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Abstract 

We investigate the mechanism of H2 activation on Ag-modified cerium oxide surfaces, of interest for different 

catalytic applications. The study is performed on thin epitaxial cerium oxide films, investigated by X-ray 

photoemission spectroscopy to assess the changes of both the Ag oxidation state and the concentration of 

Ce3+ ions, O vacancies and hydroxyl groups on the surface during thermal reduction cycles in vacuum and 

under hydrogen exposure. The results are interpreted using density functional theory calculations to model 

pristine and Ag-modified ceria surfaces. Although the reactivity of ceria towards H2 oxidation improves when 

a fraction of Ce cations is substituted with Ag, the concentration of reduced Ce3+ ions in Ag-modified ceria is 

found to be lower than in pure ceria under the same conditions. This behavior is observed even though the 

number of surface oxygen vacancies caused by the thermal treatment under hydrogen exposure is larger for 

the Ag-modified surface. These results are explained in terms of a change of the oxidation state of the surface 

Ag, which is able to acquire some of the extra surface electrons created by the oxygen vacancies and the 

adsorbed hydrogen atoms. Our findings provide new insights into the reactivity of Ag-modified ceria, which 

has been proposed as a promising alternative to platinum electrodes in electro-chemical devices. 

Introduction 

Recently, a wealth of research efforts has been devoted to the search of earth-abundant electrode materials 

that might replace platinum, the best-known catalyst currently employed in industrial applications. Among 

such materials reducible metal oxides have been found to have a high potential for many different 

applications, and, in particular, for catalytic reactions in electrochemical devices 1. 
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Reducible oxides play an important role in heterogeneous catalysis due to their ability to store or release 

oxygen depending on the conditions of pressure and temperature.2 3 Among reducible oxides, CeO2 has been 

suggested for a number of applications,  from biomedicine 4 to fuel cells (FC) 5 6. For example, motivated by 

the need to decrease the amount of Pt used in electrochemical devices, numerous studies have shown that 

Pt-modified CeO2 is a promising electrode material for proton-exchange membrane FCs (PEMFCs), due to its 

high activity in mediating the formation of protons from gas-phase H2
6. In this context, it has been proposed 

that single atom catalysts can provide a viable route to further decrease the concentration of noble metal  

on the oxide surface7. 

Ceria-based catalysts are of considerable interest also for hydrogenation reactions 8 9. Cerium oxide powder 

catalysts have been shown to be active towards H2 dissociation, with an activity that depends on variables 

like the size and morphology of the catalysts and the density of defects and oxygen vacancies 10. On the other 

hand, studies on model (111) ceria surfaces show that high temperatures and/or high pressures are required 

to dissociate H2 
11

 
12. On such surfaces the presence of oxygen vacancies favors H migration into the bulk 12,  

and temperature influences the steps that bring from H adsorption to ceria reduction.13  

It is known that cation doping often improves the catalytic activity of metal oxides 13.  In ceria, cation dopants 

usually sit at substitutional cerium sites 14 15 .  In particular, Ag constitutes a low-valence dopant (LVD) in CeO2 

since in its stable oxides it has a lower valence than the Ce atoms in CeO2. An interesting feature of LVD 

dopants is to make the neighboring oxygen atoms much more reactive 13.  Density functional theory (DFT) 

calculations on  Ag  single atoms on the CeO2 (111) surface have indeed found that one oxygen in proximity 

of the Ag dopant can spontaneously leave the surface in an exothermic reaction16 17. Since oxygen vacancies 

induce excess electrons that can reduce the oxidation state of Ce from 4+ to 3+ (with the extra electron 

occupying the localized f orbital), it is expected that the presence of Ag will ultimately lead to the creation of 

additional reduced cerium atoms on the CeO2 surface18 19. 

