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Abstract
We propose and theoretically investigate the behavior of a ballistic Aharonov-Bohm (AB) ring
when embedded in a N-S two-terminal setup, consisting of a normal metal (N) and
superconducting (S) leads. This device is based on available current technologies and we show in
this work that it constitutes a promising hybrid quantum thermal device, as a quantum heat engine
and quantum thermal rectifier. Remarkably, we evidence the interplay of single-particle quantum
interferences in the AB ring and of the superconducting properties of the structure to achieve the
hybrid operating mode for this quantum device. Its efficiency as a quantum heat engine reaches
55% of the Carnot efficiency, and we predict a thermal rectification factor attaining 350%. These
results make this device highly promising for future phase-coherent caloritronic nanodevices.

1. Introduction

Engineering versatile and efficient quantum thermal devices to manage heat at the nanoscale is highly
challenging and relevant for future quantum technologies [1–3]. Controlling heat implies, in particular,
being able to exploit a temperature gradient as a resource for operating a device as heat engine [4–9], and
to allow for preferential heat flow in one direction under thermal biasing, a feature known as thermal
rectification [1, 10, 11]. Both abilities have been investigated independently from each other, motivating
numerous proposals and experiments that exploit various platforms with the objective of managing heat at
the nanoscale in an efficient way. As recent examples, we emphasize achievements with superconducting
circuit QED setups [10, 12, 13], with superconducting-semiconducting devices [14–16] and with
graphene-based samples [17] for heat rectification. The first experimental heat engines at the nanoscale
have exploited among others features trapped ions [18, 19] and cold atoms [20], NV-centers samples [21],
semiconducting quantum dots [5] and, very recently, superconducting tunnel junctions [7].

Towards the development of realistic and efficient quantum technologies, it becomes clear that hybrid
quantum thermal devices that can combine several tasks towards heat management at the nanoscale
become highly desirable. Their characterization has been the topic of recent theoretical investigations
[22–26]. Here, we propose and theoretically investigate an Aharonov-Bohm (AB) ring embedded in a
normal-superconducting (N-S) two-terminal device as a versatile and efficient quantum thermal machine.
We demonstrate that both single-quantum interferences and superconducting contact allow for operating
this device as a quantum heat engine and a quantum heat rectifier. This configuration is inspired by recent
works demonstrating on the one side, excellent thermoelectric response of an AB ring in a normal
two-terminal setup [27, 28] and on the other side, high rectification coefficients by exploiting a left-right
asymmetry in the density of states (DOSs) of the contacts induced by the superconducting gap compared to
the normal metal [1]. From a theoretical point of view, we characterize the behavior of this N-S AB
interferometer within and beyond the Andreev approximation, evaluating the functioning of N-S structures
as quantum thermal devices in full generality.
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2. Theoretical framework

We analyze the thermodynamic performances of an AB ring in an N-S two-terminal setup within a
scattering-matrix formalism [29]. This theoretical approach is motivated by its ability to keep track of the
quasiparticles phase coherence in the device and of the specificities of the superconducting contact
characterized by its gap∆ and its critical temperature TC. In contrast to previous works [27, 28]
investigating the AB ring as an efficient thermoelectric device when connected to two normal contacts, we
account for the electron-like and hole-like behaviors of the quasiparticles being subject to a temperature bias
between the two contacts, one normal metal contact and one superconducting contact. It is the combination
of these N-S contacts and the AB ring that allows this device to become hybrid—it acts as heat rectifier and
heat engine with large efficiency in both operating modes.

2.1. Model for a N-S AB ring
The device is sketched in figure 1: it is made of an AB ring as central part, connected to the left and right
contacts, a normal contact (N) and a superconducting contact (S). The two contacts are described through
their chemical potential µN,S and temperature TN,S. The AB ring encloses a magnetic flux Φ, and is
characterized by the length of its upper and lower arms, respectively Lu and Lℓ. A top gate allows for a gate
voltage Vg. The AB ring is connected to the two leads through T-junctions characterized by their
transmission probability τ ∈ [0,1] [30]. The superconducting contact is connected to the central part
through an normal-superconductor (N-S) junction. We model this junction with a delta-like contact
resistance at the interface between the normal and superconducting parts, following references [31, 32].
This barrier is characterized by a dimensionless parameter Z: for Z≪ 1, the interface is said to be very
transparent and ideal for Z= 0, whereas Z≫ 1 corresponds to the tunnel limit.

Within a scattering matrix approach, we evaluate the charge and heat currents in the normal (left)
contact, denoted as IN and JN respectively. They can be expressed in the compact form [33–36]:[

IN
JN

]
=

2

h

∑
j=N,S
α,β=±

ˆ ∞

0
dϵ

[
αe

(ϵ−αµN)

] (
f αN (ϵ)− fβj (ϵ)

) ∣∣∣SαβNj (ϵ)
∣∣∣2 . (1)

Here the factor 2 accounts for spin degeneracy, e is the electrical charge, and we define the zero of energy
as being that of the electrochemical potential of the superconductor, i.e. µS = 0. µN is the electrochemical
potential of the normal contact [31, 34]. The labels α,β =± accounts for the electron-like (+) or hole-like
(−) quasiparticle, f αS (ϵ) and f αN (ϵ) are respectively the energy-dependent Fermi distributions characterizing
the superconducting and normal contacts. Depending on whether the quasiparticle behaves as an electron
(α=+) or a hole (α=−), the electrochemical potential µi of lead i= N,S has to be subtracted (electron) or
added (hole) to the energy ϵ:

f αi (ϵ) = {e(ϵ−αµi)/kBTi + 1}−1, (2)

with T i the temperature of lead i= N,S and kB the Boltzmann constant. In equation (1), S represents the
scattering matrix of the whole device, which we now make explicit.

