturation.

Gain saturation is fundamental to have a stationary solution at all in the systems

under study, that might be represented as a potential, equilibrium-like, solution to the

stochastic equations. The most “energetic” phenomenon that can occur in a system of

atoms in a laser is when they all are in their excited optical level and they all emit a

photon at once. As such an event were to occur, the atoms emission would be soon

afterwards depleted because they have to invert their population and that takes time.

Therefore, the gain - that is the capability of the material of amplifying light - saturates

at a certain level Esat. Its behavior as a function of the total energy E pumped into the

system, is usually modeled as46,51

g(E) =
g0

1 + E
Esat

.

Even though the external pumping continues the amount of lasing will not increase

indefinitely, no matter how strong the pumping is , but it will reach a stationary regime.

The overall energy E shared by the modes in the cavity slowly fluctuates between an

upper and a lower bound, but its change is much slower than the one of the single mode

intensities. As a further approximation, then, in the spin-glass theory for random lasers

we assume that the dynamics of the total energy of N modes is so slow to be considered

as a constant with respect to the dynamics of the single photon emissions at any time

t, i.e.,

E =
∑
k

|ak(t)|2 = ε N = const. (15)

In figure 5 we pictorially sketch this approximation in a two-mode case. From the

point of view of the phasors ak(t), whose dynamics is governed by (9), Eq. (15) is a
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Fig. 5. A sketch of the spherical approximation for the gain saturation.

global contraint for the dynamics of a configuration to be on the 2N hyper-sphere of

radius
√
εN . This is the reason why this kind of spins are refereed to as “spherical”

in statistical mechanics literature.52 We will, therefore, call the leading model (10) a

complex spherical 2+4-spin spin-glass model.

With such a global constraint the stationary regime can be described as if the system

were at equilibrium at an effective temperature (a “photonic” temperature Tph) related

to the ratio P between the external pumping rate and the spontaneous emission rate.

The latter is proportional to the real heat bath temperature T , whereas the first one is

proportional to the energy (15) stored into the photonic system. In a formula, the role

of the temperature driving the lasing transition is played by the rescaled temperature

Tph =
T

ε2
=

1

P2
=

1

βph
. (16)

2.2. An analytic solution in the narrowband approximation

The spin-glass model (10) in the limit of narrow bandwidth of the random laser spec-

trum tends to the generalization of the fully connected spherical 2+4-spin spin-glass

model53–56 to complex spins. In the narrowband approximation51,57 all resonances have

frequencies so close to each other that their difference is of the order of the linewidth γ,

so that the conditions (11) and (12) are always satisfied. Under the further assumption

that all modes have a spatial extension of the order of the whole volume of the lasing

material, Eqs. (13) and (14) imply that the interaction network can be taken as fully

connected.

The fully connected limit has been extensively studied in the thermodynamic limit

in Refs. [45–47,58] where the couplings (13) and (14) are chosen to be independent

identically distributed gaussian variables of given mean J̄/Nδ and variance σ2
J/N

δ.

The exponent is δ = 1 in the two-body term and δ = 3 in the four body term. In this

way the magnitude of each coupling decreseas as the number of coupling of a single

mode and the Hamiltonian (3) on the fully connected graph of interaction if always

extensive.
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The ratio RJ ≡ σJ/J̄ between mean square displacement and mean value represents

the degree of disorder of the system.a Glassy random lasers, i.e., random lasers dis-

playing anomalous shot-to-shot fluctuations of the emission spectra, will generally have

a large RJ (even infinite if we take J̄ = 0). In Figure 6 we reproduce a typical phase

diagram in the pumping rate and degree of disorder. Four thermodynamic phases can

occur depending on the degree of randomness RJ . As the disorder is small (or none) the

model (3) displays an incoherent wave regime at low pumping and a Standard Mode-

Locking laser regime at high pumping P. This regime also represents Random Lasers

with no glassy features, that is, lasers with random resonances in the spectrum but no

anomalous flutucations from shot to shot (the resonances are random but they are al-

ways the same). As randomness in the mode-coupling increases a Phase-Locking Wave

regime is predicted to occur, that is a regime where the phases of the modes are locked

while no resonance occurs in the mode intensities. This phase vanishes as RJ → ∞.

Eventually, for large enough randomness a Glassy Random Laser occurs above a certain

pumping threshold. This is the regime where the spin-glass theory of multistate systems

is necessary in order to deal with the complexity of the spectral behavior.

In the highly (quenched) disordered region the order parameter identifying the ran-

dom lasing threshold is the probability distribution of the overlap

qab = <
[

1

N

N∑
k=1

ā
(a)
k a

(b)
k

]
. (17)

between any two replicas a and b.

Some instances of RSB solution in different points of the phase diagram, and the

relative P (q)’s are reported in Figure 6 (the Parisi distributions are displayed in the

rightmost column). For low pumping the incoherent wave regime is described by a

replica symmetric solution. Increasing the pumping the system undergoes a transition

to a Glassy Random Laser with infinite breakings of the replica symmetry (Full RSB).

Increasing further P the laser moves to a 1-Full RSB phase and, eventually, for very

large pumping, where the pairwise (i.e., linear) contribution to (3) plays no role anymore,

a one step RSB phase correctly describes the thermodynamic behavior fo the Glassy

Random Laser.

To measure such an overlap one has to access real and imaginary parts of the complex

amplitude of each light mode ak in each replica. Else said the intensity and the phase:

I
(a)
k =

∣∣∣a(a)k ∣∣∣2 (18)

φ
(a)
k = arg

(
a
(a)
k

)
. (19)

As will be discussed in a while, even though the intensities can easily be measured from

the emission spectra, the phases in random lasers are hardly accessible experimentally.

To overcome such a hindrance it is possible to define an overlap between replica involving

intensities alone. Or, better, involving their fluctuations.

aThe model can be implemented with two different degrees of randomness for the 2- and the 4-body

interactions45 but for the sake of the presentation we consider them equal to each other.
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Fig. 6. An instance of a phase diagram of a random laser model (3) in the narrowband approximation

(left). Four thermodynamic phases can occur depending on the degree of randomness RJ : Incoherent
Wave (IW) at low P and low disorder RJ , Standard Mode locking (SLM) at low RJ and high pumping

P, Phase-Locking Wave (PLW) in a range of disorder RJ large but not extremely large, Glassy Random

Laser (GRL) above a certain pumping threshold for large RJ . The latter is the regime of broken replica
symmetry and needs to be analyzed by means of Parisi theory for complex disordered systems. The

dotted lines are first order transition lines, that is, above and below those dotted lines a region of phase
separation is expected (spinodal lines, and how to computed them, are reported in Ref. 45). On the

right the IFO and Parisi overlap distributions P (C) and P (q) are displayed in four points of the phase

diagram along a line of increasing pumping for a given degree of disorder. For low pumping the IW
regime is described by a replica symmetric solution. Increasing P the system becomes a GRL with a

Full RSB. Increasing further P the laser moves to a 1-Full RSB phase and, eventually, for very large

pumping, the behavior of the GRL is described by a one step RSB phase. Repoduced from Ref. 59
with permission from Nature Publishing Group.