More generally, experiments and calculations on ceria deposited on transition and noble metal supports or, 

vice versa, on metal nanoparticles deposited on a ceria support, have shown an increase of Ce3+ concentration  

as a consequence of the thin film/support interaction 19 20 21 22 17 23 24. Also doping with metals such as Cu and 

Rh has been reported to enhance the oxide reducibility 25 26 27 28 29 17.  Higher concentrations of Ce3+ cations 

are often considered to be linked to a higher reactivity of the film to H2 activation.  In fact,  DFT studies have 

shown that H2 dissociation on pristine ceria surfaces leads to the formation of surface hydroxyl groups and 

the reduction of  Ce4+  to Ce3+ cations 30 31 32 33.  Moreover, a recent combined experimental and theoretical 

study found that isolated Pt2+ species on CeO2 are inactive due to the large activation energy for breaking the 

H-H bond, and trace amounts of metallic Pt are necessary to initiate H2 dissociation; this leads to the 

reduction of Ce4+ cations which, in turn, is coupled to the reduction of Pt2+ species.34  As a result of these and 
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related studies, one of the experimental approaches for the study of H2 dissociation on metal doped ceria 

films is to determine the oxidation states of both the dopant metal cation and the Ce cations using 

photoemission spectroscopy 34.   

In the present study we provide new insights into the mechanisms of H2 dissociation on Ag-modified ceria, 

with the aim to elucidate the role of Ag in the surface reactivity and its relation to the reduction of the Ce4+ 

cations. We will discuss in particular the validity of assessing the reactivity of the surface towards H2 

dissociation by monitoring the concentration of the Ce3+ reduced cations. 

 

Methodology 

Experiment 

CeO2 films were grown on Pt(111) single crystals,  prepared by repeated cycles of Ar sputtering (1 keV, 

1A/cm2) and annealing (1040 K). The clean surface showed no impurities within the X-ray photoelectron 

spectroscopy (XPS) detection limit and a sharp (1x1) low energy electron diffraction pattern. CeO2 films were 

grown by e-beam evaporation of Ce atoms in O2 partial pressure of 1x10-7 mbar introduced through a nozzle. 

During the evaporation the substrate was kept at room temperature (RT).  An evaporation rate of 0.4 Å/min 

was measured with a quartz microbalance before evaporation and the film thickness was checked by XPS 

after deposition. A film thickness of 1.5 nm corresponding to 5 ML was chosen. Ag-modified (Ag:CeO2) films 

of the same thickness were obtained by co-deposition of Ag atoms by an effusion cell pointing towards the 

same position as the e-beam Ce evaporator, where the sample is placed. After deposition the films were 

annealed at 770 K in 1x10-7 mbar O2 partial pressure in order to improve crystalline order and obtain full 

oxidation of the film. An Ag concentration of 10 at% was measured by XPS after the treatment. 

Thermal cycles were performed by annealing either in ultra-high vacuum (UHV) (1x10-9 mbar) or in H2 (1x10-

7 mbar, 99.9995% purity) for 15 min at four different temperatures: 470 K, 570 K, 670 K and 770 K and cooling 

to RT in reducing atmosphere (UHV or H2). In UHV conditions the residual H2O partial pressure is 3x10-10 mbar. 

When H2 is introduced in the chamber no change in H2O partial pressure is observed. The XPS measurements 

were performed in UHV conditions at RT after each reduction step, exploiting an Al-Kα X-ray source and a 

hemispherical analyzer (overall resolution 1 eV). The spectra were measured at grazing emission with respect 

to the sample surface (65° off-normal). The Ce 3d spectra were fit using five doublets - three related to Ce4+ 

ions and two related to Ce3+ ions -, following the procedure by Skala  35 36 (see Supporting Information for 

details, Figure S1). The Ce3+ concentration is obtained from the fits by considering the ratio of the area of the 

two Ce3+ related doublets and the total area of the five doublets. The error on the concentration is estimated 

from the fits as ±2%. Indeed, the accuracy of the absolute values obtained is possibly lower, due to the 

complexity of the spectra and of the background. Moreover, the true Ce3+ surface concentration is probably 
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systematically underestimated because of a partial sensitivity of XPS also to the deeper layers, which are not 

expected to be affected by reduction. However, the considerations made in this work are based only on the 

trends observed for the Ce3+ concentration with the temperature for the two different surfaces and in the 

two different environments and not on the absolute values of the concentration. The binding energy scale 

has been calibrated to have the Pt 4f peak at 71.2 eV.  The O 1s spectra were fit by the sum of two Voigt- 

shaped peaks with the same width, fixed binding energies, and using their intensities as a fitting parameter.  