2.2. Scattering matrix of a N-S AB ring
The total scattering matrix (s-matrix) S for this N-S AB ring is the composition of the s-matrix for the AB
ring SAB and the s-matrix of the N-S interface SNS through established rules that conserve the number of
quasiparticles flowing through the device [37, 38]:

S = SAB ◦ SNS. (3)

The s-matrix SNS must account for Andreev reflections [39], allowing an electron to be reflected as a hole and
vice-versa. Hence, for a two-terminal device with a single channel, it imposes the form of a 4× 4 matrix to
S,SAB and SNS. As the AB ring does not involve any superconducting material, SAB will take a block-diagonal
form, indicating that the AB ring does not couple electrons and holes. The matrix SAB depends in general on
energy, denoted ϵ below, and can then be written as:

SAB(ϵ) =


reeAB(ϵ) 0 t ′eeAB(ϵ) 0
0 rhhAB(ϵ) 0 t ′hhAB (ϵ)

t eeAB(ϵ) 0 r ′eeAB(ϵ) 0
0 thhAB(ϵ) 0 r ′hhAB (ϵ)

 . (4)
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Figure 1. Two-terminal N-S AB quantum thermal device. (a) Scheme of the central AB ring with magnetic fluxΦ, gate voltage Vg

and length imbalance∆L= Lu − Lℓ as tunable parameters. The AB ring is connected to the contacts through two T-junctions
with transmission probability τ , and through a N-S junction with the superconducting contact. The N and S contacts are biased
in temperature, TN −TS =∆T. The circuit can be closed with dissipationless (superconducting) wires with a load resistance RL

to operate the device as quantum heat engine. (b) Dispersion curves for electron-like quasiparticles (solid curves) and hole-like
quasiparticles (dashed curves) respectively in the normal lead (left) and superconducting lead (right). The presence of the
superconductor opens a gap∆ in the eigenspectrum, and hybridizes electron- and hole-states. S indicates the scattering matrix
describing the central scattering region accounting for the presence of the AB ring, the T-junctions and the N-S interface.

SAB results from the combination of the s-matrices of the central ring and of the two T-junctions, see
appendix A for all details. For a normal metal, the reflection and transmission amplitudes for electrons and
holes in equation (4) are simply related through electron–hole conjugation rules:

rhhAB(ϵ) =
(
reeAB(−ϵ)

)∗
; thhAB(ϵ) =

(
teeAB(−ϵ)

)∗
, (5)

and similarly for the amplitudes r′ and t′ for incoming waves from the right. In contrast to SAB, the s-matrix
SNS is characterized by non-vanishing off-diagonal elements to account for Andreev processes (allowing an
electron to be reflected/transmitted as a hole and vice-versa):

SNS =


ree reh tẽe teh̃
rhe rhh thẽ thh̃
t̃ee t̃eh rẽ̃e rẽh̃
th̃e th̃h rh̃ẽ rh̃h̃

 . (6)

The reflection and transmission amplitudes for electron, holes and Andreev processes are derived within a
Bogoliubov-de Gennes (BdG) formalism to capture the essence of superconductivity [31, 36]. The
amplitudes rαβ and tαβ represent respectively the reflection and transmission amplitudes of an incoming
quasiparticle of type β = e,h (β = ẽ, h̃) injected from lead N (S) to end up as a quasiparticle of type α= e,h
(α= ẽ, h̃) in lead N (S). For clarity, the tilde denotes the quasiparticles in the superconducting lead, ẽ for
electron-like and h̃ for hole-like quasiparticles, see figure 1(b). Let us remark that in the limit of a vanishing
superconducting gap,∆→ 0, one recovers the scattering amplitudes derived in previous references
investigating a AB ring in a two-terminal device with two normal contacts [27, 28].

Usually, in the literature, the amplitudes in equation (6) are obtained in the so-called Andreev
approximation regime, defined when the superconducting gap is much smaller than the Fermi energy,
∆≪ ϵF [31, 40]. In this case, the scattering amplitudes take a simple analytical form that depends explicitly

3
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on∆ and on the transparency coefficient Z, as we detailed in appendix B. However, it is important to notice
that, within the Andreev approximation, all the details about the curvature of the BdG eigenspectrum are
lost and, as a result, thermoelectric effects get strongly suppressed. Therefore, to evidence the thermoelectric
feature of our hybrid superconducting system, in the following section we will go beyond the Andreev
approximation. Remarkably, an analytical form of the scattering coefficients of equation (6) can be found
beyond the Andreev approximation in the case Z= 0—see appendix C for details.

3. Thermoelectric properties of the N-S AB ring

Thermoelectricity—i.e. the ability to convert a heat current into an electrical current (Seebeck effect), or vice
versa (Peltier effect) – requires an energy asymmetry between electron-like and hole-like quasiparticles, see
reference [34] for a pedagogical review. The Seebeck coefficient S assesses the thermovoltage∆Vth developed
by the device in response to a temperature bias at zero charge current, hence expressed in units of [VK−1]:

S=
∆Vth

∆T

∣∣∣∣
IN=0

. (7)

In a N-S two terminal device within the Andreev approximation, the wave vector amplitudes for electrons
and holes are both evaluated at the Fermi energy, ke/h ≃ kF, preventing any possible electron–hole
asymmetry in the transmission probability. This results in the absence of any thermoelectric effects. Beyond
the Andreev approximation, there exists an electron–hole asymmetry in the wave vectors, which should lead
to a thermoelectric response of the N-S junction. To the best of our knowledge, this has not yet been shown
in earlier works, and we take the opportunity of this work to fill this gap3. In contrast to the N-S junction, the
AB ring hosts quantum interferences that favor thermoelectric effects [27, 28, 42–45].

We show below that the combination of the AB ring and the N-S junction become beneficial to each
other, and allow a thermoelectric response of the order of thousands µVK−1. We investigate the
thermoelectric response of the device both in the linear and non-linear response regimes, within and
beyond the Andreev approximation.

3.1. Thermoelectric linear response
The linear response regime is defined when∆T= TN−TS≪ T≡ (TN +TS)/2 for the temperature bias and
e∆V= (µN−µS)≪ kBT for the voltage bias [34]. In this situation, the electrical charge current (IN) and the
heat current (JN) in equation (1) are simply expressed in terms of the Onsager matrix L [34]:(

IN
JN

)
=

(
L11 L12
L21 L22

)(
∆V/T
∆T/T2

)
. (8)

The diagonal Onsager coefficients determine the electrical (L11) and heat (L22) conductance, whereas the
off-diagonal terms (L12,L21) set the thermoelectric properties of the device in the linear response regime. Let
us note that in this two-terminal device, micro-reversibility ensures the transmission function of the AB ring
to be an even function of the magnetic flux, hence L12 = L21 despite the presence of a finite magnetic
field [30, 46, 47].