2.3. The intensity fluctuation overlap (IFO)

Let us define the fluctuation between the intensity I
(a)
k of a single resonance (a single

mode k) in the spectrum of a single replica (a) and its average at equilibrium 〈I(a)k 〉:

∆
(a)
k =

I
(a)
k − 〈I

(a)
k 〉

2
√

2 ε
=
I
(a)
k − 〈I

(a)
k 〉

2
√

2T
, (20)

where the normalization factor
√

8 is a pedantry and simply depends on the coefficients

in the definition of (3).

We can, then, introduce the overlap between the intensity fluctuations of two replicas
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a and b:

Cab ≡
1

N

N∑
k=1

∆
(a)
k ∆

(b)
k . (21)

In the fully connected model with large disorder the distribution of the Intensity

Fluctuation Overlap (IFO) is proved to be equivalent to the one of the Parisi overlap

(17) squared. Indeed, for each couple of replicas the identity holds:

Cab = q2ab , a 6= b (22)

In Figure 6 we show some examples of both distributions as the system undergoes a

phase transition from an incoherent wave regime to a lasing regime that is random and

glassy.

2.4. Mode-locked random laser theory and numerical simulations

Moving to more realistic random lasers one should relax the narrow-band assumption.

Indeed, the optically active materials composing random lasers have, usually, a wide

emission spectrum in which many resonances take place above the lasing threshold. That

is, a more realistic system is modeled by equation (10), implementing the conditions

(11), (12). Such conditions imply a dilution of the interaction network of O(N)50,60 and

induce some kind of metrics in the space of the frequencies. b

Even though the 2-mode terms are important for the occurrence of a RSB solution

of the full kind, in this section we will focus on the 4-mode contribution alone, that is

responsible for the onset of a glassy lasing regime, though as a one step RSB solution.

This means that in the lasing regime one should expect a P (q), or P (C), like in figure

6-d and 6-a: a single central peak at high temperature that, as the lasing threshold is

overcome, also displays two more side peaks at low T .

To analytically solve a diluted (that is not sparse, nor fully connected) system with

a deterministic prescription is still an unsolved problem in replica theory but one can

resort to Monte Carlo numerical simulations. c

In figure 7 we report instances of average overlap distributions at various tempera-

tures T for a random laser model of N = 66 on a mode-locked graph obtained simulating

different replicas with the Exchange Monte Carlo, or “Parallel Tempering” algorithm.

This exploits the properties of detailed balance in a Markov chain dynamics of the

bA model with 4-body interaction, that represents the fundamental non-linear ingredient to yield

lasing at high pumping (low temperature) will, therefore, display O(N3) mode-coupling terms in the

Hamiltonian (if the modes are spatially extended to a finite fraction of the volume of the lasing material).
This also implies that the δ exponent introduced in section 2.2 in the average and variance of the random

coupling distribution will be descreased by one. The 2-body term will have a sparse structure (δ = 0:

each mode has a finite number of connection, whatever N), whereas it will be δ = 2 for the 4-mode
couplings.
cWe also stress that to use a sparse approximation in this case would not allow to use the cavity method
because the variables are not locally confined, the “spins” are not |s|2 = 1 as the Ising, the XY61,62 or

the Heisenberg spins. Instead light mode amplitudes only have an overall constraint (15) and locally

one or a few of them might condensate the whole power at disposal, |a|2 = O(N), leaving nothing for
all the others. This is a case where the equivalence of the canonical and the microcanonical ensembles

break down and cannot be studied in the present form.
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Fig. 7. Left: average Parisi overlap distribution P (q) from numerical simulation of the dynamics of the
4-spin complex spherical spin model with J̄ = 0 (“infinite” degree of randomness RJ ), N = 66 modes

at four different temperatures across the critical point, Tc = 0.61(3).63 Right: average distribution

P (C) of the Intensity fluctuation overlap, Eq. (21), for the same system. In both plots, at each
temperature, distributions are averaged over 100 disordered samples. All samples are thermalized, that

is the configurations are all at equilibrium and the time average coincides with the ensemble average.

system of spins through different parallel thermal baths in order to drastically reduce

the thermalization time in the spin-glass phase. The implementation of the dynamics,

moreover, is carried out on GPU’s so that both the just mentioned parallel dynamics

and the computation of every single energy update can be spread simultaneously on

several threads. This is a technical but crucial point in order to have reasonable simula-

tion times in a system that is Non-Deterministic Polynomial Complete, has continuous

variables and a number of interactions growing like N3. We notice that the IFO dis-

tributions, that in the fully connected case are equivalent to the Parisi distributions,

on the mode-locked graph appear to have much stronger finite size effects, as analyzed

in Ref. 63. On the other hand their signal of a transition to a multi-state phase of

nontrivial correlations is much more evident than with the P (q), that one has to look

in the log scale to appreciate the occurrence of side peaks.

We stress that, even if diluted with the FMC, Eq. (12), the thermodynamic solution

is expected to be a mean-field one, as in the case of the fully connected model, as

confirmed by recent accurate numerical results.63

When moving from analytical and numerical results to real experiments different

aspects have to be taken into account. As in the numerical simulations, also in experi-

ments the number of modes is finite. However, in experiments on glassy random lasers

it is rather difficult to scale the system studying a controlled trend in N and perform

finite size scaling as in numerical simulations.64 Moreover, also the mode resolution is

finite and we do not know much about the spatial extension of the modes and, therefore,

about the interaction graph, nor about the magnitude and sign of the couplings. As

anticipated, when the IFO are introduced in experiments only the mode intensity is

acquired and not the mode phase. Moreover, one does not have access to instantaneous

emission intensitities but only to the integrated intensity emission spectra. It is, thus,

rather difficult to directly control equilibration. Notwithstanding it has been possible to

obtain clear signatures of RSB across the lasing threshold in experiments on a particular

subset of random lasers, having a quenched scattering structure and displaying large
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Fig. 8. a) 3D-reconstruction of confocal microscopy Z-stack images of a T5OCx solid sample. The

right and the bottom panels report the yz- and the xz- sections, respectively. Scale bar: 20µm. b)
High resolution single shot spectra taken in the same conditions, 10mJ pump energy. Inset: sketch of

the experiment. Reproduced from Ref. 65 with permission from Nature Publishing Group.

shot-to-shot spectral fluctuations.

3. Experimental measurements of the Parisi order parameter

In this section we will describe and discuss the first experimental demonstration of RSB

reported in ref. 65 and give an overview of the numerous interesting results that have

been published after this work. A subsection will be dedicated to material requirements

for reproducing real replicas in random lasers.

3.1. Experimental procedure

In Ref. 65 the authors measure shot to shot intensity of the emitted light from a suitable

random laser, calculate the fluctuation overlap C of these experimental observables

and build its distribution at various input pumping. The so obtained P (C) profiles

unambigously reproduce the predictions of RSB theory made by Giorgio Parisi.