The Ag 3d peaks were fit by a Doniach-Sunjich doublet to determine their binding energy.   

Scanning tunneling microscopy (STM) was used to check for possible modifications of surface morphology 

induced by doping and/or by the thermal treatments. The STM images were acquired at RT with an Omicron 

RT AFM/STM using a W tip in constant current mode and with a positive sample-to-tip bias. The images were 

processed using WSxM software 37.  

Density Functional Theory calculations 

We performed ab-initio spin-polarized calculations using the Perdew-Burke-Ernezhof (PBE) 38  exchange and 

correlation functional as implemented in the Quantum Espresso package 39 40.  Ultrasoft pseudopotentials 41 

were employed to describe the interaction between electrons and ions.  The wave function and charge 

density cutoff were set to 30 Ry and 240 Ry, respectively. To treat the strongly correlated electrons in the f 

orbitals of Ce atoms we have used the Hubbard Correction (DFT+U), as implemented by Cococcioni.  42. We 

have set the U value to 4 eV, as used previously 16 24. 

CeO2 crystallizes in the fluorite structure. Optimizing the primitive cell using a (7x7x7) Monkhorst-Pack 43 grid 

we obtained an equilibrium lattice parameter a = 5.52 Å , in reasonable agreement with the experimental 

value, aexp= 5.41 Å 44, and previous theoretical studies 45 46.  

To describe the surface, we used a (111) slab with a (4x4) surface supercell and three O-Ce-O trilayers. The 

periodically repeated slabs were separated by 15 Å  of vacuum. The positions of the atoms in the last trilayer 

were kept fixed to their bulk positions during the geometry optimization. The energy convergence threshold 

for the geometric optimizations was set to 10-5 eV.  We relaxed the structure until the forces on the atoms 

of the slab were less than 0.01 eV/ Å.   The Brillouin zone was sampled only at the Gamma point. The O2 

molecule was relaxed in a box with a 20 Å edge.  

We calculated the Oxygen vacancy formation energy Eform as: Eform=Edef+1/2EO2-Epristine, where Edef is the energy 

of the slab with one surface Oxygen vacancy, EO2 is the energy of the Oxygen molecule, and Epristine is the 

energy of the slab without the Oxygen vacancy.  
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To model the Ag-modified surfaces, we considered an 

Ag atom substituting one of the Ce atoms of the first 

monolayer, where the dopant effect on the surface 

reactivity is expected to be most important. This 

specific configuration is suggested by experimental 

results showing that noble metals such as Au and Pt 

tend to occupy cation positions 14 15 47. We focused on 

the (111) surface of ceria, which is the one exposed  in 

our experiments,  and, in particular, the stable surface 

with one oxygen vacancy near the Ag ion 16.  

To determine the minimum energy paths (MEP) of H2 

dissociation on the Ag:CeO2  surfaces we have used 

the climbing image nudged method (CI-NEB) 48  with 

seven images. The obtained activation energies have 

been compared with the energy required to oxidize 

the H2 molecule on the pristine ceria surface 

calculated in previous works 32 49 31 using the same 

methodology. Charge transfers were calculated using 

the Bader approach 50. 

Results and Discussion 

EXPERIMENT 

 Evolution of Ce3+ concentration 

To understand the role of Ag atoms in CeO2 we have 

investigated the changes induced by thermal cycles in 

reducing environments in a 5 ML pure CeO2 film and 

in a film of the same thickness with substitutional Ag 

atoms. During the thermal cycle the film was exposed 

to the reducing environment (either UHV or H2) both 

during the annealing and the cooling to RT. The 

evolution of the Ce3+ concentration and the surface 

modifications in the film have been investigated by 

means of XPS and STM. 