3.1.1. Seebeck coefficient
In the linear response regime, the Seebeck coefficient defined in equation (7) is determined by the Onsager
coefficients [34]:

S=
1

T

L12
L11

. (9)

Figure 2 shows the Seebeck coefficient of the N-S AB ring in the linear response regime within and
beyond the Andreev approximation, and compares it to the Seebeck coefficient for the N-S junction alone,
without the AB ring. The Seebeck coefficient is plotted as a function of the temperature T/TC for different
values of Z. Other parameters have been optimized using the method of the gradient descent in order to get
the highest value of the Seebeck coefficient in the temperature range T/TC ∈ [0,2]. To account for the

3 We report the recent work [41] in which authors discuss thermoelectric response beyond Andreev approximation up to the first order
in ϵ/ϵF. In our work we retained all the orders in ϵ/ϵF.

4
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Figure 2. Seebeck coefficient (in units of µVK−1) as a function of the mean temperature T (in units of the critical temperature
TC) for different values of the barrier strength Z. Upper panels show the case of the N-S junction without the AB ring, bottom
panels show the configuration of the N-S junction with the AB ring. Left panels have been obtained in the Andreev approximation
(ϵ,∆≪ ϵF), right panels have been obtained beyond the Andreev approximation limit with ϵF = 5∆. Here we considered
kFξ = 1 (where ξ = ℏvF/∆ is the superconducting coherence length), τ = 0.5, while other parameters have been optimized in the
temperature range T/TC ∈ [0,2] and are: Lu/ξ = Lℓ/ξ = 0.1, eVg/π∆= 0 and 2πΦ/Φ0 = 0.5.

temperature dependence of the superconducting order parameter, we use the following relation for the
energy gap:

∆(T) = ∆(0) tanh

(
1.74

√
TC

T
− 1

)
(10)

which is accurate better than 2% with respect to the self-consistent BCS result [48, 49]. Panel A evidences the
absence of any thermoelectric response of the N-S junction within the Andreev approximation with S= 0 for
all values of Z (as explained earlier, in this limit no electron–hole asymmetry exists). Beyond the Andreev
approximation, the situation clearly differs, see panel B. The Seebeck coefficient is finite and increases
monotonically both as a function of temperature and Z reaching values of the order of∼60 µV K−1.
Interestingly, it decreases when going to the limit of a transparent barrier, Z→ 0. To understand this
dependence, we investigated numerically the case Z= 0. In this limit, the scattering amplitudes in SNS
obtained beyond the Andreev approximation weakly deviate from that given in the Andreev approximation
only for ϵ≳∆ within few kBT. As a consequence, at low temperatures the thermoelectric response is weak,
and increases by increasing temperature (see red curve in panel B).

In panels C and D, we first observe a plateau, the Seebeck coefficient remains constant at∼100 µV K−1,
when the gap is open, i.e. for T< TC. Interestingly, this plateau is independent of the value of Z. At T≈ TC

(when the gap is closed), the Seebeck coefficient starts to deviate until it reaches (at T= 2TC) values of the
order of∼900 µV K−1 in the Andreev approximation (panel C) and∼1300 µV K−1 beyond the Andreev
approximation (panel D). Let us remark that the behavior of the Seebeck coefficient as a function of Z in the
presence of the AB ring is not universal, it rather depends on the specific choice of the parameters. In
particular, as seen in panels C and D, the Seebeck coefficient in presence of the AB ring is larger for small Z,
while it decreases by increasing Z. This has been obtained by fixing the value of the external magnetic flux at
2πΦ/Φ0 = 0.5. If one would set for instance 2πΦ/Φ0 = 0, the opposite behavior could be observed as
verified numerically.

5
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Figure 3. Seebeck coefficient (left panels) in units of µVK−1 and the figure of merit ZT (right panels) as function of the upper
and lower branches lengths Lu/ξ and Lℓ/ξ of the AB ring expressed in units of the coherence length ξ = ℏvF/∆ (upper panels)
and as a functions of magnetic flux 2πΦ/Φ0 and the gate potential eVg/π∆ (bottom panels). For upper panels we fixed
eVg/π∆= 0 and 2πΦ/Φ0 = 0.5, for bottom panels we considered Lu/ξ = Lℓ/ξ = 0.3: these choices maximize the value of the
Seebeck coefficients. All panels plots have been obtained in the Andreev approximation where we considered τ = 0.1, Z= 0.1 and
kFξ = 1.

3.1.2. Tunable thermoelectric properties
We now characterize the thermoelectric response and the efficiency of this N-S AB ring as a function of key
parameters for an experiment: external gate voltage Vg applied onto one of the arms of the AB ring, length
imbalance∆L= Lu− Lℓ between the two arms and the AB flux Φ due to an external magnetic field applied
perpendicularly to the sample. Panels A and C of figure 3 show density plots of the Seebeck coefficient as a
function of these parameters. Let us remind the reader that the Seebeck coefficient can take both positive and
negative values, reflecting electron-like or hole-like dominant behavior [34]. In the N-S AB ring device, it
seems advantageous for increasing S to operate with a balanced AB ring, with symmetric arms Lu = Lℓ. In
this situation, the behavior of S as a function of external gate voltage Vg and AB flux Φ highlights some
optimal values to reach high value for S, about 300 µVK−1. Here we have considered a mean temperature
T/TC = 0.5 such that the gap of the superconducting lead is open, and a transmission probability for the
T-junctions τ = 0.1. The other parameters have been optimized by using the method of the gradient descent
in order to get the higher value of the Seebeck coefficient. The right column (panels B and D) shows the ZT
coefficient, a figure of merit for assessing the maximal efficiency ηmax of a thermoelectric device in the linear
response regime. It approaches the Carnot efficiency ηC =∆T/T for ZT→∞ [34]. In terms of the Onsager
matrix and coefficients introduced in equation (8), it reads:

ηmax = ηC

√
ZT+ 1− 1√
ZT+ 1+ 1

with ZT=
L212

Det[L]
. (11)