The authors use a thiophene (T5OCx) dye chemically treated to have a thick amor-

phous solid material. When this material is pumped by an external source, above a cer-

tain threshold the fluorescence is amplified and a stimulated emission is obtained.66–68

The amplification is sustained by the multiple light scattering inside the disordered

system. A representative confocal image of the sample is depicted in fig 8a. For the

investigation of emission fluctuations the sample is pumped by an external pulsed laser

and at each pulse the emission is collected. A sketch of the pumping and collecting

geometry is given in the inset of fig. 8b.

Fig. 8b shows single shot RL emission spectra, taken at identical experimental con-

ditions. The distinct peaks are the activated modes or resonances of the disordered

laser. Their configuration changes from shot to shot evidencing that each time the sys-

tem is pumped the numerous passive modes, characteristic of the material, compete for

the available gain, giving rise to several different compositions of the activated spectral

peaks.69 This is also evidenced by the direct visualisation of the sample during pump-
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Fig. 9. Snapshots of RL emissions. Single shot optical images and corresponding emission spectra
(insets) during the pumping of the sample in the same experimental conditions. The input energy is

10mJ. Reproduced from Ref. 65 with permission from Nature Publishing Group.

ing, as reported in fig. 9, where four different fluorescence images taken at four single

shots exhibit different emission patterns and spectra. From shot to shot the size and

the brightness of the luminous spots change showing that also the spatial structure of

the modes changes. Such behaviour is strongly dependent on the input energy and it

occurs above a pumping threshold that is the RL energy threshold. Below this pumping

energy only spontaneous emission (fluorescence) is observed, above this threshold the

system becomes a RL with strongly variable emission.

In fig. 10 emission spectra of subsequent 100 shots at two different pump energies

are shown. At low energy (fig. 10a) only noisy variations of the spontaneous emission

are observed, while at high energy (fig. 10b) the spectra fluctuate randomly from pulse

to pulse. These experimental results can be analyzed in the framework of replica theory.

Indeed, the solid property of the material guarantees the reproducibility of the same

disordered network of mode interactions from shot to shot. Bond-disorder is quenched

and real replicas of the same random laser sample are reproduced at each illumination

shot. Each spectrum can, thus, be considered as the intensity configuration of a different

state of the same thermodynamic glassy phase. Though for the theory, cf. Eqs. (3),

(10), the spins are complex mode amplitudes, the experimental accessible observables

are their intensities (18), Iak , at wavelength λk of the shot a: k is the spin index and a

is the replica index.

It is important to recall that the effective statistical mechanics Hamiltonian vari-

ables are the complex amplitudes ak,44,45,70 not accessible in the experiments. While,

as anticipated in section 2.2, their square moduli, the emitted intensities, are easily
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Fig. 10. a-b) Emission spectra at low energy 1mJ (a) and high energy 12mJ with evident fluctuations

(b). The experimentally accessible variable, coarse graining the behavior of single modes, is the intensity
I(k) at a given wavelength λk. In figure b the resonances I(k) for two and for different replicas (spectra),

denoted by α (red arrows) and β (blue arrows), are pointed out at.

measurable. In section 2.3 we reported that such coarse-graining is refined enough to

validate the possible breaking of replica symmetry in random lasers and their glassy-like

behaviour by introducing the IFO parameter C, Eq. (21), between pulse-to-pulse inten-

sity fluctuations in different replicas. Now we are considering experimental replicas and

the experimental IFO is naturally defined as

Cab =
1

Nab

N∑
k=1

∆
(a)
k ∆

(b)
k , (23)

where

∆
(a)
k ≡ I

(a)
k − Ī(k) (24)

with Ī(k) the average over Ns replicas (emission spectra) of each mode intensity

Īk =
1

Ns

Ns∑
a=1

I
(a)
k (25)

and where the normalization factor is

Nab ≡

√√√√ N∑
k=1

(
∆

(a)
k

)2√√√√ N∑
k=1

(
∆

(b)
k

)2
(26)

From the Ns measured spectra the set of all Ns(Ns − 1)/2 values of C for each

different input energy is calculated and their distributions P (C) are depicted in fig. 11

(top).

Six examples are reported in fig. 11, top row of panels, for increasing pump energy.

At low energy (fig. 11 left-most plot), all overlaps are centred around the zero value,

meaning that the electromagnetic modes (spins) are independent and not interacting,

they are in the paramagnetic regime. By increasing energy, modes are coupled by the

nonlinearity and this corresponds to a non-trivial overlap distribution. In the high

energy glassy phase, with all modes highly interacting and frustrated by the disorder, C
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Fig. 11. Top line: distribution function of the experimental overlap P (C), Eq. (23), showing replica

symmetry breaking by increasing pump energy. Bottom line: distribution of the theoretical IFO (21) by
increasing pumping. Reproduced from Ref. 65 and 59 with permission from Nature Publishing Group.

Fig. 12. The value qmax corresponding to the position of the maximum of P (|C|) versus pumping. A

sharp transition from 0 to a large value is evidenced. Reproduced from Ref. 65 with permission from
Nature Publishing Group.

assumes all possible values in the range [−1, 1]. Such behaviour of the P (C) evidences

the fact that the correlation between intensity fluctuations in any two replicas depends

on the replicas selected. The variety of possible correlations extends to the whole range

of values. This is a manifestation of the breaking of the replica symmetry. In the bottom

row the analytical results of the fully connected model of sections 2.2-2.3 are reproduced

for a heuristic comparison.

In fig. 12 a useful parameter qmax corresponding to the position of the maximum

of P (|C|) versus pumping is shown: it changes drastically from 0 to a very large valure

next to 1 signaling a phase transition at about 3mJ, this is the RL energy threshold.

As shown in figures (6) and (7), the onset of the transition to the glassy phase occurs as

soon as the P (C) develops non-gaussian tails. Taking as a reference the Full Width Half

Maximum (FWHM) of the low pumping gaussian distribution one might, therefore,

improve the identification of the random lasing threshold as the pumping energy at

which the area outside the range of 2 FWHM is sensitively larger than 2%.
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These findings besides being a first experimental demonstration of the RSB theory,

are also relevant in photonics. The overlap distributions and qmax are now used in many

works to measure the energy threshold of RLs and are considered a powerful tool to

identify the RL behaviour and distinguish it from other emission mechanisms.

3.2. Material requirements for reproducing real replicas.

Before reporting the main results of RSB in other kinds of RL, it is important to stress

the concept that not all random lasers show strong emitted intensity fluctuations and

consequent breaking of replica symmetry. In ref. 65, for instance, it is demonstrated the

lack of RSB in a RL made of a dyed colloidal dispersion. Indeed, in a fluid sample the

particles tend to move from shot to shot during a single experiment and, therefore, the

set of possible multiple scattering trajectories experienced by the light pumped into the

system change. This implies that the optical susceptibility, as well as the normal mode

profiles in (13) and (14) change giving rise to a different quenched disordered sample

every shot. Under this conditions a RL sample is not replicated but a new RL, with

a new random coupling configuration, is realized at every shot, unless the liquid is not

stable enough (from the point of view of photonic time-scales) to allow the realization

of replicas. Within this discussion, we report that RSB has been evidenced in liquid

phase RL samples for instance in Ref. 71 and Ref. 72.