Figure 1.  Ce 3d spectra for (a) pure and (b) Ag-

modified CeO
2
 film reduced at increasing 

temperature in UHV (black) and H
2
 partial 

pressure (orange). (c) Ce3+ concentration as a 

function of temperature for the different films 

and reducing conditions, obtained from the fit 

of the Ce 3d spectra in panel (a) and (b). 
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Figure 1a compares the Ce 3d spectra of the pure CeO2 film after the temperature treatment in H2 and, for 

comparison, in UHV in order to rule out the possible effects coming from the residual gas in the chamber. 

At RT the lineshape is consistent with the presence of Ce4+ ions only. It can be observed that the increase of 

the annealing temperature induces negligible variations in the lineshape under UHV conditions, while the 

annealing and the subsequent cooling in H2 modifies more significantly the Ce 3d spectra, which show a 

relevant contribution from Ce3+ ions above 670 K. The observed reduction is less pronounced at normal 

emission, showing that the process occurs mainly at the surface (see Supporting Information, Figure S2). 

When 10 at% of Ag atoms are added to the oxide matrix the trend is the same and annealing in H2 induces a 

larger reduction as compared to UHV treatments above 670 K (Figure 1b). A fit of the Ce 3d spectra was 

performed to quantify the concentration of Ce3+ and Ce4+ in the two samples under the different treatments. 

The fits of the curves are reported in the Supporting Information (Figure S3 and Table S1). Figure 1c shows 

the Ce3+ concentration as determined by the fit for the two samples after the different reducing steps in UHV 

and in H2. The UHV treatment brings to a maximum Ce3+ concentration of about 4% in pure CeO2 and 2% in 

Ag:CeO2. Annealing in H2 induces a non-negligible reduction in the pure oxide already at 470 K, while for 

Ag:CeO2 the Ce3+ concentration starts to increase at 570 K. In general, the Ce3+ concentration is larger in the 

presence of H2 and it is significantly higher for the pure (18%) as compared to the Ag:CeO2 (9%) film at 770 

K.  

The Ag 3d XPS lines were also measured at each step 

of the different thermal treatments in UHV and H2 

for the Ag:CeO2 sample (Figure 2). The spectra do 

not show any significant change in shape, width or 

intensity with the thermal treatments, showing a 

stable distribution of Ag in the matrix. A small 

binding energy shift is revealed after the film is 

treated in hydrogen.  The Ag 3d5/2 binding energy is 

367.8 eV before the H2 thermal treatment, while it 

shifts to 368.0 eV afterwards. Ag 3d5/2 in metallic 

silver has a binding energy of 368.2 eV 51, while it was 

shown that in its oxides an anomalous negative shift 

to lower binding energy occurs, because of extra-

atomic relaxation effects 52. The data therefore show that Ag atoms in the ceria matrix are in an oxidized 

state and that the exposure to hydrogen partially reduces them, in accordance with theoretical predictions 

(see below). It is difficult to estimate the oxidation state from the absolute values of the binding energies. 

The value obtained before H2 reduction in fact corresponds to the literature one for Ag1+. However, previous 

Figure 2: Ag 3d peaks of the Ag-modified CeO2 

film before (black curve) and after (orange 

curve) H2 exposure at 770 K. 
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studies have shown that the binding energies of metal cations in their bulk oxides can be different from those 

of the same cations with the same oxidation state introduced as low-concentration dopants in a matrix of a 

different oxide 53. 

 Formation of surface oxygen vacancies and OH groups  

During the thermal treatment in hydrogen, we also observed non-negligible modifications in the O 1s peak 

(Figure 3) in parallel to the modifications of the Ce 3d peak. Increasing the temperature during H2 reduction 

a component appears at about 1.7 eV higher binding energy with respect to the main peak (Fig. 3a). A 

quantitative estimation of the intensity of the new component is obtained through a fit with two Voigt peaks, 

a dominant one centered at 529.3 eV, assigned to O in cerium oxide lattice, and a small peak at 531 eV, 

related to O coordinated to H 54 55 56. An example of the resulting fit is reported in the inset of Figure 3a. 