As it emerges from the top panels of figure 3, both the Seebeck coefficient and the ZT figure of merit are
sizable only when the lengths of the upper and lower branches of the AB ring are equal Lu = Lℓ,

6
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Figure 4. Power in units of GTT, with GT = (π2/3h)k2BT the thermal conductance quantum (panel A), and the efficiency η in
units of the Carnot efficiency ηC =∆T/T (panel B) as function of the magnetic fluxΦ in units of the flux quantumΦ0 for
different values of the gate voltage eVg/π∆. Here the other parameters used to maximize the efficiency are: RL/(h/2e2) = 100,
Z= 0.04, τ = 0.24, Lu/ξ = 0.1, Lℓ/ξ = 1.26, T/TC = 0.5 and∆T/TC = 0.1.

corresponding to the darker stripe on the diagonal of the density plots. More precisely, the Seebeck
coefficient takes its maximal value when Lu = Lℓ ≈ 0.3, in which case S≈ 300 µVK−1 and ZT≈ 100,
the latter being one order of magnitude bigger than the one found in reference [27]. This excellent
thermoelectric response in the linear regime motivates the investigation of its thermoelectric properties in
the non-linear regime. As direct application, we exploit them to propose the N-S AB ring as efficient
quantum heat engine in the following section.

3.2. Quantum heat engine in the non-linear response regime
Predicting a high Seebeck coefficient for a given nanoscale device is extremely relevant for designing efficient
quantum thermal engines. Indeed, by closing the circuit with a load resistance RL (see figure 1 (a)) connected
with superconducting wires to the device (no Joule dissipation in the wires), one can generate an electrical

power P from the thermovoltage developed by the device in response to the thermal bias, P=
∆V2

th
RL

. The
efficiency of such a device is then the ratio of the electrical power (output) over the heat current from the hot
contact in the stationary state evaluated at the thermovoltage (input), η = P

JN(∆Vth)
.

In the non-linear regime, the thermovoltage developed by the device has to be calculated by solving the
following equation for the closed circuit (we refer to [28] and references therein for more details):

IN (∆Vth) =−
∆Vth

RL
. (12)

We evaluate numerically the thermovoltage in the closed circuit configuration as a function of the magnetic
flux Φ and of the gate voltage Vg, showing the results in figure 4. Panel A corresponds to the generated power
P and panel B to the efficiency η. We predict values for the efficiency up to∼55% of the Carnot efficiency.
Compared to the values η ∼40% obtained with a normal AB structure [28], we can associate the higher
efficiency to the N-S interface as it leads to a decrease of the heat current entering the denominator of η.
Indeed, the N-S junction acts as a mirror for the heat current: Andreev reflections block energy and heat
fluxes since the latter are propagated by single quasi-particles and not by Cooper pairs in the condensate
[34]. We note that power and efficiency present the same behavior (in particular reach the maximum for
same values of the parameters) as a function of 2πΦ/Φ0, Vg and τ , the transmission of the T-junctions. For
the latter dependence on τ , we observe that power and efficiency both reach a maximum value for relatively
small values of τ , decrease for τ close to 1, and vanish for τ = 0. These features originate in the AB ring
exhibiting a Fabry-Pérot like behavior for small τ (first discussed in [27]). In contrast, τ = 0 corresponds to a
fully decoupled ring from the contacts (no transport) and τ = 1 does not contribute to an enhancement of
constructive single-particle interferences.

4. Hybrid AB ring as quantum thermal rectifier

Demonstrating thermal rectification with high efficiency at the quantum scale is currently a very active
research direction, both from a fundamental point of view and in applied physics for quantum engineering.
In a two-terminal setup subject to thermal bias, thermal rectification is achieved when left-to-right currents
differ upon exchanging the temperatures of the two contacts. From the theory of superconductivity, it is
clear that an efficient way to break left-right symmetry is to exploit the dependence of the DOSs of
superconductors as a function of temperature. Indeed, as recalled in equation (10), the superconducting gap,

7
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Figure 5. Rectification with the hybrid AB ring. Panel A: Log-scale plot of the absolute value of the heat current |J±N | in units of

GTT as a function of (Thot −Tcold)/TC. Right branch corresponds to |J+N | in the forward configuration while left branch

represents |J−N | in the reverse configuration. Blueish solid curves represent the case in which Tcold/TC < 1 (the gap is open in the
S contact), reddish dashed curves have been obtained for Tcold/TC ⩾ 1 (both contacts behave as normal metals). Panel B:
Rectification factorR as function of Thot/TC for different values of Tcold/TC with Vg = 0 and 2πΦ/Φ0 = 0.5. Panel C :
Rectification factorR as function of 2πΦ/Φ0 for different values of eVg/π∆ at fixed values of Tcold/TC = 0.1 and

Thot/TC = 0.15. Panel D : parametric plot ofR and max
{
|J+N |, |J−N |

}
as a function of Thot/TC for different values of Tcold/TC.

Fixed parameters: τ = 0.1, Z= 0.2, kFξ = 1, Lu = Lℓ = 0.1.

and consequently the DOS, changes with temperature [50–53]. Upon exchanging the temperatures, DOS of
the contacts are modified, inducing different heat currents in the two configurations. Hence, thermal
rectification at the nanoscale was predicted and measured in N-S junctions in the past decade [1].