In Ref. 71 a dyed sol-gel colloidal suspension with modified amorphous TiO2 scatter-

ing particles, made on purpose to strongly hinder photodegradation and precipitation,

shows clear glassy random laser behaviour. The spectra are analysed by following the

procedure reported in section 3.1 and RSB is evidenced. Although the authors do not

deepen on the fact that in liquid materials the structural composition changes in time

due to the brownian motion of the particles, they directly test the robustness of their

samples against tens of thousand of shots and give evidence that emission spectra from

single pump shots can be properly considered as replicas. As pumping increases from

the incoherent wave regime across the lasing threshold the P (C) behaviour is, indeed,

qualitatively similar to the one reported in figure 11: a low pumping P (C) with a single

gaussian peak in zero develops long tails around the lasing threshold that become side

peaks at larger and larger IFO values upon increasing the pumping.

The opposite approach, pumping energy on a fluid RL whose microscopic scatterers

position certainly changes from shot to shot, is followed in Ref. 72. Experimental evi-

dence is provided of the motion of the scattering particles from shot to shot and, looking

at the IFO distribution, the robustness of RSB theory also in systems with annealed

disorder is claimed. If the statistical mechanical description of glassy random lasers as

spin-glass models is to hold, however, one would expect the occurrence of a behavior cor-

responding to a replica symmetric solution.73 Our point of view is that in solid systems

single shot spectra are considered as replicas because all experimental parameters are

quenched and only the strong interaction between modes (spins) at high pumping (low

temperature) causes the breaking of their symmetry. In fluid materials whose typical

diffusion time-scale is shorter than the experimental time (even though possibly longer

then the single shot duration) the microscopic matter composition changes from shot to

shot. Even though still many modes are randomly activated and interact with quenched
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disordered couplings at any shot and the system is a random laser it is not possible to

look for replica symmetry breaking because real replicas (i.e., same realization of the

random coupling network) are not there.

Looking at the IFO distributions reported in Ref. 72, indeed, thery turn out to

have a sharp change from a gaussian to a purely bimodal distribution across the lasing

threshold. A more likely interpretation of this phenomenon might, thus, be the occur-

rence of bistability, a known phenomenon in standard lasers. Because of randomness

(at each shot a different realization of disordered mode couplings is yielded) some sam-

ples will be lasing after an illuminating shot, while some other might still be in the

fluorescent regime. This implies that the average spectrum Īk over all emissions will

never be similar to any of the single emission spectra: it will be far away from both the

fluorescent spectra and the lasing emission spectra. Therefore, no ∆k in Eq. (24) will

be small and the only values of the IFO available will be large (positive or negative),

inducing a bimodal P (C).
This is also what probably occurs in some other experiments on ordered lasers.

3.2.1. RSB in ordered cavity

We mention two very bright works where RSB has been claimed to occur in standard

ordered cavities. Basak et al. in 2016 report on strong intensity fluctuations in both

liquid and solid dye lasers with Fabry-Perot cavities obtained by the cuvette walls in

the former and by the interface of polymeric thin slab with air in the latter.74 The

samples are pumped with pulsed lasers and by increasing the pumping energy at laser

threshold strong intensity fluctuations are observed. These are analyzed by means of

the IFO distribution and RSB is put forward as an explanation of their behaviour.

Actually, the very detailed analysis performed by the authors demostrates the exis-

tence of a critical interval of pumping energy where, from shot to shot, a fluorescent or

a laser emission take place. This is a clear indication of bistability, in laser language,

corresponding to phase separation in a first order phase transition, in statistical me-

chanics. It is not unexpected, as the statistical physics model for the ordered (or for

the not too disordered) multi-mode laser in a closed cavity corresponds to Eq. (3) with

only the four-mode coupling part and with small enough RJ for the J ’s distribution, cf.

figure 6.

Another example is the work of Moura et al. in Ref. 75 where the IFO distribution is

measured in the spontaneous mode-locking regime of a multimode Q-switched Nd:YAG

laser. The authors rightly assert that the observed phenomenon is quite distinct from

what investigated in random lasers characterized by incoherently oscillating modes. As

they display the P (C), calculated via (23), (24) and (26), vs pumping the lasing threshold

is identified as the sharp transition from a phase of a single gaussian peaked P (C) to a

clean bimodal P (C).
Since in Ref 75 the ensemble of spectra from which the P (C) is computed is very

instructively displayed, it is, therefore, possible to see that above threshold only two

types of spectra are present: a broad, flat fluorescent one and a narrow, spiky lasing

one. Once again, we face bistability. This is expected in the theory transition between

model-locking lasers (ordered or slightly random) as reported, for an instance, by the
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RAPID COMMUNICATIONS
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modes. The relation between the lasing modes and the speckle
contrast was recently analyzed in the context of the steady-state
ab initio laser theory (SALT) [36–38].

The speckle contrast was measured from the central portion
of the speckle pattern with an area of 600 × 600 pixels, to avoid
optical aberrations produced at the edges of the sensor. This
area was divided into subareas of 80 × 80 pixels, obtaining
the contrast for each subdivision and averaging these results.
The system was tested with a 632.8 nm cw helium-neon laser,
yielding a contrast of C = 0.81, equivalent to ≈2 modes.

Figure 2 shows the speckle contrast data. For the sake
of completeness and validation of the experimental setup,
we measured a well-characterized RL based on a rhodamine
6G dye and 250 nm TiO2 particles, pumped by the second
harmonic (532 nm) of a pulsed (7 ns, 5 Hz) Nd:YAG laser.
Figures 2(a) and 2(b) show speckle images similar to those
of Ref. [35], confirming the speckle free regime for the RL.
Figures 2(c)–2(f) display the results for the 30-cm-long RFL
pumped either at 980 or 1480 nm. The same behavior is
observed in the visible dye colloidal RL. Table I summarizes
the contrast ratio and number of modes for the evaluated RLs,
according to Eq. (1). Therefore, it is clearly shown that the
Er-RFL operates in a multimode regime, a requirement for
observation of RSB, since it relies on mode interactions.