Figure 3b shows the ratio between the peaks of the OH component and the O-Ce main component. The 

weight of the OH component is slightly higher for the Ag:CeO2 film after H2 exposure at RT, while it becomes 

significantly higher for the pure oxide after exposure at higher temperatures. The OH-related intensity is 

higher at grazing emission than at normal emission, showing that the OH species are preferentially located 

at the surface (see Supporting Information, Figure S2).  

The spectra of Figure 3a do not show any measurable peak at the binding energies where peaks from 

adsorbed water are expected, i.e. at approximately 533.5 eV 54 55 56 .  Water does actually form, but it is 

released from the surface at high temperatures leaving O vacancies. Moreover, the ceria surfaces reduced 

by thermal treatment in H2 have a low propensity towards adsorption of molecular water  during their cooling 

to RT in hydrogen 56.  

Figure 3. (a) O1s peaks of pure and Ag:CeO2 films before and after exposure to H2 at 770 K. Inset 

shows the Voigt peaks used for the fit of the pure CeO2 after exposure to H2. (b) Ratio between 

H-coordinated O and Ce-coordinated O peaks after H2 (orange) and UHV (black) exposure (as 

obtained by the fit) as a function of temperature. (c) Ratio between O 1s and Ce 3d peak area 

after H2 exposure or UHV treatment at different temperatures.  
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Figure 3c reports the ratio of the O 1s to Ce 3d areas after the different thermal treatment steps in H2 and 

UHV for the pure and the Ag:CeO2 films. The ratio is approximately constant for both samples in UHV, in 

agreement with the negligible changes observed in the Ce 3d lineshapes. In H2 environment, a more 

pronounced decrease of the ratio in the Ag:CeO2 film as compared to the pure oxide film as a function of 

temperature is observed. This is related to the formation of a higher concentration of oxygen vacancies,  and 

it can be very likely ascribed to a more efficient water formation on the Ag-modified surface. 

 Surface morphology 

To exclude possible contributions coming from differences in surface morphology or from uncovered 

substrate areas, we compare the STM images of the CeO2 film with and without Ag inclusion. Figure 4a 

reports the STM image of the CeO2 film after the initial oxidation at 770 K, showing that the film completely 

covers the Pt surface with grains of about 5 nm diameter. The morphology of the film with Ag inclusion is not 

significantly different from that of the pristine film (Figure 4b) and it is not modified after thermal treatments 

in H2 (see Supporting Information, Figure S4). Figure 4c shows two height profiles across the darkest areas 

observed on the film surfaces. For both films the average hole depth is about 1 nm (dashed line), well below 

the estimated film thickness of 1.56 nm (5 ML). The hole depth may be underestimated due to tip size effects, 

which have not been removed due to an unknown tip size. However, since the dark holes represent a very 

small surface fraction, similar for both pristine and Ag:CeO2 surfaces, they are not expected to significantly 

influence the surface chemical activity observed so far.  

 

 

 

 

 

Figure 4. 100x100 nm2 STM images of 5 ML (1.56 nm) (a) pure CeO2 and (b) Ag:CeO2 film, annealed at 

770 K in O2 (U = 2.5 V, I = 0.08 nA). (c) Height profiles along the lines in images (a) and (b). 
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THEORY 

To obtain more detailed insight into our experimental observations, we further examined the reduction of 

the pristine and Ag-doped ceria surfaces under UHV conditions and in a H2 environment using DFT 

calculations. Side and top views of the pristine and Ag:CeO2 (111) surface models investigated in this work 

are shown in Figure 5.  