To investigate and characterize this operating mode for the hybrid N-S AB ring device, we consider again
the open-circuit setup (i.e. without the load resistance) beyond the linear response regime. Specifically, we
consider two configurations for the thermal bias. In the forward configuration, a thermal gradient is created
by setting TN = Thot > TS = Tcold, leading to a total heat current J

+
N flowing from N to S. In the reverse

thermal bias configuration, the thermal gradient is inverted, TN = Tcold < TS = Thot, leading to a heat
current J−N flowing from S to N. It follows that thermal rectification is achieved whenever

∣∣J+N ∣∣ ̸= ∣∣J−N ∣∣. Let us
remark that the thermovoltage developed by the N-S AB ring in response to a temperature gradientmust be
taken into account when calculating the heat currents J+N and J−N . The thermovoltages in the two
configurations are solutions of the following equations for the charge current:{

IN
(
∆V+

th,TN = Thot,TS = Tcold

)
= 0

IN
(
∆V−

th,TN = Tcold,TS = Thot

)
= 0

(13)

with the charge current given by equation (1).
Panel A in figure 5 shows in log-scale the absolute value of the heat currents |J±N | as a function of

(Thot−Tcold)/TC for different values of Tcold. Note that for Tcold/TC < 1 (see blueish solid curves), we probe
the superconducting properties of the S contact, while for Tcold/TC ⩾ 1 (see reddish dashed curves) both
contacts behave as normal metals. Rectification can be assessed by its figure of merit, the rectification factor
defined as:

R=
∣∣J+N ∣∣/ ∣∣J−N ∣∣ . (14)

IfR> 1, the heat current flows from left to right (N→ S), while ifR< 1 the heat current flows from right to
left (N← S). IfR= 1, the heat current does not have a specific direction, i.e. there is no rectification. Panel
B in figure 5 represents the rectification factorR as function of Thot/TC for different values of Tcold/TC.
Here we considered the hot temperature in the range Tcold ⩽ Thot ⩽ 5TC, while for larger temperatures,
i.e. Thot≫ TC, we verified thatR approaches 1. As can be noticed in panel B, the higher rectification occurs
for small values of Tcold≪ TC, while it decreases by increasing Tcold. In particular, a value for rectification of
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aboutR≃ 4.5 is achieved for Tcold/TC = 0.1 and Thot/TC = 0.15: this corresponds to a value of the forward
heat current (J+N ) greater than 350% compared to the reverse one (J−N ). Furthermore, it is important to notice
that, differently from systems that do not exhibit thermoelectric properties, in our case rectification occurs
even for Tcold > TC, namely when the gap of the superconductor is closed and the system behaves as an
effective N-AB-N device. This happens because, although in such an effective N-AB-N regime the system is
left-right symmetric (namely the scattering matrix S is not affected by the exchange of temperatures,
Tcold↔ Thot), the thermovoltage generated in the forward configuration is different from that obtained in
the reverse one, i.e.∆V+

th ̸=∆V−
th , as results by explicitly solving equations (13)—see appendix D for more

details. This results in a forward heat current different from the reverse one,
∣∣J+N (∆V+

th)
∣∣ ̸= ∣∣J−N (∆V−

th)
∣∣,

which reflects into a finite rectification. However, it is important to stress that the rectification obtained
when the system behaves like an effective N-AB-N device (i.e. when Tcold > TC) is at least 3 times smaller
than the one obtained when the gap is open and the right lead is still superconducting (i.e. when Tcold < TC),
as can be seen by comparing the cyan solid curve with the violet dashed one in panel B of figure 5.

We also investigate the tunability of this rectifier by means of the external parameters provided by the
N-S AB ring device. Panel C in figure 5 showsR as a function of the magnetic flux Φ for different values of
the gate voltage Vg. The temperatures Tcold/TC = 0.1 and Thot/TC = 0.15 have been fixed to optimizeR. It
becomes clear that this device is fully phase-tunable. Controlling the magnetic flux Φ allows us to turn on
and off the rectification ability of the N-S AB ring.

Finally, we would like to emphasize that a quantum heat rectifier should also be characterized by good
heat conduction properties to constitute a useful device. Indeed, as recently discussed in [54], there typically
exits a trade-off between heat rectification and heat conduction. Large rectification factors often occur at low
maximum heat current through the device. This motivates us to investigate the heat rectification factor and
the heat currents in a complementary way. We show in panel D a parametric plot ofR and max

{∣∣J+N ∣∣ , ∣∣J−N ∣∣}
as a function of Thot/TC. While the trade-off between heat rectification and heat conduction is clearly visible
(highestR occurs at lowest max

{∣∣J+N ∣∣ , ∣∣J−N ∣∣}, see cyan solid curve corresponding to Tcold/TC = 0.1), the
numerical results predict sizable rectification of 50% happening at several tens of [nW] for all values of Tcold.

5. Experimental implementation of the hybrid AB ring

Let us now discuss a possible experimental setup to implement the hybrid AB interferometer. Since the
structure also contains a superconducting lead, III–V semiconducting alloys like InAs [55–58] or
In0.80Ga0.20As [59, 60] two-dimensional electron gases (2DEGs) are suitable candidates for the realization of
the ballistic loop structure. These materials typically provide Schottky barrier-free contacts with metals,
which is a crucial requirement in order to achieve highly-transparent N-S interfaces, and thereby maximize
Andreev reflection at the contact with the superconductor. Such III–V 2DEGs can be easily gated by means
of side or top gates in order to finely tailor the details of the thermoelectric AB structure. As far as the
superconducting element is concerned, aluminum (Al, providing an energy gap of∼200 µeV and critical
temperature around 1.4 K) or niobium (Nb, providing an energy gap of∼1.5 meV and critical temperature
∼9 K) thin layers are ideal superconductors to be coupled to the 2DEG AB ring.

The AB quantum thermal structure analyzed so far needs to be thermally-biased in order to provide
either thermoelectric response or heat rectification properties [1]. To this end superconducting tunnel
junctions (typically made of oxidized Al layers) can be integrated in the normal and superconducting leads
forming the structure [3], and can be used as electron heaters to impose a suitable thermal gradient across
the structure via Joule heating, or can be used to measure the quasiparticle temperature thereby operating as
sensitive electron thermometers [3]. On the one hand, the thermoelectric response of the hybrid AB
interferometer can be proved by setting a thermal gradient across the ring (from a few tens to a few hundreds
mK depending on the average temperature of the structure), and by measuring either the thermovoltage in
an open-circuit configuration or the thermocurrent by closing the circuit upon a suitable loading resistor [1].
On the other hand, the heat rectification character of the system can be demonstrated by tunnel-coupling
two identical normal metal (N) reservoirs to the N-S AB structure [11, 61], one on the left and the other on
the right, each of them equipped with superconducting tunnel junctions thereby implementing electron
heaters and thermometers. The forward thermal bias configuration can be achieved by intentionally
increasing the electronic temperature up to Thot in one of the two N electrodes (i.e. up to several hundreds
mK to achieve the full non-linear regime in temperature), and by measuring the resulting steady-state
temperature in the opposite electrode. The reverse thermal bias configuration is obtained similarly by simply
inverting the heating in the other N electrode. The difference of the two measured temperatures for any given
Thot can be used to assess the degree of thermal rectification as a function of electrostatic gating and
magnetic flux [1, 11].
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6. Conclusions