The characterization of the RSB phase transition from the
photonic paramagnetic to the spin-glass RL behavior can
be quantified by an overlap parameter qγβ analog to the
Parisi overlap parameter in spin-glass theory [22]. Two-point
correlations can be calculated either among mode amplitudes
aj [24–26] or intensities Ij ∝ |aj |2 [21,27], though the latter
are most accessible experimentally. By measuring fluctuations
in the intensity averaged over Ns system replicas, the overlap
parameter reads [21,27]

qγβ =
∑

k #γ (k)#β(k)
√∑

k #2
γ (k)

√∑
k #2

β(k)
, (2)

where γ ,β = 1,2, . . . ,Ns , with Ns = 1000 for each pump
power, denote the replica labels, the average intensity at the
wavelength indexed by k reads Ī (k) =

∑Ns

γ=1 Iγ (k)/Ns , and
the intensity fluctuation is given by #γ (k) = Iγ (k) − Ī (k). In
the present context, with a cw laser as the pump source, each
set of emission spectrum collected within the time frame of
776 ms is considered a replica, i.e., a copy of the RL system
under fairly identical experimental conditions. In this sense,
we also remark that the random FBGs, which play the role of
the random scattering elements, are static, thus reinforcing the
replica characterization of this 1D Er-RFL system. In order
to confirm that the cw measurements were appropriate, we
repeated the experiment and, instead of keeping the laser
on all the time, we employed a chopper before the Er-RFL
system to turn the pump beam on and off at 200 Hz. The
results were readily reproduced, assuring that the statistical
behavior was maintained. The probability density function
(PDF) P (q), analog to the Parisi order parameter in RSB spin-
glass theory [22], describes the distribution of replica overlaps
q = qγβ , signaling a photonic uncorrelated paramagnetic or
a RSB spin-glass phase if it peaks exclusively at q = 0 (no
RSB) or also at values |q| %= 0 (RSB), respectively.

FIG. 3. (a)–(d) PDF P (q) obtained from experimental data
at the indicated pump powers (normalized with respect to Pth).
(e) Value |q| = qmax at which P (q) assumes the maximum (circles) as
a function of the normalized pump power, together with the FWHM
(triangles) for the sake of comparison. The inset shows the results for
pump powers up to 12Pth, showing the steady behavior.

Figures 3(a)–3(d) display the PDF P (q) obtained from the
experimental data, and Fig. 3(e) shows the value |q| = qmax
at which P (q) assumes the maximum, which is linked to
the Edwards-Anderson parameter in spin-glass theory [22].
Both results are in quite good agreement with the theoretical
predictions and experimental results of Ref. [21]. A sharp
transition coinciding with the threshold is observed from the
photonic paramagnetic [Figs. 3(a) and 3(b), below Pth] to the
spin-glass phase with RSB [Fig. 3(d), above Pth]. Figure 3(e)
displays qmax for pump powers below and above Pth (up to
2Pth), together with the linewidth reduction for the sake of
comparison. The inset shows the results for pump powers up
to 12Pth, showing the steady behavior.

The theoretical background that accounts for the present
findings can be described as follows. In a series of remarkable
works [23–27] a phase diagram for multimode RLs with
disordered nonlinear medium has been recently built based on
Langevin equations for the complex amplitudes of the normal
modes aj (t). For open cavity systems, the general effective
Hamiltonian [26,27] includes a sum of quadratic and quartic
disorder terms in the mode amplitudes. The physical origin
of the quadratic coupling lies in the spatially inhomogeneous
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modes. The relation between the lasing modes and the speckle
contrast was recently analyzed in the context of the steady-state
ab initio laser theory (SALT) [36–38].

The speckle contrast was measured from the central portion
of the speckle pattern with an area of 600 × 600 pixels, to avoid
optical aberrations produced at the edges of the sensor. This
area was divided into subareas of 80 × 80 pixels, obtaining
the contrast for each subdivision and averaging these results.
The system was tested with a 632.8 nm cw helium-neon laser,
yielding a contrast of C = 0.81, equivalent to ≈2 modes.

Figure 2 shows the speckle contrast data. For the sake
of completeness and validation of the experimental setup,
we measured a well-characterized RL based on a rhodamine
6G dye and 250 nm TiO2 particles, pumped by the second
harmonic (532 nm) of a pulsed (7 ns, 5 Hz) Nd:YAG laser.
Figures 2(a) and 2(b) show speckle images similar to those
of Ref. [35], confirming the speckle free regime for the RL.
Figures 2(c)–2(f) display the results for the 30-cm-long RFL
pumped either at 980 or 1480 nm. The same behavior is
observed in the visible dye colloidal RL. Table I summarizes
the contrast ratio and number of modes for the evaluated RLs,
according to Eq. (1). Therefore, it is clearly shown that the
Er-RFL operates in a multimode regime, a requirement for
observation of RSB, since it relies on mode interactions.

The characterization of the RSB phase transition from the
photonic paramagnetic to the spin-glass RL behavior can
be quantified by an overlap parameter qγβ analog to the
Parisi overlap parameter in spin-glass theory [22]. Two-point
correlations can be calculated either among mode amplitudes
aj [24–26] or intensities Ij ∝ |aj |2 [21,27], though the latter
are most accessible experimentally. By measuring fluctuations
in the intensity averaged over Ns system replicas, the overlap
parameter reads [21,27]
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power, denote the replica labels, the average intensity at the
wavelength indexed by k reads Ī (k) =
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γ=1 Iγ (k)/Ns , and
the intensity fluctuation is given by #γ (k) = Iγ (k) − Ī (k). In
the present context, with a cw laser as the pump source, each
set of emission spectrum collected within the time frame of
776 ms is considered a replica, i.e., a copy of the RL system
under fairly identical experimental conditions. In this sense,
we also remark that the random FBGs, which play the role of
the random scattering elements, are static, thus reinforcing the
replica characterization of this 1D Er-RFL system. In order
to confirm that the cw measurements were appropriate, we
repeated the experiment and, instead of keeping the laser
on all the time, we employed a chopper before the Er-RFL
system to turn the pump beam on and off at 200 Hz. The
results were readily reproduced, assuring that the statistical
behavior was maintained. The probability density function
(PDF) P (q), analog to the Parisi order parameter in RSB spin-
glass theory [22], describes the distribution of replica overlaps
q = qγβ , signaling a photonic uncorrelated paramagnetic or
a RSB spin-glass phase if it peaks exclusively at q = 0 (no
RSB) or also at values |q| %= 0 (RSB), respectively.
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(triangles) for the sake of comparison. The inset shows the results for
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Figures 3(a)–3(d) display the PDF P (q) obtained from the
experimental data, and Fig. 3(e) shows the value |q| = qmax
at which P (q) assumes the maximum, which is linked to
the Edwards-Anderson parameter in spin-glass theory [22].
Both results are in quite good agreement with the theoretical
predictions and experimental results of Ref. [21]. A sharp
transition coinciding with the threshold is observed from the
photonic paramagnetic [Figs. 3(a) and 3(b), below Pth] to the
spin-glass phase with RSB [Fig. 3(d), above Pth]. Figure 3(e)
displays qmax for pump powers below and above Pth (up to
2Pth), together with the linewidth reduction for the sake of
comparison. The inset shows the results for pump powers up
to 12Pth, showing the steady behavior.

The theoretical background that accounts for the present
findings can be described as follows. In a series of remarkable
works [23–27] a phase diagram for multimode RLs with
disordered nonlinear medium has been recently built based on
Langevin equations for the complex amplitudes of the normal
modes aj (t). For open cavity systems, the general effective
Hamiltonian [26,27] includes a sum of quadratic and quartic
disorder terms in the mode amplitudes. The physical origin
of the quadratic coupling lies in the spatially inhomogeneous
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Fig. 13. a-d) IFO distribution P (q) obtained from experimental data at different pump powers

(normalized with respect to the threshold power Pth). e) qmax (circles) versus normalized pump power,

together with the FWHM (triangles) for comparison. The inset shows the results for pump powers up
to 12Pth. Reproduced from Ref. 76 with permission from American Physical Society.

dotted line in figure 6.