 

 Reduction in vacuum 

Reducible oxides under UHV conditions tend to lose oxygen with increasing temperature. To characterize this 

process, we have calculated the energy required to create one oxygen vacancy (Ov) on the pristine and 

Ag:CeO2 (111) surfaces. On pristine ceria (Figure 5a,b) the Ov  formation energy is Eform= 2.02 eV, a value close 

to those reported in previous theoretical works 57 58. Following the creation of the oxygen vacancy we observe 

the reduction of two Ce atoms on second neighbor sites of the Ov.  

 

 

Figure 5. Side (a,c) and top (b,d) views of the different surface configurations. a) and b) CeO2 surface; c) and d) Ag:CeO2 

surface. Gray, red and blue balls are the cerium, oxygen and silver atoms, respectively.  

 

We modeled the Ag:CeO2 surface by substituting one Ce atom per surface unit cell with Ag. The oxygen ions 

near the Ag atom are less negatively charged than on the pristine ceria ( -0.2 e), and are also more active 
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than the other surface oxygen atoms 59.  The removal of one of such oxygens is a thermodynamically favored 

process with Eform = -0.76 eV. This implies that the most stable surface actually contains dopant-vacancy 

complexes, as shown in Figure 5c and d. On this surface, the Ag oxidation state is 2+, and the energy required 

to remove an additional oxygen atom close to Ag is positive, 0.78 eV, but still lower than on pristine CeO2. 

Creation of such an additional Ov reduces the Ag oxidation state from 2+ to 1+, while at the same time one 

surface Ce atom is reduced to Ce3+.  Altogether, we can conclude that the formation of an oxygen vacancy on 

the Ag-modified surface causes the reduction of only one Ce atom, whereas two Ce atoms are reduced on 

the pristine surface. These results indicate that loss of surface oxygen due to thermal treatment under UHV 

conditions causes the creation of more Ce3+ cations in pure ceria than in Ag-modified ceria, consistent with 

the experimental data (Fig. 1c).  

 

 Reduction in H2 atmosphere 

In H2 environment, both hydrogen adsorption and the formation of oxygen vacancies contribute to the 

surface reduction.  As shown by recent computational studies, the dissociative adsorption of H2 has an 

activation energy Ea = 0.99 eV  and leads to the reduction of two Ce ions on the pristine surface32
 
31, whereas 

the barrier is much lower, 0.34 eV, on Ag:CeO2,  where one Ce ion and one Ag are reduced16. These results 

suggest that the hydrogen coverage should be higher on Ag:CeO2 than on the pristine surface at low 

temperature, whereas the fraction of Ce3+  ions should be higher on the pristine surface, a result consistent 

with the experimental data in Figs. 1c and 3b. These results are also compatible with the decrease of Ag 

oxidation state observed by XPS after H2 exposure at high temperature (Figure 2). 

Under conditions of high temperature and low water pressure, adsorbed hydrogen (Hads) on reducible metal 

oxides can undergo the reaction 

                                  2Hads  + Os  H2O + Ov,                 (1) 

where Os and OV denote a surface oxygen atom and surface oxygen vacancy, respectively. Temperature 

programmed reduction measurements acquired by several groups on cerium oxide powdered catalysts 

indicate that adsorbed hydrogen can indeed be released from the surface in the form of H2O forming O 

vacancies on the surface at around 770 K, while the formation of bulk oxygen vacancies requires a 

temperature of  1100 K. 8 10  

Table 1 - Relative free energies (in eV) of non-interacting gas phase H2 and surface (H2 (g) + surface), surface 

with adsorbed hydrogen (2Hads), and reduced surface with a desorbed gas phase water molecule (H2O(g)+ Ov) 

at different temperatures. The energy of the 2Hads state is taken as the reference. Values in bold are computed 

at the low pressure of the experiment (pH2 =10-10 bar), those in parentheses refer to the standard pressure (p0 

=1bar).  Reported values include zero-point energy corrections of gas phase and adsorbed species and entropic 
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contributions to the free energy of gas phase molecules only. Water formation (H2 adsorption) is much more 

(less) exothermic at low pressure. 