In summary, we have theoretically analyzed both the thermoelectric and rectification response of a ballistic
interferometer consisting of an AB quantum ring coupled to a normal metal and a superconducting lead.
As a thermoelectric quantum device, the N-S AB interferometer is able to provide a sizable Seebeck
coefficient as large as 100 µVK−1 below the superconducting critical temperature TC, independently of the
transmissivity of the ring/superconductor interface. In addition, at temperatures larger than TC (when the
superconducting lead is in the metallic regime), the Seeebeck coefficient obtains values exceeding 1 mVK−1

for an ideal contact with the superconductor, whereas it is strongly suppressed by decreasing the
ring/superconductor interface transmissivity. Yet, in terms of the ZT coefficient, the N-S AB device obtains
values as large as∼160, which appears promising in light of the implementation of efficient quantum heat
engines. In such a context, sizable values as large as∼55% of the Carnot efficiency can, in principle, be
achieved in the structure under suitable tuning of the gate voltage and the magnetic flux piercing the
interferometer. All this confirms the potential of the N-S AB interferometer as a prototypical platform for the
realization of efficient quantum thermal machines.

Moreover, the presence of a superconducting lead breaks left-right thermal symmetry in the structure,
thereby allowing finite heat rectification to occur in the interferometer. In particular, rectification coefficients
as large as∼350% can be achieved upon proper tuning of the structure parameters.

Finally, as far as the realization of the structure is concerned, III–V semiconducting alloys such as
InAs or In0.80Ga0.20As realizing two-dimensional electron gases combined to an Al or Nb superconducting
electrode are suitable candidates for the realization of the ballistic AB hybrid interferometer. The flexibility
offered by the above material systems seems indeed ideal in light of the realization of quantum
thermoelectric machines implemented through ballistic AB interferometers to be exploited in future
quantum technology applications operating at subkelvin temperatures.
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Appendix A. Scattering matrix of the AB ring

Here we provide details on the derivation of the scattering matrix SAB of equation (4). Specifically, in
appendix A.1, we proceed by writing first the particle-scattering matrices ST1,T2 for the T-junctions and SR
for the ring. Then, in appendix A.2, we combine them to get the 2× 2 particle-scattering matrix of the AB
ring connected with the T-junctions, that only describes the scattering processes of particles. Finally, in order
to account for the presence of holes, in appendix A.3 we use the BdG formalism to extend the matrix to the
full particle-hole space.

A.1. T-junctions and AB ring particle-scattering matrices
As shown in figure A1, we model our setup as a two-terminal geometry consisting of a AB ring connected to
two reservoirs through T-junctions [30]. This system can be described via three scattering matrices: ST1 and
ST2 describing respectively the left and right T-junctions connecting the AB ring to the contacts, and SR
which describes the ring. Following [27, 28, 30], the real particle-scattering matrices of the left and right
T-junctions are given by

 c−1
cu+R1
cℓ+R1

=

 −(a1 + b1)
√
τ1/2

√
τ1/2√

τ1/2 a1 b1√
τ1/2 b1 a1


ST1

 c+1
cu−R1
cℓ−R1

 (A.1)
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Figure A1. Sketch of the hybrid AB ring. Dotted lines with different colors encircle respectively the scattering regions of the
T-junctions (blue dotted lines), the ring (black dotted line) and the N-S junction (green dotted line). Red dashed arrows indicate
the direction of propagation of the incoming and outgoing particles (holes).

 cu−R2
cℓ−R2
c+2

=

 a2 b2
√
τ2/2

b2 a2
√
τ2/2√

τ2/2
√
τ2/2 −(a2 + b2)


ST2

 cu+R2
cℓ+R2
c−2

 (A.2)

where we indicated with c±i the incoming and outgoing particles in the left (i= 1) and right (i= 2) lead
respectively, and with ck±Rj the incoming and outgoing particles on the left (j= R1) and right (j= R2) side of
the ring. The index k= u, ℓ labels, respectively, the upper and lower branch of the ring, and± indicate the
direction of propagation of particles (+ for right movers and− for left movers). In equations (A.1)
and (A.2), we defined the scattering amplitudes

ai =
1

2

(√
1− τi− 1

)
bi =

1

2

(√
1− τi + 1

)
(A.3)

where τi ∈ [0,1] represents the transmission probability of the left (i= 1) and right (i= 2) T-junction
respectively. For simplicity, in the main text we considered τ = τ1 = τ2 (symmetric T-junctions). As a further
remark, it is useful to notice that, with the choice of basis we did in equations (A.1) and (A.2), the scattering
matrices of the T-junctions can be written in the standard form

STi =

(
ri t ′i
ti r ′i

)
, (A.4)

where ri and r ′i are square block matrices concerning reflected particles, whereas ti and t ′i are rectangular
block matrices concerning particles transmitted through the left (i= 1) and right (i= 2) T-junction
respectively. In the same way we can write the particle-scattering matrix SR describing the ring, which is
given by 

cu−R1
cℓ−R1
cu+R2
cℓ+R2

=


0 0 ei(χu−Φu) 0
0 0 0 ei(χℓ−Φℓ)

ei(Φu+χu) 0 0 0
0 ei(Φℓ+χℓ) 0 0


SR


cu+R1
cℓ+R1
cu−R2
cℓ−R2

 (A.5)

where χi are the dynamical phases that electrons acquire while traveling in each arm i= u, ℓ. Moreover, the
application of the magnetic flux Φ across the AB ring causes the particles to acquire additional phases on
each arm (namely, Φu in the upper and Φℓ in the lower arm), such that Φu−Φℓ = 2πΦ/Φ0 with Φ0 = h/e
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being the flux quantum. As a result, right moving particles propagating in each arm (i= u, ℓ) acquire a
global dynamical phase χi +Φi, while left moving particle get a global phase χi−Φi. Also in this case SR can
be written in the form

SR =

(
rR t ′R
tR r ′R

)
. (A.6)