From this latter study we also report a interesting phenomenon. As pumping is

large enough so that all shots are lasing, strong fluctuations appear to be there in the

(narrow) spectra and the P (C) appears to have a more complicated shape, though always

basically bimodal, in which overlaps between the side peaks have a finite probability to

occur. It would be interesting to understand whether this is due to experimental noise

correlated with the strong pumping or it is the onset of a glassy phase as, for instance,

in Fig. 6 for 0.5 < RJ < 1.

3.3. Evidence of RSB in other different RLs and nonlinear waves

A completely different class of RLs showing RSB is furnished by erbium-based random

fiber lasers (Er-RFL) and widely investigated by A. Gomes and coworkers. A first

demonstration in given in ref. 76, where the authors employ a 30-cm-long Er-RFL,

pumped by a continous wave source. The authors discuss and show that this kind of

RFL is a multimode laser with more than 200 longitudinal modes. They analyse emission

intensity fluctuation over 1500 acquisition spectra (replicas) for different pumping power

and measure the IFO from Eq. (23). In fig. 13 the IFO distribution P (q) is depicted

together with the parameter qmax, at which P (q) assumes its global maximum. d It

is demonstrated in fig. 13-e that both sharp line narrowing and qmax growth from 0 to

1 occur at the same identical input power interval, that is the laser threshold. This

confirms the findings in Ref. 65.

dWe warn the reader that the symbol q, rather than C, is used here and in the following to denote the

intensity fluctuation overlap.
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3.3.1. RSB and Lévy flight

Transition from paramagnetic to glassy states in random lasers has been also analyzed

in correspondence to the transition from diffusive to super diffusive (or Lévy flight)

regimes of light propagation. Strong emission fluctuations in RLs have been described

in the past by using the diffusive model of light and by successfully identifying different

statistical regimes for disordered lasers.77,78 Recently, the strong emission fluctuations

in RLs have been analyzed both in the frameworks of Lévy statistics and spin glass

theory. Interesting similarities and differences have been demonstrated.

A first comparison between the two statistical physics properties is reported by

Gomes et al. in Ref. 79. In this work the physical origin of the possible correspondence

between the Lévy flight statistics of emission intensity and the photonic RSB glassy

transition in RLs is both theoretically and experimentally investigated. The RL con-

sists of crystalline powders of Nd3+-doped YBO3 (Nd:YBO) and pumped by a pulsed

laser. The authors for the first time explain the comparison between the RSB transition

to the photonic glassy phase and the changes in the statistics of intensity fluctuations

in RLs within the same theoretical framework based on the Langevin equations describ-

ing the evolution of the mode amplitudes. While such theoretical approach has been

introduced and widely used by the spin-glass community,42–44,70 only recently it has

been considered for the statistical distribution of RL intensities.80 Starting from the

Langevin equation the probability density function of emission intensity is obtained.

The steady state solution of such equation gives the Lévy-like distribution of intensi-

ties. The authors show that, for a given disorder strength, by increasing pumping rate

the statistics of emission intensities shifts progressively from an initial Gaussian to a

Lévy-like and, then, again to a Gaussian regime, as predicted by the diffusive model of

light propagation in random media. The IFO distribution calculated on the same ex-

perimental data show a transition from the spontaneous emission-paramagnetic to the

RL glassy behaviour and a recurrence to the paramagnetic regime at higher pumping,

similarly to the Lévy statistics results. Once again, this critical behavior is interpreted

as a RSB transition, whereas, looking both at the strict bimodal shape of the IFO dis-

tribution and at the series of spectra displayed in the work, the transition is probably a

first order phase transition with coexistence of fluorescence and (random) laser phases.

That is, bistability.

The novelty of these findings lies at higher excitation pulse energy well above the

threshold, where fluctuations inside the single spectrum decline considerably with the

consequent restoration of the Gaussian diffusive regime for the intensities, but the RL

becomes more and more disordered from the point of view of mode coupling and the

IFO distribution appears to become non-trivial, hinting the possible onset of a glassy

random laser. In this article the authors do not give any explanation of the existence

of a strict causal link between the self-averaged Gaussian regime of intensity fluctua-

tions above the threshold and the observed suppression of the glassy phase, leaving the

subject to further studies. The link between the onset of the Lévy statistical regime of

intensity fluctuations and the emergence of the RL regime has been reported also in a

one dimensional Er-RFL.81

A different result is shown in ref. 72, where the authors conclude that the RL tran-
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sition and the Lévy regime onset may not have a clear causal relation. They claim that

the former is strongly related to the threshold and less on the magnitude of the fluctu-

ations, while the latter emerges for large fluctuations and only under strict conditions

of the ratio between gain and scattering properties of the material. As a demonstration

they report the clear experimental result where the Lévy regime is suppressed while a

RSB transition is present. A further study on the matter is probably required, also

including the role of bistability in non-glassy random lasers.

3.3.2. RSB and Turbulence

In 2018 Gonzales et al. employ an erbium random fiber laser to demonstrate for the

first time the coexistence of turbulence-like and spin-glass-like behavior from the same

set of measurements.82

For the theoretical analysis they introduce the photonic Pearson correlation coeffi-

cient that can be considered as a generalized time dependent expression of the spin-glass

overlap parameter. If τ is the time of data acquisition, the time dependent IFO between

replicas α and β is defined as

Qαβ(τ) =

∑
k ∆

(α)
k (τ)∆

(β)
k (τ)√∑

k

(
∆

(α)
k (τ)

)2√∑
k

(
∆

(β)
k (τ)

)2 , (27)

with k being the wavelength index in the emission spectra, α and β single shot spectra

indexes (replicas). Besides the definition (24), for τ = 0, i.e.,

∆
(α)
k (0) ≡ I(a)k (0)− Īk(0),

when τ > 0 the time-dependent spectral fluctuation is defined as

∆
(α)
k (τ) ≡ I(α)k (τ)− I(α)k (0)−

[
Īk(τ)− Īk(0)

]
.

With these notations Eq.(27) quantifies the emission intensity fluctuations in time

and it is sensitive to both liquid-glass transition and fluid dynamics phenomena such

as turbulence. It is demonstrated that above threshold the distribution of the Pearson

coefficient for short times is centered aroundQ ∼ 0, leading to the unimodal behaviour of

P (Q) in the turbulent-like state. While always above threshold but at large time scales

it assumes a distribution resembling the profile typical of a RSB IFO distributions. In

this regime the intermittency vanishes and a crossover to the non-turbulent behavior

takes place.

The authors state that, since the overlap parameter considers all separation times

between spectra, the statistical weight of the replica overlaps with long times dominates

over the short time series. As a consequence, P (Q(τ)) actually appears qualitatively

similar to the overlap distribution that characterizes the RSB spin glass phase.