Surface Type State T= 0K T= 300 K T=400 K T=500 K T = 600 K 

CeO2 H2 (g) + surf 2.05 1.14 
(1.73) 

0.80 
(1.59) 

0.46 
(1.44) 

0.11 
(1.29) 

 2Hads 0.00 0.00 0.00 0.00 0.00 

 H2O(g)+ Ov 0.89 -0.18 
(0.41) 

-0.59 
(0.20) 

-0.99 
(-0.01) 

-1.40 
(-0.22) 

       

Ag:CeO2 H2 (g) + surf 2.38 1.47 
(2.06) 

1.13 
(1.92) 

0.79 
(1.77) 

0.44 
(1.62) 

 2Hads 0.00 0.00 0.00 0.00 0.00 

 H2O(g)+ Ov 0.75 -0.32 
(0.27) 

-0.73 
(0.06) 

-1.13 
(-0.15) 

-1.54 
(-0.36) 

 

The computed relative free energies of the reactant and product states of (1) on the pristine and Ag-doped 

CeO2 surface are reported in Table 1 for several temperatures between zero and 600 K. As expected, the 

adsorption of H2 becomes increasingly less exothermic with increasing temperature, while the reverse is true 

for the formation of a water molecule from two adsorbed H and a surface oxygen atom. At the low pressure 

of our experiment, in particular, water formation is (slightly) exothermic already at room temperature and 

leads to a free energy gain even larger than that of H2 adsorption above ~ 450 K. 

As a plausible pathway for reaction (1), we assume that water formation is due to the diffusion of one Hads  

to another surface OHads group with which it recombines.  Diffusion of H into the bulk could be another 

possible pathway for the hydrogen atoms, but it would not account for the observed trends since it would 

lead to the reduction of the surface O-H without changing the surface O content. Our calculated Minimum 

Energy Pathways for reaction (1) on the pristine and Ag-doped surfaces are shown in Fig. 6. To estimate the 

barrier for H diffusion, we follow Fernández-Torre. 30,  who found that a H atom on CeO2(111)  first diffuses  

from Os  (Initial state IS) to a subsurface oxygen (Osub), reaching a metastable state (MS). For pristine CeO2, 

our computed energy barrier for H diffusion from a surface to a subsurface oxygen (ISMS) is 1.13 eV, while 

it is 0.77 eV for Ag:CeO2. The computed barrier for H2O desorption (the finale state FS) is in both cases lower 

than the H diffusion barrier, indicating that H diffusion is the rate limiting process for water formation on 

both surfaces.  The lower H-diffusion barrier on the Ag:CeO2 surface thus suggests that water is more likely 

to form on Ag-modified than on pristine CeO2. 

The results of our calculations allow us to explain the observed trends in the surface concentration of OH, 

shown in Figure 3b, which increases with the RT exposure of the film to H2, slightly decreases at 470 K and 

significantly increases above 570 K. The increase at RT after H2 exposure is related to H2 adsorption and 

dissociation, which are predicted to have activation barriers of 0.99 and 0.34 eV on the pristine and Ag-doped 
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surfaces respectively, consistent with the observed larger concentration on the latter. As the temperature is 

increased to 470 K, water formation and desorption become important, leading to a decrease of both surface 

O and OH concentrations. At higher temperature the annealing and subsequent cooling of the film in H2 

induces further hydrogen dissociation and a consequent increase of the concentration of OH bonds. H 

preferentially binds to oxygen atoms, which have a higher concentration on the pristine ceria than on the Ag-

modified surface, explaining the higher OH concentration on the former after the treatment at high 

temperatures. Also the significant decrease in O/Ce ratio shown in Figure 3c for the Ag:CeO2 indicates a 

higher concentration of oxygen vacancies on the Ag-modified surface,  which is likely due to a more efficient 

water formation on this surface, as predicted by the DFT results. Furthermore, the larger concentration of 

surface OH groups on the pristine surface than on Ag:CeO2 possibly contributes to the much larger 

concentration of Ce3+ ions experimentally observed on pristine CeO2 than on Ag:CeO2 after hydrogen 

exposure, reported in Fig. 1c. 