As shown in [27, 28], by linearizing the spectrum around the Fermi energy ϵF and taking into account an
additional voltage gate V g applied to the lower arm of the ring, we can write the dynamical phases χu and χℓ

in the following way

χu =

[
kF +

ϵ− ϵF
ℏvF

]
Lu ≡

[
ξ

λF
+

ϵ− ϵF
∆

]
Lu
ξ

(A.7)

χℓ =

[
kF +

ϵ− (ϵF +Vg)

ℏvF

]
Lℓ ≡

[
ξ

λF
+

ϵ− (ϵF +Vg)

∆

]
Lℓ
ξ

(A.8)

with Lu and Lℓ the lengths of the upper and lower arm respectively, and where we introduced the Fermi wave
vector kF =

√
2mϵF/ℏ= 1/λF (with λF the Fermi wave length). In equations (A.7) and (A.8), we expressed

all the quantities with respect to the superconducting energy gap∆ and the coherence length ξ = ℏvF/∆.

A.2. Combination of the scattering matrices
By following [37, 38] we first combine matrices ST1 of equation (A.1) and SR of equation (A.5), and obtain

ST1 ◦ SR =
(
r t ′

t r ′

)
, (A.9)

in which

r= r1 + t ′1rR [1− r ′1rR]
−1

t1

r ′ = r ′R + tR [1− r ′1rR]
−1

r ′1t
′
R

t= tR [1− r ′1rR]
−1

t1

t ′ = t ′1 [1− rRr
′
1]
−1

t ′R, (A.10)

where 1 stands for the 2× 2 identity matrix. Finally, by applying the same procedure but adding ST2 we
obtain the particle-scattering matrix of the AB ring

SeAB ≡ ST1 ◦ SR ◦ ST2 (A.11)

which takes the following form

SeAB =

(
reeAB t ′eeAB

teeAB r ′eeAB

)

=

 f− cos(δχ)− f+ cos(Φ)+4
√
1−τ cos(χ)

f± cos(δχ)+ f+ cos(Φ)+2iτ sin(χ)+2(τ−2) cos(χ)

2iτe−iΦ/2(sin(χu)+eiΦ sin(χℓ))
f− cos(δχ)+f+ cos(Φ)+2iτ sin(χ)+2(τ−2) cos(χ)

2iτe−iΦ/2(sin(χℓ)+ eiΦ sin(χu))
f− cos(δχ)+ f+ cos(Φ)+2iτ sin(χ)+2(τ−2) cos(χ)

f− cos(δχ)− f+ cos(Φ)+4
√
1−τ cos(χ)

f− cos(δχ)+ f+ cos(Φ)+2iτ sin(χ)+2(τ−2) cos(χ)

 (A.12)

in which the upper index e indicates that such scattering matrix only relates incoming with outgoing particles
(namely electrons), and where we defined the quantities: χ= χu +χℓ, δχ= χu−χℓ, f− = (

√
1− τ − 1)2

and f+ = (
√
1− τ + 1)2. From equation (A.12) we can compute the transmission function which is given by

TAB = |teeAB|
2
= |t ′eeAB |

2
=

4τ 2
(
2cos(Φ) sin(χℓ) sin(χu)+ sin2 (χℓ)+ sin2 (χu)

)
[ f− cos(δχ)+ f+ cos(Φ)+ 2(τ − 2)cos(χ)]2 + 4τ 2 sin2(χ)

. (A.13)
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A.3. Extension with the BdG formalism
In order to properly describe the transport in presence of a superconducting component, it is mandatory to
take into account for holes. In this respect the particle-scattering matrix SeAB of equation (A.12), can be
extended in the BdG formalism by changing the sign of the energy and taking the complex conjugate as
specified by the particle-hole symmetry relations already introduced in equation (5). As a result we obtain
the expression of the SAB full scattering matrix as presented in equation (4) of the main text, which we
propose here again making explicit the scattering basis:

c−1
b−1
c+2
b+2

=


reeAB(ϵ) 0 t ′eeAB(ϵ) 0
0 rhhAB(−ϵ)∗ 0 t ′hhAB (−ϵ)∗

teeAB(ϵ) 0 r ′eeAB(ϵ) 0
0 thhAB(−ϵ)∗ 0 r ′hhAB (−ϵ)∗


SAB


c+1
b+1
c−2
b−2

 (A.14)

where we indicated with b±i the incoming and outgoing holes in the left (i= 1) and the right (i= 2) lead
respectively. As already mentioned in the main text, in equation (A.14), each submatrix takes a
block-diagonal form since in the ring an electron cannot be converted into a hole or vice versa.

Appendix B. N-S junction scattering matrix

The scattering matrix equation for SNS, describing the N-S interface between the ring and the
superconducting lead, can be written as

c−2
b−2
c+S
b+S

=


ree reh tẽe teh̃
rhe rhh thẽ thh̃
tẽe thẽ rẽ̃e rẽh̃
teh̃ thh̃ rẽh̃ rh̃h̃


SNS


c+2
b+2
c−S
b−S

 (B.1)

where we indicate with c±S /b
±
S the incoming and outgoing quasiparticles/quasiholes in the superconductor,

with± labeling the direction of propagation of quasiparticles (+ for right movers and− for left movers). In
equation (B.1), the scattering coefficients have been obtained by solving the wave function matching
problem at the interface between the ring and the superconducting contact in the so-called Andreev
approximation limit (when ϵ,∆≪ ϵF), and take the following form

ree =−
Z(i+Z)

(
u20− v20

)
u20 +Z2 (u20− v20)

(B.2a)

rhe =
u0v0

u20 +Z2 (u20− v20)
e−iϕ (B.2b)

t̃ee =
(1− iZ)u0

√
u20− v20

u20 +Z2 (u20− v20)
e−iϕ2 ·Θ(ϵ−∆) (B.2c)

th̃e =
Zv0
√

u20− v20
u20 +Z2 (u20− v20)

e−iϕ2 ·Θ(ϵ−∆) (B.2d)

while the remaining scattering coefficients respect the following relations
rẽ̃e = r∗

h̃h̃
= r∗hh = ree

−rh̃ẽe
−iϕ =−r∗

ẽh̃
e−iϕ = r∗eh = rhe

tẽee−iϕ = t∗
hh̃
e−iϕ = t∗

h̃h
= t̃ee

−thẽ =−t∗eh̃ = t∗ẽh = th̃e

. (B.3)