3.3.3. RSB maps

Very recently RSB theory has been applied to obtain real time maps of the laser activity

in a heterogeneous RL.83 The random lasers are made of polymeric ribbon-like and
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30 mμ

Fig. 14. Four fluorescence images taken in identical experimental situations and regarded as replicas.
Reproduced from Ref. 83 with permission from ACS Publications.

highly porous fibers with evident RL action from separated micrometric domains that

alternatively switch on and off by tuning the pumping light intensity. This novel effect is

visualised by building for the first time replica symmetry breaking maps of the emitting

fibers with micrometric spatial resolution. The overlap parameter is calculated directly

from the images. 100 single shot frames are recorded at fixed experimental condition

and each one is a replica. Four examples are illustrated in fig. 14, where the variation of

the spatial emission from shot to shot is evident. In this work the measurable quantities

corresponding to spins are the intensities of the pixels recorded by the camera. The

authors calculate the overlap between these observables that are the spatial (transverse)

modes while previously only temporal (longitudinal) modes were considered.65

Each frame of 1024×1376 pixels is divided into squares of 16×16, named macropixels,

and the overlap qjα,β for each macropixel j is calculated as:

q
(j)
αβ =

∑
xk,yk

∆(α,j)(xk, yk) ∆(β,j)(xk, yk)√∑
xk,yk

(
∆(α,j)(xk, yk)

)2√∑
xk,yk

(
∆(β,j)(xk, yk)

)2 . (28)

where α and β are replica indexes, j is the macropixel index, and xk and yk are pixel

indexes inside one macropixel running from 1 to 16. In eq. (28)

∆(α,j)(xk, yk) ≡ I(α,j)(xk, yk)− I(j)(xk, yk),

with I(α,j)(xk, yk) being the intensity at the pixel with coordinate (xk, yk) of the jth

macropixel for the replica α and where

I(j)(xk, yk) ≡ 1

Ns

Ns∑
α=1

I(α,j)(xk, yk)

is the average intensity over Ns shots for each pixel. With this procedure, from the

images one has access to the sets of all Ns(Ns−1)/2 values q(j) of q
(j)
αβ and they determine

the distributions P (q(j)) for all 64×86 macropixels j. This is done for different pumping

energy. Following the previous work, the authors calculate qmax for all macropixels and

obtain replica symmetry breaking maps at various pumping. The results are shown in

fig. 15. Domains with qmax > 0.5 are laser-ON and those with qmax < 0.5 are laser-OFF.

In this work the mapping of qmax allows for the first time the visualisation of hetero-

geneous RL with switching and variable activity. This procedure is proposed as a robust

tool to identify the presence and the spatial extension of RL activity from fluorescence

images.
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Fig. 15. Replica symmetry breaking maps. Maps of the qmaxvalues calculated for each macropixel
at different input energies. ON and OFF indicate the activation status of the RL emission.

characterize each realization is to consider the spatial auto-
correlation function

gαðxÞ ¼
XR

x′
Iαðx′ÞIαðx′þ xÞ; ð1Þ

where R is a cut-off length. Mode interaction and locking gen-
erally result in typical features of the autocorrelation function. In
fact, possible phase correlations between different spatial points
in the transverse field contribute as constructive and destructive
interference effects at a distance x. Moreover, as this quantity
reflects only global properties of the optical field, it is not affected
by changes in the alignment of the optical setting from shot to
shot that can alter the overlap evaluation (see Supplementary
Note 1). We define the single-shot fluctuation as
ΔαðxÞ ¼ gαðxÞ % gðxÞ, where gðxÞ is the correlation averaged
over all realizations. The experimentally accessible overlap

parameter qαβ, that quantifies the similarity between shot-to-shot
intensity fluctuations, is thus

qαβ ¼

PR

x
ΔαðxÞΔβðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PR

x
ΔαðxÞð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PR

x
ΔβðxÞ
" #2

s : ð2Þ

The measured intensity over N= 120 independent realizations
of the dynamics is used to calculate the set of all N(N − 1)/2 values
of qαβ, so as to determine their probability distribution P(q) for
different values of nonlinearity. The experimental order para-
meter P(q) here defined is a coarse graining of the theoretical
distribution of the overlap between mode amplitudes, a distribu-
tion that is not directly accessible and forms the fundamental
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quantity that describes the glassy phase transition for light in
terms of RSB (Supplementary Note 1).

Results are reported in Fig. 3. At moderate nonlinearity
(Fig. 3a) the overlap distribution is centered around zero, which
indicates that the correlation between field amplitudes in different
points is an independent variable and modes do not interact
strongly. The behavior drastically changes as modes are strongly
coupled by the nonlinearity. As reported in Fig. 3b, a non-trivial
overlap distribution emerges for t> tc; the order parameter q
assumes all of its possible values (P(q)> 0) and the largest ones
are particularly enhanced. P(q) shows that, under the same
experimental conditions, the shot-to-shot correlations are
extremely sensible to the selected measurements. This is the

signature of the breaking of replica symmetry. It identifies an
optical glassy phase in which the interplay between disorder and
nonlinearity leads to locked intensity fluctuations. In Fig. 3c we
show the maximum overlap qmax, that is, the absolute value for
which we observe the maximum of P(q), as a function of the
nonlinearity. In agreement with the overall change in the overlap
distribution, qmax significantly grows around t ’ tc, indicating a
phase transition that coincides with the one in Fig. 2b. Although
the breaking of the replica symmetry cannot be rigorously
characterized across this transition, the shape of the P(q) in
Fig. 3b suggests a one-step plus full replica symmetry breaking
scenario (1RSB + FRSB) continuous in the order parameter q9,15.
In fact, if a single-peaked distribution centered around qj j≈ 1
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quantity that describes the glassy phase transition for light in
terms of RSB (Supplementary Note 1).

Results are reported in Fig. 3. At moderate nonlinearity
(Fig. 3a) the overlap distribution is centered around zero, which
indicates that the correlation between field amplitudes in different
points is an independent variable and modes do not interact
strongly. The behavior drastically changes as modes are strongly
coupled by the nonlinearity. As reported in Fig. 3b, a non-trivial
overlap distribution emerges for t> tc; the order parameter q
assumes all of its possible values (P(q)> 0) and the largest ones
are particularly enhanced. P(q) shows that, under the same
experimental conditions, the shot-to-shot correlations are
extremely sensible to the selected measurements. This is the

signature of the breaking of replica symmetry. It identifies an
optical glassy phase in which the interplay between disorder and
nonlinearity leads to locked intensity fluctuations. In Fig. 3c we
show the maximum overlap qmax, that is, the absolute value for
which we observe the maximum of P(q), as a function of the
nonlinearity. In agreement with the overall change in the overlap
distribution, qmax significantly grows around t ’ tc, indicating a
phase transition that coincides with the one in Fig. 2b. Although
the breaking of the replica symmetry cannot be rigorously
characterized across this transition, the shape of the P(q) in
Fig. 3b suggests a one-step plus full replica symmetry breaking
scenario (1RSB + FRSB) continuous in the order parameter q9,15.
In fact, if a single-peaked distribution centered around qj j≈ 1
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Fig. 16. Transmitted intensity profiles along one direction I(x) by increasing nonlinearity. At high

nonlinearity RSB regime of strong fluctuations is evidenced. The corresponding distribution P (q) in
the paramagnetic (left) and glassy (right) regimes are depicted.