 

Fig. 6 Minimum Energy Path (MEP) of reaction (1) on the a) CeO2 and b) Ag:CeO2 surface at T=0K. The energy zero 

corresponds to the surface with dissociatively adsorbed H2. Grey balls indicate cerium atoms, red balls oxygen atoms, 

and the small light blue balls the hydrogen atoms. 

  

Conclusions   

In this work we aimed to obtain insight into the reactivity of Ag-modified ceria films towards H2 by 

investigating the changes occurring on the film surface after thermal treatments in vacuum and in hydrogen 
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partial pressure. As expected, the H2 environment induces a significantly higher Ce3+ concentration as 

compared to reduction in vacuum at the same temperatures.  Quite surprisingly, however, the Ag-modified 

sample showed a lower concentration of Ce3+ cations than the pristine ceria one under all conditions, also in 

the presence of a greater number of oxygen vacancies. To interpret these results, we carried out DFT 

calculations and found that the presence of Ag reduces the barrier of H2 dissociation on the ceria surface, 

explaining the larger concentration of OH groups on the Ag-modified surface at low temperature, as observed 

experimentally. Our calculations also show that doping with Ag decreases the activation barrier for surface 

diffusion of adsorbed H atoms, which is the rate limiting process for water formation, thus suggesting a larger 

rate of water formation on the Ag-modified than on the pristine samples at high temperature. This prediction 

is confirmed by the higher concentration of surface oxygen vacancies and lower concentration of OH groups 

on the Ag:CeO2 surface found in the experiments. Both H2 dissociative adsorption and oxygen vacancies 

contribute to the creation of Ce3+ cations, but in both cases the number of reduced Ce cations is predicted to 

be two times larger on the pristine ceria surface relative to the Ag-modified one, in agreement with the 

experiment.  

Our analysis shows that while measuring the amount of reduced Ce3+ cations often provides a reliable 

estimate of the CeO2 surface activity towards oxidation reactions, this is not the case for Ag-modified CeO2. 

Due to the tendency of Ag to compete with Ce in the acquisition of part of the surface electrons made 

available by hydrogen adsorption and oxygen vacancy formation, the concentration of Ce3+ cations remains 

relatively low even if the surface reactivity to hydrogen is enhanced.  

Altogether, these results provide new insights into the mechanism of H2 activation on CeO2-based materials 

that could help the development of efficient Pt-free electrode materials for electro-chemical devices. 
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Figure S1: Fit of Ce 3d spectra from CeO2 film on Pt reduced at 770 K in H2, performed following the well-

established procedure described by Skála, T. 35 36 . The figure shows the five doublets (blue for Ce3+, light 

blue for Ce4+) and the Shirley background. 

 

Figure S2: (a) Ce 3d and (b) O 1s on pristine CeO2 annealed at 770 K in H2 measured at normal (red) and 

grazing (black) emission. The Ce3+ contribution in the Ce 3d and of the O-H contribution in the O 1s spectra 

are more intense at grazing emission, demonstrating that the investigated processes take place primarily at 

the surface.  
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Figure S3: Ce 3d spectra for 5 ML of pure CeO2 in (a) UHV and (b) H2 and Ag-modified CeO2 (c-d) in the 

same environments. Red curves are the fits performed following the procedure reported by Skála, et al. 35 36  

as described in Figure S1. 

Table S1: Ce3+ concentration obtained by the fitting procedure described in Figure S1 and reported in Figure 

1 for the pure CeO2 and Ag-modified films after annealing in UHV and H2. 

Figure S4: 100x100 nm2 STM images of 5 ML (1.56 nm) Ag-modified CeO2 film: (a) oxidized at 770 K in 

O2 and (b) annealed at 770 K in H2 (U = 2.5 V, I = 0.08 nA). Images show that the exposure to H2 at high 

temperature does not induce significant modifications in the film morphology. 
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