As already mentioned in the main text, it is important to notice that, within the Andreev approximation, all
the details about the curvature of the eigenspectrum dispersion relations are completely lost. As a
consequence, themoelectric effects may result strongly suppressed. Instead, for a better description of the
thermoelectric phenomena in hybrid superconducting systems, it is necessary to go beyond the Andreev
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approximation (see appendix C for more details). In equations (B.2) we introduced the so-call coherence
factors u0 and v0 which take the following form

u0(ϵ) =

√√√√1

2

(
1+

√
ϵ2−∆2

ϵ2

)
≡
√

∆

2ϵ
e
1
2 h(ϵ)

v0(ϵ) =

√√√√1

2

(
1−

√
ϵ2−∆2

ϵ2

)
≡
√

∆

2ϵ
e−

1
2 h(ϵ) (B.4)

with

h(ϵ)≡

{
arcCosh

(
ϵ
∆

)
for ϵ >∆

i arccos
(

ϵ
∆

)
for ϵ <∆

. (B.5)

Moreover, the scattering coefficients of equations (B.2), depend explicitly on the dimensionless transparency
parameter Z which characterizes the interface with the superconductor [31].

Appendix C. Beyond the Andreev approximation

Here we present the explicit expressions of the scattering coefficients of equation (6), obtained beyond the
Andreev approximation in the case of an ideal interface Z= 0:

ree =
e2ixke

(
−Γqẽqh̃ +Γkekh +Ξ1ke−Ξ2kh

)
Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

rhe =
2u0v0

√
kekh

(
qẽ + qh̃

)
ei(xke−xkh−ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

t̃ee =
2u0
(
qh̃ + kh

)√
Γkeqẽe

1
2 i(−2xq̃e+2xke−ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

th̃e = −
2v0 (kh− qẽ)

√
Γkeqh̃e

1
2 i(2xqh̃+2xke−ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

reh =
2u0v0

√
kekh

(
qẽ + qh̃

)
ei(xke−xkh+ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

rhh =
e−2ixkh

(
−Γqẽqh̃ +Γkekh−Ξ1ke +Ξ2kh

)
Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

t̃eh =−
2v0
(
ke− qh̃

)√
Γkhqẽe−

1
2 i(2xq̃e+2xkh−ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

th̃h =
2u0 (qẽ + ke)

√
Γkhqh̃e

ixqh̃−ixkh+
iϕ
2

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

rẽ̃e =
e−2ixq̃e

(
Γqẽqh̃−Γkekh−Ξ3ke +Ξ4kh

)
Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

rh̃ẽ =−
2u0v0 (ke + kh)

√
qẽqh̃e

−ix(q̃e−qh̃)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

tẽe =
2u0
(
qh̃ + kh

)√
Γkeqẽe

1
2 i(−2xq̃e+2xke+ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

thẽ =−
2v0
(
ke− qh̃

)√
Γkhqẽe−

1
2 i(2xq̃e+2xkh+ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

rẽh̃ =−
2u0v0 (ke + kh)

√
qẽqh̃e

−ix(q̃e−qh̃)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

rh̃h̃ =
e2ixqh̃

(
Γqẽqh̃−Γkekh +Ξ3ke−Ξ4kh

)
Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

teh̃ =−
2v0 (kh− qẽ)

√
Γkeqh̃e

1
2 i(2xqh̃+2xke+ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

thh̃ =
2u0 (qẽ + ke)

√
Γkhqh̃e

− 1
2 i(−2xqh̃+2xkh+ϕ)

Γqẽqh̃ +Γkekh +Ξ1ke +Ξ2kh

where we defined the quantities

Γ = u20− v20,

and (
Ξ1 Ξ2

Ξ3 Ξ4

)
=

(
qh̃ qẽ
qh̃ qẽ

)
u20 +

(
qẽ qh̃
−qẽ −qh̃

)
v20.

Above we introduced the electron and hole wave vector amplitudes

ke = kF

√
1+

ϵ

ϵF
; kh = kF

√
1− ϵ

ϵF
(C.1)
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with kF =
√
2mϵF/ℏ the Fermi wave vector, and the wave vector amplitudes

qẽ = kF

√√√√1+

√
ϵ2−∆2

ϵ2F
; qh̃ = kF

√√√√1−

√
ϵ2−∆2

ϵ2F
(C.2)

for quasiparticles and quasiholes respectively.

Appendix D. Heat rectification beyond TC

As we mentioned in section 4, although the system is left-right symmetric for Tcold > TC, the thermovoltage
generated in the forward configuration turns out to be different from that obtained in the reverse one, i.e.∣∣∆V+

th

∣∣ ̸= ∣∣∆V−
th

∣∣. This can be understood by explicitly solving equation (13). More specifically, when
Tcold > TC (i.e. the superconductor is in the normal metal regime), the charge current in the forward
configuration can be written as:

IN(∆V+
th ,TN = Thot,TS = Tcold) =

2e

h

ˆ ∞

−∞
dϵ
[
f+N (ϵ,∆V+

th ,Thot)− f+S (ϵ,0,Tcold)
]
TAB(ϵ), (D.1)

where TAB(ϵ) is the transmission function of the system defined in equation (A.13) of appendix A. Notice
that, since the system behaves as an effective N-AB-N device, the current of equation (D.1) takes the standard
form for normal metals, which only accounts for the presence of electronic Fermi functions f+N , f

+
S and where

the integral goes from−∞ to∞. Similarly, by inverting the temperatures of the leads, the charge current in
the reverse configuration takes the following form:

IN(∆V−
th,TN = Tcold,TS = Thot) =

2e

h

ˆ ∞

−∞
dϵ
[
f+N (ϵ,∆V−

th,Tcold)− f+S (ϵ,0,Thot)
]
TAB(ϵ). (D.2)

It is evident that, due to the non-linearity of the Fermi functions, the value of
∣∣∆V+

th

∣∣ for which
equation (D.1) is equal to zero, is different from

∣∣∆V−
th

∣∣ obtained setting to zero equation (D.2).
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