3.3.4. RSB in nonlinear waves

In 2017 Pierangeli et al.84 report the observation of the breaking of replica symmetry

in nonlinear optical propagation. They investigate intensity profiles of a laser beam

transmitted from a photorefractive disordered slab waveguide. The nonlinearity of the

material is tuned and strong fluctuations of light above a certain threshold are evidenced,

as in the intensity map of fig. 16. Differently from previous works, the replica overlap

is calculated over the spatial autocorrelation of the intensities I(x), and its distribution

undergoes a clear transition into a non-trivial distribution as the nonlinearity exceeds a

threshold value. Results are shown in fig. 16. These findings demonstrate that nonlinear

propagation can manifest features typical of spin-glasses thanks to the coexistence and

interplay of the two main ingredients: disorder and nonlinearity.
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4. Conclusions and Outlook

In this chapter we have considered the problem of the experimental measure of the

functional order parameter for a multiequilibria phase in complex disordered systems,

representing the transition to a replica symmetry broken thermodynamic phase. After

a flash introduction of the Parisi overlap distribution we briefly discussed how the out-

comes of the RSB theory have soon cast light on peculiar results in early experiments

on spin-glass susceptibility. We have, then, been very rapidly reviewing the attempt

to reconstruct the equilibrium overlap distribution through measurements of the off-

equilibrium fluctuation-dissipation ratio in systems satisfying stochastic stability and

we did our best to give a state-of-the-art report of the experiments tried so far along

that approach. Finally, we have diffusively discussed, both theoretically, numerically

and experimentally, the approach to the problem by means of complex random pho-

tonic systems, the random lasers, and reported the first measurements of the Parisi

order parameter through the measurements of light intensity spectral fluctuations and

the acquisition of overlaps between fluctuations of different real replicas of the systems.

The study of nonlinear photonics systems by means of statistical mechanics of dis-

ordered systems is an inspiring example of a constructive sinergy leading to advances

in both fields. The idea that random lasers might be described as disordered systems

and treated with the tools of statistical physics in order to fully unveil and under-

stand their complex behavior42–44,70 has brought to the development of a spin-glass

model45,58 whose RSB order parameter could finally be accessible to experimental mea-

surements.12,59,65,76,79

Furthermore, such sinergy has stimulated several new studies on different open issues

in photonics in random media. To mention a few, the statistical physics approach has

been applied in relation to the onset of a power-law (Lévy-like) distribution of the emis-

sion intensity in random laser,72,77–81 to the characterization of turbulence in photonic

systems,82 to the spatial distribution of interacting modes26,83 and the self-substained

nature of mode-locking in random lasers26,44 and has lead to the study of glassiness

in nonlinear photonic systems other than random lasers.84 Several rather interesting

issues remain open in this line of research combining photonics and statistical physics,

including the study of a first order critical behavior with phase coexistence and its rela-

tionship to the possible occurrence of bistability in random lasers, or the measurement

and control of mode phases whose impact would have important consequences in the

making and the technological use of random lasers.
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Guerrero, D. IÃ±iguez, A. Maiorano, E. Marinari, V. Martin-Mayor, J. Monforte-Garcia,
A. M. Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, F. Ricci-Tersenghi, J. J. Ruiz-

https://doi.org/10.1209/0295-5075/1/2/006
https://www.sciencedirect.com/science/article/pii/S0079672721000288
https://link.aps.org/doi/10.1103/PhysRevLett.88.257202
https://doi.org/10.1140/epjb/e2004-00278-6
https://doi.org/10.1140/epjb/e2004-00278-6
https://link.aps.org/doi/10.1103/PhysRevB.81.104201
https://link.aps.org/doi/10.1103/PhysRevB.81.104201
https://doi.org/10.1038/nphys1482


September 14, 2022 1:0 ws-rv10x7-10x7 Book Title rsb40˙CHAP23˙randomlaser page 27

23. Replica symmetry breaking in random lasers 27

Lorenzo, S. F. Schifano, B. Seoane, A. TarancÃ³n, R. Tripiccione, and D. Yllanes, A
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de Araújo, Replica symmetry breaking in the photonic ferromagneticlike spontaneous
mode-locking phase of a multimode nd:yag laser, Phys. Rev. Lett. 119, 163902, (2017).

76. A. S. L. Gomes, B. C. Lima, P. I. R. Pincheira, A. L. Moura, M. Gagné, E. P. Raposo,
C. B. de Araújo, and R. Kashyap, Glassy behavior in a one-dimensional continuous-wave
erbium-doped random fiber laser, Phys. Rev. A. 94, 011801, (2016).

77. S. Lepri, S. Cavalieri, G. Oppo, and D. Wiersma, Statistical regimes of random laser
fluctuations, Phys. Rev. A. 75, 063820, (2007).

78. S. Lepri, Fluctuations in a diffusive medium with gain, Phys. Rev. Lett. 110, 230603,

https://link.aps.org/doi/10.1103/PhysRevResearch.2.023399


September 14, 2022 1:0 ws-rv10x7-10x7 Book Title rsb40˙CHAP23˙randomlaser page 30

30 C. Conti, N. Ghofaniha, L. Leuzzi, G. Ruocco

(2013).
79. A. S. L. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. R. Pincheira, V. Jerez,

L. J. Q. Maia, and C. B. de Araújo, Observation of lévy distribution and replica symmetry
breaking in random lasers from a single set of measurements, Sci. Rep. 6, 27987, (2016).

80. E. P. Raposo and A. S. L. Gomes, Analytical solution for the lèvy-like steady-state distri-
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Coexistence of turbulence-like and glassy behaviours in a photonic system, Sci. Rep. 8,
17046, (2018).

83. L. M. Massaro, S. Gentilini, A. Portone, A. Camposeo, D. Pisignano, C. Conti, and
N. Ghofraniha, Heterogeneous random laser with switching activity visualized by replica
symmetry breaking maps, ACS Photonics. 8(1), 376–383, (2021).

84. D. Pierangeli, A. Tavani, F. D. Mei, A. J. Agranat, C. Conti, and E. DelRe, Observation
of replica symmetry breaking in disordered nonlinear wave propagation, Nat. Comm. 8,
1501, (2017).


	*-14pt
	23. 23. Replica symmetry breaking in random lasers
	C. Conti, N. Ghofaniha, L. Leuzzi, G. Ruocco
	1 Introduction
	2 Random Lasers as Complex Disordered Systems
	2.1 The leading model Hamiltonian
	2.2 An analytic solution in the narrowband approximation
	2.3 The intensity fluctuation overlap (IFO)
	2.4 Mode-locked random laser theory and numerical simulations

	3 Experimental measurements of the Parisi order parameter
	3.1 Experimental procedure
	3.2 Material requirements for reproducing real replicas.
	3.3 Evidence of RSB in other different RLs and nonlinear waves

	4 Conclusions and Outlook
	References




